Controle: Bekijk nu of aan het evenwicht wordt voldaan voor het deel BC, daarvoor zijn immers alle scharnierkracten bekend

Maat: px
Weergave met pagina beginnen:

Download "Controle: Bekijk nu of aan het evenwicht wordt voldaan voor het deel BC, daarvoor zijn immers alle scharnierkracten bekend"

Transcriptie

1 Hints/procedures voor het examen 4Q130 dd ( Aan het einde van dit document staan antwoorden) Opgave 1 Beschouwing vooraf: De constructie bestaat uit twee delen; elk deel afzonderlijk vrijgemaakt levert 3 onafhankelijke evenwichtsvergelijkingen. De constructie kent 3 scharnieren; in elk scharnier zijn er in principe 2 onbekenden. In totaal heb je 6 onbekenden en dus ook 6 vergelijkingen. Op basis van evenwicht moet er dus een oplossing te vinden zijn. Aanpak: Bekijk eerst de constructie als geheel, los gemaakt van zijn omgeving; dus 2 onbekenden in resp. A en C. Hoewel er 4 onbekenden zijn en 3 vergelijkingen voor het geheel, kunnen de verticale componenten in A en C bepaald worden uit bijv. de momentensom tov A, resp C. Om verder te kunnen moeten de delen AB en BC losgemaakt worden in B onder invoering van scharnierkrachten in B. Er geldt Actie=Reactie!. Op voorhand is de richting van de kracht in B niet bekend, voer dan een horizontale en verticale componet in. NB. De scharnierkracht in B is een inwendige kracht in het systeem, die in het globaal evenwicht nog geen rol speelt. Deze kracht wordt pas manifest als je de delen splitst. Bekijk je nu deel AB dan zijn er nog 3 onbekenden: 2 krachtscomponenten in B en de horizontale kracht in A. Met behulp van 3 evenwichtsvergelijkingen kunnen de onbekenden bepaald worden. De horizontale component in C is dan ook te bepalen uit het globaal evenwicht. Controle: Bekijk nu of aan het evenwicht wordt voldaan voor het deel BC, daarvoor zijn immers alle scharnierkracten bekend Opm.1 Omdat de richting van de scharnierkrachten niet a priori bekend is heeft het weinig zijn locale assenstelsels te gebruiken langs en loodrecht op de richtingen AB resp. BC Opm.2 Het moment van een kracht tov een punt wordt bepaald door de grootte van de kracht en door de afstand van het punt tot aan de werklijn van de kracht, niet tot aan het aangrijpingspunt van de kracht.

2 Opgave 2. Vooraf: De constructie kent 3 onbekende scharnierkrachten; die kunnen uit het evenwicht (3 onafhankelijke vergelijkingen) bepaald worden. Snedegrootheden zijn in principe : N, D en M b. Aanpak: Voer onbekenden in in D en E, stel de evenwichtsvergelijkingen op. De snedegrootheden in C kunnen bepaald worden door naar het deel BC te kijken. De enige onbekenden zijn dan de snedegrootheden in C. 3 evenwichtsvergelijkingen leveren de oplossing voor 3 onbekenden. De snedegrootheden net onder D kunnen bepaald worden door deel DE te isoleren; omdat eerder de reactiekrachten in E bepaald zijn, kent het afgesneden deel weer 3 onbekenden (de snedegrootheden onder D). Uit het evenwicht volgen de onbekenden. NB. Schrijf de antwoorden in termen van F en l NB. Bij balkachtige constructies is de lengte veel groter dan de afmetingen in de dwarsdoorsnede; met die afmetingen behoef je geen rekening te houden. Opgave 3 Vooraf: Er zijn 2 manieren van aanpak: - de formeel wiskundige manier waarbij je een deelkrachtje definieert op een plaats x en vervolgens de bijdrage van alle deelkrachtjes netjes integreert in de krachten- en momentensom. - de snelle manier, waarbij je de resultante en de plaats van de resultante weet voor een driehoekvormige verdeelde belasting. NB Als je snedegrootheden wilt bepalen, is het nodig een deel van de balk los te snijden. Op dat deel moet dan wel de originele belasting worden ingevoerd. Voor dat deel kan vervolgens wel weer de snelle manier van werken gekozen worden. NB In verband met wat ingewikkelder rekenwerk is dimensiecontrole van de antwoorden niet alleen nuttig, maar noodzakelijk

3 De belasting is verticaal en de ondersteuning is zodanig dat geen horizontale componenten worden geintroduceerd. De reactiekrachten zullen verticaal gericht zijn, er zal geen normaalkracht als snedegrootheid optreden. Aanpak: De functie q(x) is een lineaire functie in x, van het type: q(x) = a.x + b De onbekenden a en b volgen uit de bekende waarden van q(x) op de plaatsen x=o resp. x=6l Controleer : dimensies en waarde in de eindpunten. Als je gebruik maakt van integraal formuleringen is het noodzakelijk om met goed uitgangsmateriaal te werken. De functie q(x) moet correct zijn. Snelle werkwijze: Bij een driehoekvormige verdeelde belasting is de resultante gelijk aan het oppervlak van de driehoek, de werklijn van de resultante gaat door het zwaartepunt van de driehoek. Voor het bepalen van de steunpuntsreacties (3 onbekenden) levert de verdeelde belasting een resultante van ½.q max.6l. Die resultante grijpt aan op 2l rechts van A. De reacties zullen beide omhoog gericht zijn. Het evenwicht levert de reactiekrachten bijv. uit de momentensom tov A resp. B Snedegrootheden rond B: Het verschil in Dwarskracht links en rechts van B wordt veroorzaakt door de steunpuntsreactie in B Het buigend moment is links en rechts van B hetzelfde. Voor het bepalen van de snedegrootheden kun je twee deelstukken bekijken; het deel van A tot net aan B, met een wat ingewikkelde belasting het deel vanaf C tot net aan B. Dit laatste deel heeft mijn voorkeur: De enige onbekenden voor dit afgesneden deel zijn de snedegrootheden net rechts van B en de belasting is driehoekvormig met een maximum van ½ q max. De resultante is gelijk aan ½.(1/2q max )(3l) op een afstand l rechts van B. Voor het bepalen van de snedegrootheden net links vaan B is het verstandig het deel te bekijken vanaf C tot net voorbij B. De steunpuntsreactie in B werkt nog net op het afgesneden deel. Rechts van A; Als je net naast A snijdt hebje alleen te maken met de steunpuntsreactie in A. De verdeelde belasting heeft zich dan nog niet ontwikkeld tot een kracht. De waarde van de dwarskracht is dus gelijk aan die van de reactie in A, het buigend moment is gelijk aan nul.

