Morley s vijf-cirkelsstelling
|
|
|
- Filip Casper Simons
- 6 jaren geleden
- Aantal bezoeken:
Transcriptie
1 Morley s vijf-cirkelsstelling Jan van de Craats Teken een ring van vijf cirkels (groen) met hun middelpunten op een gegeven cirkelomtrek (rood). Zorg ervoor dat elke groene cirkelomtrek zijn beide buren snijdt op de rode cirkelomtrek. Verbind de vijf andere snijpunten van opvolgende naburige cirkelomtrekken door lijnen waardoor er een vijfhoek ontstaat (blauw). Als je de zijden van die vijfhoek doortrekt, zullen ze elkaar opnieuw snijden en zo een vijfpuntige ster vormen. Het verrassende is dat de punten van die ster weer op de groene cirkelomtrekken liggen. De bovenstaande stelling met illustratie sierde onze nieuwjaarskaart Die stelling is in de eerste helft van de twintigste eeuw gevonden door Frank Morley ( ). Voor een bewijs ervan verwees ik daar naar mijn recente artikel Morley chains of osculant curves in het Nieuw Archief voor Wiskunde, dat ook 1
2 als pdf te beschikbaar is op mijn homepage, zie j.vandecraats/morleychainshp.pdf. Daar wordt de stelling gepresenteerd en bewezen als bijzonder geval van een algemener resultaat. Voor wie ertegenop ziet om het hele artikel te lezen, geef ik hier een verkort, zelfstandig bewijs. Als voorkennis is echter wel nodig dat je kunt rekenen met complexe getallen. In plaats van cirkelomtrek zeg ik steeds eenvoudigweg cirkel. Ik neem aan dat de gegeven rode cirkel de eenheidscirkel in het complexe vlak is, dat wil zeggen de cirkel met middelpunt 0 en straal 1. De groene cirkels noem ik achtereenvolgens,,,, met middelpunten,,,, (de cirkels zijn hier genummerd tegen de klok in), waarbij en elkaar op de eenheidscirkel snijden in, en in, en in, en in c 4 en en in c 5, zie de bovenstaande figuur. Omdat op de eenheidscirkel halverwege en ligt, geldt / = /, dus m 2 12 = et cetera. Laat t 1 een vierkantwortel zijn van, dus = t 2 1, en definieer t 2 = /t 1 dus t 2 2 = m2 12 / = t 3 = /t 2 dus t 2 3 = m2 23 / = t 4 = /t 3 dus t 2 4 = m2 34 / = c 4 t 5 = /t 4 dus t 2 5 = m2 45 /c 4 = c 5. Dan geldt dus = t 1 t 2, = t 2 t 3, = t 3 t 4, = t 4 t 5. Merk op dat de punten t 1, t 2, t 3, t 4 en t 5 ook punten op de eenheidscirkel zijn, want producten en quotiënten van complexe getallen op de eenheidscirkel zijn weer complexe getallen op de eenheidscirkel. 2
3 De cirkelbogen,,, c 4, c 5 beslaan samen precies de helft van de eenheidscirkel, dus c 4 c 5 = 1 met andere woorden: =. Uit het bovenstaande volgt dan dat t 5 t 1 = t 2 1 t2 2 t2 3 t2 4 t2 5 = = zodat ook geldt dat = t 5 t 1. In het vervolg laten we de variabele t de eenheidscirkel doorlopen. Dan doorloopt x = t 1 t 2 (t 1 + t 2 )t een cirkel met middelpunt = t 1 t 2 en straal t 1 + t 2. Dexe uitdrukking voor x kunnen we zien als een parametervoorstelling van die cirkel, waarbij de parameter t dus de eenheidscirkel doorloopt. Voor t = t 1 geeft de parametervoorstelling x = t 2 1 = en voor t = t 2 geeft die x = t 2 2 =. De parametervoorstelling beschrijft dus de cirkel : : x = t 1 t 2 (t 1 + t 2 )t. Evenzo vinden we voor de andere vier cirkels de parametervoorstellingen : x = t 2 t 3 (t 2 + t 3 )t : x = t 3 t 4 (t 3 + t 4 )t : x = t 4 t 5 (t 4 + t 5 )t : x = t 5 t 1 (t 5 + t 1 )t. De keuze t = t 3 bij geeft x = t 1 t 2 t 1 t 3 t 2 t 3. Maar datzelfde punt krijgen we door t = t 1 te kiezen bij, dus dit moet het tweede snijpunt zijn van en. Evenzo voor de andere snijpunten van de opvolgende cirkelparen. Samengevat zijn die snijpunten x 123 = t 1 t 2 t 2 t 3 t 3 t 1 x 234 = t 2 t 3 t 3 t 4 t 2 t 4 x 345 = t 3 t 4 t 4 t 5 t 3 t 5 x 451 = t 4 t 5 t 5 t 1 t 1 t 4 x 512 = t 5 t 1 t 1 t 2 t 2 t 5. Deze punten vormen de hoekpunten van de (blauwe) vijfhoek uit de stelling. De zijden ervan noemen we L 4512, L 5123, L 1234, L 2345, L 3451 (zie de onderstaande figuur). Rest nog het bewijs dat de verlengde zijden elkaar weer snijden op de groene cirkels. 3
