Zevende college complexiteit. 7 maart Mergesort, Ondergrens sorteren (Quicksort)

Save this PDF as:
 WORD  PNG  TXT  JPG

Maat: px
Weergave met pagina beginnen:

Download "Zevende college complexiteit. 7 maart Mergesort, Ondergrens sorteren (Quicksort)"

Transcriptie

1 College 7 Zevende college complexiteit 7 maart 2017 Mergesort, Ondergrens sorteren (Quicksort) 1

2 Inversies Definitie: een inversie van de permutatie A[1],A[2],...,A[n] is een paar (A[i],A[j]) waarvoor i < j en A[i] > A[j]. M.a.w.: een inversie is een paar (A[i], A[j]) dat verkeerd om staat. Merk op: elk sorteeralgoritme moet alle aanwezige inversies opheffen. Verder: als een sorteeralgoritme altijd hooguit één inversie opheft per arrayvergelijking, dan is het aantal vergelijkingen dat wordt gedaan om A[1],...,A[n] te sorteren ten minste het aantal inversies van A. Bovendien: een buurverwisseling (zoals bij Insertion sort) heft altijd precies één inversie op (indien de buurelementen verkeerd om staan). 2

3 Average case Stelling Het gemiddeld aantal inversies in een permutatie van n verschillende waarden (bijvoorbeeld de getallen 1 t/m n) is 4 1 n(n 1). Dit onder de aanname dat alle n! permutaties even waarschijnlijk zijn. Gevolg: elk algoritme dat sorteert met behulp van arrayvergelijkingen en dat per vergelijking ten hoogste één inversie opheft, moet ten minste 1 4n(n 1) vergelijkingen doen in de average case. Insertion sort doet gemiddeld 1 4 n(n 1) + n 1 n i=2 1 i vergelijkingen, dus Insertion sort is in de average case in orde van grootte optimaal (binnen de betreffende klasse van algoritmen), namelijk Θ(n 2 ). 3

4 Verdeel en heers Mergesort en Quicksort zijn sorteermethoden die allebei gebaseerd zijn op de verdeel-en-heers strategie: Sorteer(rij):: if ( de rij heeft meer dan één element ) then Verdeel de rij in twee stukken: linkerrij en rechterrij; Sorteer(linkerrij); Sorteer(rechterrij); Combineer linkerrij en rechterrij; fi. Mergesort stopt het meeste werk in de Combineer-stap, Quicksort in de Verdeel-stap. Beide sorteermethoden zijn gebaseerd op arrayvergelijkingen, maar doen geen buurverwisselingen, zoals Insertion sort en Bubble sort. 4

5 Mergesort 1 Het (recursieve) Mergesort algoritme: MergeSort(A, p, r):: // sorteert A[p],...,A[r] if p < r then q := p+r 2 ; MergeSort(A, p, q); MergeSort(A,q +1,r); Merge(A,p,q,r); fi verdeel en heers (voeg samen) Aanroep: MergeSort(A, 1, n). 5

6 Mergesort p q r s o r t e e r s o r t e e r... gesorteerd gesorteerd... p q q+1 r voeg samen... gesorteerd... p r 6

7 Samenvoegen Merge(A, p, q, r):: i := p; j := q +1; k := p; while i q and j r do if A[i] < A[j] then hulp[k] := A[i]; i := i+1; k := k +1; else hulp[k] := A[j]; j := j +1; k := k +1; fi od if i > q then // eerste helft is op kopieer A[j],...,A[r] naar hulp; else // tweede helft is op kopieer A[i],...,A[q] naar hulp; fi kopieer hulp[p],...,hulp[r] terug naar A; 7

8 Merge 1 Merge(A,p,q,r) voegt de reeds gesorteerde deelrijtjes A[p],...,A[q] en A[q+1],...,A[r] samen tot een gesorteerd stuk A[p],...,A[r] hulp is een hulparray ter grootte n (net als A) Geheel analoog kan een functie Merge(A, B, C, k, m) geschreven worden die de gesorteerde rijen A (k elementen) en B (m elementen) samenvoegt tot de gesorteerde rij C (n = k +m elementen) 8

9 Merge 2 Voor het bepalen van de complexiteit van Merge tellen we het aantal vergelijkingen van de vorm: A[i] < A[j] Er worden altijd 2n verplaatsingen van array-elementen gedaan Is het aantal arrayvergelijkingen hier wel een goede maat voor de complexiteit? 9

10 Complexiteit Merge Stel dat we met behulp van Merge twee gesorteerde rijtjes van respectievelijk k en m elementen (met k + m = n) samenvoegen tot één gesorteerde rij. Dan geldt: 1. Het aantal vergelijkingen in de worst case is n 1 2. Het aantal vergelijkingen in de best case is min{k, m} Let op: binnen Mergesort is het aantal vergelijkingen een goede maat voor de complexiteit. Immers het aantal vergelijkingen is in dat geval altijd Θ(n), evenals het aantal verplaatsingen van array-elementen. In het algemene geval is dit niet zo (bijvoorbeeld k = 1 en m = n 1). 10

11 Worst case Mergesort Zij T(n) = aantal vergelijkingen in de worst case van Mergesort op n elementen, met n = 2 k. Dan geldt: T(n) = { 0 n = 1 2T( n 2 )+n 1 n = 2k > 1 Oplossing: T(n) = nlgn n+1 Θ(nlgn) 11

12 Worst case Mergesort 2 Als n geen tweemacht is, wordt de recurrente betrekking: T(n) = { 0 n = 1 T( n 2 )+T( n 2 )+n 1 n > 1 Dan geldt eveneens: T(n) Θ(nlgn). Je kunt zelfs bewijzen: T(n) = n lgn 2 lgn +1 Mergesort is in orde van grootte optimaal voor wat betreft de worst case (immers: de ondergrens voor sorteren via arrayvergelijkingen is Ω(n lg n)). Er is echter extra geheugenruimte ter grootte Θ(n) nodig. 12

13 Best case Mergesort Zij B(n) = aantal vergelijkingen in de best case, met n = 2 k. Dan geldt: B(n) = { 0 n = 1 2B( n 2 )+ n 2 n = 2k > 1 Oplossing: B(n) = n 2 lgn Θ(nlgn). 13

14 Optimaliteit Merge Stelling 1. Elk algoritme gebaseerd op arrayvergelijkingen dat twee gesorteerde arrays (rijen) van lengte m samenvoegt tot één gesorteerd array, doet in het slechtste geval ten minste 2m 1 van zulke vergelijkingen. Voor m = n 2 (n even) is dit dus ten minste n Voor het samenvoegen van twee rijtjes ter lengte m 1 respectievelijk m is dat ten minste 2m 2. Voor m = n 2 (n oneven) is dit ten minste n 1. Gevolg. Binnen de klasse van samenvoegalgoritmen gebaseerd op arrayvergelijkingen is het beschreven Mergealgoritme optimaal, althans voor twee ongeveer even lange rijtjes. 14

