2 Data en datasets verwerken
|
|
|
- Joannes Veenstra
- 9 jaren geleden
- Aantal bezoeken:
Transcriptie
1 Domein Statistiek en kansrekening havo A 2 Data en datasets verwerken 1 Data presenteren 1.3 Representaties In opdracht van: Commissie Toekomst Wiskunde Onderwijs
2 1 Data presenteren 1.1 Introductie In het hoofdstuk Kijken naar data heb je vooral gekeken naar manieren waarop je gegevens tegenkomt in kranten, op internet, e.d. Meestal ontstaan dergelijke statistieken doordat op grond van een bepaalde vraag gericht gegevens zijn verzameld. Stel je bijvoorbeeld voor dat je wilt weten hoe de lengtes en de gewichten van de 154 leerlingen in HAVO 4 op een bepaalde school zijn verdeeld. Je onderzoeksvragen zouden kunnen zijn: Welke conclusies kun je trekken als je de gewichten van de jongens en de meisjes met elkaar vergelijkt? Dit is een voorbeeld van een vraag waarbij je de eigenschappen van twee groepen vergelijkt. Bestaat er een relatie tussen lengte en gewicht? En zo ja, welk? In deze paragraaf ga je leren welk soort representaties er zijn om de gegevens uit een onderzoek inzichtelijk te maken. In paragraaf 2 kijken we naar de verbanden tussen deze representaties. Vanaf paragraaf 3 gaat het over frequentieverdelingen. In paragraaf 3 gaan we dieper in op frequentieverdelingen en leren we deze typeren met kentallen. In paragraaf 4 gaan we 2 groepen vergelijken op basis van de verdeling van 1 variabele en in paragraaf 5 gaan we de samenhang van 2 variabelen beschrijven. Van de genoemde HAVO 4 leerlingen zijn behalve hun lengte en hun gewicht nog enkele gegevens opgevraagd. Dat heeft een tabel opgeleverd waarin per leerling de gegevens zijn terug te vinden, zie Gegevens154Leerlingen. Die verzameling gegevens noem je een dataset. Opgave 1 Bekijk de genoemde dataset. a) Welke statistische variabelen zijn onderzocht? b) Om de jongens en de meisjes te kunnen vergelijken maak je twee deelgroepen. Je gebruikt dan één van de statistische variabelen als kenmerk om de deelgroepen te onderscheiden. Welke? ctwo, SLO havo wiskunde A Statistiek en kansrekening 2 Data en datasets verwerken 2
3 1.2 Centrale vraag Wouter is een van de leerlingen in de dataset Gegevens154Leerlingen. Hij is 184 cm lang en weegt 68 kg. Zijn cijfergemiddelde is 7,5. Hoe verhoudt Wouter zicht tot de rest van de leerlingen in deze dataset? In deze paragraaf gaan we op deze vraag antwoord geven. Om dit te doen kijken we naar zeven representaties van de gegevens. Bij iedere representatie kun je Wouter terugvinden, maar niet elk plaatje geeft dezefde informatie. In deze paragraaf bekijken we alle plaatjes apart, en bekijken we welke informatie hier uit te halen is. 1.3 Representaties In de voorbeelden wordt steeds gekeken naar gewicht. Je gaat daarna zelf kijken naar de informatie over lengte en cijfergemiddelde. Voor alle opgaven geldt dat je deze zowel in de DWO als in VU-stat kunt doen. Steelbladdiagram In een steelbladdiagram staan alle leerlingen genoemd. Je kunt precies zien waar Wouter staat. Jongens lengte Meisjes Wouter s lengte is 184 cm. Voor een jongen is dat ergens boven de helft, er zitten meer jongens onder deze lengte dan erboven. Toch is het niet heel lang, want er zijn nog 22 jongens langer dan Wouter. Wanneer Wouter tussen een groep meisjes zou staan, zou hij lang zijn, er zijn maar 2 meisjes in deze groep die langer zijn dan Wouter. In het totaal zijn er dus 24 van de 154 leerlingen langer dan Wouter. Opgave 2 a. Maak zelf een steelbladdiagram voor gewicht en voor cijfergemiddelde. Zorg dat je twee kanten hebt, een voor jongens en een voor meisjes. Wijs Wouter aan in je steelbladdiagrammen. b. Geef een omschrijving van Wouter s gewicht en cijfergemiddelde ten opzichte van de rest van de groep. ctwo, SLO havo wiskunde A Statistiek en kansrekening 2 Data en datasets verwerken 3
4 Dotplot Ook in een dotplot heeft elke leerling zijn eigen plek. De plek van Wouter is aangegeven. Het is duidelijk te zien dat Wouter bij de langere leerlingen in de groep hoort. Het verschil tussen jongens en meisjes wordt aangegeven in kleur. Dit is niet altijd goed te zien, vooral bij een zwart/wit print valt de kleur weg. Opgave 3 a. Maak met gebruik van ICT een dotplot voor gewicht en voor cijfergemiddelde. Wijs Wouter aan in je grafieken. b. Geef een omschrijving van Wouter s gewicht en cijfergemiddelde ten opzichte van de rest van de groep, gebruik alleen de informatie die je in de dotplots kunt zien. Frequentietabel In de frequentietabel staat per klasse hoeveel waarnemingen hier in zitten. lengte Freq Totaal 154 Wouter zit in de klasse Maar je kunt Wouter nu niet meer individueel aanwijzen. Je verliest informatie over het individu wanneer je een frequentietabel met klassen maakt. Toch wordt dit heel vaak gedaan. Uit de tabel blijkt dat 23 leerlingen ongeveer even lang zijn als Wouter. Hij zit niet in de groep waar de meeste leerlingen inzitten, hij is dus langer dan de modale lengte. De lengteklasse van Wouter zit wel net iets boven het gemiddelde. Wouter is dus niet uitzonderlijk lang. ctwo, SLO havo wiskunde A Statistiek en kansrekening 2 Data en datasets verwerken 4