4 x 345 x 451 x 123 L 1234 x 512 x 234 L 2345 L 4512 L5123 L 3451 Het is niet moeilijk om te raden wat die snijpunten moeten zijn. De keuze t = t 4 in de parametervoorstelling van geeft x 124 = t 1 t 2 t 1 t 4 t 2 t 4, en dit zal dan het snijpunt moeten zijn van L 4512 en L We moeten daartoe bewijzen dat x 451, x 512 en x 124 collineair zijn, dat wil zeggen op één lijn liggen, en ook dat x 234, x 123 en x 124 collineair zijn. Zulke bewijzen gaan het gemakkelijkst met behulp van het begrip clinant van een lijn. Als x en c verschillende punten op een lijn L zijn, dan geven de vectoren x c en c x beide de richting van L aan, maar in tegengestelde zin. Echter, het quotiënt t = (x c)/( x c), dat een punt op de eenheidscirkel is, hangt niet af van de volgorde van x en c. In feite hangt t alleen maar af van L en niet van de keuze van de punten x en c op L. Dit is per definitie de clinant van L. Het argument van de clinant t is twee maal de gerichte hoek tussen de reële as en L. Twee lijnen zijn parallel dan en slechts dan als hun clinanten gelijk zijn. Als we dus willen bewijzen dat, bijvoorbeeld, de punten x 451, x 512 en x 124 collineair zijn, hoeven we alleen maar aan te tonen dat de clinant van de lijn L 4512 door x 451 en x 512 gelijk is aan de clinant van de lijn door x 451 en x 124. De eerste clinant is x 451 x 512 x 451 x 512 = t 4t 5 t 1 t 4 + t 2 t 5 + t 1 t 2 t 4 t 5 t 1 t 4 + t 2 t 5 + t 1 t 2 = t 4 t 5 t 1 t 2 (bedenk dat voor elk punt t op de eenheidscirkel geldt dat t = 1/t). Evenzo geldt voor de clinant van de lijn door x 451 en x 124 x 451 x 124 x 451 x 124 = t 4t 5 t 1 t 5 + t 2 t 4 + t 1 t 2 t 4 t 5 t 1 t 5 + t 2 t 4 + t 1 t 2 = t 4 t 5 t 1 t 2 4
5 De beide clinanten zijn gelijk, dus de drie punten zijn collineair. Op dezelfde manier kan bewezen worden dat de punten x 234, x 123 en x 124 collineair zijn, en sterker nog, dat alle paren verlengde zijden van de blauwe vijfhoek uit Morley s vijf-cirkelsstelling elkaar op de desbetreffende groene cirkel snijden, waarmee de stelling bewezen is. De onderstaande figuur illustreert de situatie. x 235 x 124 x 123 L 1234 x 125 x 234 L 2345 L 4512 L5123 x 134 x 345 x145 L 3451 x 135 x 245 De lezer heeft er wellicht aardigheid in om nu zelf te bewijzen dat drietallen punten als, x 123 en collineair zijn, en dat de lijnen,,,, evenwijdig zijn aan respectievelijk L 1234, L 2345, L 3451, L 4512 en L Degenen die hun kennis van het rekenen met complexe getallen willen opfrissen, wijs ik graag op mijn gratis internetboek Complexe getallen voor Wiskunde D, beschikbaar als pdf op Oosterhout, 7 januari
Hoofdstuk 1 LIJNEN IN. Klas 5N Wiskunde 6 perioden
Hoofdstuk LIJNEN IN Klas N Wiskunde 6 perioden . DE VECTORVOORSTELLING VAN EEN LIJN VOORBEELD. Gegeven zijn de punten P (, ) en Q (, 8 ). Gevraagd: de vectorvoorstelling van de lijn k door P en Q. Methode:
Neem [pr]=[ps] en beschrijf uit r en s twee cirkelbogen met dezelfde straal, die elkaar in c snijden. [cp] is de loodlijn op [ab].
Met a en b als middelpunt en met straal groter dan de helft van [ab] trekt men met dezelfde straal twee cirkelbogen, die elkaar snijden in c en d; cd is de middelloodlijn en m het midden van [ab] Neem
De meetkunde van de. derdegraadsvergelijking
Jan van de Craats De meetkunde van de derdegraadsvergelijking 22 februari 2007 Algemene (complexe) derdegraadsvergelijking met a 1, a 2, a 3 C z 3 3a 1 z 2 + 3a 2 z a 3 = 0 Oplossingen z 1, z 2, z 3 Dan
héöéäëåéçéå=~äë=ãééíâìåçáöé=éä~~íëéå=ãéí=`~äêá= = hçéå=píìäéåë= = = = = = = =
héöéäëåéçéå~äëãééíâìåçáöééä~~íëéåãéí`~äêá hçéåpíìäéåë De algemene vergelijking van een kegelsnede is van de vorm : 2 2 ax by 2cxy 2dx 2ey f 0 met a, b, c, d, e, f + + + + +. Indien je vijf punten van een
werkschrift driehoeken
werkschrift driehoeken 1 hoeken 11 Rangschik de hoeken van klein naar groot. 14 b Teken een lijn l met daarop een punt A. Teken met je geodriehoek een lijn die l loodrecht snijdt in A. c Kies een punt
9.0 Voorkennis [1] Definitie bissectrice: De bissectrice van een hoek is de lijn die de hoek middendoor deelt. Willem-Jan van der Zanden
9.0 Voorkennis [1] Definitie middelloodlijn: De middelloodlijn van een lijnstuk is de lijn door het midden van dat lijnstuk die loodrecht op dat lijnstuk staat. Definitie bissectrice: De bissectrice van
Kegelsneden. Les 1 Gelijke afstand (Deze les sluit aan bij paragraaf 1 van Conflictlijnen van de Wageningse Methode.)