15 Bewijs We geven een klasse van invoerrijtjes waarop elk samenvoegalgoritme (gebaseerd op arrayvergelijkingen) ten minste 2m 1 vergelijkingen moet doen. Dat bewijst dan de stelling. Kies stijgende rijtjes A = (a 1,a 2,...,a m ) en B = (b 1,b 2,...,b m ) zó dat alle a i en b j verschillend zijn en a i < b j i < j: b 1 < a 1 < b 2 < < a i 1 < b i < a i < b i+1 < < b m < a m Dan moet elk samenvoegalgoritme a i met b i vergelijken (i = 1,2,...,m) en a i met b i+1 (i = 1,2,...,m 1). Het bewijs van deze bewering gaat uit het ongerijmde. 15

16 Sorteren (ondergrens) We bekijken sorteeralgoritmen gebaseerd op het doen van vergelijkingen van de vorm A[i] < A[j]. Aannames (z.b.d.a.): - A bevat n verschillende waarden. (We gaan immers een ondergrens voor de worst case bepalen.) - het sorteeralgoritme stopt zodra de sortering (onderlinge ordening) gevonden is. Zo n algoritme correspondeert (voor elke n) met een beslissingsboom die de series vergelijkingen representeert die het algoritme uitvoert voor elke mogelijke invoer (ter grootte n). Elk pad van de wortel tot een blad correspondeert met een executie van het algoritme. 16

17 Beslissingsboom sorteren algoritme gebaseerd op het doen van arrayvergelijkingen A[i] < A[j] beslissingsboom : binaire boom waarin de interne knopen corresponderen met arrayvergelijkingen en de bladeren/externe knopen met het eindresultaat ; een pad vanaf de wortel naar een blad correspondeert met een executie van het algoritme alle A[i] zijn verschillend eindresultaat = de gevonden sortering/ordening (in dit geval) 17

18 Beslissingsboom A[i] < A[j] p : q i : j vergelijk A[i] en A[j] A[i] > A[j] r : s vergelijk vervolgens A[p] en A[q] vergelijk vervolgens A[r] en A[s] Beslissingsboom voor algoritmen gebaseerd op arrayvergelijkingen 18

19 Insertion sort 1 : 2 2 : 3 1 : 3 1,2,3 1 : 3 2,1,3 2 : 3 1,3,2 3,1,2 2,3,1 3,2,1 Beslissingsboom voor Insertion sort met n = 3 2,3,1 betekent: A[2] < A[3] < A[1] (analoog de andere bladeren) 19

20 Hoogte worst case 1 : 2 niveau 0 2 : 3 1 : 3 niveau 1 1,2,3 1 : 3 2,1,3 2 : 3 niveau 2 1,3,2 3,1,2 2,3,1 3,2,1 niveau 3 In een beslissingsboom voor algoritmen gebaseerd op arrayvergelijkingen geeft de hoogte van de boom precies het aantal vergelijkingen in de worst case aan. 20

21 Bladeren: maximaal 1. - alleen de onderlinge volgorde van de array-elementen wordt onderscheiden; niet de waarde - het rijtje 6,11,15,8,3 wordt bijvoorbeeld precies zo behandeld door het sorteeralgoritme als het rijtje 2,4,5,3,1 - ze volgen dan ook precies hetzelfde pad in de beslissingsboom - er zijn in essentie n! mogelijke te onderscheiden invoeren, die elk één pad volgen in de boom er zijn maximaal n! bladeren 21

22 Bladeren: minimaal 2. - sorteren = vind de oplopende ordening - er zijn dus n! verschillende eindantwoorden (=ordeningen) mogelijk - een sorteeralgoritme moet die allemaal kunnen vinden - de bijbehorende beslissingsboom moet dus minstens n! bladeren hebben 3. Conclusie: een beslissingsboom corresponderend met een sorteeralgoritme gebaseerd op arrayvergelijkingen heeft precies n! bladeren (n = aantal array-elementen) 22

23 Ondergrens sorteren Stelling Het aantal vergelijkingen in de worst case is voor elk algoritme dat sorteert middels arrayvergelijkingen ten minste lgn! (dus Ω(nlgn)). Stelling Het aantal vergelijkingen in de average case is voor elk algoritme dat sorteert middels arrayvergelijkingen Ω(n lg n). Dit onder de aanname dat alle n! mogelijke volgordes als invoerrijtje even waarschijnlijk zijn. De stelling volgt direct uit de resultaten van de volgende sheet. 23

24 Intermezzo Gegeven een binaire boom B met b bladeren. Definitie. De externe padlengte E van B is de som van de lengtes van alle paden van de wortel naar een blad: E = Σ bladeren (lengte pad wortel blad) Lemma. Zij E de externe padlengte van B. Dan geldt: E b ( lgb 1) Gevolg. De gemiddelde lengte van een pad van de wortel naar een blad = E b lgb 1. 24

25 Verdeel en heers Mergesort en Quicksort zijn sorteermethoden die allebei gebaseerd zijn op de verdeel-en-heers strategie: Sorteer(rij):: if ( de rij heeft meer dan één element ) then Verdeel de rij in twee stukken: linkerrij en rechterrij; Sorteer(linkerrij); Sorteer(rechterrij); Combineer linkerrij en rechterrij; fi. Mergesort stopt het meeste werk in de Combineer-stap, Quicksort in de Verdeel-stap. Beide sorteermethoden zijn gebaseerd op arrayvergelijkingen, maar doen geen buurverwisselingen, zoals Insertion sort en Bubble sort. 25

26 Quicksort (Hoare 1962) QuickSort(A, p, r):: // sorteert A[p],...,A[r] oplopend if p < r then q := Partitie(A,p,r); QuickSort(A, p, q); QuickSort(A,q +1,r); fi Aanroep: Quicksort(A,1,n) - recursief - alleen interne verwisselingen - geen extra geheugenruimte - in de praktijk een van de snelste 26

27 Quicksort... x... p Partitie r p q r x x Quicksort Quicksort... gesorteerd, x gesorteerd, x... p q r 27

28 Partitie Partitie (A, p, r):: // reorganiseert het (deel)array A[p],...,A[r] als volgt:.. x x.. p q r (*) // hier komt nog wat x = A[p]; i := p 1; j := r +1; while i < j do j := j 1; while A[j] > x do j := j 1; od i := i+1; while A[i] < x do i := i+1; od if i < j then wissel(a[i],a[j]); fi od return j; // loop met j naar links // tot je een waarde A[j] x vindt // loop met i naar rechts // tot je een waarde A[i] x vindt // A[i] en A[j] staan nu weer in het goede stuk // dit wordt dus q 28

29 Opmerkingen bij Partitie 1. De basisoperatie is het vergelijken van array-elementen: A[j] > x en A[i] < x 2. Partitie stopt met i = j of i = j Na afloop is altijd j p en j r 1, dus p q r 1. Quicksort wordt dus op echt kleinere rijtjes recursief aangeroepen 4. Elk array-element wordt precies één keer met x vergeleken, behalve A[q] (twee keer) en eventueel A[q + 1] (soms twee keer) 5. Partitie doet altijd Θ(m) vergelijkingen, nl. m + 1 of m+2, met m het aantal elementen van het (deel)array A[p],...,A[r] 6. Er worden elementen verwisseld die ver uit elkaar kunnen liggen. Per vergelijking worden dus wellicht > 1 inversies opgeheven 29