4 Alternatief voor de snedes rond B Links van B Snijd het deel van A tot net links van B los. Voer in het snijvlak de snedegrootheden in. Als externe belasting werkt er op dit deel : de steunpuntsreactie in A de verdeelde belasting q(x), waarbij x loopt vanaf A naar rechts Bij het opstellen van de evenwichtsvergelijkingen moet je de verdeelde belasting in rekening brengen door een integraal op te stellen Voor het krachtenevenwicht is dat 3l x= 0 q( x). dx en voor het momentenevenwicht tov een punt in het snedevlak: 3l x= 0 q( x).(3l x). dx Let op: in de momentensom staat de afstand vanaf het snedevlak tot aan de plaats van het deelkrachtje (dat zich op de plaats x bevindt). Controle: dimensies en tekens. Bij vrij ingewikkelde formuleringen is het nuttig om direct het resultaat te controleren. Is de eerste som inderdaad een kracht en de tweede een moment? Kun je de grootte van de kracht afschatten? Ja. Bij voorbeeld: de resultante is kleiner dan in het geval de verdeelde belasting overal gelijk was aan q max. Rechts van B Neem het voorafgaande stuk en voeg daar net het steunpunt bij B aan toe. De beschrijving van de integralen verandert niet; er komt alleen een extra externe kracht bij, nl de steunpuntsreactie in B. Of Snijd het rechter deel los tot aan B. Blijf je werken met x als variabele en q =q(x) dan geldt voor x in dit deel 3l < x < 6l en de afstand van een deelkrachtje tot het snijvlak wordt (x 3l) Wil je liever werken met een coordinaat (z bijv) die bij C begint en naar links loopt, dan moet je allereerst de verdeelde belasting schrijven als functie van die coordinaat q = q(z). De grenzen voor z zijn dan 0< z < 3l en de afstand van het snedevlak tot aan een deelkrach tje is nu (3l-z). Een mogelijke controle is: de situatie te beschrijven voor een hele kleine waarde van z; dan moet immers D=M=0 (in C).

5 Opgave 4 Analyse vooraf De kracht P werkt overal in buis EF en dus werkt er op het blad bij E dezelfde kracht ( blijkt na fictief losmaken). Daarna wordt de kracht verdeeld over 4 gelijke poten naar de vaste wereld. Alle staven worden alleen door een normaalkracht belast; per staaf geldt F = k.u met k = EA/L (Controle op dimensies!!). In deze formulering is F de normaalkracht in de staaf en u de verlenging van de staaf, dit is niet perse de verplaatsing van het uiteinde. Het systeem is een mengvorm van serie- en parallelschakeling. De 4 poten staan onderling parallel en dit potenstelsel staat in serie met de lange buis EF. Aanpak Beschouw 2 subsystemen: Het blad met de 4 poten belast door een (inwendige) kracht in E; daaroor zal de kracht in een poot gelijk zijn aan ¼.P en de poten verkorten. Het blad zakt een klein stukje naar beneden. De lange buis EF; overal in deze staaf heerst een trekkracht ter grootte van P, deze buis zal een stukje verlengen. Maar let op: het uiteinde bij E is (samen met het blad) zelf ook al een stukje verplaatst. De verplaatsing van punt F is de som van de verlenging van de buis plus de verkorting van een poot. Schrijf de formules in termen van P, l en A 1 resp A 2. Leidt vervolgens eerst een relatie af voor de verhouding tussen de oppervlakten en ga daarna pas over op de verhouding van de diameters. Dit scheelt in de tussenresultaten een hoop gedoe met factoren π/4 en kwadraten.

6 Opgave 5 Vooraf De kracht P grijpt niet aan in het oppervlaktemiddelpunt (o.m.p.) van het bot. Voor het bereken en van spanningen en verplaatsingen moet dat wel het geval zijn. De belasting moet daarom vervangen worden door een drukkracht P (aangrijpend in het o.m.p.) en een moment P.e, werkend in het vlak van tekening. Dit moment alleen zorgt dan voor trekspanning aan de bovenzijde en drukspanning aan de onderzijde van het bot. Werkt er alleen een kracht P in het o.m.p. dan is de hele doorsnede op druk belast. In de lineaire theorie is superpositie toegestaan, het effect van de kracht P en van het moment Pe mogen worden opgeteld. Aanpak Als er trek optreedt in de doorsnede is het punt met de grootste trek gelegen aan de bovenzijde van het bot (in deze opgave). Druk dan de spanning in dat punt uit in termen van P en van Pe. Houd de formule zo overzichtelijk mogelijk; maw gebruik termen als A en I, maar druk die grootheden nog niet uit in D en d. Controleer de dimensie voordat je ingewikkelder rekenwerk start. NB. Schrijf niet : π/64 D 4 - π/64 (0,8D) 4 voor het traagheidsmoment voor de buis. De kans dat je dan haakjes vergeet en het overzicht kwijt raakt in formules waarin dit een van de termen is, is erg groot. Schrijf liever: π/64 D 4 { 1 0,8 4 }, deze vorm leest veel gemakkelijker. Kun je dit niet direct, gebruik dan je kladpapier voor tussenstappen.

7 Antwoorden Mechanica 1.1 4Q nov Elk scharnier levert 2 onbekenden; er zijn in totaal 6 onbekenden. Let wel:de scharnierkracht in B is een inwendige kracht. Uit het evenwicht van de constructie als geheel kunnen alleen de verticale componenten van de reacties in A en B bepaald worden. Splitsen in delen en voor elk deel afzonderlijk het evenwicht opstellen, levert alle onbekenden. Let op Actie=Reactie rond punt B. ABC: A v = 5/8 G; C v = 3/8 G; BC: B v = C v = 3/8 G; C h = 7/8 G A h = -1/8 G B h = 1/8 G 2. Het evenwicht van de constructie levert de 3 steunpuntsreacties: D H = 1,5 F E H = 1,5 F E V = F Snijd deel BC los, voer snedegrootheden in bij C en los op: Links van C: D = F M = ¾ Fl Kies of deel BCD of deel DE om de snedegrootheden te bepalen: Onder D: N = -F D = -1,5 F M = ¾ Fl 3. q(x) = q m ( 1 x/6l); de x-richting is voorgeschreven! De belasting heeft een resultante van 3.q max.l, die aangrijpt op 2l vanaf punt A R A = q m l R B = 2.q m l Snedegrootheden: Bekijk eerst het deel BC; de resulterende kracht op dat deel is ¼ van R totaal, dus 3/4q.l Rechts van B: D = ¾ q m l M = ¾ q m l 2 Net links van B kun je het deel BC nemen incl het steunpunt B: Links van B: D = -5/4 q m l M = ¾ q m l 2 Net rechts van A bekijk je alleen de omgeving van het steunpunt A: Rechts van A: D = q m l M = 0

8 4. De buis is in serie met 4 staven die parallel geschakeld zijn. Pl u plaat = 4EA1 u F = Pl 2 1 ( + EA 2 4EA1 ) A 1 = π/4 D 2 A 2 = π/4 (D 2 - d 2 ) Eis u F = 20 u plaat 8A 1 = 19 A 2 dan: 19 d 2 = 11 D 2 d = 0,76 D 5. Snedegrootheden: N = -P M = P.e P σ max = + A I π / 64 e < = A. R π / 4 ( D (Pe)R ; I eis σ max < 0 4 ( D 4 d ) 2 d 2 ) 1 1 = R 8 (D d ) = 0,205 D (als d=0,8d) D

Mechanica - Sterkteleer - HWTK PROEFTOETS versie C - OPGAVEN en UITWERKINGEN.doc 1/16

Mechanica - Sterkteleer - HWTK PROEFTOETS versie C - OPGAVEN en UITWERKINGEN.doc 1/16 VAK: Mechanica - Sterkteleer HWTK Set Proeftoets 07-0 versie C Mechanica - Sterkteleer - HWTK PROEFTOETS- 07-0-versie C - OPGAVEN en UITWERKINGEN.doc 1/16 DIT EERST LEZEN EN VOORZIEN VAN NAAM EN LEERLINGNUMMER!