Kegelsneden Les 1 Gelijke afstand (Deze les sluit aan bij paragraaf 1 van Conflictlijnen van de Wageningse Methode.) De verdeling van de Noordzee Het nabuurprincipe: Elk stukje van de zeebodem hoort Bij
2. Waar of vals: Als een rechte a evenwijdig is met een vlak α en dat vlak staat loodrecht op een vlak β dan staat a loodrecht op β.
1 Synthetische RM 1. (a) Geef de definitie van de loodrechte stand van twee vlakken. (b) Geen stellingen die voorwaarden uitdrukken opdat twee vlakken orthogonaal zijn. (c) Steun op 1a of 1b om te bewijzen
Examen Wiskundige Basistechniek 15 oktober 2011
Examen Wiskundige Basistechniek 15 oktober 2011 vraag 1: Gegeven is het complex getal ω = exp(i π 5 ). vraag 1.1: Als we in het complexe vlak het punt P met cartesiaanse coördinaten (x, y) vereenzelvigen
Antwoorden. 1. Rekenen met complexe getallen
1. Rekenen met complexe getallen 1.1 a. 9 b. 9 c. 16 d. i e. 1 1. a. 1 b. 3 c. 1 d. 4 3 e. 3 4 1.3 a. 3 i b. 3 i c. i d. 5 i e. 15 i 1.4 a. 33 i b. 7 i c. 4 3 i d. 3 5 i e. 5 3 i 1.5 a. 1 ± i b. ± i c.
Meetkunde. Trainingsweekend 23 25 januari 2009. 1 Gerichte hoeken. gerichte hoeken, driehoeksongelijkheid, Ravi
Meetkunde gerichte hoeken, driehoeksongelijkheid, Ravi Trainingsweekend 23 25 januari 2009 Als je een meetkundig probleem aan het oplossen bent, stuit je vaak op verschillende oplossingen voor de verschillende
1 Het midden van een lijnstuk
Inleiding Deze basisconstructies worden aan de leerlingen gegeven in de vorm van werkbladen voor zelfstandig werken. Met behulp van een beginschets van de gegevens en de constructiebeschrijving maken de
Bestaat er dan toch een wortel uit 1?
Bestaat er dan toch een wortel uit 1? Complexe getallen en complexe functies Jan van de Craats Universiteit van Amsterdam, Open Universiteit CWI Vacantiecursus 2007 Wat zijn complexe getallen? Wat zijn
Vlakke meetkunde. Module 6. 6.1 Geijkte rechte. 6.1.1 Afstand tussen twee punten. 6.1.2 Midden van een lijnstuk
Module 6 Vlakke meetkunde 6. Geijkte rechte Beschouw een rechte L en kies op deze rechte een punt o als oorsprong en een punt e als eenheidspunt. Indien men aan o en e respectievelijk de getallen 0 en
Hoofdstuk 8 : De Cirkel
- 163 - Hoofdstuk 8 : De Cirkel Eventjes herhalen!!!! De cirkel met middelpunt O en straal r is de vlakke figuur die de verzameling is van alle punten die op een afstand r van O liggen. De schijf met middelpunt
Cabri-werkblad. Driehoeken, rechthoeken en vierkanten. 1. Eerst twee macro's
Cabri-werkblad Driehoeken, rechthoeken en vierkanten 1. Eerst twee macro's Bij de opdrachten van dit werkblad zullen we vaak een vierkant nodig hebben waarvan alleen de beide eindpunten van een zijde gegeven
vwo wiskunde b Baanversnelling de Wageningse Methode
1 1 vwo wiskunde b Baanversnelling de Wageningse Methode 1 1 2 2 Copyright 2018 Stichting de Wageningse Methode Auteurs Leon van den Broek, Ton Geurtz, Maris van Haandel, Erik van Haren, Dolf van den Hombergh,
Goniometrische functies
Goniometrische functies gonè (Grieks) = hoek metron (Grieks) = maat Goniometrie, afkomstig van de Griekse woorden voor hoek en maat, betekent letterlijk hoekmeetkunde. Daarmee wordt aangegeven dat het
P is nu het punt waarvan de x-coördinaat gelijk is aan die van het punt X en waarvan de y-coördinaat gelijk is aan AB (inclusief het teken).
Inhoud 1. Sinus-functie 1 2. Cosinus-functie 3 3. Tangens-functie 5 4. Eigenschappen 4.1. Verband tussen goniometrische verhoudingen en goniometrische functies 8 4.2. Enkele eigenschappen van de sinus-functie
Hierbij geven we de antwoorden en bewijzen we meteen ook hoe de constanten kunnen bepaald worden.