30 Werking Partitie Na een volledige ronde: p r.... i }{{} x j }{{} x 2. Na de j-loop: p r.. x.. i }{{} x j A[j] x 30

31 Werking Partitie Na de i-loop, vóór de verwisseling: p r.. x x.. i j A[i] x A[j] x 4. Na de verwisseling: p r.... }{{} x i j }{{} x 31

32 (Werk)college - Volgende college: dinsdag 21 maart, 11:15 13:00, zaal 174 (en dan verder met Quicksort, Shellsort,...) - Eerstvolgende werkcollege: dinsdag 7 maart, 13:45 15:30, zaal Tweede huiswerkopgave: liacs.leidenuniv.nl/ graafjmde/comp/ - Inleveren: uiterlijk dinsdag 28 maart

Zevende college complexiteit. 17 maart Ondergrens sorteren, Quicksort

Zevende college complexiteit. 17 maart Ondergrens sorteren, Quicksort College 7 Zevende college complexiteit 17 maart 2008 Ondergrens sorteren, Quicksort 1 Sorteren We bekijken sorteeralgoritmen gebaseerd op het doen van vergelijkingen van de vorm A[i] < A[j]. Aannames:

Nadere informatie

Vierde college complexiteit. 14 februari Beslissingsbomen

Vierde college complexiteit. 14 februari Beslissingsbomen College 4 Vierde college complexiteit 14 februari 2017 Restant zoeken Beslissingsbomen 1 Binair zoeken Links := 1; Rechts := n; while Links Rechts do Midden := Links + Rechts 2 ; if X = A[Midden] then

Nadere informatie

Vierde college complexiteit. 16 februari Beslissingsbomen en selectie

Vierde college complexiteit. 16 februari Beslissingsbomen en selectie Complexiteit 2016/04 College 4 Vierde college complexiteit 16 februari 2016 Beslissingsbomen en selectie 1 Complexiteit 2016/04 Zoeken: samengevat Ongeordend lineair zoeken: Θ(n) sleutelvergelijkingen

Nadere informatie

Vijfde college complexiteit. 21 februari Selectie Toernooimethode Adversary argument

Vijfde college complexiteit. 21 februari Selectie Toernooimethode Adversary argument Complexiteit 2017/05 College 5 Vijfde college complexiteit 21 februari 2017 Selectie Toernooimethode Adversary argument 1 Complexiteit 2017/05 Opgave 28 Gegeven twee oplopend gesorteerde even lange rijen

Nadere informatie

Derde college complexiteit. 7 februari Zoeken

Derde college complexiteit. 7 februari Zoeken College 3 Derde college complexiteit 7 februari 2017 Recurrente Betrekkingen Zoeken 1 Recurrente betrekkingen -1- Rij van Fibonacci: 0,1,1,2,3,5,8,13,21,... Vanaf het derde element: som van de voorgaande

Nadere informatie

Programmeermethoden. Recursie. week 11: november kosterswa/pm/

Programmeermethoden. Recursie. week 11: november kosterswa/pm/ Programmeermethoden Recursie week 11: 21 25 november 2016 www.liacs.leidenuniv.nl/ kosterswa/pm/ 1 Pointers Derde programmeeropgave 1 Het spel Gomoku programmeren we als volgt: week 1: pointerpracticum,

Nadere informatie

Programmeermethoden. Recursie. Walter Kosters. week 11: november kosterswa/pm/

Programmeermethoden. Recursie. Walter Kosters. week 11: november kosterswa/pm/ Programmeermethoden Recursie Walter Kosters week 11: 20 24 november 2017 www.liacs.leidenuniv.nl/ kosterswa/pm/ 1 Vierde programmeeropgave 1 De Grote getallen programmeren we als volgt: week 1: pointerpracticum,

Nadere informatie

Tijd is geen goede maatstaf, want is afhankelijk van computer waarop algoritme wordt gedraaid.

Tijd is geen goede maatstaf, want is afhankelijk van computer waarop algoritme wordt gedraaid. Complexiteit of efficiëntie van algoritmen Hoe meet je deze? Tijd is geen goede maatstaf, want is afhankelijk van computer waarop algoritme wordt gedraaid. Een betere maatstaf is het aantal berekeningsstappen

Nadere informatie

Negende college algoritmiek. 15 april Dynamisch Programmeren

Negende college algoritmiek. 15 april Dynamisch Programmeren Negende college algoritmiek 15 april 2016 Dynamisch Programmeren 1 algemeen Uit college 8: DP: - nuttig bij problemen met overlappende deelproblemen - druk een oplossing van het probleem uit in oplossingen

Nadere informatie

Tiende college algoritmiek. 26 april Gretige algoritmen

Tiende college algoritmiek. 26 april Gretige algoritmen Algoritmiek 01/10 College 10 Tiende college algoritmiek april 01 Gretige algoritmen 1 Algoritmiek 01/10 Muntenprobleem Gegeven onbeperkt veel munten van d 1,d,...d m eurocent, en een te betalen bedrag

Nadere informatie

Een eenvoudig algoritme om permutaties te genereren

Een eenvoudig algoritme om permutaties te genereren Een eenvoudig algoritme om permutaties te genereren Daniel von Asmuth Inleiding Er zijn in de vakliteratuur verschillende manieren beschreven om alle permutaties van een verzameling te generen. De methoden

Nadere informatie

2 Recurrente betrekkingen

2 Recurrente betrekkingen WIS2 1 2 Recurrente betrekkingen 2.1 Fibonacci De getallen van Fibonacci Fibonacci (= Leonardo van Pisa), 1202: Bereken het aantal paren konijnen na één jaar, als 1. er na 1 maand 1 paar pasgeboren konijnen

Nadere informatie

Discrete Structuren. Piter Dykstra Sietse Achterop Opleidingsinstituut Informatica en Cognitie

Discrete Structuren. Piter Dykstra Sietse Achterop Opleidingsinstituut Informatica en Cognitie Discrete Structuren Piter Dykstra Sietse Achterop Opleidingsinstituut Informatica en Cognitie www.math.rug.nl/~piter piter@math.rug.nl 3 maart 2008 GRAFEN & BOMEN Paragrafen 6.1-6.4 Discrete Structuren

Nadere informatie

Discrete Structuren. Piter Dykstra Opleidingsinstituut Informatica en Cognitie

Discrete Structuren. Piter Dykstra Opleidingsinstituut Informatica en Cognitie Discrete Structuren Piter Dykstra Opleidingsinstituut Informatica en Cognitie www.math.rug.nl/~piter piter@math.rug.nl 23 februari 2009 GRAFEN & BOMEN Paragrafen 6.1-6.4 Discrete Structuren Week 3 en 4:

Nadere informatie

Tiende college algoritmiek. 13/21 april Gretige Algoritmen Algoritme van Dijkstra

Tiende college algoritmiek. 13/21 april Gretige Algoritmen Algoritme van Dijkstra Algoritmiek 017/Gretige Algoritmen Tiende college algoritmiek 13/1 april 017 Gretige Algoritmen Algoritme van Dijkstra 1 Algoritmiek 017/Gretige Algoritmen Muntenprobleem Gegeven onbeperkt veel munten

Nadere informatie

Elke groep van 3 leerlingen heeft een 9 setje speelkaarten nodig: 2 t/m 10, bijvoorbeeld alle schoppen, of alle harten kaarten.