Nadere informatie

Module 4 Uitwerkingen van de opdrachten

Module 4 Uitwerkingen van de opdrachten Module 4 Uitwerkingen van de opdrachten Opdracht 1 Analyse Constructie bestaat uit scharnierend aan elkaar verbonden staven, rust op twee scharnieropleggingen: r 4, s 11 en k 8. 2k 3 13 11, dus niet vormvast.

Nadere informatie

Module 5 Uitwerkingen van de opdrachten

Module 5 Uitwerkingen van de opdrachten Module 5 Uitwerkingen van de opdrachten Opdracht 1 Deze oefening heeft als doel vertrouwd te raken met het integreren van de diverse betrekkingen die er bestaan tussen de belasting en uiteindelijk de verplaatsing:

Nadere informatie

M-V-N-lijnen Nadruk op de differentiaalvergelijking. Hans Welleman 1

M-V-N-lijnen Nadruk op de differentiaalvergelijking. Hans Welleman 1 M-V-N-lijnen Nadruk op de differentiaalvergelijking Hans Welleman 1 Uitwendige krachten 50 kn 120 kn 98,49 kn 40 kn 40 kn 30 kn 90 kn 4,0 m 2,0 m 2,0 m werklijnen van de reactiekrachten Hans Welleman 2

Nadere informatie

Mechanica - Sterkteleer - HWTK PROEFTOETS versie C - OPGAVEN.doc 1/7

Mechanica - Sterkteleer - HWTK PROEFTOETS versie C - OPGAVEN.doc 1/7 VAK: Mechanica - Sterkteleer HWTK Set Proeftoets 07-02 versie C Mechanica - Sterkteleer - HWTK PROEFTOETS- 07-02-versie C - OPGAVEN.doc 1/7 DIT EERST LEZEN EN VOORZIEN VAN NAAM EN LEERLINGNUMMER! Beschikbare

Nadere informatie

Module 8 Uitwerkingen van de opdrachten

Module 8 Uitwerkingen van de opdrachten Module 8 Uitwerkingen van de opdrachten Opdracht 1 Analyse De constructie bestaat uit een drie keer geknikte staaf die bij A is ingeklemd en bij B in verticale richting is gesteund. De staafdelen waarvan

Nadere informatie

2010-I. A heeft de coördinaten (4 a, 4a a 2 ). Vraag 1. Toon dit aan. Gelijkstellen: y= 4x x 2 A. y= ax

2010-I. A heeft de coördinaten (4 a, 4a a 2 ). Vraag 1. Toon dit aan. Gelijkstellen: y= 4x x 2 A. y= ax 00-I De parabool met vergelijking y = 4x x en de x-as sluiten een vlakdeel V in. De lijn y = ax (met 0 a < 4) snijdt de parabool in de oorsprong en in punt. Zie de figuur. y= 4x x y= ax heeft de coördinaten

Nadere informatie

Vraag 1. F G = 18500 N F M = 1000 N k 1 = 100 kn/m k 2 = 77 kn/m

Vraag 1. F G = 18500 N F M = 1000 N k 1 = 100 kn/m k 2 = 77 kn/m Vraag 1 Beschouw onderstaande pickup truck met de afmetingen in mm zoals gegeven. F G is de massa van de wagen en bedraagt 18,5 kn. De volledige combinatie van wielen, banden en vering vooraan wordt voorgesteld

Nadere informatie

Module 6 Uitwerkingen van de opdrachten

Module 6 Uitwerkingen van de opdrachten 1 Module 6 Uitwerkingen van de opdrachten Opdracht 1 De in figuur 6.1 gegeven constructie heeft vier punten waar deze is ondersteund. A B C D Figuur 6.1 De onbekende oplegreacties zijn: Moment in punt

Nadere informatie

Module 1 Uitwerkingen van de opdrachten

Module 1 Uitwerkingen van de opdrachten 1 kn Module 1 en van de opdrachten F R Opdracht 1 Bepaal de resultante in horizontale en verticale richting: F H 0 6 4 kn dus naar rechts F V 0 4 1 kn dus omhoog De resultante wordt m.b.v. de stelling

Nadere informatie

Examen Klassieke Mechanica

Examen Klassieke Mechanica Examen Klassieke Mechanica Herbert De Gersem, Eef Temmerman 2de bachelor burgerlijk ingenieur en bio-ingenieur 14 januari 2008, academiejaar 07-08 NAAM: RICHTING: vraag 1 (/3) vraag 2 (/5) vraag 3 (/5)

Nadere informatie

Basic Creative Engineering Skills

Basic Creative Engineering Skills Mechanica evenwicht en reactiekrachten November 2015 Theaterschool OTT-1 1 Stelsels van krachten Doel: het vereenvoudigen van een stelsel van meerdere krachten en momenten (paragraaf 4,7 en 4,8) November

Nadere informatie

VAKWERKEN. Hans Welleman 1

VAKWERKEN. Hans Welleman 1 VAKWERKEN Hans Welleman 1 WAT IS EEN VAKWERK vormvaste constructie opgebouwd uit alleen pendelstaven Hans Welleman 2 STAAFAANDUIDINGEN Randstaven Bovenrand Onderrand dd sd Wandstaven Verticalen Diagonalen

Nadere informatie

Eindexamen wiskunde B vwo 2010 - I

Eindexamen wiskunde B vwo 2010 - I Gelijke oppervlakten De parabool met vergelijking y = 4x x2 en de x-as sluiten een vlakdeel V in. De lijn y = ax (met 0 a < 4) snijdt de parabool in de oorsprong O en in punt. Zie. y 4 3 2 1-1 O 1 2 3

Nadere informatie

SAMENSTELLEN EN ONTBINDEN VAN SNIJDENDE KRACHTEN

SAMENSTELLEN EN ONTBINDEN VAN SNIJDENDE KRACHTEN II - 1 HOODSTUK SAMENSTELLEN EN ONTBINDEN VAN SNIJDENDE KRACHTEN Snijdende (of samenlopende) krachten zijn krachten waarvan de werklijnen door één punt gaan..1. Resultante van twee snijdende krachten Het

Nadere informatie

Elk vermoeden van fraude wordt gemeld bij de examencommissie.