WISKUNDE IS (EEN BEETJE) OORLOG Onder dit motto nodigde de VVWL alle wiskundeleraren uit Vlaanderen en Nederland uit om deel te nemen aan een wiskundewedstrijd. De tien vragen van de eerste editie, waarbij
Definitie van raaklijn aan cirkel: Stelling van raaklijn aan cirkel:
13.0 Voorkennis Op de cirkel liggen alle punten met een Gelijke afstand tot het middelpunt van de cirkel. Voor een punt p op de cirkel geldt d(p, M) = r Definitie van raaklijn aan cirkel: Een raaklijn
Vl. M. Nadruk verboden 1
Vl. M. Nadruk verboden 1 Opgaven 1. Hoeveel graden, minuten en seconden zijn gelijk aan rechte hoek? van een rechte hoek resp van een 2. Als = 25 13 36, = 37 40 56, = 80 12 8 en = 12 36 25, hoe groot is
Analytische Meetkunde
Analytische Meetkunde Meetkunde met Geogebra en vergelijkingen van lijnen 2 Inhoudsopgave Achtergrondinformatie... 4 Meetkunde met Geogebra... 6 Stelling van Thales...... 7 3 Achtergrondinformatie Auteurs
WISKUNDE-ESTAFETTE RU 2005 Uitwerkingen
WISKUNDE-ESTAFETTE RU 2005 Uitwerkingen 1 We proberen alle mogelijkheden van klein naar groot: p = 1 is uitgesloten: dan zou elke dag hetzelfde resultaat geven. p = 2 is uitgesloten: dan zouden dag 1 en
Meetkundige Ongelijkheden Groep 2
Meetkundige Ongelijkheden Groep Trainingsweek Juni 009 1 Introductie We werken hier met ongeoriënteerde lengtes en voor het gemak laten we de absoluutstrepen weg. De lengte van een lijnstuk XY wordt dus
Stelling 1.5 Geven isometrieën J 1 en J 2 hetzelfde beeld in drie punten die niet op één lijn liggen, dan zijn ze identiek. Bewijs. De isometrie J 1 2
Lesbrief 8 Isometrieën 1 Inleiding Een één-éénduidige afbeelding van het vlak op zichzelf heet een transformatie van het vlak. Als T 1 en T 2 transformaties zijn, wordt de transformatie T 1 gevolgd door
De constructie van een raaklijn aan een cirkel is, op basis van deze stelling, niet zo erg moeilijk meer.
Cabri-werkblad Raaklijnen Raaklijnen aan een cirkel Definitie Een raaklijn aan een cirkel is een rechte lijn die precies één punt (het raakpunt) met de cirkel gemeenschappelijk heeft. Stelling De raaklijn
12.1 Omtrekshoeken en middelpuntshoeken [1]
12.1 Omtrekshoeken en middelpuntshoeken [1] Stelling van de constante hoek: Voor de punten C en D op dezelfde cirkelboog AB geldt: ACB = ADB. Omgekeerde stelling van de constante hoek: Als punt D aan dezelfde
12.0 Voorkennis. Voorbeeld 1: Los de vergelijking sin(a) = 0 op. We zoeken nu de punten op de eenheidscirkel met y-coördinaat 0.
12.0 Voorkennis Voorbeeld 1: Los de vergelijking sin(a) = 0 op. We zoeken nu de punten op de eenheidscirkel met y-coördinaat 0. Dit is in de punten (1,0) en (-1,0) (1,0) heeft draaiingshoek 0 (-1,0) heeft
12 Bewijzen in de vlakke meetkunde
ewijzen in de vlakke meetkunde bladzijde 54 a ' b Gegeven: e gelijkzijdige driehoek met zijn omgeschreven cirkel. unt ligt op de kortste boog en ligt op het verlengde van zo, dat =. riehoek is gelijkzijdig.
14.0 Voorkennis. sin sin sin. Sinusregel: In elke ABC geldt de sinusregel:
14.0 Voorkennis Sinusregel: In elke ABC geldt de sinusregel: a b c sin sin sin Voorbeeld 1: Gegeven is ΔABC met c = 1, α = 54 en β = 6 Bereken a in twee decimalen nauwkeurig. a c sin sin a 1 sin54 sin64
Wiskunde oefentoets hoofdstuk 10: Meetkundige berekeningen
Wiskunde oefentoets hoofdstuk 0: Meetkundige berekeningen Iedere antwoord dient gemotiveerd te worden, anders worden er geen punten toegekend. Gebruik van grafische rekenmachine is toegestaan. Succes!
1 Vlaamse Wiskunde Olympiade : Tweede Ronde.
Vlaamse Wiskunde Olympiade 99-99 : Tweede Ronde De Vlaamse Wiskunde Olympiade vzw is een officiële foreign coordinator voor de welbekende AHSME-competitie (American High School Mathematics Examination
Basisconstructies, de werkbladen 1 Het midden van een lijnstuk
Basisconstructies, de werkbladen 1 Het midden van een lijnstuk Basisconstructie 1 Het lijnstuk AB Neem vanuit A een afstand tussen de benen van de passer die wat groter is dan van A tot het geschatte midden
Pijlenklokken Wiskunde B-dag
Pijlenklokken Wiskunde B-dag 2017 1 Wiskunde B opdracht 2017 Inleiding Over de opdracht Mensen (dus ook jullie) zijn gemaakt om patronen en structuren te herkennen. De wiskunde maakt hier een sport van.