5 Opgave 4 a. Maak met gebruik van ICT een frequentietabel voor gewicht en cijfergemiddelde. Denk na over de klassenindeling. (vuistregel: maak ongeveer 10 klassen) b. Wat kun je over Wouter s gewicht en cijfergemiddelde zeggen wanneer je alleen naar de frequentietabellen kijkt? Staafdiagram In een staafdiagram zet je de frequenties uit de frequentietabel in een grafiek. (Een histogram is een staafdiagram van een kwantitative variabele. De staafjes staan tegen elkaar aan.) Wouter s lengte zit in de klasse cm. Deze klasse is niet de klasse met de meeste leerlingen, maar er zitten relatief veel leerlingen in deze klasse. Meer naar rechts in de grafiek wordt het aantal leerlingen in de klassen snel kleiner. Wouter hoort bij de langere leerlingen, maar is niet uitzonderlijk lang. Opgave 5 a. Maak een staafdiagram voor gewicht en cijfergemiddelde. Neem dezelfde klassenindeling als bij opgave 4. b. Wat kun je over Wouter s gewicht en cijfergemiddelde zeggen wanneer je alleen naar de staafdiagrammen kijkt? ctwo, SLO havo wiskunde A Statistiek en kansrekening 2 Data en datasets verwerken 5
6 Frequentiepolygoon Wanneer je de middens van de bovenkant van het staafdiagram met elkaar verbindt, dan krijg je een frequentiepolygoon (polygoon = veel hoek). Het frequentiepolygoon geeft dus dezelfde informatie als het staafdiagram. In het frequentiepolygoon zie je dat de klasse waar Wouter s lengte in zit aan het einde van de bult zit. Hij hoort dus bij de langere leerlingen, maar is niet uitzonderlijk lang. Het aantal leerlingen dat korter is dan Wouter is duidelijk groter dan het aantal leerlingen dat langer is. Opgave 6 a. Maak de variabelen gewicht en cijfergemiddelde freqentiepolygonen. b. Geef in elk van de grafieken aan waar Wouter zich bevindt en vertel welke informatie over Wouter je uit deze grafieken kunt halen. Cumulatief frequentiepolygoon lengte Freq. Cum. Freq Totaal In de frequentietabel is de kolom cumulatieve frequentie toegevoegd. De cumulatieve frequentie is voor elke klasse de som van de frequenties van de voorgaande klassen plus de frequentie van deze klasse. Bijvoorbeeld, de cumulatieve frequentie van de klasse is de som = 83 Wanneer je deze cumulatieve frequenties in een grafiek zet, dan krijg je het cumulatieve frequentiepolygoon. ctwo, SLO havo wiskunde A Statistiek en kansrekening 2 Data en datasets verwerken 6
7 In het cumulatief frequentiepolygoon kun je aflezen hoeveel leerlingen er langer of minder lang zijn dan de leerlingen in de klasse van Wouter. Je ziet dat na de klasse van Wouter de grafiek nog maar langzaam stijgt, dit betekent dat er niet veel leerlingen langer zijn dan Wouter. Opgave 7 a. Maak variabelen gewicht en cijfergemiddelde cumulatieve freqentiepolygonen. b. Wijs in elke grafiek de plek van Wouter aan. Welke informatie over Wouter kun je uit de twee cumulatieve frequentiepolygonen halen? Boxplot Bij een boxplot verlies je nog meer individuele gegevens. Om een boxplot te maken gebruik je de mediaan, het eerste en derde kwartiel en het maximum en minimum. De minimale lengte = 156 cm De maximale lengte = 200 cm Mediaan = 173 cm Q1 = 167 cm Q3 = 180 cm In ieder van de 4 stukjes van een boxplot zit 25% van de waarnemingen. Dus: - tussen het minimum en Q1 zit 25% van de waarnemingen - tussen Q1 en de mediaan zit 25% van de waarnemingen - tussen de mediaan en Q3 zit 25% van de waarnemingen - tussen Q3 en het maximum zit 25% van de waarnemingen. ctwo, SLO havo wiskunde A Statistiek en kansrekening 2 Data en datasets verwerken 7
8 De plek van Wouter is aangegeven. Wouter zit voorbij de box van de boxplot, dit betekent dat hij bij de langste 25% van de leerlingen hoort. Het is niet duidelijk hoe de verdeling binnen deze groep is, je kunt alleen nog zeggen dat hij niet het langste is. Opgave 8 a. Maak voor de variabelen gewicht en cijfergemiddelde boxplotten. b. Geef de plek van Wouter in beide boxplotten aan. Wat kun je zeggen over Wouter ten opzichte van de rest van de leerlingen? Antwoord op de centrale vraag Uit alle representaties van de data die in deze paragraaf zijn behandeld blijkt dat Wouter een redelijk lange jongen is. Hij is niet uitzonderlijk lang, maar behoort tot de 25% langste leerlingen in dit onderzoek. Er zijn 24 leerlingen ongeveer even lang als hij, dat zijn 22 jongens en 2 meisjes. ctwo, SLO havo wiskunde A Statistiek en kansrekening 2 Data en datasets verwerken 8
Steelbladdiagram In een steelbladdiagram staan alle leerlingen genoemd. Je kunt precies zien waar Wouter staat.