Elke groep van 3 leerlingen heeft een 9 setje speelkaarten nodig: 2 t/m 10, bijvoorbeeld alle schoppen, of alle harten kaarten. Versie 16 januari 2017 Sorteren unplugged Sorteren gebeurt heel veel. De namen van alle leerlingen in de klas staan vaak op alfabetische volgorde. De wedstrijden van een volleybal team staan op volgorde

Nadere informatie

Hoofdstuk 7: Werken met arrays

Hoofdstuk 7: Werken met arrays Programmeren in Microsoft Visual Basic 6.0, lessenserie voor het voortgezet onderwijs HAVO/VWO David Lans, Emmauscollege, Marnix Gymnasium Rotterdam, januari 2004 Hoofdstuk 7: Werken met arrays 7.0 Leerdoel

Nadere informatie

Hoofdstuk 3. Week 5: Sorteren. 3.1 Inleiding

Hoofdstuk 3. Week 5: Sorteren. 3.1 Inleiding Hoofdstuk 3 Week 5: Sorteren 3.1 Inleiding Zoals al bleek in college 1 kunnen zoekalgoritmen veel sneller worden uitgevoerd, indien we weten dat de elementen in de lijst, waarin wordt gezocht, geordend

Nadere informatie

Tentamen Discrete Wiskunde 1 10 april 2012, 14:00 17:00 uur

Tentamen Discrete Wiskunde 1 10 april 2012, 14:00 17:00 uur Tentamen Discrete Wiskunde 0 april 0, :00 7:00 uur Schrijf je naam op ieder blad dat je inlevert. Onderbouw je antwoorden, met een goede argumentatie zijn ook punten te verdienen. Veel succes! Opgave.

Nadere informatie

Uitgebreide uitwerking tentamen Algoritmiek Dinsdag 5 juni 2007, uur

Uitgebreide uitwerking tentamen Algoritmiek Dinsdag 5 juni 2007, uur Uitgebreide uitwerking tentamen Algoritmiek Dinsdag juni 00, 0.00.00 uur Opgave. a. Een toestand bestaat hier uit een aantal stapels, met op elk van die stapels een aantal munten (hooguit n per stapel).

Nadere informatie

Twaalfde college complexiteit. 11 mei 2012. Overzicht, MST

Twaalfde college complexiteit. 11 mei 2012. Overzicht, MST College 12 Twaalfde college complexiteit 11 mei 2012 Overzicht, MST 1 Agenda voor vandaag Minimum Opspannende Boom (minimum spanning tree) als voorbeeld van greedy algoritmen Overzicht: wat voor technieken

Nadere informatie

De doorsnede van twee verzamelingen vinden

De doorsnede van twee verzamelingen vinden De doorsnede van twee verzamelingen vinden Daniel von Asmuth Inleiding Dit artikel probeert enkele algoritmen te vergelijken om de doorsnede van twee verzamelingen of rijen van getallen te vinden. In een

Nadere informatie

Datastructuren. Analyse van algoritmen. José Lagerberg. FNWI, UvA. José Lagerberg (FNWI, UvA) Datastructuren 1 / 46

Datastructuren. Analyse van algoritmen. José Lagerberg. FNWI, UvA. José Lagerberg (FNWI, UvA) Datastructuren 1 / 46 Datastructuren Analyse van algoritmen José Lagerberg FNWI, UvA José Lagerberg (FNWI, UvA) Datastructuren 1 / 46 Datastructuren en Algoritmen Datastructuren, 6 ECTS eerstejaars Bachelor INF Datastructuren,

Nadere informatie

Negende college algoritmiek. 6/7 april Dynamisch Programmeren

Negende college algoritmiek. 6/7 april Dynamisch Programmeren Negende college algoritmiek 6/7 april 2017 Dynamisch Programmeren 1 algemeen Uit college 8: DP: - nuttig bij problemen met overlappende deelproblemen - druk een oplossing van het probleem uit in oplossingen

Nadere informatie

Tiende college algoritmiek. 14 april Dynamisch Programmeren, Gretige Algoritmen, Kortste Pad met BFS

Tiende college algoritmiek. 14 april Dynamisch Programmeren, Gretige Algoritmen, Kortste Pad met BFS Algoritmiek 2016/Dynamisch Programmeren Tiende college algoritmiek 14 april 2016 Dynamisch Programmeren, Gretige Algoritmen, Kortste Pad met BFS 1 Algoritmiek 2016/Dynamisch Programmeren Houtzaagmolen

Nadere informatie

Discrete Structuren. Piter Dykstra Opleidingsinstituut Informatica en Cognitie

Discrete Structuren. Piter Dykstra Opleidingsinstituut Informatica en Cognitie Discrete Structuren Piter Dykstra Opleidingsinstituut Informatica en Cognitie www.math.rug.nl/~piter piter@math.rug.nl 22 februari 2009 INDUCTIE & RECURSIE Paragrafen 4.3-4.6 Discrete Structuren Week 3:

Nadere informatie

Elfde college algoritmiek. 16 mei Dijkstra, Gretige algoritmen en Branch & Bound

Elfde college algoritmiek. 16 mei Dijkstra, Gretige algoritmen en Branch & Bound Algoritmiek 013/11 College 11 Elfde college algoritmiek 1 mei 013 Dijkstra, Gretige algoritmen en Branch & Bound 1 Algoritmiek 013/11 Voorbeeld -1- A B C D E F G H 9 7 5 A B C D E F G H 0 9 9 7 5 A B C

Nadere informatie

Elfde college algoritmiek. 21 april Dijkstra en Branch & Bound

Elfde college algoritmiek. 21 april Dijkstra en Branch & Bound Algoritmiek 011/11 College 11 Elfde college algoritmiek 1 april 011 Dijkstra en Branch & Bound 1 Algoritmiek 011/11 Kortste paden Gegeven een graaf G met gewichten op de takken, en een beginknoop s. We

Nadere informatie

Over binaire beslissingsdiagrammen naar Donald E. Knuth s The Art of Computer Programming, Volume 4

Over binaire beslissingsdiagrammen naar Donald E. Knuth s The Art of Computer Programming, Volume 4 Over binaire beslissingsdiagrammen naar Donald E. Knuth s The Art of Computer Programming, Volume 4 Jonathan K. Vis 1 Inleiding (blz. 70 72) In dit essay behandelen we bladzijden 70 75 van Donald E. Knuth

Nadere informatie

Datastructuren en algoritmen voor CKI

Datastructuren en algoritmen voor CKI Datastructuren en algoritmen voor CKI Jeroen Bransen 1 2 september 2015 1 met dank aan Hans Bodlaender en Gerard Tel Organisatie Website Vakwebsite: http://www.cs.uu.nl/docs/vakken/ki2v12009/ Bevat alle

Nadere informatie

Opgaven Zoekbomen Datastructuren, 15 juni 2016, Werkgroep.