Hoofdstuk 1 Spiegelen in lijn en in cirkel. Eigenschappen.
Hoofdstuk 1 Spiegelen in lijn en in cirkel. Eigenschappen. Jakob Steiner (Utzenstorf (kanton Bern), 18 maart 1796 - Bern, 1 april 1863) was een Zwitsers wiskundige. Hij wordt beschouwd als een van de belangrijkste
Meetkunde en Algebra Een korte beschrijving van de inhoud
Meetkunde en Algebra Een korte beschrijving van de inhoud Lineaire algebra maakt een betrekkelijk eenvoudige behandeling van de meetkunde in een vlak of de ruimte mogelijk. Omgekeerd illustreren meetkundige
9.1 Vergelijkingen van lijnen[1]
9.1 Vergelijkingen van lijnen[1] y = -4x + 8 is de vergelijking van een lijn. Hier wordt y uitgedrukt in x. Algemeen: Van de lijn y = ax + b is de richtingscoëfficiënt a en het snijpunt met de y-as (0,
1 Introductie. 2 Oppervlakteformules
Introductie We werken hier met ongeoriënteerde lengtes en voor het gemak laten we de absoluutstrepen weg. De lengte van een lijnstuk XY wordt dus ook weergegeven met XY. Verder zullen we de volgende notatie
Paragraaf 8.1 : Lijnen en Hoeken
Hoofdstuk 8 Meetkunde met coördinaten (V5 Wis B) Pagina 1 van 11 Paragraaf 8.1 : Lijnen en Hoeken Les 1 Lijnen Definities Je kunt een lijn op verschillende manieren bepalen / opschrijven : (1) RC - manier
Een korte beschrijving van de inhoud
Een korte beschrijving van de inhoud Lineaire algebra maakt een betrekkelijk eenvoudige behandeling van de meetkunde in een vlak of de ruimte mogelijk. Omgekeerd illustreren meetkundige toepassingen op
STELLINGEN & BEWIJZEN 5VWO wiskunde B 1 e versie
STELLINGEN & BEWIJZEN 5VWO wiskunde B 1 e versie Euclides van Alexandrië (ca. 265-200 v.chr.) Thales van Milete (ca. 624 v.chr. - 547 v.chr.) INHOUDSOPGAVE Algemene begrippen..blz. 1-3 - Stelling en bewijs
KWADRATISCHE VERGELIJKINGEN, HET GULDEN ZADELVLAK, EN DE REGELMATIGE VIJFHOEK.
KWADRATISCHE VERGELIJKINGEN, HET, EN DE REGELMATIGE. VIÈTE Johan A.C. Kolk Mathematisch Instituut, Universiteit Utrecht Met medewerking van Rogier Bos Christelijk Gymnasium Utrecht & Freudenthal Instituut,
Open het programma Geogebra. Het beginscherm verschijnt. Klik voordat je verder gaat met je muis ergens in het
Practicum I Opgave 1 Tekenen van een driehoek In de opgave gaan we op twee verschillende manieren een driehoek tekenen. We doen dit door gebruik te maken van de werkbalk (macrovenster) en van het invoerveld.
Een symmetrische gebroken functie
Een symmetrische gebroken functie De functie f is gegeven door f( x) e x. 3p Bereken exact voor welke waarden van x geldt: f( x). 00 F( x) xln( e x) is een primitieve van f( x) e x. 4p Toon dit aan. Het
Soorten lijnen. Soorten rechten
Soorten lijnen ik zeg ik teken ik noteer ik weet een punt A A een rechte a a Een rechte heeft geen begin- en eindpunt. een halfrechte [A een halfrechte heeft B] een beginpunt of een eindpunt een lijnstuk
Vlakke Meetkunde. Les 1 Congruentie en gelijkvormig
Vlakke Meetkunde Les 1 Congruentie en gelijkvormig (Deze les sluit aan bij het paragraaf 1 van Vlakke Meetkunde van de Wageningse Methode. Vlakke Meetkunde kun je downloaden vanaf de site van de Open Universiteit.
Deel 2. Basiskennis wiskunde
Deel 2. Basiskennis wiskunde Vraag 26 Definieer de functie f : R R : 7 cos(2 ). Bepaal de afgeleide van de functie f in het punt 2π/2. (A) f 0 ( 2π/2) = π (B) f 0 ( 2π/2) = 2π (C) f 0 ( 2π/2) = 2π (D)
16.0 Voorkennis. Voorbeeld 1: Los op in 2x + 3i = 5x + 6i -3x = 3i x = -i
16.0 Voorkennis Voorbeeld 1: Los op in 2x + 3i = 5x + 6i -3x = 3i x = -i Voorbeeld 2: Los op in 4x 2 + 12x + 15 = 0 4x 2 + 12x + 9 + 6 = 0 (2x + 3) 2 + 6 = 0 (2x + 3) 2 = -6 (2x + 3) 2 = 6i 2 2x + 3 =
3 Cirkels, Hoeken en Bogen. Inversies.
3 Cirkels, Hoeken en Bogen. Inversies. 3.1. Inleiding Het derde college betreft drie onderwerpen (hoeken, bogen en inversies), die in concrete meetkundige situaties vaak optreden. Dit hoofdstuk is bedoeld
Oefeningen analytische meetkunde
Oefeningen analytische meetkunde ) orte herhaling. Zij gegeven twee vectoren P en Q. Bewijs dat de loodrechte projectie P' van P op Q gegeven wordt door: PQQ P'. Q. De cirkel c y 4y wordt gespiegeld om
Ruimtemeetkunde deel 1
Ruimtemeetkunde deel 1 1 Punten We weten reeds dat Π 0 het meetkundig model is voor de vectorruimte R 2. We definiëren nu op dezelfde manier E 0 als meetkundig model voor de vectorruimte R 3. De elementen
Lijnen en vlakken. Lijnen in het vlak. Aansluitingsproject Wiskunde en Chemisch Rekenen, 6BP00 Wiskunde, 6BP20 Cursus a - b.