2.1.3 Representaties In de voorbeelden kijken we steeds naar gewicht. Je gaat daarna zelf kijken naar de informatie over lengte en cijfergemiddelde. Voor alle opgaven geldt dat je deze zowel in de DWO
2 Data en datasets verwerken
Domein Statistiek en kansrekening havo A 2 Data en datasets verwerken 1 Data presenteren 1.4 Oefenen In opdracht van: Commissie Toekomst Wiskunde Onderwijs 1.4 Oefenen Opgave 9 Bekijk de genoemde dataset
2 Data en datasets verwerken
Domein Statistiek en kansrekening havo A 2 Data en datasets verwerken 2 Verbanden tussen data representaties 2.4 Oefenen In opdracht van: Commissie Toekomst Wiskunde Onderwijs 2 Verbanden tussen data representaties
2.1.4 Oefenen. d. Je ziet hier twee weegschalen. Wat is het verschil tussen beide als het gaat om het aflezen van een gewicht?
2.1.4 Oefenen Opgave 9 Bekijk de genoemde dataset GEGEVENS154LEERLINGEN. a. Hoe lang is het grootste meisje? En de grootste jongen? b. Welke lengtes komen het meeste voor? c. Is het berekenen van gemiddelden
2.4 Twee groepen vergelijken
2.4 Twee groepen vergelijken 2.4.1 Introductie Zijn jongens langer dan meisjes? Hebben leerlingen met een NT-profiel in de derde klas een hoger cijfer voor wiskunde dan leerlingen met een CM-profiel? Is
2 Data en datasets verwerken
Domein Statistiek en kansrekening havo A 2 Data en datasets verwerken 4 Twee groepen vergelijken 4.4 Oefenen In opdracht van: Commissie Toekomst Wiskunde Onderwijs 4.4 Oefenen Voorbeeld Bekijk de dataset
Domein Statistiek en kansrekening havo A 2 Data en datasets verwerken
Domein Statistiek en kansrekening havo A 2 Data en datasets verwerken In opdracht van: Commissie Toekomst Wiskunde Onderwijs ctwo Utrecht 2009, SLO Utrecht 2014 Dit lesmateriaal is ontwikkeld in het kader
2.2 Verbanden tussen datarepresentaties
2.2 Verbanden tussen datarepresentaties 2.2.1 Introductie In paragraaf 1 heb je een hele reeks aan datarepresentaties leren kennen. In deze paragraaf leer je welke verbanden er tussen deze representaties
2 Data en datasets verwerken
Domein Statistiek en kansrekening havo A 2 Data en datasets verwerken 3 Frequentieverdelingen typeren 3.6 Geïntegreerd oefenen In opdracht van: Commissie Toekomst Wiskunde Onderwijs 3 Frequentieverdelingen
GEGEVENS154LEERLINGEN
2.4.4 Oefenen Voorbeeld Bekijk de dataset GEGEVENS154LEERLINGEN nog een keer. Je wilt nagaan of leerlingen die wiskunde B kiezen beter waren in wiskunde in de onderbouw dan leerlingen die wiskunde A kiezen.
2. Data en datasets verwerken. Boekje 2 havo wiskunde A, domein E: Statistiek
2. Data en datasets verwerken Boekje 2 havo wiskunde A, domein E: Statistiek 1 Verantwoording 2015, SLO (nationaal expertisecentrum leerplanontwikkeling), Enschede Dit lesmateriaal is ontwikkeld in het
2. Data en datasets verwerken. Boekje 2 havo wiskunde A, domein E: Statistiek
2. Data en datasets verwerken Boekje 2 havo wiskunde A, domein E: Statistiek 1 Verantwoording 2015, SLO (nationaal expertisecentrum leerplanontwikkeling), Enschede Dit lesmateriaal is ontwikkeld in het
2. Data en datasets verwerken. Boekje 2 havo wiskunde A, domein E: Statistiek
2. Data en datasets verwerken Boekje 2 havo wiskunde A, domein E: Statistiek 1 Verantwoording 2015, SLO (nationaal expertisecentrum leerplanontwikkeling), Enschede Dit lesmateriaal is ontwikkeld in het
2.3 Frequentieverdelingen typeren
2.3 Frequentieverdelingen typeren 2.3.1 Introductie Kijkend naar een datarepresentatie valt meestal al snel op hoe de verdeling van de tellingen/frequenties over de verschillende waarden eruitziet. Zitten
Paragraaf 5.1 : Frequentieverdelingen
Hoofdstuk 5 Beschrijvende statistiek (V4 Wis A) Pagina 1 van 7 Paragraaf 5.1 : verdelingen Les 1 Allerlei diagrammen = { Hoe vaak iets voorkomt } Relatief = { In procenten } Absoluut = { Echte getallen
DEEL II DOEN! - Praktische opdracht statistiek WA- 4HAVO
DEEL II DOEN! - Praktische opdracht statistiek WA- 4HAVO Leerlingmateriaal 1. Doel van de praktische opdracht Het doel van deze praktische opdracht is om de theorie uit je boek te verbinden met de data
5.0 Voorkennis. Er zijn verschillende manieren om gegevens op een grafische wijze weer te geven: 1. Staafdiagram:
5.0 Voorkennis Er zijn verschillende manieren om gegevens op een grafische wijze weer te geven: 1. Staafdiagram: De lengte van de staven komt overeen met de hoeveelheid; De staven staan meestal los van
2 Data en datasets verwerken
Domein Statistiek en kansrekening havo A 2 Data en datasets verwerken Inhoud 2.0 Data voor onderzoek 2.1 Data presenteren 2.2 Centrum en spreiding 2.3 Verdelingen typeren 2.4 Relaties 2.5 Overzicht In
DOEN! - Praktische Opdracht Statistiek 4 Havo Wiskunde A
DOEN! - Praktische Opdracht Statistiek 4 Havo Wiskunde A Docentenhandleiding 1. Voorwoord Doel van de praktische opdracht bij het hoofdstuk over statistiek 1 : Het doel van de praktische opdracht (PO)
Havo A deel 1 H2 Statistiek - Samenvatting
Havo A deel 1 H2 Statistiek - Samenvatting Begrip 1. Staafdiagram Schetsje: zo ziet het er uit 2. Lijndiagram = polygoon 3. Cirkeldiagram = sectordidagram 4. Beeldiagram = pictogram 5. Stapeldiagram 6.
