Complex houdt dan weer in dat we op het complexe vlak werken, met complexe getallen.

Maat: px
Weergave met pagina beginnen:

Download "Complex houdt dan weer in dat we op het complexe vlak werken, met complexe getallen."

Transcriptie

1 The Fractal Project Inleiding: De opzet van dit project is het onderzoeken van de eigenschappen van de mandelbrot-fractal, meer bepaald de eigenschappen van de bollen die aan de buitenkant ervan zitten. Voordat we ons daarop kunnen richten, moeten enkele basisbegrippen verduidelijkt worden. Ten eerste bijvoorbeeld: wat zijn fractalen en is de Mandelbrot-fractal eigenlijk? Over fractals: enkele basisbegrippen Een fractal is een meetkundige figuur die zelfgelijkend is. Ze is namelijk opgebouwd uit allemaal delen die zichzelf herhalen en gelijkvormig zijn met de figuur die ze uiteindelijk samenstellen. Ze hebben een oneindige hoeveelheid details, telkens als je gedetailleerder gaat kijken, komen weer dezelfde vormen terug met een even grote hoeveelheid aan details. Fractalen kunnen zeer onregelmatig van structuur zijn. Fractalen worden bijvoorbeeld gevormd door complexe iteratie toe te passen. Iteratie houdt in dat we een vergelijking hebben en dat het resultaat van deze vergelijking telkens weer opnieuw in de vergelijking ingevuld wordt, zoals in deze formule te zien: Complex houdt dan weer in dat we op het complexe vlak werken, met complexe getallen. De vergelijking waarop wij deze iteratie gaan toepassen en welke voor ons belangrijk is, is de volgende: In het algemeen geeft iteratie met de functie voor elk complex getal z een baan: Deze baan heeft twee mogelijkheden: De baan is onbegrensd, beter gezegd, bij iteratie zal het punt z naar oneindig gaan. Met iedere iteratie verplaatst het zich verder en verder in het vlak zonder ergens naar toe te gaan. De baan is begrensd, anders gezegd gaat het punt bij iteratie steeds in een bepaald gebied blijven. Bij elke nieuwe iteratie zullen deze punten verder aangetrokken worden tot één bepaald punt. Dit punt wordt de attractor genoemd.

2 De verzameling van complexe getallen die voldoen aan deze tweede mogelijkheid vormen een verzameling. Deze verzameling is de uitgebreide Julia-verzameling van. De Julia-verzameling is dan de rand van de uitgebreide Juliaverzameling, anders gezegd is deze verzameling de grens tussen de punten die aan de eerste mogelijkheid en de punten die aan de tweede mogelijkheid voldoen. Een voorbeeld van een Juliaverzameling staat hier rechts op de tekening: Er zijn twee mogelijkheden voor een Julia-verzameling: De verzameling is een samenhangend geheel, een aaneensluitende figuur. In de verzameling zijn er geen punten die met elkaar in verbinding staan, alle punten liggen verspreid in het vlak. Om nu te weten wanneer de Julia-verzameling een aaneensluitende figuur vormt bestaat er een andere verzameling, de Mandelbrot-verzameling. Je zou de Mandelbrot-verzameling kunnen zien als een soort van kaart om mooie Julia-verzamelingen te vinden. Deze is namelijk de verzameling van alle punten die niet weglopen naar oneindig en dus een samenhangende (oftewel convergente) Julia verzameling geven voor. Alle punten binnen en op de rand van de Mandelbrot-Fractal geven dus een samenhangende Julia verzameling wanneer ze worden ingevuld in de vergelijking. De punten daarbuiten niet. Of anders gezegd bestaat de Mandelbrot-verzameling uit de c-waarden waarvoor de baan van z begrensd is, waarvoor de bijbehorende Julia-verzameling samenhangend is.

3 Over de Cardioide Het meest opvallende deel van de Mandelbrot-fractal is het hartvormige middendeel. Een vorm zoals deze noemen we een cardioide. Voor de Mandelbrot-fractal is dit het gebied waarin een punt op zichzelf wordt afgebeeld tijdens de iteratie: het heeft een 1-cyclus, periodiciteit 1. Hier hebben we dus te maken met zogenaamde dekpunten. Een dekpunt van een functie is een punt waar de functie de rechte y = x snijdt, een punt waar de functiewaarde gelijk is aan de invoerwaarde en de invoerwaarde dus op zichzelf wordt afgebeeld. We kunnen complexe functies, evenals reële functies benaderen met volgende Taylor-veelterm: Een dekpunt is stabiel (het loopt niet weg naar oneindig) als de absolute waarde van de afgeleide in dat punt kleiner is dan 1. Dit klopt ook voor complexe functies, maar dan wordt de absolute waarde vervangen door de modulus van het complexe getal. De dekpunten van de complexe functie zijn als volgt te vinden: We passen de discriminant-methode toe om de nulpunten te vinden: De afgeleide is gelijk aan, dit volgt uit de rekenregels voor afgeleiden. We kunnen dan eens kijken wat de waarden zijn wanneer we en invoeren. Het eerste punt kan nooit stabiel zijn, want dat is nooit kleiner dan 1. Enkel dekpunt zijn. kan dus een stabiel

4 Voor elk complex getal geeft de bovenstaande functie een waarde die de afgeleide is van in het dekpunt. We noemen deze functie m(c) de multiplier van. Zolang m(c) binnen de eenheidscirkel ligt, is het dekpunt stabiel. We zagen dat onze dekpuntvergelijking twee complexe wortels heeft. Wanneer we deze optellen, bekomen we 1 Het midden van het lijnstuk tussen de beide wortels is dus het punt (½ ; 0). We zouden uit dit en uit de vorige berekeningen kunnen afleiden dat het gebied van de Mandelbrotfractal met 1-cyclus de vorm heeft van een cirkel met middelpunt 0 en straal. Dit is namelijk het hele gebied in het complexe vlak waarvoor de modulus kleiner is dan. Hierboven vonden we dat de waarde aanleiding gaf tot stabiliteit. Op de rand van de Mandelbrot-fractal geldt dus:. Aangezien evengoed een complex getal is, kunnen we evengoed zeggen: Wanneer we dit substitueren in verkrijgen we het volgende: Voor waarden van bekende cardioide. tussen 0 en 2 krijgen we niet de eerder voorspelde cirkel te zien, maar de

5 Binnen de cardioide kunnen we twee speciale punten markeren: één punt, dat we het centrum zullen noemen, is het punt waarop de multiplier m(c) gelijk is aan 0, en een ander, dat we het wortelpunt zullen noemen, is het punt waarop de multiplier 1 is. Met behulp van de multiplier kan men een ander nieuw begrip definiëren: de interne hoek binnen de cardioide. Waarom we expliciet binnen de cardioide zeggen, wordt later nog duidelijk. De interne hoek van een punt c op de buitenrand van de cardioide is gelijk aan de hoek die rond de eenheidscirkel wordt gemaakt door de waarde van de multiplier m(c) in tegenwijzerzin. Een tekening verduidelijkt dit. In deze tekening zijn het centrum en het wortelpunt respectievelijk het zwarte en het rode bolletje. Hieronder vind je een tabel met de interne hoeken die bij de verschillende kleuren horen. Kleur bolletje Interne hoek (fractie van 2 ) rood 0 Wit 1/5 Donkerblauw 1/4 Geel 1/3 Lichtblauw 2/5 Groen 1/2 Deze interne hoek geven we ook wel weer als of. Men noemt dit dan het rotatiegetal. De interne hoek in radialen is dan.