Lijnenvlak.nb Lijnen en vlakken Aansluitingsproject Wiskunde en Chemisch Rekenen, 6BP Wiskunde, 6BP Cursus 7-8 Zowel in vlak als in ruimte is de vector BA is gelijk aan de verschilvector a - b. a A a -
ICT. Meetkunde met GeoGebra. 2.7 deel 1 blz 78
ICT Meetkunde met GeoGebra 2.7 deel 1 blz 78 Om de opdrachten van paragraaf 2.7 uit het leerboek te kunnen maken heb je het computerprogramma GeoGebra nodig. Je kunt het programma openen via de leerlingenkit
Kegelsneden. Figuur 1 Figuur 2 PYTHAGORAS FEBRUARI 2015
Kegelsneden Aflevering 1 Ellipsen, parabolen en hyperbolen zijn mooie figuren die in de natuur voorkomen. Denk maar aan een steen die door de lucht vliegt, of een komeet die om de zon beweegt. In de techniek
Appendix Inversie bekeken vanuit een complex standpunt
Bijlage bij Inversie Appendix Inversie bekeken vanuit een complex standpunt In dee paragraaf gaan we op een andere manier kijken naar inversie. We doen dat met behulp van de complexe getallen. We veronderstellen
Ruimtewiskunde. college 3 Lijnen, vlakken en oppervlakken in de ruimte. Vandaag
college 3 Lijnen, vlakken en in de collegejaar : 16-17 college : 3 build : 6 juni 2017 slides : 37 Vandaag 1 Lijnen 2 Vlakken 3 4 Toepassing: perspectivische.16-17[3] 1 vandaag Lijnen in het platte vlak
Laat men ook transversalen toe buiten de driehoek, dan behoren bij één waarde van v 1 telkens twee transversalen l 1 en l 2. Men kan ze onderscheiden
Lesbrief 6 Meetkunde 1 Hoektransversalen in een driehoek ABC is een driehoek. Een lijn l door een hoekpunt A van de driehoek heet een hoektransversaal van A. We zullen onderzoeken onder welke voorwaarden
Vlakke meetkunde en geogebra
Vlakke meetkunde en geogebra Open de geogebra-app. Kies het algebra- en tekenvenster. Aan de linkerkant zie je het algebravenster en rechts daarvan het tekenvenster met een x-as en een y-as. Om een rooster
Junior Wiskunde Olympiade : tweede ronde
Junior Wiskunde Olympiade 2007-2008: tweede ronde 1 Op de figuur stellen de getallen de grootte van de hoeken voor De waarde van x in graden is gelijk aan 2x 90 x 24 (A) 22 (B) 1 (C) (D) 8 (E) 57 2 Welke
Vlaamse Wiskunde Olympiade 2007-2008: tweede ronde
Vlaamse Wiskunde lmpiade 2007-2008: tweede ronde 1 Jef mit cola met whisk in de verhouding 1 : In whisk zit 40% alcohol Wat is het alcoholpercentage van de mi? () 1, (B) 20 (C) 25 () 0 (E) 5 2 ver jaar
Vlakke Meetkunde. Les 20 Nadruk verboden 39. Het construeren van figuren
Vlakke Meetkunde. Les 20 Nadruk verboden 39 20,1. De cirkel Het construeren van figuren Een cirkel of cirkelomtrek is een gesloten kromme lijn, waarvan alle punten in hetzelfde vlak liggen en even ver
Samenvatting stellingen uit de meetkunde Moderne Wiskunde voor het VWO (bovenbouw)
Samenvatting stellingen uit de meetkunde Moderne Wiskunde voor het VWO (bovenbouw) Meetkunde, Moderne Wiskunde, pagina 1/10 Rechthoekige driehoek In een rechthoekige driehoek is een van de hoeken in 90.
27 Macro s voor de schijf van Poincaré
27 Macro s voor de schijf van Poincaré 27.1 Inleiding In het secundair onderwijs zijn leerlingen vertrouwd met de Euclidische meetkunde. In het Euclidisch vlak geldt het beroemde 5 de parallellen postulaat:
Driehoeken. Enkele speciale topics. Arne Smeets. Trainingsweekend Februari 2008
Driehoeken Enkele speciale topics Arne Smeets Trainingsweekend Februari 2008 Trilineaire en barycentrische coördinaten Definitie van trilineaire coördinaten Beschouw (in het vlak) een driehoek ABC en een
Uitwerkingen wizprof D = = B 6 ronden duren 6 minuten en 66 seconden, dus 7 minuten en 6 seconden.