Samenvattingen 5HAVO Wiskunde A.
Samenvattingen 5HAVO Wiskunde A. Boek 1 H7, Boek 2 H7&8 [email protected] Boek 2: H7. Verbanden (Recht) Evenredig Verband ( 1) Omgekeerd Evenredig Verband ( 1) Hyperbolisch Verband ( 2) Machtsverband
3.1 Procenten [1] In 1994 zijn er 3070 groentewinkels in Nederland. In 2004 zijn dit er nog 1625.
3.1 Procenten [1] In 1994 zijn er 3070 groentewinkels in Nederland. In 2004 zijn dit er nog 1625. Absolute verandering = Aantal 2004 Aantal 1994 = 1625 3070 = -1445 Relatieve verandering = Nieuw Oud Aantal
5.0 Voorkennis. Er zijn verschillende manieren om gegevens op een grafische wijze weer te geven: 1. Staafdiagram:
5.0 Voorkennis Er zijn verschillende manieren om gegevens op een grafische wijze weer te geven: 1. Staafdiagram: De lengte van de staven komt overeen met de hoeveelheid; De staven staan meestal los van
2. In de klassen 2A en 2B is een proefwerk gemaakt. Je ziet de resultaten in de frequentietabel. 2A 2B
1. (a) Bereken het gemiddelde salaris van de werknemers in de tabel hiernaast. (b) Bereken ook het mediale salaris. (c) Hoe groot is het modale salaris hier? salaris in euro s aantal werknemers 15000 1
Overzicht statistiek 5N4p
Overzicht statistiek 5N4p EEB2 GGHM2012 Inhoud 1 Frequenties, absoluut en relatief... 3 1.1 Frequentietabel... 3 1.2 Absolute en relatieve frequentie... 3 1.3 Cumulatieve frequentie... 4 2 Centrum en spreiding...
STATISTIEK. Een korte samenvatting over: Termen Tabellen Diagrammen
STATISTIEK Een korte samenvatting over: Termen Tabellen Diagrammen Modus De waarneming die het meeste voorkomt. voorbeeld 1: De waarnemingen zijn 2, 3, 4, 5, 5, 5, 6, 6, 7 en 8. De waarneming 5 komt het
Praktische opdracht Wiskunde Statistiek
Praktische opdracht Wiskunde Statistiek Praktische-opdracht door R. 3948 woorden 5 december 2016 2,8 3 keer beoordeeld Vak Wiskunde Scoreformulier: Statistisch onderzoek havo 4 wiskunde A Namen groepsleden:
Centrummaten en klassen vmbo-kgt34. CC Naamsvermelding 3.0 Nederland licentie.
Auteur VO-content Laatst gewijzigd Licentie Webadres 12 April 2016 CC Naamsvermelding 3.0 Nederland licentie http://maken.wikiwijs.nl/74220 Dit lesmateriaal is gemaakt met Wikiwijsleermiddelenplein. Wikiwijsleermiddelenplein
Kerstvakantiecursus. wiskunde A. Rekenregels voor vereenvoudigen. Voorbereidende opgaven HAVO kan niet korter
Voorbereidende opgaven HAVO Kerstvakantiecursus wiskunde A Tips: Maak de voorbereidende opgaven voorin in een van de A4-schriften die je gaat gebruiken tijdens de cursus. Als een opdracht niet lukt, werk
2. Data en datasets verwerken
2. Data en datasets verwerken Boekje 2 havo wiskunde A, domein E: Statistiek Uitwerkingen 1 Verantwoording 2015, SLO (nationaal expertisecentrum leerplanontwikkeling), Enschede Dit lesmateriaal is ontwikkeld
Statistiek: Herhaling en aanvulling
Statistiek: Herhaling en aanvulling 11 mei 2009 1 Algemeen Statistiek is de wetenschap die beschrijft hoe we gegevens kunnen verzamelen, verwerken en analyseren om een beter inzicht te krijgen in de aard,
Centrummaten en klassen vmbo-kgt34
Auteur Laatst gewijzigd Licentie Webadres VO-content 30 august 2017 CC Naamsvermelding-GelijkDelen 4.0 Internationale licentie https://maken.wikiwijs.nl/74220 Dit lesmateriaal is gemaakt met Wikiwijs van
College 4 Inspecteren van Data: Verdelingen
College Inspecteren van Data: Verdelingen Inleiding M&T 01 013 Hemmo Smit Overzicht van deze cursus 1. Grondprincipes van de wetenschap. Observeren en meten 3. Interne consistentie; Beschrijvend onderzoek.
4.1 Eigenschappen van de normale verdeling [1]
4.1 Eigenschappen van de normale verdeling [1] Relatief frequentiepolygoon van de lengte van mannen in 1968 1 4.1 Eigenschappen van de normale verdeling [1] In dit plaatje is een frequentiepolygoon getekend.