Opgaven Zoekbomen Datastructuren, 15 juni 2016, Werkgroep. Opgaven Zoekbomen Datastructuren, 15 juni 2016, Werkgroep. Gebruik deze opgaven, naast die uit het boek, om de stof te oefenen op het werkcollege. Cijfer: Op een toets krijg je meestal zes tot acht opgaven.

Nadere informatie

Hoofdstuk 7: Werken met arrays

Hoofdstuk 7: Werken met arrays Programmeren in Microsoft Visual Basic 2010 Express, lessenserie voor het voortgezet onderwijs HAVO/VWO David Lans, Emmauscollege, Vespucci College, Marnix Gymnasium Rotterdam, december 2011 Hoofdstuk

Nadere informatie

Oefeningen voor de oefeningenles. Oefening 1

Oefeningen voor de oefeningenles. Oefening 1 Oefeningen voor de oefeningenles Oefening 1 Gegeven een arbitraire binaire zoekboom T met n toppen en een (andere of gelijke) binaire zoekboom T die ook n sleutels bevat. Beschrijf een algoritme dat in

Nadere informatie

De volgende opgave gaat over de B-bomen van het college, waar sleutels zowel in de bladeren als ook in de interne knopen opgeslagen worden.

De volgende opgave gaat over de B-bomen van het college, waar sleutels zowel in de bladeren als ook in de interne knopen opgeslagen worden. . a) Een Fibonacci boom (niet te verwarren met een Fibonacci queue) van hoogte h is een AVL-boom van hoogte h met zo weinig mogelijk knopen. i. Geefvoorh =,,,,eenfibonacciboomvanhoogteh(eenboombestaande

Nadere informatie

Grafen. Indien de uitgraad van ieder punt 1 is, dan bevat de graaf een cykel. Indien de ingraad van ieder punt 1 is, dan bevat de graaf een cykel.

Grafen. Indien de uitgraad van ieder punt 1 is, dan bevat de graaf een cykel. Indien de ingraad van ieder punt 1 is, dan bevat de graaf een cykel. Grafen Grafen Een graaf bestaat uit een verzameling punten (ook wel knopen, of in het engels vertices genoemd) en een verzameling kanten (edges) of pijlen (arcs), waarbij de kanten en pijlen tussen twee

Nadere informatie

Kortste Paden. Algoritmiek

Kortste Paden. Algoritmiek Kortste Paden Toepassingen Kevin Bacon getal Six degrees of separation Heeft een netwerk de small-world eigenschap? TomTom / Google Maps 2 Kortste paden Gerichte graaf G=(N,A), en een lengte L(v,w) voor

Nadere informatie

Examen Algoritmen en Datastructuren III

Examen Algoritmen en Datastructuren III Derde bachelor Informatica Academiejaar 2006 2007, tweede zittijd Examen Algoritmen en Datastructuren III Naam :.............................................................................. 1. (2 pt)

Nadere informatie

sheets Programmeren 1 Java college 6, Walter Kosters De sheets zijn gebaseerd op met name hoofdstuk 13 en 14 van: D. Bell en M. Parr, Java voor studenten, Prentice Hall, 2002 http://www.liacs.nl/home/kosters/java/

Nadere informatie

Divide & Conquer: Verdeel en Heers. Algoritmiek

Divide & Conquer: Verdeel en Heers. Algoritmiek Divide & Conquer: Verdeel en Heers Algoritmiek Algoritmische technieken Trucs; methoden; paradigma s voor het ontwerp van algoritmen Gezien: Dynamisch Programmeren Hierna: Greedy Vandaag: Divide & Conquer

Nadere informatie

Uitgebreide uitwerking tentamen Algoritmiek Dinsdag 3 juni 2008, uur

Uitgebreide uitwerking tentamen Algoritmiek Dinsdag 3 juni 2008, uur Uitgebreide uitwerking tentamen Algoritmiek Dinsdag 3 juni 2008, 10.00 13.00 uur Opgave 1. a. Een toestand is hier een m bij n bord met voor elk vakje aangegeven of het leeg is, óf een witte steen bevat

Nadere informatie

Eerste Huiswerk Algoritmiek 18 februari 2015, uitwisselen, WerkCollege.

Eerste Huiswerk Algoritmiek 18 februari 2015, uitwisselen, WerkCollege. Eerste Huiswerk Algoritmiek 18 februari 2015, uitwisselen, WerkCollege. Kijk een huiswerkset na met een team van twee, voorzie de uitwerking van commentaar en becijfering, en neem de nagekeken set mee

Nadere informatie

slides7.pdf 23 nov

slides7.pdf 23 nov Onderwerpen Operating Systems Inleiding Algemeen 7 Operating Systems Algoritmen Piet van Oostrum Wat is een Operating System? Wat doet een O.S.? Hoe zit een O.S. in elkaar? (in grote lijnen) Wat zijn de

Nadere informatie

Eerste deeltoets Algoritmiek 4 maart 2015, , Educ-β.

Eerste deeltoets Algoritmiek 4 maart 2015, , Educ-β. Eerste deeltoets Algoritmiek 4 maart 2015, 8.30 10.30, Educ-β. Motiveer je antwoorden kort! Zet je mobiel uit. Stel geen vragen over deze toets; als je een vraag niet duidelijk vindt, schrijf dan op hoe

Nadere informatie

Semantiek (2IT40) Jos Baeten. HG 7.19 tel.: Hoorcollege 3 (12 april 2007)

Semantiek (2IT40) Jos Baeten.  HG 7.19 tel.: Hoorcollege 3 (12 april 2007) Jos Baeten josb@wintuenl http://wwwwintuenl/~josb/ HG 719 tel: 040 247 5155 Hoorcollege 3 (12 april 2007) Voorbeeld [Bewijstechniek 2 niet altijd succesvol] Executie van commands is deterministisch: c

Nadere informatie

Algoritmen, Datastructuren en Complexiteit ( en ) Uitwerkingen

Algoritmen, Datastructuren en Complexiteit ( en ) Uitwerkingen Universiteit Twente 2009-2010/2 Afdeling Informatica, Faculteit EWI Tentamen dinsdag 19 januari 2010, 8.45-12.15 Algoritmen, Datastructuren en Complexiteit (214020 en 214025) Uitwerkingen Bij dit tentamen

Nadere informatie

TW2020 Optimalisering

TW2020 Optimalisering TW2020 Optimalisering Hoorcollege 8 Leo van Iersel Technische Universiteit Delft 28 oktober 2015 Leo van Iersel (TUD) TW2020 Optimalisering 28 oktober 2015 1 / 25 Definitie Een boom is een samenhangende

Nadere informatie

Opgaven Abstracte Datastructuren Datastructuren, Werkgroep, 31 mei 2017.