Elk vermoeden van fraude wordt gemeld bij de examencommissie. Faculteit Civiele Techniek en Geowetenschappen Schriftelijk tentamen CTB1110 ConstructieMEchanica 1 Totaal aantal pagina s Datum en tijd Verantwoordelijk docent 5 pagina s excl voorblad 02-11-2015 van

Nadere informatie

Tentamen io1031 Product in werking (vragen) vrijdag 26 augustus 2011; 14:00 17:00 uur

Tentamen io1031 Product in werking (vragen) vrijdag 26 augustus 2011; 14:00 17:00 uur Tentamen io1031 Product in werking (vragen) vrijdag 26 augustus 2011; 14:00 17:00 uur Mededelingen Dit tentamen bestaat uit 4 bladzijden. De LAATSTE zes vragen (samen maximaal 5 punten) zijn zogenaamde

Nadere informatie

Mechanica Evenwicht Vraagstukken

Mechanica Evenwicht Vraagstukken Mechanica Evenwicht Vraagstukken Coenraad Hartsuijker Meer informatie over deze en andere uitgaven vindt u op www.academicservice.nl. 1999, 2015 C. Hartsuijker Academic Service is een imprint van Boom

Nadere informatie

Examen Klassieke Mechanica

Examen Klassieke Mechanica Examen Klassieke Mechanica Herbert De Gersem, Eef Temmerman 23 januari 2009, academiejaar 08-09 IW2 en BIW2 NAAM: RICHTING: vraag 1 (/4) vraag 2 (/4) vraag 3 (/5) vraag 4 (/4) vraag 5 (/3) TOTAAL (/20)

Nadere informatie

CONSTRUCTIEMECHANICA 4. 2.8 Antwoorden

CONSTRUCTIEMECHANICA 4. 2.8 Antwoorden ONSTRUTEEHN 4.8 ntwoorden oorsnedegrootheden.1.1 a) met de oorsprong van het assenstelsel in punt : Z (00; 6,5) mm b) zz 9,1 x 10 8 mm 4 5, x 10 8 mm 4 z z 0 c) met behulp van de irkel van ohr: zz, x 10

Nadere informatie

Examen VWO. wiskunde B. tijdvak 1 dinsdag 25 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO. wiskunde B. tijdvak 1 dinsdag 25 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Examen VWO 2010 tijdvak 1 dinsdag 25 mei 13.30-16.30 uur wiskunde B Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 18 vragen. Voor dit examen zijn maximaal 84 punten te behalen. Voor elk

Nadere informatie

5.1 Lineaire formules [1]

5.1 Lineaire formules [1] 5.1 Lineaire formules [1] Voorbeeld : Teken de grafiek van y = 1½x - 3 Stap 1: Maak een tabel met twee coördinaten van deze lijn: x 0 2 y -3 0 Stap 2: Teken de twee punten en de grafiek: 1 5.1 Lineaire

Nadere informatie

Gaap, ja, nog een keer. In één variabele hebben we deze formule nu al een paar keer gezien:

Gaap, ja, nog een keer. In één variabele hebben we deze formule nu al een paar keer gezien: Van de opgaven met een letter en dus zonder nummer staat het antwoord achterin. De vragen met een nummer behoren tot het huiswerk. Spieken achterin helpt je niets in het beter snappen... 1 Stelling van

Nadere informatie

Mechanica van materialen: Oefening 1.8

Mechanica van materialen: Oefening 1.8 UNIVERSITEIT GENT, FACULTEIT INGENIEURSWETENSCHAPPEN EN ARCHITECTUUR Mechanica van materialen: Oefening 1.8 Nick Verhelst Academiejaar 2016-2017 1 OPGAVE Gegeven is onderstaande auto (figuur 1.1) met aanhangwagen.

Nadere informatie

Gegeven de starre balk in figuur 1. Op het gedeelte A D werkt een verdeelde belasting waarvoor geldt: Figuur 1: Opgave 1.

Gegeven de starre balk in figuur 1. Op het gedeelte A D werkt een verdeelde belasting waarvoor geldt: Figuur 1: Opgave 1. Universiteit Twente Faculteit Construerende Technische Wetenschappen Opleidingen Werktuigbouwkunde & Industrieel Ontwerpen Kenmerk: CTW.3/TM-573 ONDERDEEL : Statica DATUM : 5 november 03 TIJD : 3:45 5:30

Nadere informatie

Construerende Technische Wetenschappen

Construerende Technische Wetenschappen Faculteit: Opleiding: Construerende Technische Wetenschappen Civiele Techniek Tentamen Mechanica I Datum tentamen : 14-4-2009 Vakcode : 226014 Tijd : 3½ uur (09:00-12:30) Beoordeling: Aantal behaalde punten

Nadere informatie

1 Coördinaten in het vlak

1 Coördinaten in het vlak Coördinaten in het vlak Verkennen Meetkunde Coördinaten in het vlak Inleiding Verkennen Beantwoord de vragen bij Verkennen. (Als je er niet uitkomt, ga je gewoon naar de Uitleg, maar bekijk het probleem

Nadere informatie

Gebruik de applet om de vragen te beantwoorden. Beweeg punt P over de cirkel.

Gebruik de applet om de vragen te beantwoorden. Beweeg punt P over de cirkel. Raaklijnen Verkennen Raaklijnen Inleiding Verkennen Gebruik de applet om de vragen te beantwoorden. Beweeg punt P over de cirkel. Uitleg Raaklijnen Uitleg Opgave 1 Bekijk de Uitleg. a) Wat is de vergelijking

Nadere informatie

TOEGEPASTE MECHANICA 6 1 e Jaar. Ir J.W. (Hans) Welleman Universitair docent TU-Delft, Civiele Techniek, Constructiemechanica

TOEGEPASTE MECHANICA 6 1 e Jaar. Ir J.W. (Hans) Welleman Universitair docent TU-Delft, Civiele Techniek, Constructiemechanica blad nr 1 TOEGEPASTE MECHANICA 6 1 e Jaar Docent : Ir J.W. (Hans) Welleman Universitair docent TU-Delft, Civiele Techniek, Constructiemechanica e-mail : j.w.welleman@hetnet.nl URL : http://go.to/jw-welleman

Nadere informatie

Oefeningen krachtenleer

Oefeningen krachtenleer Oefeningen krachtenleer Oplossingen van de opgaven cursus Uitwendige krachten Hoofdstuk V: Samenstellen en ontbinden van willekeurige krachten p. 18 e.v. Voorafgaande opmerking ivm numeriek rekenwerk Numerieke

Nadere informatie

Hoofdstuk 4: Meetkunde

Hoofdstuk 4: Meetkunde Hoofdstuk 4: Meetkunde Wiskunde VMBO 2011/2012 www.lyceo.nl Hoofdstuk 4: Meetkunde Wiskunde 1. Basisvaardigheden 2. Grafieken en formules 3. Algebraïsche verbanden 4. Meetkunde Getallen Assenstelsel Lineair

Nadere informatie

Uitwerkingen Mei 2012. Eindexamen VWO Wiskunde B. Nederlands Mathematisch Instituut Voor Onderwijs en Onderzoek