WISKUNDE A HAVO VAKINFORMATIE STAATSEXAMEN 2016 V15.7.0
WISKUNDE A HAVO VAKINFORMATIE STAATSEAMEN 2016 V15.7.0 De vakinformatie in dit document is vastgesteld door het College voor Toetsen en Examens (CvTE). Het CvTE is verantwoordelijk voor de afname van de
HAVO 4 wiskunde A. Een checklist is een opsomming van de dingen die je moet kennen en kunnen. checklist SE1 wiskunde A.pdf
HAVO 4 wiskunde A Een checklist is een opsomming van de dingen die je moet kennen en kunnen. checklist SE1 wiskunde A.pdf 1. rekenregels en verhoudingen Ik kan breuken vermenigvuldigen en delen. Ik ken
Stoeien met Statistiek
Stoeien met Statistiek Havo 4: Statistiek op grote datasets 2 Inhoudsopgave Achtergrondinformatie... 4 Docentenhandleiding... 5 Inleiding voor leerlingen... 6 Opdracht 1... 7 Opdracht 2... 8 Opdracht 3...
extra sommen Statistiek en Kans
extra sommen Statistiek en Kans 1. Bepaal bij de volgende rijen de modus, de mediaan en het gemiddelde a. 1, 4, 2, 3, 5, 3, 6, 3 b. 12, 11, 13, 11, 12, 11, 12, 13, 11, 14, 75, 15 c. 1, 43, 12, 32, 43,
Statistiek met Excel. Schoolexamen en Uitbreidingsopdrachten. Dit materiaal is gemaakt binnen de Leergang Wiskunde schooljaar 2013/14
Statistiek met Excel Schoolexamen en Uitbreidingsopdrachten 2 Inhoudsopgave Achtergrondinformatie... 4 Schoolexamen Wiskunde VWO: Statistiek met grote datasets... 5 Uibreidingsopdrachten vwo 5... 6 Schoolexamen
Statistiek: Stam-bladdiagram en boxplot 6/12/2013. dr. Brenda Casteleyn
Statistiek: Stam-bladdiagram en boxplot 6/12/2013 dr. Brenda Casteleyn dr. Brenda Casteleyn www.keu6.be Page 2 1. Theorie Stam-bladdiagram en boxplot zijn methoden om visueel een verdeling voor te stellen.
8.1 Centrum- en spreidingsmaten [1]
8.1 Centrum- en spreidingsmaten [1] Gegeven zijn de volgende 10 waarnemingsgetallen: 1, 3, 3, 3, 4, 5, 6, 8, 8, 9 Het gemiddelde is: De mediaan is het middelste waarnemingsgetal als de getallen naar grootte
extra sommen Statistiek en Kans
extra sommen Statistiek en Kans 1. Bepaal bij de volgende rijen de modus, de mediaan en het gemiddelde a. 1, 4, 2, 3, 5, 3, 6, 3 b. 12, 11, 13, 11, 12, 11, 12, 13, 11, 14, 75, 15 c. 1, 43, 12, 32, 43,
META-kaart domein - Exponentieel verband havo4 wiskunde A H=bxg^t
META-kaart domein - Exponentieel verband havo4 wiskunde A H=bxg^t Welk verband zie ik tussen de gegeven informatie en wat er gevraagd wordt? Wat heb ik nodig? Heb ik de gegevens uit de tekst gehaald? Welke
IJburgcollege Wiskunde A en C september 2017 Statistiek Opgavenboek 1 (noteer je uitwerkingen van de opdrachten in het Uitwerkingenboek 1)
IJburgcollege Wiskunde A en C september 2017 Statistiek Opgavenboek 1 (noteer je uitwerkingen van de opdrachten in het Uitwerkingenboek 1) 2. Herhaling Beschrijvende Statistiek. Old Faithful In Yellowstone
Antwoorden Hoofdstuk 1 Verschillen
Antwoorden Hoofdstuk 1 Verschillen 1a. Niet sterk, want het is gebaseerd op slechts één zomer. b. Vriendinnen volgen is een vorm van groepsgedrag. Waar heeft Anneke het bericht gelezen? In een kwaliteitskrant
Technologie: TI-Nspire CX CAS Niveau: beginner
Introductie : Statistiek met de TI-Nspire CX CAS Met de TI-Nspire hebben we een groot aantal statistische functies tot onze beschikking die het rekenwerk binnen de beschrijvende statistiek vergemakkelijken.
4. Statistische uitspraken doen
4. Statistische uitspraken doen Boekje 4 havo wiskunde A, domein E: Statistiek Uitwerkingen 1 Verantwoording 2015, SLO (nationaal expertisecentrum leerplanontwikkeling), Enschede Dit lesmateriaal is ontwikkeld
Populaties beschrijven met kansmodellen
Populaties beschrijven met kansmodellen Prof. dr. Herman Callaert Deze tekst probeert, met voorbeelden, inzicht te geven in de manier waarop je in de statistiek populaties bestudeert. Dat doe je met kansmodellen.
Data analyse Inleiding statistiek
Data analyse Inleiding statistiek 1 Doel Beheersen van elementaire statistische technieken Toepassen van deze technieken op aardwetenschappelijke data 2 1 Leerstof Boek: : Introductory Statistics, door
GEOGEBRAINSTITUUT. VlAANDEREN
GEOGEBRAINSTITUUT VlAANDEREN Statistiek met GeoGebra Roger Van Nieuwenhuyze Hoofdlector wiskunde HUB, lerarenopleiding Auteur VBTL, Die Keure Pedagogisch begeleider wiskunde VLP [email protected]
WISKUNDE C VWO VAKINFORMATIE STAATSEXAMEN 2016 V15.7.0
WISKUNDE C VWO VAKINFORMATIE STAATSEXAMEN 2016 V15.7.0 De vakinformatie in dit document is vastgesteld door het College voor Toetsen en Examens (CvTE). Het CvTE is verantwoordelijk voor de afname van de
Gemiddelde: Het gemiddelde van een rij getallen is de som van al die getallen gedeeld door het aantal getallen.
Statistiek Modus De waarneming die het meeste voorkomt. voorbeeld 1: De waarnemingen zijn 2, 3, 4, 5, 5, 5, 6, 6, 7 en 8. De waarneming 5 komt het meeste (driemaal) voor, dus de modus is 5. (Kijk maar:
Checklist Wiskunde A HAVO 4 2014-2015 HML
Checklist Wiskunde A HAVO 4 2014-2015 HML 1 Hoofdstuk 1 Ik weet hoe je met procenten moet rekenen: procenten en breuken, percentage berekenen, toename en afname in procenten, rekenen met groeifactoren.