Opgaven Abstracte Datastructuren Datastructuren, Werkgroep, 31 mei 2017. Opgaven Abstracte Datastructuren Datastructuren, Werkgroep, 31 mei 2017. Gebruik deze opgaven, naast die uit het boek, om de stof te oefenen op het werkcollege. Cijfer: Op een toets krijg je meestal zes

Nadere informatie

Derde college algoritmiek. 23 februari Toestand-actie-ruimte

Derde college algoritmiek. 23 februari Toestand-actie-ruimte College 3 Derde college algoritmiek 23 februari 2012 Toestand-actie-ruimte 1 BZboom: verwijderen 60 20 80 10 40 70 100 1 15 30 75 5 25 35 100 verwijderen = 60 20 80 10 40 70 1 15 30 75 5 25 35 verwijderen

Nadere informatie

Netwerkstroming. Algoritmiek

Netwerkstroming. Algoritmiek Netwerkstroming Vandaag Netwerkstroming: definitie en toepassing Het rest-netwerk Verbeterende paden Ford-Fulkerson algoritme Minimum Snede Maximum Stroming Stelling Variant: Edmonds-Karp Toepassing: koppelingen

Nadere informatie

Getaltheorie I. c = c 1 = 1 c (1)

Getaltheorie I. c = c 1 = 1 c (1) Lesbrief 1 Getaltheorie I De getaltheorie houdt zich bezig met het onderzoek van eigenschappen van gehele getallen, en meer in het bijzonder, van natuurlijke getallen. In de getaltheorie is het gebruikelijk

Nadere informatie

Lenstra s wonderlijke kaartspel

Lenstra s wonderlijke kaartspel Lenstra s wonderlijke kaartspel Een generalisatie van de Chinese Reststelling voor niet-commutatieve ringen Birgit van Dalen dalen@math.leidenuniv.nl 11 mei 2005 Inhoudsopgave 1 Inleiding 3 2 De Chinese

Nadere informatie

Automaten. Informatica, UvA. Yde Venema

Automaten. Informatica, UvA. Yde Venema Automaten Informatica, UvA Yde Venema i Inhoud Inleiding 1 1 Formele talen en reguliere expressies 2 1.1 Formele talen.................................... 2 1.2 Reguliere expressies................................

Nadere informatie

TW2020 Optimalisering

TW2020 Optimalisering TW2020 Optimalisering Hoorcollege 8 Leo van Iersel Technische Universiteit Delft 2 november 2016 Leo van Iersel (TUD) TW2020 Optimalisering 2 november 2016 1 / 28 Minimum Opspannende Boom (Minimum Spanning

Nadere informatie

Datastructuren: stapels, rijen en binaire bomen

Datastructuren: stapels, rijen en binaire bomen Programmeermethoden Datastructuren: stapels, rijen en binaire bomen week 12: 23 27 november 2015 www.liacs.leidenuniv.nl/ kosterswa/pm/ 1 Inleiding In de informatica worden Abstracte DataTypen (ADT s)

Nadere informatie

10 Meer over functies

10 Meer over functies 10 Meer over functies In hoofdstuk 5 hebben we functies uitgebreid bestudeerd. In dit hoofdstuk bekijken we drie andere aspecten van functies: recursieve functies dat wil zeggen, functies die zichzelf

Nadere informatie

Week 1 20-02-2013. Hier vind je uitwerkingen van enkele opgaven uit het dictaat Grafen: Kleuren en Routeren.

Week 1 20-02-2013. Hier vind je uitwerkingen van enkele opgaven uit het dictaat Grafen: Kleuren en Routeren. Combinatorische Optimalisatie, 2013 Week 1 20-02-2013 Hier vind je uitwerkingen van enkele opgaven uit het dictaat Grafen: Kleuren en Routeren. Opgave 1.16 Bewijs dat elke graaf een even aantal punten

Nadere informatie

2WO12: Optimalisering in Netwerken

2WO12: Optimalisering in Netwerken 2WO12: Optimalisering in Netwerken Leo van Iersel Technische Universiteit Eindhoven (TU/E) en Centrum Wiskunde & Informatica (CWI) 27 februari 2014 http://homepages.cwi.nl/~iersel/2wo12/ l.j.j.v.iersel@gmail.com

Nadere informatie

Hoe een TomTom een sudoku oplost

Hoe een TomTom een sudoku oplost Hoe een TomTom een sudoku oplost dr. Arnold Meijster a.meijster@rug.nl Palindromen Opdracht: Ga van een willekeurig woord na, of het een palindroom is of niet. lol pop lepel negen droomoord parterretrap

Nadere informatie

V = {a, b, c, d, e} Computernetwerken: de knopen zijn machines in het netwerk, de kanten zijn communicatiekanalen.

V = {a, b, c, d, e} Computernetwerken: de knopen zijn machines in het netwerk, de kanten zijn communicatiekanalen. WIS14 1 14 Grafen 14.1 Grafen Gerichte grafen Voor een verzameling V is een binaire relatie op V een verzameling geordende paren van elementen van V. Voorbeeld: een binaire relatie op N is de relatie KleinerDan,

Nadere informatie

Programmeermethoden NA. Week 6: Lijsten

Programmeermethoden NA. Week 6: Lijsten Programmeermethoden NA Week 6: Lijsten Kristian Rietveld http://liacs.leidenuniv.nl/~rietveldkfd/courses/prna2016/ Getal opbouwen Stel je leest losse karakters (waaronder cijfers) en je moet daar een getal

Nadere informatie

In Katern 2 hebben we de volgende rekenregel bewezen, als onderdeel van rekenregel 4:

In Katern 2 hebben we de volgende rekenregel bewezen, als onderdeel van rekenregel 4: Katern 4 Bewijsmethoden Inhoudsopgave 1 Bewijs uit het ongerijmde 1 2 Extremenprincipe 4 3 Ladenprincipe 8 1 Bewijs uit het ongerijmde In Katern 2 hebben we de volgende rekenregel bewezen, als onderdeel

Nadere informatie

Overzicht. Inleiding. Toepassingen. Verwante problemen. Modellering. Exacte oplosmethode: B&B. Insertie heuristieken. Local Search

Overzicht. Inleiding. Toepassingen. Verwante problemen. Modellering. Exacte oplosmethode: B&B. Insertie heuristieken. Local Search Overzicht Inleiding Toepassingen Verwante problemen Modellering Exacte oplosmethode: B&B Insertie heuristieken Local Search Handelsreizigersprobleem 1 Cyclische permutatie van steden b 3 77 a 93 21 42

Nadere informatie

Opdracht 1 Topics on Parsing and Formal Languages - fall 2010

Opdracht 1 Topics on Parsing and Formal Languages - fall 2010 Opdracht 1 Topics on Parsing and Formal Languages - fall 2010 Rick van der Zwet 13 november 2010 Samenvatting Dit schrijven zal uitwerkingen van opgaven behandelen uit het boek [JS2009]

Nadere informatie

recursie Hoofdstuk 5 Studeeraanwijzingen De studielast van deze leereenheid bedraagt circa 6 uur. Terminologie

recursie Hoofdstuk 5 Studeeraanwijzingen De studielast van deze leereenheid bedraagt circa 6 uur. Terminologie Hoofdstuk 5 Recursion I N T R O D U C T I E Veel methoden die we op een datastructuur aan kunnen roepen, zullen op een recursieve wijze geïmplementeerd worden. Recursie is een techniek waarbij een vraagstuk

Nadere informatie

Algoritmiek. 2 februari Introductie

Algoritmiek. 2 februari Introductie College 1 Algoritmiek 2 februari 2017 Introductie 1 Introductie -1- docent: Rudy van Vliet rvvliet@liacs.nl assistent werkcollege: Bart van Strien bartbes@gmail.com website: http://www.liacs.leidenuniv.nl/~vlietrvan1/algoritmiek/

Nadere informatie

Tweede Toets Datastructuren 29 juni 2016, , Educ-Γ.