Uitwerkingen wizprof 2019 1. D 20 19 + 20 + 19 = 380 + 20 + 19 = 419 2. B 6 ronden duren 6 minuten en 66 seconden, dus 7 minuten en 6 seconden. 3. E Kijk maar in de spiegel. 4. C Je gooit minimaal 1 +
CEVA-DRIEHOEKEN. Eindwerk wiskunde 2010. Heilige-Drievuldigheidscollege 6WeWIi. Soetemans Dokus
CEVA-DRIEHOEKEN Eindwerk wiskunde 010 Heilige-Drievuldigheidscollege 6WeWIi Soetemans Dokus Inhoud 1. Inleiding... 4 1.1. Info over Giovanni Ceva... 4 1.. Wat zijn Ceva-driehoeken?... 4 1.3. Enkele voorbeelden...
2 1 e x. Vraag 1. Bereken exact voor welke x geldt: f (x) < 0,01. De vergelijking oplossen:
0-II De functie f( ) e Vraag. Bereken eact voor welke geldt: f () < 0,0. De vergelijking oplossen: 0-II De functie f( ) e Vraag. Bereken eact voor welke geldt: f () < 0,0. De vergelijking oplossen: e 00
De vergelijking van Antoine
De vergelijking van Antoine Als een vloeistof een gesloten ruimte niet geheel opvult, dan verdampt een deel van de vloeistof. De damp oefent druk uit op de wanden van de gesloten ruimte: de dampdruk. De
2010-I. A heeft de coördinaten (4 a, 4a a 2 ). Vraag 1. Toon dit aan. Gelijkstellen: y= 4x x 2 A. y= ax
00-I De parabool met vergelijking y = 4x x en de x-as sluiten een vlakdeel V in. De lijn y = ax (met 0 a < 4) snijdt de parabool in de oorsprong en in punt. Zie de figuur. y= 4x x y= ax heeft de coördinaten
Examen HAVO. wiskunde B. tijdvak 2 woensdag 20 juni uur. Bij dit examen hoort een uitwerkbijlage.
Eamen HAV 018 tijdvak woensdag 0 juni 1.0-16.0 uur wiskunde B Bij dit eamen hoort een uitwerkbijlage. Dit eamen bestaat uit 18 vragen. Voor dit eamen zijn maimaal 7 punten te behalen. Voor elk vraagnummer
8.0 Voorkennis. Voorbeeld 1: Bereken het snijpunt van 3x + 2y = 6 en -2x + y = 3
8.0 Voorkennis Voorbeeld 1: Bereken het snijpunt van 3x + 2y = 6 en -2x + y = 3 2x y 3 3 3x 2 y 6 2 Het vermenigvuldigen van de vergelijkingen zorgt ervoor dat in de volgende stap de x-en tegen elkaar
E = mc². E = mc² E = mc² E = mc². E = mc² E = mc² E = mc²
E = mc² E = mc² E = mc² E = mc² E = mc² E = mc² E = mc² E = mc² E = mc² De boom en het stokje staan loodrecht op de grond in het park. De boom is 3 en het stokje 1. Hoe lang is de schaduw van het stokje
Les 1 Kwadraat afsplitsen en Verzamelingen
Vwo 5 / Havo 4 Wis D Hoofdstuk 8 : Complexe getallen Pagina van Les Kwadraat afsplitsen en Verzamelingen Definities Verzamelingen Er zijn verschillende verzamelingen N = Natuurlijke getallen =,2,,.. Z
Vlakke Meetkunde Les 3 Koordenvierhoeken en iso-hoeklijnen
Vlakke Meetkunde Les 3 Koordenvierhoeken en iso-hoeklijnen (Deze les sluit aan bij het paragraaf 3 en 4 van Vlakke Meetkunde van de Wageningse Methode. Vlakke Meetkunde kun je downloaden vanaf de site
Examen VWO. Wiskunde B Profi
Wiskunde B Profi Eamen VW Voorbereidend Wetenschappelijk nderwijs Tijdvak Woensdag 1 juni 13.30 16.30 uur 0 00 Dit eamen bestaat uit 16 vragen. Voor elk vraagnummer is aangegeven hoeveel punten met een
Penrose-betegelingen met Cabri Geometry
[1] Er bestaan veelhoeken waarmee geen regelmatige betegelingen (vlakverdelingen) [1,2] gemaakt kunnen worden. Bekende veelhoeken met die eigenschap zijn de zogenoemde Penrose-tegels, naar Roger Penrose
2: Laat en twee convexe verzamelingen zijn. Laat. Er geldt. Omdat convex is, is de gehele lijn bevat in, dus. Evenzo geldt. Hieruit volgt dat.
CONVEXE MEETKUNDE Pelle Wielinga & Han van der Ven 1. Convexe meetkunde Convexe meetkunde is een tak van de meetkunde die zich bezighoudt met convexe verzamelingen. In de Euclidische ruimte wordt een object
7.0 Voorkennis. Definitie = Een afspraak, die niet bewezen hoeft te worden.
7.0 Voorkennis Definitie = Een afspraak, die niet bewezen hoeft te worden. Voorbeeld definitie: Een gestrekte hoek is een hoek van 180 ; Een rechte hoek is een hoek van 90 ; Een parallellogram is een vierhoek
Driehoeksongelijkheid en Ravi (groep 1)
Driehoeksongelijkheid en Ravi (groep 1) Trainingsdag 3, april 009 Driehoeksongelijkheid Driehoeksongelijkheid Voor drie punten in het vlak A, B en C geldt altijd dat AC + CB AB. Gelijkheid geldt precies
Extra oefeningen wiskunde 3lawe 3wet Transformaties, Stelling van Thales, Homothetie. Meetkunde. Transformaties en Stelling van Thales.