Vendorrating: statistische presentatiemiddelen
pag.: 1 van 6 Vendorrating: statistische presentatiemiddelen Hieronder bespreken we in het kort een aantal verschillende presentatievormen waarmee we vendorratingresultaten op een duidelijke manier kunnen
3 In een klas hebben de meisjes en de jongens gemeten hoe lang ze zijn. De resultaten staan in de tabel hieronder.
4N4p Oefningen statistiek met de rekenmachine 1 De resultaten van een test voor Engels zijn als volgt: 5 9 4 6 7 5 9 6 5 7 6 7 5 8 Voer de cijfers in op de grafische rekenmachine a) Plot en schets een
Samenvatting Wiskunde Samenvatting en stappenplan van hfst. 7 en 8
Samenvatting Wiskunde Samenvatting en stappenplan van hfst. 7 en 8 Samenvatting door N. 1410 woorden 6 januari 2013 5,4 13 keer beoordeeld Vak Methode Wiskunde Getal en Ruimte 7.1 toenamediagrammen Interval
Paragraaf 10.1 : Populatie en Steekproef
Hoofdstuk 10 Statistische Variabelen (H5 Wis A) Pagina 1 van 8 Paragraaf 10.1 : Populatie en Steekproef Les 1 : Herhaling Definitie Betrouwbaarheidsinterval (BI) Betrouwbaarheidsinterval (BI) = { de waarden
IJburgcollege Wiskunde A en C september 2017 Statistiek Opgavenboek 1 (noteer je uitwerkingen van de opdrachten in het Uitwerkingenboek 1)
IJburgcollege Wiskunde A en C september 2017 Statistiek Opgavenboek 1 (noteer je uitwerkingen van de opdrachten in het Uitwerkingenboek 1) 2. Herhaling Beschrijvende Statistiek. Old Faithful In Yellowstone
Achter het correctievoorschrift is een aanvulling op het correctievoorschrift opgenomen.
Examen HAVO 2017 tijdvak 2 dinsdag 20 juni 13.30-16.30 uur wiskunde A Bij dit examen hoort een uitwerkbijlage. Achter het correctievoorschrift is een aanvulling op het correctievoorschrift opgenomen. Dit
WisMon WisTaal. Wiskunde vaktaal. theorie & opgaven. havo/vwo
WisMon WisTaal havo/vwo theorie & opgaven Wiskunde vaktaal Inhoudsopgave Introductie. Legenda. 1. De vraag begrijpen. 1.1 Slim lezen... 6 1.2 Instructietaal... 9 Samengevat... 14 2. Getallen. 2.1 Getaleigenschappen..
College Week 4 Inspecteren van Data: Verdelingen
College Week 4 Inspecteren van Data: Verdelingen Inleiding in de Methoden & Technieken 2013 2014 Hemmo Smit Dus volgende week Geen college en werkgroepen Maar Oefententamen on-line (BB) Data invoeren voor
wiskunde A havo 2017-II
wiskunde A havo 207-II Personenauto s in Nederland maximumscore 3 De aantallen aflezen: in 2000 6,3 (miljoen) en in 20 7,7 (miljoen) 7,7 6,3 00(%) 6,3 Het antwoord: 22(%) ( nauwkeuriger) Opmerkingen Bij
Correctievoorschrift VMBO-GL en TL 2004
Correctievoorschrift VMBO-GL en TL 2004 tijdvak 2 WISKUNDE CSE GL EN TL WISKUNDE VBO-MAVO-D 4 BEOORDELINGSMODEL Vraag Antwoord Scores EURO maximumscore 3 per land ( ) 3,88 2 3,88 het antwoord is ( ) 46,56
STATISTIEK OEFENOPGAVEN
STATISTIEK OEFENOPGAVEN 1. Bereken van elke serie getallen steeds de modus, het gemiddelde, de mediaan en de spreidingsbreedte. A. 3, 3, 4, 4, 4, 5, 5, 7, 8, 10. B. 2, 3, 3, 4, 4, 5, 8, 9, 11. C. 9, 3,
WISKUNDE A HAVO VAKINFORMATIE STAATSEXAMEN 2020
WISKUNDE A HAVO VAKINFORMATIE STAATSEXAMEN 2020 Versie: 2 april 2019 De vakinformatie is vastgesteld door het College voor Toetsen en Examens (CvTE). Het CvTE is verantwoordelijk voor de afname van de
Leerstof voortentamen wiskunde A. 1. Het voortentamen wiskunde A
Leerstof voortentamen wiskunde A In dit document wordt de leerstof beschreven van het programma van het voortentamen wiskunde A op havo niveau te beginnen met het voortentamen van december 2017. Deze specificatie
1 a Partij is een kwalitatieve variabele, kindertal een kwantitatieve, discrete variabele. b,c
Hoofdstuk 8, Statistische maten 1 Hoofdstuk 8 Statistische maten Kern 1 Centrum- en spreidingsmaten 1 a Partij is een kwalitatieve variaele, kindertal een kwantitatieve, discrete variaele.,c d kindertal
Workshop: vernieuwde statistiek havo wiskunde A
Workshop: vernieuwde statistiek havo wiskunde A Nederlandse Vereniging van Wiskundeleraren Studiedag Zaterdag 7 november 2015 Vernieuwde statistiek havo wiskunde A Peter Kop, vakdidacticus, ICLON, Leiden;
Open en Gepersonaliseerd Statistiekonderwijs (OGS) Deliverable 1.1 Requirements
Open en Gepersonaliseerd Statistiekonderwijs (OGS) Deliverable 1.1 Requirements Sietske Tacoma, Susanne Tak, Henk Hietbrink en Wouter van Joolingen Inleiding Het doel van dit project is om een aantal vrij
Rekenen met de normale verdeling (met behulp van grafisch rekentoestel)