Tweede Toets Datastructuren 29 juni 2016, , Educ-Γ. Tweede Toets Datastructuren 29 juni 2016, 13.30 15.30, Educ-Γ. Motiveer je antwoorden kort! Zet je mobiel uit. Stel geen vragen over deze toets; als je een vraag niet duidelijk vindt, schrijf dan op hoe

Nadere informatie

Gegevens invullen in HOOFDLETTERS en LEESBAAR, aub. Belgische Olympiades in de Informatica (duur : maximum 1u15 )

Gegevens invullen in HOOFDLETTERS en LEESBAAR, aub. Belgische Olympiades in de Informatica (duur : maximum 1u15 ) OI 2010 Finale 12 Mei 2010 Gegevens invullen in HOOFDLETTERS en LEESBAAR, aub VOORNAAM :....................................................... NAAM :..............................................................

Nadere informatie

5 Afronden en afkappen

5 Afronden en afkappen WIS5 1 5 Afronden en afkappen 5.1 Floor en ceiling Floor en ceiling Conversiefuncties van reële getallen naar gehele getallen. x = het grootste gehele getal et x x = het kleinste gehele getal et x Uitspraak:

Nadere informatie

Greedy algorithms. Algoritmiek

Greedy algorithms. Algoritmiek Greedy algorithms Vandaag Greedy algorithms: wat zijn dat? Voorbeelden: gepast betalen met euromunten AB-rijtje Knapsack probleem Twee scheduling problemen Later: meer voorbeelden, algemene structuur,

Nadere informatie

Opdracht 1 Topics on Parsing and Formal Languages - fall 2010

Opdracht 1 Topics on Parsing and Formal Languages - fall 2010 Opdracht 1 Topics on Parsing and Formal Languages - fall 2010 Rick van der Zwet 8 december 2010 Samenvatting Dit schrijven zal uitwerkingen van opgaven behandelen uit het boek [JS2009]

Nadere informatie

Zoek- en sorteeralgoritmen en hashing

Zoek- en sorteeralgoritmen en hashing Zoek- en sorteeralgoritmen en hashing Femke Berendsen (3689301) en Merel van Schieveen (3510190) 9 april 2013 1 Inhoudsopgave 1 Inleiding 3 2 Zoek- en sorteeralgoritmen 3 2.1 Grote O notatie..........................

Nadere informatie

Transport-, Routing- en Schedulingproblemen. Wi4062TU / Wi487TU / a86g. Uitwerkingen 08-04-2005

Transport-, Routing- en Schedulingproblemen. Wi4062TU / Wi487TU / a86g. Uitwerkingen 08-04-2005 Transport-, Routing- en Schedulingproblemen Wi4062TU / Wi487TU / a86g Uitwerkingen 08-04-2005 1 Transportprobleem Onderdeel a Fabriek 1 kan 120 ton staal fabriceren in 40 uur. Voor fabriek 2 is dit 150

Nadere informatie

Opgaven Binair Zoeken en Invarianten Datastructuren, 4 mei 2016, Werkgroep.

Opgaven Binair Zoeken en Invarianten Datastructuren, 4 mei 2016, Werkgroep. Opgaven Binair Zoeken en Invarianten Datastructuren, 4 mei 2016, Werkgroep. Gebruik deze opgaven, naast die uit het boek, om de stof te oefenen op het werkcollege. Cijfer: Op een toets krijg je meestal

Nadere informatie

Antwoorden. Magische vierkanten Vierkant voor Wiskunde Doeboek 8

Antwoorden. Magische vierkanten Vierkant voor Wiskunde Doeboek 8 Antwoorden Magische vierkanten Vierkant voor Wiskunde Doeboek 8 1 6 1 8 7 5 3 2 9 4 2 De getallen 1 tot en met 9. 3 15. 15 en 15. De som van de getallen van elke rij is 15. 4 15. De som van de getallen

Nadere informatie

ALGORITMIEK: answers exercise class 7

ALGORITMIEK: answers exercise class 7 Problem 1. See slides 2 4 of lecture 8. Problem 2. See slides 4 6 of lecture 8. ALGORITMIEK: answers exercise class 7 Problem 5. a. Als we twee negatieve (< 0) getallen bij elkaar optellen is het antwoord

Nadere informatie

Datastructuren en algoritmen voor CKI

Datastructuren en algoritmen voor CKI Datastructuren en algoritmen voor CKI Jeroen Bransen 1 14 oktober 2015 1 met dank aan Hans Bodlaender en Gerard Tel Willekeurig gebouwde zoekbomen Willekeurig gebouwde zoekbomen Hoogte van zoekboom met

Nadere informatie

Datastructuren; (Zoek)bomen

Datastructuren; (Zoek)bomen Datastructuren; (Zoek)bomen Bomen, zoekbomen, gebalanceerde zoekbomen José Lagerberg FNWI, UvA José Lagerberg (FNWI, UvA) Datastructuren; (Zoek)bomen 1 / 50 Bomen Traversal van bomen Datastructuur van

Nadere informatie

public boolean equaldates() post: returns true iff there if the list contains at least two BirthDay objects with the same daynumber

public boolean equaldates() post: returns true iff there if the list contains at least two BirthDay objects with the same daynumber Tentamen TI1310 Datastructuren en Algoritmen, 15 april 2011, 9.00-12.00 TU Delft, Faculteit EWI, Basiseenheid Software Engineering Bij het tentamen mag alleen de boeken van Goodrich en Tamassia worden

Nadere informatie

1 Recurrente betrekkingen

1 Recurrente betrekkingen WIS1 1 1 Recurrente betrekkingen 1.1 De torens van Hanoi De torens van Hanoi Edouard Lucas, 1884: Gegeven 3 pinnen en 64 schijven van verschillende grootte. Startsituatie: 64 op linkerpin, geordend naar

Nadere informatie

2 Fourier analyse en de Fast Fourier Transform

2 Fourier analyse en de Fast Fourier Transform 2 FOURIER ANALYSE EN DE FAST FOURIER TRANSFORM 21 2 Fourier analyse en de Fast Fourier Transform Zij f een continue 2π-periodieke funktie op IR (eventueel met complexe waarden), dan kunnen we f ontwikkelen

Nadere informatie

OPDRACHT Opdracht 2.1 Beschrijf in eigen woorden wat het bovenstaande PSD doet.

OPDRACHT Opdracht 2.1 Beschrijf in eigen woorden wat het bovenstaande PSD doet. Les C-02: Werken met Programma Structuur Diagrammen 2.0 Inleiding In deze lesbrief bekijken we een methode om een algoritme zodanig structuur te geven dat er gemakkelijk programmacode bij te schrijven

Nadere informatie

Opgaven Binair Zoeken en Invarianten Datastructuren, 28 april 2017, Werkgroep.