Uitwerkingen Mei 2012. Eindexamen VWO Wiskunde B. Nederlands Mathematisch Instituut Voor Onderwijs en Onderzoek Uitwerkingen Mei 01 Eindexamen VWO Wiskunde B A B C Nederlands Mathematisch Instituut Voor Onderwijs en Onderzoek Onafhankelijkheid van a Opgave 1. We moeten aantonen dat F a een primitieve is van de

Nadere informatie

1.1 Lineaire vergelijkingen [1]

1.1 Lineaire vergelijkingen [1] 1.1 Lineaire vergelijkingen [1] Voorbeeld: Los de vergelijking 4x + 3 = 2x + 11 op. Om deze vergelijking op te lossen moet nu een x gevonden worden zodat 4x + 3 gelijk wordt aan 2x + 11. = x kg = 1 kg

Nadere informatie

kinematisch en statisch (on) bepaaldheid Noodzakelijk aantal opleggingen, graad van statisch onbepaaldheid Hans Welleman 1

kinematisch en statisch (on) bepaaldheid Noodzakelijk aantal opleggingen, graad van statisch onbepaaldheid Hans Welleman 1 kinematisch en statisch (on) bepaaldheid Noodzakelijk aantal opleggingen, graad van statisch onbepaaldheid Hans Welleman 1 PLAATSVASTE STARRE LICHAMEN Rotatie Centrum Horizontale roloplegging Verticale

Nadere informatie

UITWERKING MET ANTWOORDEN

UITWERKING MET ANTWOORDEN Tentamen T0 onstructieechanica Januari 0 UITWERKING ET ANTWOORDEN Opgave a) Drie rekstrookjes b) Onder hoeken van 45 graden c) Tussen 0,5l en 0,7l (basisgevallen van Euler) d) () : Nee de vergrotingsfactor

Nadere informatie

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: goniometrie en meetkunde. 22 juli 2015. dr. Brenda Casteleyn

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: goniometrie en meetkunde. 22 juli 2015. dr. Brenda Casteleyn Voorbereiding toelatingsexamen arts/tandarts Wiskunde: goniometrie en meetkunde 22 juli 2015 dr. Brenda Casteleyn Met dank aan: Atheneum van Veurne (http://www.natuurdigitaal.be/geneeskunde/fysica/wiskunde/wiskunde.htm),

Nadere informatie

9.1 Vergelijkingen van lijnen[1]

9.1 Vergelijkingen van lijnen[1] 9.1 Vergelijkingen van lijnen[1] y = -4x + 8 is de vergelijking van een lijn. Hier wordt y uitgedrukt in x. Algemeen: Van de lijn y = ax + b is de richtingscoëfficiënt a en het snijpunt met de y-as (0,

Nadere informatie

Examen HAVO. Wiskunde B1,2 (nieuwe stijl)

Examen HAVO. Wiskunde B1,2 (nieuwe stijl) Wiskunde B1,2 (nieuwe stijl) Examen HAVO Hoger Algemeen Voortgezet Onderwijs Tijdvak 1 Maandag 27 mei 1.0 16.0 uur 20 02 Voor dit examen zijn maximaal 88 punten te behalen; het examen bestaat uit 19 vragen.

Nadere informatie

BIOFYSICA: Toets I.4. Dynamica: Oplossing

BIOFYSICA: Toets I.4. Dynamica: Oplossing 1 ste jaar Bachelor BIOMEDISCHE WETENSCHAPPEN Academiejaar 006-007 BIOFYSICA: Toets I.4. Dynamica: Oplossing 1 Opgave 1 Een blokje met massa 0, kg heeft onder aan een vlakke helling een snelheid van 7,

Nadere informatie

SAMENSTELLEN EN ONTBINDEN VAN SNIJDENDE KRACHTEN OPGAVEN

SAMENSTELLEN EN ONTBINDEN VAN SNIJDENDE KRACHTEN OPGAVEN 1 HOODSTUK SAMENSTELLEN EN ONTBINDEN VAN SNIJDENDE KACHTEN OPGAVEN.4. Opgaven 1. Bepaal grafisch en analtisch de richting en grootte van de resultante, in volgende gevallen; 1 = 4 kn = 7 kn : 1) = 30 )

Nadere informatie

Lesbrief GeoGebra. 1. Even kennismaken met GeoGebra (GG)

Lesbrief GeoGebra. 1. Even kennismaken met GeoGebra (GG) Lesbrief GeoGebra Inhoud: 1. Even kennismaken met GeoGebra 2. Meetkunde: 2.1 Punten, lijnen, figuren maken 2.2 Loodlijn, deellijn, middelloodlijn maken 2.3 Probleem M1: De rechte van Euler 2.4 Probleem

Nadere informatie

UITWERKINGEN 1 2 C : 2 =

UITWERKINGEN 1 2 C : 2 = UITWERKINGEN. De punten A, B, C, D in R zijn gegeven door: A : 0, B : Zij V het vlak door de punten A, B, C. C : D : (a) ( pt) Bepaal het oppervlak van de driehoek met hoekpunten A, B, C. Oplossing: De

Nadere informatie

Practicum hoogtemeting 3 e klas havo/vwo

Practicum hoogtemeting 3 e klas havo/vwo Deel (benaderbaar object) Om de hoogte van een bepaald object te berekenen hebben we geleerd dat je dat kunt doen als je in staat bent om een rechthoekige driehoek te bedenken waarvan je één zijde kunt

Nadere informatie

Het versterken en verstijven van bestaande constructies

Het versterken en verstijven van bestaande constructies Het versterken en verstijven van bestaande constructies ir.m.w. Kamerling, m.m.v. ir.j.c. Daane 02-02-2015 Onderstempeling voor de renovatie van een kozijn in een gemetselde gevel, Woerden 1 Inhoudopgave

Nadere informatie

Het berekenen van de componenten: Gebruik maken van sinus, cosinus, tangens en/of de stelling van Pythagoras. Zie: Rekenen met vectoren.

Het berekenen van de componenten: Gebruik maken van sinus, cosinus, tangens en/of de stelling van Pythagoras. Zie: Rekenen met vectoren. 3.1 + 3.2 Kracht is een vectorgrootheid Kracht is een vectorgrootheid 1 : een grootheid met een grootte én een richting. Bij het tekenen van een krachtpijl geldt: De pijl begint in het aangrijpingspunt

Nadere informatie

NIETJE NIET VERWIJDEREN

NIETJE NIET VERWIJDEREN NIETJE NIET VERWIJDEREN Faculteit Civiele Techniek en Geowetenschappen NAAM : Schriftelijk tentamen CTB1110 ConstructieMEchanica 1 Totaal aantal pagina s Datum en tijd Verantwoordelijk docent 21 pagina

Nadere informatie

Examen HAVO. wiskunde B1,2. tijdvak 1 dinsdag 20 mei uur

Examen HAVO. wiskunde B1,2. tijdvak 1 dinsdag 20 mei uur Examen HAVO 2008 tijdvak 1 dinsdag 20 mei 13.30-16.30 uur wiskunde B1,2 Dit examen bestaat uit 18 vragen. Voor dit examen zijn maximaal 83 punten te behalen. Voor elk vraagnummer staat hoeveel punten met