Rekenen met de normale verdeling (met behulp van grafisch rekentoestel) In 1947 werd in opdracht van N.V. Magazijn De Bijenkorf een statistisch onderzoek verricht naar de lichaamsafmetingen van de Nederlandse
Hoofdstuk 2 De normale verdeling. Kern 1 Normale verdelingen. 1 a
Hoofdstuk De normale verdeling Kern Normale verdelingen a percentage 30 0 0 57 6 67 7 77 8 87 9 97 0 07 De polygoon heeft een klokvorm. b In totaal is 0, + 0,9 + 3,3 +,0 +,3 + 7,3= 50,5 procent van de
Hoofdstuk 9 De Normale Verdeling. Kern 1 Normale verdelingen. Netwerk, 4 Havo A, uitwerkingen Hoofdstuk 9, De Normale Verdeling Elleke van der Most
Hoofdstuk 9 De Normale Verdeling Kern Normale verdelingen a percentage 30 0 0 57 6 67 7 77 8 87 9 97 0 07 De polygoon heeft een klokvorm. b De gemiddelde lengte valt in de klasse 80 84 cm. Omdat 8 precies
Statistiek. Beschrijvende Statistiek Hoofdstuk 1 1.1, 1.2, 1.5, 1.6 lezen 1.3, 1.4 Les 1 Hoofdstuk 2 2.1, 2.3, 2.5 Les 2
INHOUDSOPGAVE Leswijzer...3 Beschrijvende Statistiek...3 Kansberekening...3 Inductieve statistiek, inferentiele statistiek...3 Hoofdstuk...3. Drie deelgebieden...3. Frequentieverdeling....3. Frequentieverdeling....4.5
Docentenhandleiding havo deel 3 CB. Docentenhandleiding Netwerk 3e editie. deel 3B havo
Docentenhandleiding Netwerk 3e editie deel 3B havo 0 Hoofdstuk 7 Verschillende verbanden Beginniveau Al eerder hebben de leerlingen kennis gemaakt met lineaire, kwadratische en exponentiële verbanden.
4 HAVO wiskunde A HOOFDSTUK voorkennis 1. soorten verdelingen 2. de normale verdeling 3. betrouwbaarheidsintervallen 4. groepen en kenmerken
4 HAVO wiskunde A HOOFDSTUK 6 0. voorkennis 1. soorten verdelingen 2. de normale verdeling 3. betrouwbaarheidsintervallen 4. groepen en kenmerken 0. voorkennis Centrum- en spreidingsmaten Centrummaten:
Normale verdeling. Domein Statistiek en kansrekening havo A
Domein Statistiek en kansrekening havo A 4 Normale verdeling Inhoud 4.0 Een bijzondere verdeling 4.1 Gemiddelde en standaardafwijking 4.2 Normale verdeling 4.3 Rekenen met normale verdelingen 4.4 Steekproef
Statistische variabelen. formuleblad
Statistische variabelen formuleblad 0. voorkennis Soorten variabelen Discreet of continu Bij kwantitatieve gegevens gaat het om meetbare gegeven, zoals temperatuur, snelheid of gewicht. Bij een discrete
DEZE TAAK BESTAAT UIT 35 ITEMS. INDIEN NIET ANDERS VERMELD, IS ELKE VARIABELE EEN ELEMENT VAN. Ontbind x 4 1 in zoveel mogelijke factoren.
DEZE TAAK BESTAAT UIT 35 ITEMS. INDIEN NIET ANDERS VERMELD, IS ELKE VARIABELE EEN ELEMENT VAN. De verzameling V, 5] kan worden voorgesteld door A {3, 4, 5} B {, 3, 4, 5} C {x 3 x 5} D {x x 5} Gegeven een
Statistiekonderwijs in de onderbouw voor vandaag en morgen
Statistiekonderwijs in de onderbouw voor vandaag en morgen Vernieuwd statistiek onderwijs Met ingang van 2015 is er een nieuw statistiek programma gestart voor de bovenbouw havo/vwo van het voortgezet
Hoofdstuk 8: De normale verdeling. 8.1 Centrum- en spreidingsmaten. Opgave 1:
Hoofdstuk 8: De normale verdeling 8. Centrum- en spreidingsmaten Opgave : 00000 4 4000 5 3000 a. 300 dollar 0 b. 9 van de atleten verdienen minder dan de helft van het gemiddelde. Het gemiddelde is zo
De normale verdeling. Les 3 De Z-waarde (Deze les sluit aan bij de paragraaf 10 van Binomiale en normale verdelingen van de Wageningse Methode)
De normale verdeling Les 3 De Z-waarde (Deze les sluit aan bij de paragraaf 10 van Binomiale en normale verdelingen van de Wageningse Methode) De grafische rekenmachine Vooraf In deze les ga je veel met
tabellen, grafieken en diagrammen
tabellen, grafieken en diagrammen vmbo Tabellen, grafieken en diagrammen CSWeetje VMBO 9 In het dagelijkse leven heb je te maken met informatie en gegevens. Op verschillende manieren kun je deze tegen
G&R vwo A/C deel 2 8 De normale verdeling C. von Schwartzenberg 1/14. 3a 1 2
G&R vwo A/C deel 8 De normale verdeling C. von Schwartzenberg 1/14 1a Gemiddelde startgeld x = 1 100000 + 4 4000 + 3000 = 13100 dollar. 10 1b Het gemiddelde wordt sterk bepaald door de uitschieter van
Het examenprogramma wiskunde A havo
Het examenprogramma wiskunde A havo Conferentie Hallo HBO, hier HAVO, 28 september 2016 Eindrapport van de vernieuwingscommissie ctwo: Wiskunde A op havo bereidt voor op hbo-opleidingen in met name de
Netwerk, 4 Havo D, uitwerkingen Hoofdstuk 1, Statistische verwerking 1
Netwerk, 4 Havo D, uitwerkingen Hoofdstuk, Statistische verwerking Hoofdstuk Statistische verwerking Kern Populatie en steekproef a In Derbroek vonden + 6 ondervraagden de overlast ernstig tot zeer ernstig.