6 Periodiciteit n: de bollen van de Mandelbrot-fractal We hebben de cardioide van dichterbij bekeken, wat in feite niets anders is dan het gebied van de Mandelbrot-fractal waar een punt een 1-cyclus aflegt. Maar de cardioide is niet het enige gebied van de Mandelbrot-fractal. Aan de buitenkant ervan zitten verschillende bolvormige decoraties. Deze bollen hebben een andere periodiciteit, een andere cyclus, dan de cardioide. We kunnen voor alle cycli uitrekenen welk gebied van de Mandelbrot-fractal erbij hoort, maar dat is tijdrovend en ingewikkeld. Eenvoudiger zou zijn dat er een algemene regel zou zijn, waarmee we de verschillende bollen en hun cyclus kunnen vinden. Benoit Mandelbrot had een vermoeden van een dergelijke regel. Hij dacht dat de waarde van samenhing met de straal van een bol volgens de volgende formule. Wanneer we de bollen echter aan een nauwkeurigere observatie onderwerpen, zien we dat dit niet mogelijk is: de linkerbol met 5-cyclus is namelijk groter dan de rechterbol met 5-cyclus. Toch moeten we het idee van een handige formule niet afschrijven. Om het vermoeden van Mandelbrot te nuanceren, moeten we beroep doen op enkele eerder gedefinieerde begrippen. Ten eerste moeten we eens kijken naar wat we bedoelen met de straal van een Mandelbrot bol. Zo een bol is namelijk zelden een perfecte cirkel. Net als binnen de cardioide, zien we in de bollen ook een centrum en een wortelpunt. Het wortelpunt is het punt waarmee de bol vastzit aan de cardioide, en waar de multiplier gelijk is aan 1. Het centrum is het punt waar de multiplier gelijk is aan 0. Als straal nemen we de afstand tussen deze twee punten. Een ander begrip waar we op terugkomen, is de interne hoek. Daarnet hadden we het expliciet over de interne hoek binnen de cardioide, omdat deze op een andere manier wordt bepaald dan de interne hoek van een mandelbrot bol. De interne hoek is hier gelijk aan de hoek tussen de straal en de normaal, de rechte loodrecht op de raaklijn aan het wortelpunt.

7 De juiste formule voor het verband tussen de straal en de waarde van n, gebruik makende van het begrip interne hoek is dan: is dan opnieuw het rotatiegetal. Verderop zullen we nog manieren zien om dit rotatiegetal uit de mandelbrot-fractal en uit de bijbehorende Juliaverzamelingen te halen. De juistheid van deze formule werd in 1984 bewezen door Guckenheimer en McGehee. Bollen aan bollen: een klein extraatje De periodiciteit van de verschillende gebieden van de Mandelbrot-fractal is nauw met elkaar verbonden. Om de periodiciteit van de bollen die vastzitten aan de cardioide te kennen, vermenigvuldigen we de hoek waaronder ze te vinden zijn aan de cardioide (de interne hoek) met de periodiciteit van de cardioide, in dit geval 1. Ook voor de kleinere bollen, die aan de primaire decoraties vastzitten, en bollen die daar aan vastzitten, et cetera, geldt hetzelfde: de noemer van de hoek waaronder de nieuwe bol vastzit aan de oude, vermenigvuldigd met het periodecijfer van de oude bol, geeft het periodecijfer van de nieuwe bol. Met de noemer van de hoek bedoelen we het cijfer n in interne hoek, dat gewoonlijk zelf het periodecijfer is, maar dat in dit geval vermenigvuldigd moet worden met het oude periodecijfer. Zo kunnen we tot in het oneindige de waarde van n voor steeds kleinere mandelbrotbollen bepalen

8 Waar vinden we de bollen: De Formule van Euler et cetera Er zijn oneindig veel verschillende mandelbrotbollen, dat is namelijk een eigenschap van fractals. Oneindig veel details. Voor ieder rationaal getal dat niet verder vereenvoudigd kan worden, is er een mandelbrotbol. In de volgende formule wordt dit getal weergegeven als. Het punt c waarmee een bol vastzit aan een andere bol of aan de cardioide, wordt weergegeven door de volgende formule. Deze formule roept opnieuw vragen op, want houdt de uitdrukking in? is een wiskundige constante, het grondtal van de natuurlijke logaritmen. Wat de betekenis van e precies is in die context, is niet zo belangrijk voor ons. Interessante is dat je met behulp van e complexe getallen kan definiëren. We doen dit aan de hand van de Formule van Euler. Wanneer we ons dan de interne hoeken weer voor de geest halen, die gelijk waren aan weten we meteen waarom de uitdrukking er zo uitziet. Door deze hoek in te vullen in de formule van Euler, verkrijgen we een complex getal dat we in de eerste formule kunnen ingeven. Even herhalen: We kunnen in de bollen en in de cardioide interne hoeken bepalen. Deze interne hoeken bepalen mee de grootte van de bol in functie van het periodecijfer n. De plaats waar een bol vastzit aan het oppervlak van de fractal kunnen we eveneens met een formule met behulp van interne hoeken bepalen. We weten nu al van alles over de bouw van ons studieobject, maar nog niet zoveel over de implicaties die de iteratie van het punt nu precies heeft. Toch is ook hierover het een en het ander te vertellen., dan

9 Konijnen en het rotatiegetal Helemaal in het begin van onze tekst hadden we het over de Julia-verzamelingen, en over hoe de mandelbrot-fractal fungeert als een kaart om convergente Julia-verzamelingen te vinden. Voor ieder punt van de mandelbrot-fractal vinden we een Julia-verzameling. Nu kunnen we ons afvragen of er ook een verband bestaat tussen de Julia-verzamelingen en de mandelbrot-bollen. We gebruiken een fractalgenerator, waarmee we door te klikken op een bepaalde plaats in de mandelbrot-fractal meteen de bijbehorende Juliaverzameling verkrijgen. Zo kunnen we enkele Juliaverzamelingen vergelijken. Hieronder zijn een paar voorbeelden te zien.

10 Laten we nu eens dieper ingaan op het verband tussen de Mandelbrot-verzameling, meer bepaald de bollen die hiervoor zo typisch zijn, en de eigenschappen van de bijbehorende Julia-verzameling. Hiervoor volgt eerst nog een beetje informatie over de Mandelbrot-verzameling. Cardioide, primaire bollen De grote hartvormige bol in het midden van de Mandelbrotverzameling is zoals eerder gezegd de cardioide, welke nu niet zo van belang is. Laten we even wat dieper ingaan op de uitstulpingen aan de rand van de cardioide. Alle uitstulpingen die direct aan de cardioide vastzitten noemt men primaire bollen, deze bollen hebben enkele bijzondere eigenschappen. Indien een punt c in zo n primaire bol ligt, dan zal de baan van het punt 0 (de oorsprong) bij iteratie aangetrokken worden tot een telkens herhalende cyclus van n stappen waarbij. Dit getal wordt de periode van een primaire bol genoemd. Uit dit volgt dat we elke primaire bol een waarde kunnen geven. Als we nu naar de bijbehorende Julia-verzamelingen gaan kijken, dan kunnen we heel gemakkelijk de periode van de primaire bollen gaan bepalen want overal in dezelfde bol zal een Julia-verzameling gelijkaardige eigenschappen hebben. Elke Julia-verzameling bestaat namelijk uit een centraal lichaam waaraan in aanhechtingspunten andere lichamen zijn bevestigd. Het aantal lichamen dat een aanhechtingspunt bevat bepaalt de periode van de bol in de Mandelbrot-verzameling. De Juliaverzameling heeft oneindig veel aanhechtingspunten waar elke keer opnieuw evenveel lichamen aan vast zitten. Deze structuur wordt het konijn van Douady genoemd, wat in volgend punt uitgelegd wordt. De konijnen van Douady De reden voor de vreemde naam van deze structuur wordt duidelijker als je weet dat één van de figuren (rechts op de afbeelding) die onder die naam bekend staan een centraal middendeel heeft en twee uitsteeksels aan iedere kant: de kop en de oren... Tijdens de een iteratiecyclus kunnen we ons punt volgen en dan kunnen we vaststellen dat het stappen zet per iteratie. Gedurende de iteratie cyclus springt ons punt langs alle oren van het konijn, van klein naar groot, beginnende in het centrale deel. Bij sommige konijnen liggen de oren niet op volgorde van grootte; Dit is het geval bij de linker bol met 5-cyclus, die als rotatiegetal heeft. Het punt moet daar systematisch één oor overslaan om de volgorde aan te houden: hij zet dus twee stappen per iteratie. Hier komt het verschil vandaan met de andere bol met 5-cyclus, waar de oren wel op volgorde van grootte zijn gerangschikt.