Nadere informatie

Examen VWO. wiskunde B (pilot) tijdvak 1 woensdag 22 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO. wiskunde B (pilot) tijdvak 1 woensdag 22 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Eamen VWO 203 tijdvak woensdag 22 mei 3.30-6.30 uur wiskunde B (pilot) Bij dit eamen hoort een uitwerkbijlage. Dit eamen bestaat uit 7 vragen. Voor dit eamen zijn maimaal 78 punten te behalen. Voor elk

Nadere informatie

Examen VMBO-KB. wiskunde CSE KB. tijdvak 1 donderdag 22 mei 13.30-15.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen VMBO-KB. wiskunde CSE KB. tijdvak 1 donderdag 22 mei 13.30-15.30 uur. Bij dit examen hoort een uitwerkbijlage. Examen VMBO-KB 2008 tijdvak 1 donderdag 22 mei 13.30-15.30 uur wiskunde CSE KB Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 25 vragen. Voor dit examen zijn maximaal 77 punten te behalen.

Nadere informatie

Bal in de sloot. Hierbij zijn x en f ( x ) in centimeters. Zie figuur 2.

Bal in de sloot. Hierbij zijn x en f ( x ) in centimeters. Zie figuur 2. Bal in de sloot Een bal met een straal van cm komt in een figuur sloot terecht en blijft drijven. Het laagste punt van de bal bevindt zich h cm onder het wateroppervlak. In figuur zie je een doorsnede

Nadere informatie

Tentamen Mechanica ( )

Tentamen Mechanica ( ) Tentamen Mechanica (20-12-2006) Achter iedere opgave is een indicatie van de tijdsbesteding in minuten gegeven. correspondeert ook met de te behalen punten, in totaal 150. Gebruik van rekenapparaat en

Nadere informatie

STATISCHE BEREKENING. AZC Maastricht kp160 hoh 3 wd 3m_v4. deel 1: hoofdberekening. datum: 29 juni 2016 Behoort bij besluit van B&W d.d.

STATISCHE BEREKENING. AZC Maastricht kp160 hoh 3 wd 3m_v4. deel 1: hoofdberekening. datum: 29 juni 2016 Behoort bij besluit van B&W d.d. STATISCHE BEREKENING AZC Maastricht kp160 hoh 3 wd 3m_v4 deel 1: hoofdberekening Gemeente Maastricht Veiligheid en Leefbaarheid Ontvangen op : 29-06-2016 Zaaknummer : 16-1556WB datum: 29 juni 2016 Behoort

Nadere informatie

Uitwerkingen Tentamen Natuurkunde-1

Uitwerkingen Tentamen Natuurkunde-1 Uitwerkingen Tentamen Natuurkunde-1 5 november 2015 Patrick Baesjou Vraag 1 [17]: a. Voor de veerconstante moeten we de hoekfrequentie ω weten. Die wordt gegeven door: ω = 2π f ( = 62.8 s 1 ) Vervolgens

Nadere informatie

UITWERKINGSFORMULIER. Tentamen CT1031-CT CONSTRUCTIEMECHANICA 1 23 januari :00 12:00 uur

UITWERKINGSFORMULIER. Tentamen CT1031-CT CONSTRUCTIEMECHANICA 1 23 januari :00 12:00 uur Subfaculteit iviele Techniek Vermeld op bladen van uw werk: onstructiemechanica STUIENUMMER : NM : UITWERKINGSFORMULIER Tentamen T101-T106-1 ONSTRUTIEMEHNI 1 2 januari 201 09:00 12:00 uur it tentamen bestaat

Nadere informatie

5 Lijnen en vlakken. Verkennen. Uitleg

5 Lijnen en vlakken. Verkennen. Uitleg 5 Lijnen en vlakken Verkennen Lijnen en vlakken Inleiding Verkennen Bekijk de applet. Je ziet hoe een vlak kan worden beschreven met behulp van een vergelijking in x, en z. In de applet kun je de drie

Nadere informatie

Opgave 1 Bekijk de Uitleg, pagina 1. Bekijk wat een vectorvoorstelling van een lijn is.

Opgave 1 Bekijk de Uitleg, pagina 1. Bekijk wat een vectorvoorstelling van een lijn is. 3 Lijnen en hoeken Verkennen Lijnen en hoeken Inleiding Verkennen Bekijk de applet en zie hoe de plaatsvector v ur van elk punt A op de lijn kan ur r ontstaan als som van twee vectoren: p + t r. Beantwoord

Nadere informatie

F3 Formules: Formule rechte lijn opstellen 1/3

F3 Formules: Formule rechte lijn opstellen 1/3 F3 Formules: Formule rechte lijn opstellen 1/3 Inleiding Bij Module F1 heb je geleerd dat Formule, Verhaal, Tabel, Grafiek en Vergelijking altijd bij elkaar horen. Bij Module F2 heb je geleerd wat een

Nadere informatie

Hoofdstuk 4 Het schakelen van weerstanden.

Hoofdstuk 4 Het schakelen van weerstanden. Hoofdstuk 4 Het schakelen van weerstanden.. Doel. Het is de bedoeling een grote schakeling met weerstanden te vervangen door één equivalente weerstand. Een equivalente schakeling betekent dat een buitenstaander

Nadere informatie

RFEM Nederland Postbus 22 6865 ZG DOORWERTH

RFEM Nederland Postbus 22 6865 ZG DOORWERTH Pagina: 1/12 CONSTRUCTIE INHOUD INHOUD Constructie 1 Graf. Staven - Snedekrachten, Beeld, -Y, 6 1.3 Materialen 1 qp (M-y) 6 1.7 Knoopondersteuningen 1 Graf. Staven - Snedekrachten, Beeld, -Y, 7 1.13 Doorsnedes

Nadere informatie

Schriftelijk examen 2e Ba Biologie Fysica: elektromagnetisme 2011-2012

Schriftelijk examen 2e Ba Biologie Fysica: elektromagnetisme 2011-2012 - Biologie Schriftelijk examen 2e Ba Biologie 2011-2012 Naam en studierichting: Aantal afgegeven bladen, deze opgaven niet meegerekend: Gebruik voor elke nieuwe vraag een nieuw blad. Zet op elk blad de

Nadere informatie

Achter het correctievoorschrift is een aanvulling op het correctievoorschrift opgenomen.

Achter het correctievoorschrift is een aanvulling op het correctievoorschrift opgenomen. Examen HAVO 05 tijdvak donderdag 8 juni 3.30-6.30 uur wiskunde B Bij dit examen hoort een uitwerkbijlage. Achter het correctievoorschrift is een aanvulling op het correctievoorschrift opgenomen. Dit examen

Nadere informatie

Je moet nu voor jezelf een overzicht zien te krijgen over het onderwerp Functies en grafieken. Een eigen samenvatting maken is nuttig.