Opgaven Binair Zoeken en Invarianten Datastructuren, 28 april 2017, Werkgroep. Opgaven Binair Zoeken en Invarianten Datastructuren, 28 april 2017, Werkgroep. Gebruik deze opgaven, naast die uit het boek, om de stof te oefenen op het werkcollege. Cijfer: Op een toets krijg je meestal

Nadere informatie

Algoritmen, Datastructuren en Complexiteit (214020/5)

Algoritmen, Datastructuren en Complexiteit (214020/5) Universiteit Twente Semester 2005/1 Afdeling Informatica 2 e huiswerkserie 13 december 2005 Algoritmen, Datastructuren en Complexiteit (214020/5) De deadline voor het inleveren van deze huiswerkserie (bij

Nadere informatie

Getaltheorie groep 3: Primitieve wortels

Getaltheorie groep 3: Primitieve wortels Getaltheorie groep 3: Primitieve wortels Trainingsweek juni 2008 Inleiding Voor a relatief priem met m hebben we de orde van a modulo m gedefinieerd als ord m (a) = min { n Z + a n 1 (mod m) }. De verzameling

Nadere informatie

Examen Datastructuren en Algoritmen II

Examen Datastructuren en Algoritmen II Tweede bachelor Informatica Academiejaar 2009 2010, eerste zittijd Examen Datastructuren en Algoritmen II Naam :.............................................................................. Lees de hele

Nadere informatie

Automaten & Complexiteit (X )

Automaten & Complexiteit (X ) Automaten & Complexiteit (X 401049) Beschrijven van reguliere talen Jeroen Keiren j.j.a.keiren@gmail.com VU University Amsterdam 5 Februari 2015 Talen Vorig college: Talen als verzamelingen Eindige automaten:

Nadere informatie

Tentamen in2505-i Algoritmiek

Tentamen in2505-i Algoritmiek TECHNISCHE UNIVERSITEIT DELFT Faculteit Elektrotechniek, Wiskunde en Informatica Tentamen in2505-i Algoritmiek 5 april 2007, 14.00-17.00 Het gebruik van boek of aantekeningen tijdens dit tentamen is niet

Nadere informatie

Kunstmatige Intelligentie (AI) Hoofdstuk van Russell/Norvig = [RN] Genetische algoritmen. voorjaar 2016 College 11, 3 mei 2016

Kunstmatige Intelligentie (AI) Hoofdstuk van Russell/Norvig = [RN] Genetische algoritmen. voorjaar 2016 College 11, 3 mei 2016 AI Kunstmatige Intelligentie (AI) Hoofdstuk 4.1.4 van Russell/Norvig = [RN] Genetische algoritmen voorjaar 2016 College 11, 3 mei 2016 www.liacs.leidenuniv.nl/ kosterswa/ai/ 1 Introductie Er zijn allerlei

Nadere informatie

REEKS I. Zaterdag 6 november 2010, 9u

REEKS I. Zaterdag 6 november 2010, 9u TEST INFORMATICA 1STE BACHELOR IN DE INGENIEURSWETENSCHAPPEN - ACADEMIEJAAR 2010-2011 REEKS I Zaterdag 6 november 2010, 9u NAAM :... VRAAG 1: MINSTENS [5 PUNTEN] Schrijf een methode minstens(), met twee

Nadere informatie

Tentamen Programmeren in C (EE1400)

Tentamen Programmeren in C (EE1400) TU Delft Tentamen Programmeren in C (EE1400) 5 april 2012, 9.00 12.00 Faculteit EWI - Zet op elk antwoordblad je naam en studienummer. - Beantwoord alle vragen zo nauwkeurig mogelijk. - Wanneer C code

Nadere informatie

2WO12: Optimalisering in Netwerken

2WO12: Optimalisering in Netwerken 2WO12: Optimalisering in Netwerken Leo van Iersel Technische Universiteit Eindhoven (TUE) en Centrum Wiskunde & Informatica (CWI) 3 en 6 februari 2014 Leo van Iersel (TUE/CWI) 2WO12: Optimalisering in

Nadere informatie

Stabiele koppelingen (Engelse titel: Stable Matchings)

Stabiele koppelingen (Engelse titel: Stable Matchings) Technische Universiteit Delft Faculteit Elektrotechniek, Wiskunde en Informatica Delft Institute of Applied Mathematics Stabiele koppelingen (Engelse titel: Stable Matchings) Verslag ten behoeve van het

Nadere informatie

Sorteren, groeperen en totaliseren

Sorteren, groeperen en totaliseren 6 Sorteren, groeperen en totaliseren 6.1 Inleiding Een rapport maken begint met het selecteren van de tabellen en het plaatsen van de velden die u in uw rapport wilt afdrukken. Vervolgens sorteert, groepeert

Nadere informatie

Programmeren A. Genetisch Programma voor het Partitie Probleem. begeleiding:

Programmeren A. Genetisch Programma voor het Partitie Probleem. begeleiding: Programmeren A Genetisch Programma voor het Partitie Probleem begeleiding: Inleiding Het Partitie Probleem luidt als volgt: Gegeven een verzameling van n positieve integers, vindt twee disjuncte deelverzamelingen

Nadere informatie

B2: Algoritmen, Datastructuren en Objectprogrammeren Sorteeralgoritmen

B2: Algoritmen, Datastructuren en Objectprogrammeren Sorteeralgoritmen 4. Sorteeralgoritmen 4.1 Inleiding In de B1-cursus heb je al kennis gemaakt met een aantal eenvoudige sorteer-algoritmen. Voor het verkrijgen van een overzicht over zowel de eenvoudige alsook de meer geavanceerde

Nadere informatie

(On)Doenlijke problemen

(On)Doenlijke problemen Fundamentele Informatica In3 005 Deel 2 College 1 Cees Witteveen Parallelle en Gedistribueerde Systemen Faculteit Informatie Technologie en Systemen Overzicht Inleiding - Relatie Deel 1 en Deel 2 - Doenlijke

Nadere informatie

Combinatoriek groep 2

Combinatoriek groep 2 Combinatoriek groep 2 Recursie Trainingsdag 3, 2 april 2009 Homogene lineaire recurrente betrekkingen We kunnen een rij getallen a 0, a 1, a 2,... op twee manieren definiëren: direct of recursief. Een

Nadere informatie

Examen Datastructuren en Algoritmen II

Examen Datastructuren en Algoritmen II Tweede bachelor Informatica Academiejaar 2008 2009, tweede zittijd Examen Datastructuren en Algoritmen II Naam :.............................................................................. Lees elke

Nadere informatie

TW2020 Optimalisering

TW2020 Optimalisering TW2020 Optimalisering Hoorcollege 11 Leo van Iersel Technische Universiteit Delft 25 november 2015 Leo van Iersel (TUD) TW2020 Optimalisering 25 november 2015 1 / 28 Vandaag Vraag Voor welke problemen

Nadere informatie

Algoritmiek 2015 / Algoritmiek 1

Algoritmiek 2015 / Algoritmiek 1 2015 / 2016 1 Waarom dit vak? Omdat Mensen ongeduldig zijn Het belangrijk is dat antwoorden (van berekeningen door computers) snel / op tijd komen (en juist zijn) Dus leren we Algoritmische technieken

Nadere informatie