Etra oefeningen wiskunde 3lawe 3wet Transformaties, Stelling van Thales, Homothetie. Meetkunde Transformaties en Stelling van Thales.. Waar of niet waar? a. Het beeld van een rechte door de projectie op
10.0 Voorkennis. y = -4x + 8 is de vergelijking van een lijn. Hier wordt y uitgedrukt in x.
10.0 Voorkennis y = -4x + 8 is de vergelijking van een lijn. Hier wordt y uitgedrukt in x. Algemeen: Van de lijn y = ax + b is de richtingscoëfficiënt a en het snijpunt met de y-as (0, b) y = -4x + 8 kan
Escher in Het Paleis. Wiskundepakket. Oneindigheid
Escher in Het Paleis Wiskundepakket Oneindigheid Oneindigheid Wiskundigen hebben weinig moeite met het begrip oneindigheid. Er zijn bijvoorbeeld oneindig veel getallen, een lijn is oneindig lang en oneindig
in een driehoek zijn de twee korte zijden samen langer dan de derde zijde
Stellingenboekje in een driehoek zijn de twee korte zijden samen langer dan de derde zijde Laat het kind met de latjes voor de geometrie een paars, lichtbruin en een geel latje pakken en hiermee een driehoek
Lijnen van betekenis meetkunde in 2hv
Lijnen van betekenis meetkunde in 2hv Docentenhandleiding bij de DWO-module Lijnen van betekenis Deze handleiding bevat tips voor de docent bij het gebruiken van de module Lijnen van betekenis, een module
Ellips-constructies met Cabri
Ellips-constructies met Cabri 0. Inleiding De meest gebruikte definitie van de ellips luidt: Een ellips is de verzameling van punten () waarvoor de som van de afstanden tot twee vaste punten (F 1 en F,
Opgaven bij Analytische meetkunde in een nieuw jasje
Opgaven bij Analytische meetkunde in een nieuw jasje Opgave 1. Gegeven de lijnen m en n met vectorvoorstellingen 6 8 x = 7 + µ 0. Bepaal de afstand tussen m en n. 16 0 4 x = 2 + λ 1 en Opgave 2. Bewijs
Hoofdstuk 8 : Complexe getallen
1 Hoofdstuk 8 : Complexe getallen Les 1 Kwadraat afsplitsen en Verzamelingen Definities Verzamelingen Er zijn verschillende verzamelingen getallen : (1) N = Natuurlijke getallen = 1,2,3,.. (2) Z = Gehele
De Cirkel van Apollonius en Isodynamische Punten
januari 2008 De Cirkel van Apollonius en Isodynamische Punten Inleiding Eén van de bekendste meetkundige plaatsen is de middelloodlijn van een lijnstuk. Deze lijn bestaat uit alle punten die gelijke afstand
Meer over vlakke krommen
Meer over vlakke krommen Inhoud De kromming van een vlakke kromme De omhullende van een stelsel lijnen 3 Brandkromme van een halve cirkel 4 Eigenschappen van de hyperbolische functies cosh en sinh 5 Kettinglijn
Hoofdstuk 9 - Ruimtemeetkunde
oderne wiskunde 9e editie vwo deel 2 Voorkennis: wee soorten tekeningen ladzijde 254 V-1a d wee lijnen zijn evenwijdig als ze elkaar nooit snijden, hoe ver je de lijnen ook doortrekt. In werkelijkheid
1 Junior Wiskunde Olympiade : tweede ronde
1 Junior Wiskunde Olympiade 005-006: tweede ronde Volgende benaderingen kunnen nuttig zijn bij het oplossen van sommige vragen 1,1 1,71 5,61 π,116 1 ls a a 17 a m = a 006, met a R + \{0, 1}, dan is m gelijk
Eindexamen wiskunde B1-2 vwo 2007-II
ier tappen ij het tappen van bier treden verschillen op in de hoeveelheid bier per glas. Uit onderzoek blijkt dat de hoeveelheid bier die per glas getapt wordt bij benadering normaal verdeeld is met een
Passermeetkunde een bewijs van de stelling van Mohr-Mascheroni. Mascheroni DICK KLINGENS. aaaaa
- 1 Passermeetkunde een bewijs van de stelling van Mohr-Mascheroni Mascheroni DICK KLINGENS 1. Probleemstelling Stelling. Iedere constructie in het euclidische vlak die met passer en liniaal mogelijk is,
Euclidische meetkunde: passer en liniaal vs. vouwen Wat is er allemaal (on)mogelijk?
Euclidische meetkunde: passer en liniaal vs. vouwen Wat is er allemaal (on)mogelijk? 28-6-2014 Universiteit Utrecht Jeroen Nagtegaal (0441872) 2 INHOUDSOPGAVE 0. INLEIDING... 4 HOE MOET JE DIT BOEKJE LEZEN?...