Je moet nu voor jezelf een overzicht zien te krijgen over het onderwerp Functies en grafieken. Een eigen samenvatting maken is nuttig. 7 Totaalbeeld Samenvatten Je moet nu voor jezelf een overzicht zien te krijgen over het onderwerp Functies en grafieken. Een eigen samenvatting maken is nuttig. Begrippenlijst: 21: functie invoerwaarde

Nadere informatie

3HV H1 Krachten.notebook September 22, krachten. Krachten Hoofdstuk 1

3HV H1 Krachten.notebook September 22, krachten. Krachten Hoofdstuk 1 krachten Krachten Hoofdstuk 1 een kracht zelf kun je niet zien maar... Waaraan zie je dat er een kracht werkt: Plastische Vervorming (blijvend) Elastische Vervorming (tijdelijk) Bewegingsverandering/snelheidsverandering

Nadere informatie

Eindexamen wiskunde B vwo 2010 - I

Eindexamen wiskunde B vwo 2010 - I Formules Vlakke meetkunde Verwijzingen naar definities en stellingen die bij een bewijs mogen worden gebruikt zonder nadere toelichting. Hoeken, lijnen en afstanden: gestrekte hoek, rechte hoek, overstaande

Nadere informatie

Volgorde. Het moeras in.

Volgorde. Het moeras in. Trekken, Duwen en Tillen 1 Volgorde. Over tillen is (en wordt nog steeds) zeer veel geschreven en gezegd. Duwen en trekken daarentegen hangt er meestal maar een beetje bij. Dat is jammer. Want bij tillen

Nadere informatie

Ijkingstoets 4 juli 2012

Ijkingstoets 4 juli 2012 Ijkingtoets 4 juli 2012 -vragenreeks 1 1 Ijkingstoets 4 juli 2012 Oefening 1 In de apotheek bezorgt de apotheker zijn assistent op verschillende tijdstippen van de dag een voorschrift voor een te bereiden

Nadere informatie

Relativiteitstheorie met de computer

Relativiteitstheorie met de computer Relativiteitstheorie met de computer Jan Mooij Mendelcollege Haarlem Met een serie eenvoudige grafiekjes wordt de (speciale) relativiteitstheorie verduidelijkt. In vijf stappen naar de tweelingparadox!

Nadere informatie

uuur , DF en DB met kentallen. b) Laat zien door twee keer de stelling van Pythagoras in een rechthoekige uuur

uuur , DF en DB met kentallen. b) Laat zien door twee keer de stelling van Pythagoras in een rechthoekige uuur 4 Van D naar 3D Verkennen Van D naar 3D Inleiding Verkennen Bekijk de applet. Met de rechter muisknop kun je het assenstelsel om de oorsprong draaien en de fig van alle kanten bekijken. Beantwoord nu de

Nadere informatie

NATUURKUNDE 8 29/04/2011 KLAS 5 INHAALPROEFWERK HOOFDSTUK

NATUURKUNDE 8 29/04/2011 KLAS 5 INHAALPROEFWERK HOOFDSTUK NATUURKUNDE KLAS 5 INHAALPROEFWERK HOOFDSTUK 8 29/04/2011 Deze toets bestaat uit 3 opgaven (32 punten). Gebruik eigen grafische rekenmachine en BINAS toegestaan. Veel succes! Opgave 1: Afbuigen van geladen

Nadere informatie

2004 Gemeenschappelijke proef Algebra - Analyse - Meetkunde - Driehoeksmeting 14 vragen - 2:30 uur Reeks 1 Notatie: tan x is de tangens van de hoek x, cot x is de cotangens van de hoek x Vraag 1 In een

Nadere informatie

Domein A: Inzicht en handelen

Domein A: Inzicht en handelen Tussendoelen wiskunde onderbouw vo vmbo Preambule Domein A is een overkoepeld domein dat altijd in combinatie met de andere domeinen wordt toegepast (of getoetst). In domein A wordt benoemd: Vaktaal: het

Nadere informatie

Aan de gang. Wiskunde B-dag 2015, vrijdag 13 november, 9:00u-16:00u

Aan de gang. Wiskunde B-dag 2015, vrijdag 13 november, 9:00u-16:00u Aan de gang Wiskunde B-dag 2015, vrijdag 13 november, 9:00u-16:00u Verkenning 1 (Piano) Je moet een zware piano verschuiven door een 1 meter brede gang met een rechte hoek er in. In de figuur hierboven

Nadere informatie

Examen VWO. wiskunde B (pilot) tijdvak 2 woensdag 18 juni 13.30-16.30 uur. Achter dit examen is een erratum opgenomen.

Examen VWO. wiskunde B (pilot) tijdvak 2 woensdag 18 juni 13.30-16.30 uur. Achter dit examen is een erratum opgenomen. Eamen VW 04 tijdvak woensdag 8 juni.0-6.0 uur wiskunde B (pilot) Achter dit eamen is een erratum opgenomen. Dit eamen bestaat uit 6 vragen. Voor dit eamen zijn maimaal 76 punten te behalen. Voor elk vraagnummer

Nadere informatie

Examen VWO. wiskunde B (pilot) tijdvak 2 woensdag 18 juni uur

Examen VWO. wiskunde B (pilot) tijdvak 2 woensdag 18 juni uur Eamen VW 04 tijdvak woensdag 8 juni.0-6.0 uur wiskunde B (pilot) Dit eamen bestaat uit 6 vragen. Voor dit eamen zijn maimaal 76 punten te behalen. Voor elk vraagnummer staat hoeveel punten met een goed

Nadere informatie

6 Ligging. Verkennen. Uitleg

6 Ligging. Verkennen. Uitleg 6 Ligging Verkennen Ligging Inleiding Verkennen Door in de applet het assenstelsel te draaien kun je nagaan of twee lijnen een snijpunt hebben. Je kunt ook andere lijnen proberen door de punten A, B, C

Nadere informatie

Driehoeken. Enkele speciale topics. Arne Smeets. Trainingsweekend Februari 2008

Driehoeken. Enkele speciale topics. Arne Smeets. Trainingsweekend Februari 2008 Driehoeken Enkele speciale topics Arne Smeets Trainingsweekend Februari 2008 Trilineaire en barycentrische coördinaten Definitie van trilineaire coördinaten Beschouw (in het vlak) een driehoek ABC en een

Nadere informatie

Examen VMBO-KB. wiskunde CSE KB. tijdvak 1 donderdag 19 mei 13.30-15.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen VMBO-KB. wiskunde CSE KB. tijdvak 1 donderdag 19 mei 13.30-15.30 uur. Bij dit examen hoort een uitwerkbijlage. Examen VMBO-KB 2016 tijdvak 1 donderdag 19 mei 13.30-15.30 uur wiskunde CSE KB Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 27 vragen. Voor dit examen zijn maximaal 75 punten te behalen.