11 Rotatiegetal Het rotatiegetal van een bol uit de Mandelbrotverzameling is een rationaal getal dat bestaat uit. Met andere woorden de periode van de bol gedeeld door de grootte van de sprong die een punt maakt per iteratie. Zoals rechts op de tekening te zien, staan de rotatiegetallen bij de bollen. Een andere manier om het rotatiegetal te vinden is aan de hand van de Mandelbrot-bol zelf: aan het uiteinde van een mandelbrotbol kunnen we een zogenaamde antenne vinden. Deze bestaat altijd uit een aantal spaken. Het aantal spaken is gelijk aan het periodecijfer n van die bol, en wanneer we de kleinste spaak in tegenwijzerzin draaien, is het aantal andere spaken dat onderweg wordt tegengekomen gelijk aan. Een voorbeeld hiervan is te zien op de figuur hieronder, links een bol met periode 3, de antenne heeft ook 3 spaken. De laatste manier die we hier bespreken om het rotatiegetal te vinden, is die aan de hand van de regel van Farey. Deze houdt in dat je de tellers en noemers van de rotatiegetallen van twee bollen optelt, om het rotatiegetal te vinden van de bol die precies tussen de die twee in ligt. Zo vinden we bijvoorbeeld: En we weten dat dit klopt: het rotatiegetal van de bol tussen die met rotatiegetal en is gelijk aan Aan het einde Aan iedere tekst komt vroeg of laat een einde, en deze vergaat het niet anders We zijn begonnen met het definiëren van fractals in het algemeen en de Mandelbrot-fractal in het bijzonder. Toen die begrippen duidelijk waren, hebben we de verschillende delen van de Mandelbrot-fractal uitgediept, en ten slotte hun verband met de Juliaverzamelingen bekeken. En nu zijn we daar dus klaar mee. Lang niet alles is gezegd geweest, maar we hopen toch dat we er in geslaagd zijn om op een begrijpelijke manier enkele bijzondere aspecten van deze bijzondere figuur te verduidelijken.

f : z z 2 + c. x n = 1 2 z n dan krijgen we z n+1 = z 2 n + a 2 a2 4 De parameter c correspondeert dus met a middels c = a 2 a2 4

f : z z 2 + c. x n = 1 2 z n dan krijgen we z n+1 = z 2 n + a 2 a2 4 De parameter c correspondeert dus met a middels c = a 2 a2 4 Juliaverzamelingen en de Mandelbrotverzameling In de eerste twee colleges hebben we gezien hoe het itereren van een eenvoudige afbeelding tot ingewikkelde verschijnselen leidt. Nu gaan we dit soort afbeeldingen

Nadere informatie

5 Eenvoudige complexe functies

5 Eenvoudige complexe functies 5 Eenvoudige complexe functies Bij complexe functies is zowel het domein als het beeld een deelverzameling van. Toch kan men in eenvoudige gevallen het domein en het beeld in één vlak weergeven. 5.1 Functies

Nadere informatie

Bestaat er dan toch een wortel uit 1?

Bestaat er dan toch een wortel uit 1? Bestaat er dan toch een wortel uit 1? Complexe getallen en complexe functies Jan van de Craats Universiteit van Amsterdam, Open Universiteit CWI Vacantiecursus 2007 Wat zijn complexe getallen? Wat zijn

Nadere informatie

Fractale dimensie. Eline Sommereyns 6wwIi nr.9

Fractale dimensie. Eline Sommereyns 6wwIi nr.9 Fractale dimensie Eline Sommereyns 6wwIi nr.9 Inhoudstabel Inleiding... 3 Gehele dimensie... 4 Begrip dimensie... 4 Lengte, breedte, hoogte... 4 Tijd-ruimte... 4 Fractale dimensie... 5 Fractalen... 5 Wat?...

Nadere informatie

Appendix Inversie bekeken vanuit een complex standpunt

Appendix Inversie bekeken vanuit een complex standpunt Bijlage bij Inversie Appendix Inversie bekeken vanuit een complex standpunt In dee paragraaf gaan we op een andere manier kijken naar inversie. We doen dat met behulp van de complexe getallen. We veronderstellen

Nadere informatie

6 Complexe getallen. 6.1 Definitie WIS6 1

6 Complexe getallen. 6.1 Definitie WIS6 1 WIS6 1 6 Complexe getallen 6.1 Definitie Rekenen met paren De vergelijking x 2 + 1 = 0 heeft geen oplossing in de verzameling R der reële getallen (vierkantsvergelijking met negatieve discriminant). We

Nadere informatie

Opgaven bij het vormen van ruimte: van Poincaré tot Perelman

Opgaven bij het vormen van ruimte: van Poincaré tot Perelman Opgaven bij het vormen van ruimte: van Poincaré tot Perelman Roland van der Veen Inleiding Deze reeks opgaven is bedoeld voor de werkcolleges van de vakantiecursus Wiskunde in Wording, Augustus 2013. 1

Nadere informatie

Appendix B: Complexe getallen met Cabri Geometry II 1

Appendix B: Complexe getallen met Cabri Geometry II 1 Appendix B: Complexe getallen met Cabri Geometry II 1 1. Macro s in Cabri Indien een constructie geregeld uitgevoerd moet worden, is het interessant deze constructie op te slaan in een macro. Het definiëren

Nadere informatie

19 de T 3 Vlaanderen Symposium Leuven 15 oktober De complexe imaginaire wereld. Didier Deses

19 de T 3 Vlaanderen Symposium Leuven 15 oktober De complexe imaginaire wereld. Didier Deses 19 de T 3 Vlaanderen Symposium Leuven 15 oktober 2016 De complexe imaginaire wereld Didier Deses 43 Creatief in C met de TI-84+ Didier Deses 1, Philip Bogaert 2 1 Leerkracht wiskunde K. A. Koekelberg,

Nadere informatie

1 Limiet van een rij Het begrip rij Bepaling van een rij Expliciet voorschrift Recursief voorschrift 3

1 Limiet van een rij Het begrip rij Bepaling van een rij Expliciet voorschrift Recursief voorschrift 3 HOOFDSTUK 6: RIJEN 1 Limiet van een rij 2 1.1 Het begrip rij 2 1.2 Bepaling van een rij 2 1.2.1 Expliciet voorschrift 2 1.2.2 Recursief voorschrift 3 1.2.3 Andere gevallen 3 1.2.4 Rijen met de grafische

Nadere informatie

3 Cirkels, Hoeken en Bogen. Inversies.

3 Cirkels, Hoeken en Bogen. Inversies. 3 Cirkels, Hoeken en Bogen. Inversies. 3.1. Inleiding Het derde college betreft drie onderwerpen (hoeken, bogen en inversies), die in concrete meetkundige situaties vaak optreden. Dit hoofdstuk is bedoeld

Nadere informatie

Praktische opdracht Wiskunde B Complexe Getallen

Praktische opdracht Wiskunde B Complexe Getallen Praktische opdracht Wiskunde B Complexe Get Praktische-opdracht door een scholier 1750 woorden 12 mei 2003 5,2 86 keer beoordeeld Vak Wiskunde B Inleiding Deze praktische opdracht wiskunde heeft als onderwerp:

Nadere informatie

16.0 Voorkennis. Voorbeeld 1: Los op in 2x + 3i = 5x + 6i -3x = 3i x = -i

16.0 Voorkennis. Voorbeeld 1: Los op in 2x + 3i = 5x + 6i -3x = 3i x = -i 16.0 Voorkennis Voorbeeld 1: Los op in 2x + 3i = 5x + 6i -3x = 3i x = -i Voorbeeld 2: Los op in 4x 2 + 12x + 15 = 0 4x 2 + 12x + 9 + 6 = 0 (2x + 3) 2 + 6 = 0 (2x + 3) 2 = -6 (2x + 3) 2 = 6i 2 2x + 3 =

Nadere informatie

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: Logaritmen en getal e 1/3/2017. dr. Brenda Casteleyn

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: Logaritmen en getal e 1/3/2017. dr. Brenda Casteleyn Voorbereiding toelatingsexamen arts/tandarts Wiskunde: Logaritmen en getal e 1/3/2017 dr. Brenda Casteleyn Met dank aan: Atheneum van Veurne, Leen Goyens (http://users.telenet.be/toelating) 1. Inleiding

Nadere informatie

Wortels met getallen en letters. 2 Voorbeeldenen met de (vierkants)wortel (Tweedemachts wortel)

Wortels met getallen en letters. 2 Voorbeeldenen met de (vierkants)wortel (Tweedemachts wortel) 1 Inleiding Wortels met getallen en letters WISNET-HBO update sept 2009 Voorkennis voor deze les over Wortelvormen is de les over Machten. Voor de volledigheid staat aan het eind van deze les een overzicht

Nadere informatie

8.1 Rekenen met complexe getallen [1]

8.1 Rekenen met complexe getallen [1] 8.1 Rekenen met complexe getallen [1] Natuurlijke getallen: Dit zijn alle positieve gehele getallen en nul. 0, 1, 2, 3, 4, 5, 6,... Het symbool voor de natuurlijke getallen is Gehele getallen: Dit zijn

Nadere informatie

Combinatoriek groep 2

Combinatoriek groep 2 Combinatoriek groep 2 Recursie Trainingsdag 3, 2 april 2009 Homogene lineaire recurrente betrekkingen We kunnen een rij getallen a 0, a 1, a 2,... op twee manieren definiëren: direct of recursief. Een

Nadere informatie

Je moet nu voor jezelf een overzicht zien te krijgen over het onderwerp Complexe getallen. Een eigen samenvatting maken is nuttig.

Je moet nu voor jezelf een overzicht zien te krijgen over het onderwerp Complexe getallen. Een eigen samenvatting maken is nuttig. 6 Totaalbeeld Samenvatten Je moet nu voor jezelf een overzicht zien te krijgen over het onderwerp Complexe getallen. Een eigen samenvatting maken is nuttig. Begrippenlijst: 21: complex getal reëel deel

Nadere informatie

1. Orthogonale Hyperbolen

1. Orthogonale Hyperbolen . Orthogonale Hyperbolen a + b In dit hoofdstuk wordt de grafiek van functies van de vorm y besproken. Functies c + d van deze vorm noemen we gebroken lineaire functies. De grafieken van dit soort functies

Nadere informatie

Trillingen en geluid wiskundig

Trillingen en geluid wiskundig Trillingen en geluid wiskundig 1 De sinus van een hoek 2 Radialen 3 Uitwijking van een harmonische trilling 4 Macht en logaritme 5 Geluidsniveau en amplitude 1 De sinus van een hoek Sinus van een hoek

Nadere informatie

Uitwerkingen van de opgaven bij het vormen van ruimte: van Poincaré tot Perelman

Uitwerkingen van de opgaven bij het vormen van ruimte: van Poincaré tot Perelman Uitwerkingen van de opgaven bij het vormen van ruimte: van Poincaré tot Perelman Roland van der Veen Inleiding Deze reeks opgaven is bedoeld voor de werkcolleges van de vakantiecursus Wiskunde in Wording,

Nadere informatie

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: Logaritmen en getal e. 23 juli 2015. dr. Brenda Casteleyn

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: Logaritmen en getal e. 23 juli 2015. dr. Brenda Casteleyn Voorbereiding toelatingsexamen arts/tandarts Wiskunde: Logaritmen en getal e 23 juli 2015 dr. Brenda Casteleyn Met dank aan: Atheneum van Veurne (http://www.natuurdigitaal.be/geneeskunde/fysica/wiskunde/wiskunde.htm),

Nadere informatie

3.1 Negatieve getallen vermenigvuldigen [1]

3.1 Negatieve getallen vermenigvuldigen [1] 3.1 Negatieve getallen vermenigvuldigen [1] Voorbeeld 1: 5 3 = 15 (3 + 3 + 3 + 3 + 3 = 15) Voorbeeld 2: 5-3 = -15 (-3 +-3 +-3 +-3 +-3 = -3-3 -3-3 -3 = -15) Voorbeeld 3: -5 3 = -15 Voorbeeld 4: -5 3 9 2

Nadere informatie

Ijkingstoets industrieel ingenieur aangeboden door UGent en VUB op 30 juni 2014: algemene feedback

Ijkingstoets industrieel ingenieur aangeboden door UGent en VUB op 30 juni 2014: algemene feedback IJkingstoets juni 4 - reeks - p. / Ijkingstoets industrieel ingenieur aangeboden door UGent en VUB op juni 4: algemene feedback In totaal namen studenten deel aan deze ijkingstoets industrieel ingenieur

Nadere informatie

Wortels met getallen. 2 Voorbeeldenen met de vierkantswortel (Tweedemachts wortel)

Wortels met getallen. 2 Voorbeeldenen met de vierkantswortel (Tweedemachts wortel) Wortels met getallen 1 Inleiding WISNET-HBO update sept 2009 Voorkennis voor deze les over Wortelvormen is de les over Machten. Voor de volledigheid staat aan het eind van deze les een overzicht van de

Nadere informatie

Examen havo wiskunde B 2016-I (oefenexamen)

Examen havo wiskunde B 2016-I (oefenexamen) Examen havo wiskunde B 06-I (oefenexamen) De rechte van Euler Gegeven is cirkel c met middelpunt (, ) p Stel een vergelijking op van c. De punten B(, 0) en ( 4, 0) M die door het punt A( 0, 4) C liggen

Nadere informatie

Samenvatting wiskunde havo 4 hoofdstuk 5,7,8 en vaardigheden 3 en 4 en havo 5 hoofdstuk 3 en 5 Hoofdstuk 5 afstanden en hoeken Voorkennis Stelling van

Samenvatting wiskunde havo 4 hoofdstuk 5,7,8 en vaardigheden 3 en 4 en havo 5 hoofdstuk 3 en 5 Hoofdstuk 5 afstanden en hoeken Voorkennis Stelling van Samenvatting wiskunde havo 4 hoofdstuk 5,7,8 en vaardigheden 3 en 4 en havo 5 hoofdstuk 3 en 5 Hoofdstuk 5 afstanden en hoeken Stelling van Kan alleen bij rechthoekige driehoeken pythagoras a 2 + b 2 =

Nadere informatie

Les 1 Kwadraat afsplitsen en Verzamelingen

Les 1 Kwadraat afsplitsen en Verzamelingen Vwo 5 / Havo 4 Wis D Hoofdstuk 8 : Complexe getallen Pagina van Les Kwadraat afsplitsen en Verzamelingen Definities Verzamelingen Er zijn verschillende verzamelingen N = Natuurlijke getallen =,2,,.. Z

Nadere informatie

Zomercursus Wiskunde. Katholieke Universiteit Leuven Groep Wetenschap & Technologie. September 2008

Zomercursus Wiskunde. Katholieke Universiteit Leuven Groep Wetenschap & Technologie. September 2008 Katholieke Universiteit Leuven September 2008 Limieten en asymptoten van rationale functies (versie juli 2008) Rationale functies. Inleiding Functies als f : 5 5, f 2 : 2 3 + 2 f 3 : 32 + 7 4 en f 4 :

Nadere informatie

wiskunde B pilot havo 2016-I

wiskunde B pilot havo 2016-I De rechte van Euler Gegeven is cirkel c met middelpunt ( 1, 1 ) 3p 1 Stel een vergelijking op van c. De punten B( 3, 0) en ( 4, 0) M die door het punt A( 0, 4) 2 2 C liggen op c. Punt Q is het midden van

Nadere informatie

Examen HAVO. wiskunde B (pilot) tijdvak 1 maandag 23 mei 13:30-16:30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen HAVO. wiskunde B (pilot) tijdvak 1 maandag 23 mei 13:30-16:30 uur. Bij dit examen hoort een uitwerkbijlage. Eamen HAV 2016 tijdvak 1 maandag 23 mei 13:30-16:30 uur wiskunde B (pilot) Bij dit eamen hoort een uitwerkbijlage. Dit eamen bestaat uit 18 vragen. Voor dit eamen zijn maimaal 77 punten te behalen. Voor

Nadere informatie

Hoofdstuk 1 Spiegelen in lijn en in cirkel. Eigenschappen.