22-9-2010. Pieperproef. Praktische opdracht voor wiskunde Klas 2 Havo. 2H_Pieperonderzoek LEERLINGEN JvdB en HB.versie 2.0 1 van 8
Pieperproef Praktische opdracht voor wiskunde Klas 2 Havo 2H_Pieperonderzoek LEERLINGEN JvdB en HB.versie 2.0 1 van 8 Inhoudsopgave Benodigdheden blz. 3 Pieperonderzoek, De proef blz. 4 Uitwerking & Normering
Bijlage bij Eindverslag van de Nomenclatuurcommissie Wiskunde september 2007
Bijlage bij Eindverslag van de Nomenclatuurcommissie Wiskunde september 2007 zie havo vwo aantonen 1 aanzicht absolute waarde afgeleide (functie) notatie met accent: bijvoorbeeld f'(x), f' notatie met
Wiskunde D Online uitwerking 4 VWO blok 5 les 3
Paragraaf 10 De standaard normale tabel Opgave 1 a Er geldt 20,1 16,6 = 3,5 C. Dit best wel een fors verschil, maar hoeft niet direct heel erg uitzonderlijk te zijn. b Er geldt 167 150 = 17. Dat valt buiten
Docent wiskunde aan de HUB, Brussel. Auteur Van Basis tot Limiet. Pedagogisch begeleider wiskunde (VLP).
Dag van de wiskunde 1 e en 2 e graad 27/11/2010 Docent wiskunde aan de HUB, Brussel. Auteur Van Basis tot Limiet. Pedagogisch begeleider wiskunde (VLP). [email protected] Van Nieuwenhuyze
S1 STATISTIEK. Tabellen & diagrammen Centrummaten & Spreiding
S1 STATISTIEK Tabellen & diagrammen Centrummaten & Spreiding TABELLEN & DIAGRAMMEN WELKE AUTO VIND JIJ HET MOOISTE? Kies 1,2,3,4 of 5 NUMMER 1 NUMMER 2 NUMMER 3 NUMMER 4 NUMMER 5 VERWERKING Tabel Cirkeldiagram
uitwerkingen voorbeeldexamenopgaven statistiek wiskunde A havo
uitwerkingen voorbeeldexamenopgaven statistiek wiskunde A havo uitwerkingen voorbeeldexamenopgaven statistiek wiskunde A havo - 5-6-205 lees verder Kijkcijfers maximumscore 4 Het toepassen van de formule
INLEIDING FUNCTIES 1. COÖRDINATEN
INLEIDING FUNCTIES 1. COÖRDINATEN...1 2. FUNCTIES...2 3. ARGUMENT EN BEELD...3 4. HET FUNCTIEVOORSCHRIFT...4 5. DE FUNCTIEWAARDETABEL...5 6. DE GRAFIEK...6 7. FUNCTIES HERKENNEN...7 8. OPLOSSINGEN...9
Beschrijvende sta/s/ek met Geogebra 5
Beschrijvende sta/s/ek met Geogebra 5 Brecht Dekeyser Dag van de wiskunde 14 november 2015 KU Leuven Kulak Kortrijk Beschrijvende sta/s/ek met Geogebra 5 Brecht Dekeyser Dag van de wiskunde 14 november
Didactiek van Informatieverwerking en Statistiek voor leerlingen van 12-16?
Didactiek van Informatieverwerking en Statistiek voor leerlingen van 12-16? Ontwikkeling van een module en boek voor de 2 e graads lerarenopleiding wiskunde. Informatieverwerking en Statistiek Gerard van
Y = ax + b, hiervan is a de richtingscoëfficiënt (1 naar rechts en a omhoog), en b is het snijpunt met de y-as (0,b)
Samenvatting door E. 1419 woorden 11 november 2013 6,1 14 keer beoordeeld Vak Methode Wiskunde A Getal en ruimte Lineaire formule A = 0.8t + 34 Er bestaat dan een lineair verband tussen A en t, de grafiek
Hoofdstuk 8 - De normale verdeling
ladzijde 216 1a Staafdiagram 3 want te verwachten is dat er elke maand ongeveer evenveel mensen jarig zijn. Dat is meteen ook de reden waarom de andere drie niet voldoen. Feruari estaat uit vier weken
Onderzoeksmethodiek LE: 2
Onderzoeksmethodiek LE: 2 3 Parameters en grootheden 3.1 Parameters Wat is een parameter? Een karakteristieke grootheid van een populatie Gem. gewicht van een 34-jarige man 3.2 Steekproefgrootheden Wat
Officiële uitgave van het Koninkrijk der Nederlanden sinds 1814.
STAATSCOURANT Officiële uitgave van het Koninkrijk der Nederlanden sinds 1814. Nr. 7228 14 maart 2014 Regeling van de Staatssecretaris van Onderwijs, Cultuur en Wetenschap van 22 februari 2014, nr. VO/599178,
Aardappelomzet in milj kg.
PERIODE STATISTIEK, COMBINATORIEK, Lineaire en Exponentiele functies. Voor al deze opdrachten geldt dat het werken met EXCEL van harte wordt aanbevolen. OPDRACHT 1 Aardappelen Uit onderzoek van de LandbouwUniversiteit
Aardgasbaten. (b) Teken bij 1996 een cirkeldiagram (c) Teken bij de tabel een vlakdiagram
1. In figuur 1 zie je gegevens over de aardgasbaten in Nederland gedurende de periode 1985-1994. Je ziet zowel een staafdiagram als een frequentiepolygoon. Aardgasbaten figuur 1 (a) In welk jaar is de