Nadere informatie

Beginnen met Construeren Module ribbmc01c Opleiding: Bouwkunde / Civiele techniek / ROP Propadeuse, kernprogramma 1 e kwartaal

Beginnen met Construeren Module ribbmc01c Opleiding: Bouwkunde / Civiele techniek / ROP Propadeuse, kernprogramma 1 e kwartaal Week 01 Theorie: Beginnen met Construeren Samenstellen en ontbinden van krachten Vectormeetkunde Onderwerp: Kracht en Massa Opdracht: Schematiseer de constructie van de windverbanden Bereken de krachten

Nadere informatie

Goudstikker - de Vries B.V. Blad: 1 Dimensies: kn;m;rad (tenzij anders aangegeven) Datum...: 07/07/2014 Bestand..: L:\Projecten\gdv\2014\4087\Ber\2-hal\tussenspant 6 meter.rww Belastingbreedte.: 6.000

Nadere informatie

X Een bijzondere vorm van een portaalspant is een driescharnierspant. Zo'n spant is statisch onbepaald ondersteund.

X Een bijzondere vorm van een portaalspant is een driescharnierspant. Zo'n spant is statisch onbepaald ondersteund. 16 PORTAALSPANTEN 16.0.1 INLEIDING 16 PORTAALSPANTEN Een constructie samengesteld uit twee kolommen en een balk noemen we een portaal of ook wel portaalspant. In zo'n portaal is de verbinding tussen balk

Nadere informatie

opdracht 1 opdracht 2. opdracht 3 1 Parabolen herkennen Algebra Anders Parabolen uitwerkingen 1 Versie DD 2014 x y toename

opdracht 1 opdracht 2. opdracht 3 1 Parabolen herkennen Algebra Anders Parabolen uitwerkingen 1 Versie DD 2014 x y toename Algebra Anders Parabolen uitwerkingen 1 Versie DD 014 1 Parabolen herkennen opdracht 1. x - -1 0 1 3 y 4 1 0 1 4 9-3 -1 + 1 + 3 +5 toename tt + + + + a) + b) De toename is steeds een nieuwe rand. De randen

Nadere informatie

wiskunde B havo 2015-II

wiskunde B havo 2015-II Veilig vliegen De minimale en de maximale snelheid waarmee een vliegtuig veilig kan vliegen, zijn onder andere afhankelijk van de vlieghoogte. Deze hoogte wordt vaak weergegeven in de Amerikaanse eenheid

Nadere informatie

1 Vlaamse Wiskunde Olympiade : Tweede ronde.

1 Vlaamse Wiskunde Olympiade : Tweede ronde. 1 Vlaamse Wiskunde Olympiade 1998-1999: Tweede ronde De tweede ronde bestaat eveneens uit 0 meerkeuzevragen Het quoteringssysteem is hetzelfde als dat voor de eerste ronde, dwz per goed antwoord krijgt

Nadere informatie

Eindexamen wiskunde B havo I (oude stijl)

Eindexamen wiskunde B havo I (oude stijl) Twee functies en hun som In figuur 1 zijn de grafieken getekend van de functies f ( x) = 2x + 12 en g ( x) = x 1 figuur 1 y Q f g O x De grafiek van f snijdt de x-as in en de y-as in Q 4p 1 Bereken de

Nadere informatie

6.0 Voorkennis AD BC. Kruislings vermenigvuldigen: Voorbeeld: 50 10x. 50 10( x 1) Willem-Jan van der Zanden

6.0 Voorkennis AD BC. Kruislings vermenigvuldigen: Voorbeeld: 50 10x. 50 10( x 1) Willem-Jan van der Zanden 6.0 Voorkennis Kruislings vermenigvuldigen: A C AD BC B D Voorbeeld: 50 0 x 50 0( x ) 50 0x 0 0x 60 x 6 6.0 Voorkennis Herhaling van rekenregels voor machten: p p q pq a pq a a a [] a [2] q a q p pq p

Nadere informatie

Eindexamen wiskunde B1-2 havo 2008-I

Eindexamen wiskunde B1-2 havo 2008-I Steeds meer vlees In wordt voor de periode 1960-1996 zowel de graanproductie als de vleesproductie per hoofd van de wereldbevolking weergegeven. Hiervoor worden twee verticale assen gebruikt. De ronde

Nadere informatie

Krachten, spieren en modellen. Project V3

Krachten, spieren en modellen. Project V3 Krachten, spieren en modellen. Project V3 Een project van de vakken natuur-scheikunde, techniek en biologie. Klas: vmbo 3 tl Inleiding; Dit project doe je met techniek, nask en biologie. Opdracht; Kies

Nadere informatie

Opgave 2 Een kracht heeft een grootte, een richting en een aangrijpingspunt.

Opgave 2 Een kracht heeft een grootte, een richting en een aangrijpingspunt. Uitwerkingen 1 Opgave 1 Het aangrijpingspunt van een kracht is de plaats waar de kracht op het voorwerp werkt. De werklijn van een kracht is de denkbeeldige (rechte) lijn die samenvalt met de bijbehorende

Nadere informatie

Eindexamen vwo wiskunde B 2014-I

Eindexamen vwo wiskunde B 2014-I Eindexamen vwo wiskunde B 04-I Formules Vlakke meetkunde Verwijzingen naar definities en stellingen die bij een bewijs mogen worden gebruikt zonder nadere toelichting. Hoeken, lijnen en afstanden: gestrekte

Nadere informatie

Opvouwbare kubus (180 o )

Opvouwbare kubus (180 o ) Workshop Verpakkingen NWD 18 februari 2012 hm / rvo Opvouwbare kubus (180 o ) - Een bouwplaat van de kubus en een voorbeeldfoto - Als je een mooi wilt maken: een A4-tje 160 g wit papier en een schutblad,

Nadere informatie

Productontwikkeling 3EM

Productontwikkeling 3EM Vragen Productontwikkeling 3EM Les 8 Sterkteleer (deel 1) Zijn er nog vragen over voorgaande lessen?? Paul Janssen 2 Doel van de sterkteleer Berekenen van de vereiste afmetingen van constructieonderdelen

Nadere informatie

Mechanica - Sterkteleer - HWTK PROEFTOETS- AT1 - OPGAVEN 1/6

Mechanica - Sterkteleer - HWTK PROEFTOETS- AT1 - OPGAVEN 1/6 VAK: Mechanica - Sterkteleer HWTK Set Proeftoets - AT1 Mechanica - Sterkteleer - HWTK PROEFTOETS- AT1 - OPGAVEN 1/6 DIT EERST LEZEN EN VOORZIEN VAN NAAM EN LEERLINGNUMMER! Beschikbare tijd: 100 minuten

Nadere informatie

2 H-ll EXAMEN HOGER ALGEMEEN VOORTGEZET ONDERWIJS IN 1974 NATUURKUNDE. Woensdag 28 augustus, uur. Zie ommezijde

2 H-ll EXAMEN HOGER ALGEMEEN VOORTGEZET ONDERWIJS IN 1974 NATUURKUNDE. Woensdag 28 augustus, uur. Zie ommezijde 2 H-ll EXAMEN HOGER ALGEMEEN VOORTGEZET ONDERWIJS IN 1974 Woensdag 28 augustus, 9.00-12.00 uur NATUURKUNDE Zie ommezijde Deze opgaven zijn vastgesteld door de commissie bedoeld in artikel 24 van het Besluit

Nadere informatie