Hoofdstuk 1 Spiegelen in lijn en in cirkel. Eigenschappen. Hoofdstuk 1 Spiegelen in lijn en in cirkel. Eigenschappen. Jakob Steiner (Utzenstorf (kanton Bern), 18 maart 1796 - Bern, 1 april 1863) was een Zwitsers wiskundige. Hij wordt beschouwd als een van de belangrijkste

Nadere informatie

Goniometrische functies

Goniometrische functies Goniometrische functies gonè (Grieks) = hoek metron (Grieks) = maat Goniometrie, afkomstig van de Griekse woorden voor hoek en maat, betekent letterlijk hoekmeetkunde. Daarmee wordt aangegeven dat het

Nadere informatie

Trillingen en geluid wiskundig. 1 De sinus van een hoek 2 Uitwijking van een trilling berekenen 3 Macht en logaritme 4 Geluidsniveau en amplitude

Trillingen en geluid wiskundig. 1 De sinus van een hoek 2 Uitwijking van een trilling berekenen 3 Macht en logaritme 4 Geluidsniveau en amplitude Trillingen en geluid wiskundig 1 De sinus van een hoek 2 Uitwijking van een trilling berekenen 3 Macht en logaritme 4 Geluidsniveau en amplitude 1 De sinus van een hoek Eenheidscirkel In de figuur hiernaast

Nadere informatie

Kettingbreuken. 20 april 2010 1 K + 1 E + 1 T + 1 T + 1 I + 1 N + 1 G + 1 B + 1 R + 1 E + 1 U + 1 K + E + 1 N 1 2 + 1 0 + 1 A + 1 P + 1 R + 1 I + 1

Kettingbreuken. 20 april 2010 1 K + 1 E + 1 T + 1 T + 1 I + 1 N + 1 G + 1 B + 1 R + 1 E + 1 U + 1 K + E + 1 N 1 2 + 1 0 + 1 A + 1 P + 1 R + 1 I + 1 Kettingbreuken Frédéric Guffens 0 april 00 K + E + T + T + I + N + G + B + R + E + U + K + E + N 0 + A + P + R + I + L + 0 + + 0 Wat zijn Kettingbreuken? Een kettingbreuk is een wiskundige uitdrukking

Nadere informatie

Hoofdstuk 8 : Complexe getallen

Hoofdstuk 8 : Complexe getallen 1 Hoofdstuk 8 : Complexe getallen Les 1 Kwadraat afsplitsen en Verzamelingen Definities Verzamelingen Er zijn verschillende verzamelingen getallen : (1) N = Natuurlijke getallen = 1,2,3,.. (2) Z = Gehele

Nadere informatie

Aanvulling bij de cursus Calculus 1. Complexe getallen

Aanvulling bij de cursus Calculus 1. Complexe getallen Aanvulling bij de cursus Calculus 1 Complexe getallen A.C.M. Ran In dit dictaat worden complexe getallen behandeld. Ook in het Calculusboek van Adams kun je iets over complexe getallen lezen, namelijk

Nadere informatie

De meetkunde van de. derdegraadsvergelijking

De meetkunde van de. derdegraadsvergelijking Jan van de Craats De meetkunde van de derdegraadsvergelijking 22 februari 2007 Algemene (complexe) derdegraadsvergelijking met a 1, a 2, a 3 C z 3 3a 1 z 2 + 3a 2 z a 3 = 0 Oplossingen z 1, z 2, z 3 Dan

Nadere informatie

Deel 2. Basiskennis wiskunde

Deel 2. Basiskennis wiskunde Deel 2. Basiskennis wiskunde Vraag 26 Definieer de functie f : R R : 7 cos(2 ). Bepaal de afgeleide van de functie f in het punt 2π/2. (A) f 0 ( 2π/2) = π (B) f 0 ( 2π/2) = 2π (C) f 0 ( 2π/2) = 2π (D)

Nadere informatie

Complexe functies. 2.1 Benadering door veeltermen

Complexe functies. 2.1 Benadering door veeltermen Wiskunde voor kunstmatige intelligentie, Les Complexe functies Nadat we de complexe getallen hebben leren kennen, is het een voor de hand liggende vraag of hiervoor net als voor de reële getallen ook functies

Nadere informatie

P is nu het punt waarvan de x-coördinaat gelijk is aan die van het punt X en waarvan de y-coördinaat gelijk is aan AB (inclusief het teken).

P is nu het punt waarvan de x-coördinaat gelijk is aan die van het punt X en waarvan de y-coördinaat gelijk is aan AB (inclusief het teken). Inhoud 1. Sinus-functie 1 2. Cosinus-functie 3 3. Tangens-functie 5 4. Eigenschappen 4.1. Verband tussen goniometrische verhoudingen en goniometrische functies 8 4.2. Enkele eigenschappen van de sinus-functie

Nadere informatie

Bestaat er dan toch een wortel uit 1?

Bestaat er dan toch een wortel uit 1? Bestaat er dan toch een wortel uit 1? Complexe getallen en complexe functies voor beginners Jan van de Craats Universiteit van Amsterdam Open Universiteit craats@science.uva.nl Complexe getallen worden

Nadere informatie

Transformaties van grafieken HAVO wiskunde B deel 2. Willem van Ravenstein Haags Montessori Lyceum (c) 2016

Transformaties van grafieken HAVO wiskunde B deel 2. Willem van Ravenstein Haags Montessori Lyceum (c) 2016 Transformaties van grafieken HAVO wiskunde B deel Willem van Ravenstein 50075005 Haags Montessori Lyceum (c) 0 Inleiding In deze leerroute gaan we kijken naar goniometrische functies: De eenheidscirkel

Nadere informatie

Inhoud college 4 Basiswiskunde. 2.6 Hogere afgeleiden 2.8 Middelwaardestelling 2.9 Impliciet differentiëren 4.9 Linearisatie

Inhoud college 4 Basiswiskunde. 2.6 Hogere afgeleiden 2.8 Middelwaardestelling 2.9 Impliciet differentiëren 4.9 Linearisatie Inhoud college 4 Basiswiskunde 2.6 Hogere afgeleiden 2.8 Middelwaardestelling 2.9 Impliciet differentiëren 4.9 Linearisatie 2 Basiswiskunde_College_4.nb 2.6 Hogere afgeleiden De afgeleide f beschrijft

Nadere informatie

Instructie voor Docenten. Hoofdstuk 13 OMTREK EN OPPERVLAKTE

Instructie voor Docenten. Hoofdstuk 13 OMTREK EN OPPERVLAKTE Instructie voor Docenten Hoofdstuk 13 OMTREK EN OPPERVLAKTE Instructie voor docenten H13: OMTREK EN OPPERVLAKTE DOELEN VAN DIT HOOFDSTUK: Leerlingen weten wat de begrippen omtrek en oppervlakte betekenen.

Nadere informatie

De Riemann-hypothese

De Riemann-hypothese De Riemann-hypothese Lars van den Berg 3 september 202 Laat ik je gelijk enthousiast maken om dit stukje te lezen: wie de Riemannhypothese oplost wint een miljoen. Wel zijn er waarschijnlijk eenvoudigere

Nadere informatie

IJkingstoets burgerlijk ingenieur juni 2014: algemene feedback

IJkingstoets burgerlijk ingenieur juni 2014: algemene feedback IJkingstoets burgerlijk ingenieur 30 juni 2014 - reeks 2 - p. 1 IJkingstoets burgerlijk ingenieur juni 2014: algemene feedback In totaal namen 716 studenten deel aan de ijkingstoets burgerlijk ingenieur

Nadere informatie

IJkingstoets burgerlijk ingenieur juni 2014: algemene feedback

IJkingstoets burgerlijk ingenieur juni 2014: algemene feedback IJkingstoets burgerlijk ingenieur 30 juni 2014 - reeks 1 - p. 1 IJkingstoets burgerlijk ingenieur juni 2014: algemene feedback In totaal namen 716 studenten deel aan de ijkingstoets burgerlijk ingenieur

Nadere informatie

Tussendoelen wiskunde onderbouw vo vmbo

Tussendoelen wiskunde onderbouw vo vmbo Tussendoelen wiskunde onderbouw vo vmbo Domein A: Inzicht en handelen Subdomein A1: Vaktaal wiskunde 1. vmbo passende vaktaal voor wiskunde herkennen en gebruiken voor het ordenen van het eigen denken

Nadere informatie

3. Geïtereerde functiesystemen

3. Geïtereerde functiesystemen 3. Geïtereerde functiesstemen In de ontwikkeling van allerhande toepassingen wordt de dag van vandaag gebruik gemaakt van geïtereerde functiesstemen. Bijvoorbeeld in het hedendaags multimediaal computertijdperk

Nadere informatie

Enkele bedenkingen bij het examen Complexe Analyse

Enkele bedenkingen bij het examen Complexe Analyse Enkele bedenkingen bij het examen Complexe Analyse De examenvragen vind je op het einde van dit documentje. Eerst een paar algemene opmerkingen. Vele antwoorden zijn slordig opgeschreven wat het lezen

Nadere informatie

Zomercursus Wiskunde. Module 4 Limieten en asymptoten van rationale functies (versie 22 augustus 2011)

Zomercursus Wiskunde. Module 4 Limieten en asymptoten van rationale functies (versie 22 augustus 2011) Katholieke Universiteit Leuven September 20 Module 4 Limieten en asymptoten van rationale functies (versie 22 augustus 20) Inhoudsopgave Rationale functies. Inleiding....................................2

Nadere informatie

Combinatoriek groep 1

Combinatoriek groep 1 Combinatoriek groep 1 Recursie Trainingsdag 3, 2 april 2009 Getallenrijen We kunnen een rij getallen a 0, a 1, a 2,... op twee manieren definiëren: direct of recursief. Een directe formule geeft a n in

Nadere informatie

Een korte beschrijving van de inhoud

Een korte beschrijving van de inhoud Een korte beschrijving van de inhoud Lineaire algebra maakt een betrekkelijk eenvoudige behandeling van de meetkunde in een vlak of de ruimte mogelijk. Omgekeerd illustreren meetkundige toepassingen op

Nadere informatie

Wat verstaan we onder elementaire meetkunde?

Wat verstaan we onder elementaire meetkunde? Wat verstaan we onder elementaire meetkunde? Er zijn veel boeken met de titel 'Elementaire Meetkunde'. Niet alle auteurs verstaan hieronder hetzelfde. Dit boek behandelt in de eerste 1 hoofdstukken de

Nadere informatie

2.1 Bewerkingen [1] Video Geschiedenis van het rekenen (http://www.youtube.com/watch?v=cceqwwj6vrs) 15 x 3 = 45

2.1 Bewerkingen [1] Video Geschiedenis van het rekenen (http://www.youtube.com/watch?v=cceqwwj6vrs) 15 x 3 = 45 15 x 3 = 45 2.1 Bewerkingen [1] Video Geschiedenis van het rekenen (http://www.youtube.com/watch?v=cceqwwj6vrs) 15 x 3 is een product. 15 en 3 zijn de factoren van het product. 15 : 3 = 5 15 : 3 is een

Nadere informatie

1.1 Definities en benamingen 9 Oefeningen Cirkel door drie punten 13 Oefeningen 14

1.1 Definities en benamingen 9 Oefeningen Cirkel door drie punten 13 Oefeningen 14 INHOUD 1 De cirkel 9 1.1 Definities en benamingen 9 Oefeningen 11 1.2 Cirkel door drie punten 13 Oefeningen 14 1.3 Onderlinge ligging van een rechte en een cirkel 20 1.3.1 Aantal snijpunten van een rechte

Nadere informatie

Eigenschap (Principe van welordening) Elke niet-lege deelverzameling V N bevat een kleinste element.

Eigenschap (Principe van welordening) Elke niet-lege deelverzameling V N bevat een kleinste element. Hoofdstuk 2 De regels van het spel 2.1 De gehele getallen Grof gezegd kunnen we de (elementaire) getaltheorie omschrijven als de wiskunde van de getallen 1, 2, 3, 4,... die we ook de natuurlijke getallen

Nadere informatie

Basis Figuren. De basis figuren zijn een aantal wiskundige figuren die je al in de wiskunde lessen hebt gekregen.

Basis Figuren. De basis figuren zijn een aantal wiskundige figuren die je al in de wiskunde lessen hebt gekregen. Inleiding Met de hulp van de schildpad kunnen verschillende figuren getekend worden. Van zeer eenvoudig tot zeer complex. Vaak kunnen de figuren op verschillende manieren getekend worden. De ene manier

Nadere informatie

Modulewijzer InfPbs00DT

Modulewijzer InfPbs00DT Modulewijzer InfPbs00DT W. Oele 0 juli 008 Inhoudsopgave Inleiding 3 Waarom wiskunde? 3. Efficiëntie van computerprogramma s............... 3. 3D-engines en vectoranalyse................... 3.3 Bewijsvoering

Nadere informatie

Inversie. Hector Mommaerts

Inversie. Hector Mommaerts Inversie Hector Mommaerts 2 Hoofdstuk 1 Definities en constructies 1.1 Definitie We weten hoe we een punt moeten spiegelen rond een rechte. We gaan nu kijken hoe we een punt spiegelen rond een cirkel.

Nadere informatie

4 + 3i 4 3i (7 + 24i)(4 3i) 4 + 3i

4 + 3i 4 3i (7 + 24i)(4 3i) 4 + 3i COMPLEXE GETALLEN Invoering van de complexe getallen Definitie Optellen en vermenigvuldigen Delen De complexe getallen zijn al behoorlijk oud; in de zestiende eeuw doken ze op bij het oplossen van algebraïsche

Nadere informatie

Examen havo wiskunde B 2016-I (pilot)

Examen havo wiskunde B 2016-I (pilot) Eamen havo wiskunde B 2016-I (pilot) De rechte van Euler Gegeven is cirkel c met middelpunt ( 1, 1 ) 3p 1 Stel een vergelijking op van c. De punten B( 3, 0) en ( 4, 0) M die door het punt A( 0, 4) 2 2

Nadere informatie

Zo gaat jouw kunstwerk er straks uitzien. Of misschien wel heel anders.

Zo gaat jouw kunstwerk er straks uitzien. Of misschien wel heel anders. Spirograaf in Python Een kunstwerk maken Met programmeren kun je alles maken! Ook een kunstwerk! In deze les maken we zelf een kunstwerk met Python. Hiervoor zal je werken met herhalingen en variabelen.

Nadere informatie

Lineaire afbeeldingen

Lineaire afbeeldingen Les 2 Lineaire afbeeldingen Als een robot bij de robocup (het voetbaltoernooi voor robots een doelpunt wil maken moet hij eerst in de goede positie komen, d.w.z. geschikt achter de bal staan. Hiervoor

Nadere informatie

Uitwerkingen voorbeeldtentamen 1 Wiskunde B 2018

Uitwerkingen voorbeeldtentamen 1 Wiskunde B 2018 Uitwerkingen voorbeeldtentamen 1 Wiskunde B 2018 Vraag 1a 4 punten geeft ; geeft dus in punt A geldt ;, dus en Dit geeft Vraag 1b 4 punten ( ) ( ) ( ) Vraag 1c 4 punten ( ). Dit is de normaalvector van

Nadere informatie

Wiskundige Technieken

Wiskundige Technieken 1ste Bachelor Ingenieurswetenschappen Academiejaar 009-010 1ste semester 7 oktober 009 Wiskundige Technieken 1. Integreer de volgende differentiaalvergelijkingen: (a) y + 3x y = 3x (b) y + 3y + y = xe

Nadere informatie

WISKUNDE 5 PERIODEN DEEL B

WISKUNDE 5 PERIODEN DEEL B EUROPEES BACCALAUREAAT 2012 WISKUNDE 5 PERIODEN DATUM : 3 september 2012, ochtend DUUR VAN HET EXAMEN : 3 uur (180 minuten) TOEGESTANE HULPMIDDELEN : Examen met technologisch hulpmiddel 1/5 NL VRAAG B1

Nadere informatie

De Wonderlijke Zonnebloem

De Wonderlijke Zonnebloem De Wonderlijke Zonnebloem Brecht Verstappen Student SLO wiskunde KU Leuven Wiskunde en de natuur. Op het eerste zicht zijn dat twee aparte werelden, maar schijn bedriegt: de natuur zit vol met wiskundige

Nadere informatie

1.1.2. Wiskundige taal. Symbolen om mee te rekenen + optelling - aftrekking. vermenigvuldiging : deling

1.1.2. Wiskundige taal. Symbolen om mee te rekenen + optelling - aftrekking. vermenigvuldiging : deling Examen Wiskunde: Hoofdstuk 1: Reële getallen: 1.1 Rationale getallen: 1.1.1 Soorten getallen. Een natuurlijk getal is het resultaat van een tellg van een edig aantal dgen. Een geheel getal is het verschil

Nadere informatie

x(t + T ) = x(t) Voorbeeld 1. Beschouw het niet-lineaire autonome stelsel . (1) y x + y y(x 2 + y 2 )

x(t + T ) = x(t) Voorbeeld 1. Beschouw het niet-lineaire autonome stelsel . (1) y x + y y(x 2 + y 2 ) 97 Periodieke oplossingen en limit ccles We beschouwen weer autonome stelsels van de vorm x (t) = f(x(t)), waarbij het rechterlid dus niet expliciet van t afhangt We gaan onderzoeken wanneer er periodieke

Nadere informatie

REËLE FUNCTIES BESPREKEN

REËLE FUNCTIES BESPREKEN INLEIDING FUNCTIES 1. DEFINITIE...3 2. ARGUMENT EN BEELD...4 3. HET FUNCTIEVOORSCHRIFT...5 4. DE FUNCTIEWAARDETABEL...7 5. DE GRAFIEK...9 6. FUNCTIES HERKENNEN...12 7. OEFENINGEN...14 8. OPLOSSINGEN...18

Nadere informatie

De hoek tussen twee lijnen in Cabri Geometry

De hoek tussen twee lijnen in Cabri Geometry De hoek tussen twee lijnen in Cabri Geometry DICK KLINGENS (e-mail: dklingens@pandd.nl) Krimpenerwaard College, Krimpen aan den IJssel (NL) augustus 2008 1. Inleiding In de (vlakke) Euclidische meetkunde

Nadere informatie

Examen Complexe Analyse (September 2008)

Examen Complexe Analyse (September 2008) Examen Complexe Analyse (September 2008) De examenvragen vind je op het einde van dit documentje. Omdat het hier over weinig studenten gaat, heb ik geen puntenverdeling meegegeven. Vraag. Je had eerst

Nadere informatie

Praktische opdracht Wiskunde B Fractals

Praktische opdracht Wiskunde B Fractals Praktische opdracht Wiskunde B Fractals Praktische-opdracht door een scholier 3499 woorden 4 juli 2004 5,2 39 keer beoordeeld Vak Wiskunde B Inleiding De opdracht was simpel: maak een werkstuk over Fractals.

Nadere informatie

8. Differentiaal- en integraalrekening

8. Differentiaal- en integraalrekening Computeralgebra met Maxima 8. Differentiaal- en integraalrekening 8.1. Sommeren Voor de berekening van sommen kent Maxima de opdracht: sum (expr, index, laag, hoog) Hierbij is expr een Maxima-expressie,

Nadere informatie

Samenvatting Wiskunde Aantal onderwerpen

Samenvatting Wiskunde Aantal onderwerpen Samenvatting Wiskunde Aantal onderwerpen Samenvatting door een scholier 2378 woorden 4 juni 2005 5,1 222 keer beoordeeld Vak Wiskunde Gelijkvormigheid Bij vergroten of verkleinen van een figuur worden

Nadere informatie

De parabool en de cirkel raken elkaar in de oorsprong; bepaal ook de coördinaten van de overige snijpunten A 1 en A 2.

De parabool en de cirkel raken elkaar in de oorsprong; bepaal ook de coördinaten van de overige snijpunten A 1 en A 2. BURGERLIJK INGENIEUR-ARCHITECT - 5 SEPTEMBER 2002 BLZ 1/10 1. We beschouwen de cirkel met vergelijking x 2 + y 2 2ry = 0 en de parabool met vergelijking y = ax 2. Hierbij zijn r en a parameters waarvoor

Nadere informatie

Logaritmische functie

Logaritmische functie Logaritmische functie WISNET-HBO update aug 2013 1 Inleiding De bedoeling van deze les is het repeteren met pen en papier van logaritmen. Voorkennis van de rekenregels van machten is voor deze les beslist

Nadere informatie

Wiskundige notaties. Afspraken. Associatie K.U.Leuven

Wiskundige notaties. Afspraken. Associatie K.U.Leuven Wiskundige notaties Afspraken Associatie K.U.Leuven Tim Neijens Katrien D haeseleer Annemie Vermeyen Maart 2011 Waarom? Wiskundetaal gebruikt veel woordenschat, dat weet elke student. Het is niet altijd

Nadere informatie

Numerieke aspecten van de vergelijking van Cantor. Opgedragen aan Th. J. Dekker. H. W. Lenstra, Jr.

Numerieke aspecten van de vergelijking van Cantor. Opgedragen aan Th. J. Dekker. H. W. Lenstra, Jr. Numerieke aspecten van de vergelijking van Cantor Opgedragen aan Th. J. Dekker H. W. Lenstra, Jr. Uit de lineaire algebra is bekend dat het aantal oplossingen van een systeem lineaire vergelijkingen gelijk

Nadere informatie

Uitleg van de Hough transformatie

Uitleg van de Hough transformatie Uitleg van de Hough transformatie Maarten M. Fokkinga, Joeri van Ruth Database groep, Fac. EWI, Universiteit Twente Versie van 17 mei 2005, 10:59 De Hough transformatie is een wiskundige techniek om een

Nadere informatie

Wiskunde klas 3. Vaardigheden. Inhoudsopgave. 1. Breuken 2. 2. Gelijksoortige termen samennemen 3. 3. Rekenen met machten 3. 4. Rekenen met wortels 4

Wiskunde klas 3. Vaardigheden. Inhoudsopgave. 1. Breuken 2. 2. Gelijksoortige termen samennemen 3. 3. Rekenen met machten 3. 4. Rekenen met wortels 4 Vaardigheden Wiskunde klas Inhoudsopgave. Breuken. Gelijksoortige termen samennemen. Rekenen met machten. Rekenen met wortels. Algebraïsche producten 6. Ontbinden in factoren 6 7. Eerstegraads vergelijkingen

Nadere informatie

kwadratische vergelijkingen

kwadratische vergelijkingen kwadratische vergelijkingen In deze paragraaf: 'exact berekenen van oplossingen', 'typen kwadratische vergelijkingen' en 'de abc-formule en de discriminant'. de abc-formule Voor een tweedegraads vergelijking

Nadere informatie

Wiskunde 2 september 2008 versie 1-1 - Dit is een greep (combinatie) van 3 uit 32. De volgorde is niet van belang omdat de drie

Wiskunde 2 september 2008 versie 1-1 - Dit is een greep (combinatie) van 3 uit 32. De volgorde is niet van belang omdat de drie Wiskunde 2 september 2008 versie 1-1 - Op hoeveel verschillende manieren kun je drie zwarte pionnen verdelen over de 32 zwarte velden van een schaakbord? (Neem aan dat op elk veld hooguit één pion staat.)

Nadere informatie

Leerplandoelstelling Delta Nova 4 hoofdstukken en paragrafen. I Meetkunde. M1 B Bewijzen dat door drie niet-collineaire punten juist één cirkel gaat.

Leerplandoelstelling Delta Nova 4 hoofdstukken en paragrafen. I Meetkunde. M1 B Bewijzen dat door drie niet-collineaire punten juist één cirkel gaat. Het gevolgde leerplan is D/2002/0279/047. In de onderstaande tabel vind je een overzicht van de doelstellingen en waar ze in Delta Nova 4a en 4b (leerweg 5) terug te vinden zijn. B = basisdoelstelling

Nadere informatie

Bijzondere kettingbreuken

Bijzondere kettingbreuken Hoofdstuk 15 Bijzondere kettingbreuken 15.1 Kwadratische getallen In het vorige hoofdstuk hebben we gezien dat 2 = 1, 2, 2, 2, 2, 2, 2,.... Men kan zich afvragen waarom we vanaf zeker moment alleen maar

Nadere informatie

Conflictmeetkunde, dominante termen, GGD s en = 1.

Conflictmeetkunde, dominante termen, GGD s en = 1. Conflictmeetkunde, dominante termen, GGD s en + =. Jan Stienstra Mathematisch Instituut, Universiteit Utrecht Nationale Wiskunde Dagen, 8+9 januari Samenvatting We laten zien hoe het platte plaatje van

Nadere informatie

Combinatoriek groep 1 & 2: Recursie

Combinatoriek groep 1 & 2: Recursie Combinatoriek groep 1 & : Recursie Trainingsweek juni 008 Inleiding Bij een recursieve definitie van een rij wordt elke volgende term berekend uit de vorige. Een voorbeeld van zo n recursieve definitie

Nadere informatie

3.1 Haakjes wegwerken [1]

3.1 Haakjes wegwerken [1] 3.1 Haakjes wegwerken [1] Oppervlakte rechthoek (Manier 1): Opp. = l b = (a + b) c = (a + b)c Oppervlakte rechthoek (Manier 2): Opp. = Opp. Groen + Opp. Rood = l b + l b = a c + b c = ac + bc We hebben

Nadere informatie

1.1 Rekenen met letters [1]

1.1 Rekenen met letters [1] 1.1 Rekenen met letters [1] Voorbeeld 1: Een kaars heeft een lengte van 30 centimeter. Per uur brand er 6 centimeter van de kaars op. Hieruit volgt de volgende woordformule: Lengte in cm = -6 aantal branduren

Nadere informatie

Genererende Functies K. P. Hart

Genererende Functies K. P. Hart genererende_functies.te 27--205 Z Hoe kun je een rij getallen zo efficiënt mogelijk coderen? Met behulp van functies. Genererende Functies K. P. Hart Je kunt rijen getallen op diverse manieren weergeven

Nadere informatie

1 Vlaamse Wiskunde Olympiade : Eerste ronde.

1 Vlaamse Wiskunde Olympiade : Eerste ronde. 1 Vlaamse Wiskunde Olympiade 1998-1999: Eerste ronde De eerste ronde bestaat uit 30 meerkeuzevragen Het quoteringssysteem werkt als volgt: per goed antwoord krijgt de deelnemer 5 punten, een blanco antwoord

Nadere informatie

WISKUNDE 5 PERIODEN. DATUM : 4 juni 2010. Formuleboekje voor de Europese scholen Niet-programmeerbare, niet-grafische rekenmachine

WISKUNDE 5 PERIODEN. DATUM : 4 juni 2010. Formuleboekje voor de Europese scholen Niet-programmeerbare, niet-grafische rekenmachine EUROPEES BACCALAUREAAT 2010 WISKUNDE 5 PERIODEN DATUM : 4 juni 2010 DUUR VAN HET EXAMEN : 4 uur (240 minuten) TOEGESTANE HULPMIDDELEN : Formuleboekje voor de Europese scholen Niet-programmeerbare, niet-grafische

Nadere informatie

Het leek ons wel een interessante opdracht, een uitdaging en een leuke aanvulling bij het hoofdstuk.

Het leek ons wel een interessante opdracht, een uitdaging en een leuke aanvulling bij het hoofdstuk. Praktische-opdracht door een scholier 2910 woorden 3 mei 2000 5,2 46 keer beoordeeld Vak Wiskunde Wiskunde A1 - Praktische Opdracht Hoofdstuk 2 1. Inleiding We hebben de opdracht gekregen een praktische

Nadere informatie

10.0 Voorkennis. cos( ) = -cos( ) = -½ 3. [cos is x-coördinaat] sin( ) = -sin( ) = -½ 3. [sin is y-coördinaat] Willem-Jan van der Zanden

10.0 Voorkennis. cos( ) = -cos( ) = -½ 3. [cos is x-coördinaat] sin( ) = -sin( ) = -½ 3. [sin is y-coördinaat] Willem-Jan van der Zanden 10.0 Voorkennis 5 1 6 6 cos( ) = -cos( ) = -½ 3 [cos is x-coördinaat] 5 1 3 3 sin( ) = -sin( ) = -½ 3 [sin is y-coördinaat] 1 Voorbeeld 1: Getekend is de lijn k: y = ½x 1. De richtingshoek α van de lijn

Nadere informatie

Domein A: Inzicht en handelen

Domein A: Inzicht en handelen Tussendoelen wiskunde onderbouw vo vmbo Preambule Domein A is een overkoepeld domein dat altijd in combinatie met de andere domeinen wordt toegepast (of getoetst). In domein A wordt benoemd: Vaktaal: het

Nadere informatie

IJkingstoets burgerlijk ingenieur-architect september 2018: feedback deel wiskunde

IJkingstoets burgerlijk ingenieur-architect september 2018: feedback deel wiskunde IJkingstoets burgerlijk ingenieur-architect september 8: feedback deel wiskunde Positionering ten opzichte van andere deelnemers In totaal namen 5 studenten deel aan de ijkingstoets burgerlijk ingenieur-architect

Nadere informatie

IJkingstoets burgerlijk ingenieur-architect september 2018: feedback deel wiskunde

IJkingstoets burgerlijk ingenieur-architect september 2018: feedback deel wiskunde IJkingstoets burgerlijk ingenieur-architect september 8: feedback deel wiskunde Positionering ten opzichte van andere deelnemers In totaal namen 5 studenten deel aan de ijkingstoets burgerlijk ingenieur-architect

Nadere informatie

(iii) intervallen, bijvoorbeeld afgesloten intervallen zoals D = [0, 1] := {x en halfopen intervallen zoals D = (0, 1] := {x R 0 < x 1},

(iii) intervallen, bijvoorbeeld afgesloten intervallen zoals D = [0, 1] := {x en halfopen intervallen zoals D = (0, 1] := {x R 0 < x 1}, Hoofdstuk II Calculus Les Differentiatie van functies Waarscijnlijk eeft iedereen wel een idee ervan wat een functie is, maar voor de duidelijkeid zal et andig zijn om de meest belangrijke begrippen na

Nadere informatie