Team name:solarmatic. Group:AM13. Team members: Thomas Deliens Michaël Op de Beeck Renaud Peeters Tom Salens Jens Sneyers Karel Winderickx.

Maat: px
Weergave met pagina beginnen:

Download "Team name:solarmatic. Group:AM13. Team members: Thomas Deliens Michaël Op de Beeck Renaud Peeters Tom Salens Jens Sneyers Karel Winderickx."

Transcriptie

1 Team name:solarmatic Group:AM13 Team members: Thomas Deliens Michaël Op de Beeck Renaud Peeters Tom Salens Jens Sneyers Karel Winderickx Case SSV 2

2 Daling van helling In Case SSV deel 1 hadden we voorspeld dat de wagen 9.05m verder zou rijden als we de wagen 2 meter de helling af zouden rollen. Na de test te doen in werkelijkheid heeft de wagen 5,72m gereden. Dit resultaat wordt bekomen na enkele testen en daarvan het gemiddelde te nemen( zie tabel). 5,72m is echter veel minder dan voorspeld, dit heeft enkele redenen. Ten eerste moest er ten tijde van de simulatie nog gegokt worden naar de massa en de rolweerstand. Uiteindelijk is onze wagen zwaarder geworden vergeleken met de eerste simulatie, 946 gram ipv 800 gram. Ook hebben we de wielen omgeven meet rubberen elastiekjes, omdat er anders te weinig wrijving/grip had op de baan. Waardoor we bij de minste bijsturing crashten tegen de wand. Bij de nieuwe simulatie hebben we één van de twee onbekende parameters met zekerheid kunnen vaststellen, namelijk het gewicht. Voor de rolweerstand te bepalen zijn we uitgegaan van de afstand die het wagentje in werkelijkheid heeft afgelegd. Na enkele keren simuleren, telkens met een andere rolweerstand, is er een rolweerstand van bekomen. Deze rolweerstand is een benaderende waarde van de echte, want de simulatie houdt geen rekening met bijvoorbeeld het verlies door de tandwielen. meting afstand (m) 1 5,72 2 5,70 3 5,75 4 5,77 5 5,66 gemiddelde 5,72

3 Verbeterde sankey Nu we weten wat het correcte gewicht van het wagentje is en de correcte rolweerstandscoefficient kunnen we het sankey- diagram correct afstellen. Uit het matlab bestand hebben we gezien dat onze maximum snelheid op een oneindig lange baan overeen komt met de snelheid die we behalen op 10 meter. De verbetering gaat dus maar een sankey diagram opleveren. Op de grafiek zien we dat deze snelheid 3.22 m/s bedraagt. Rolweerstand Voor de kracht van de rolweerstand te berekenen hebben we onderstaande formule gebruikt. De coëfficiënt C rr is de coëfficiënt van de rolweerstand. Deze bedraagt in ons geval 0.05 F = m g C!! F = 0.46 N Voor het vermogenverlies van de rolweerstand gebruiken we volgende formule. v max stelt de maximum snelheid voor op de oneindig lange baan. P = F v!"# P = 1.49 W Lagerweerstand De onderstaande formule wordt gebruikt om de verliezen binnen de lagers te berekenen. Hierin stelt f wl de wrijvingscoëfficiënt voor binnen in de lagers. n stelt het aantal lagers voor en dit is in ons geval 4. F!" = f!" m g n v F!" = 0.12 N P = F!" v!"# P = 0.38 W Luchtweerstand Voor de luchtweerstand te berekenen gebruiken we de volgende formule. Hierin bedraagt p (dichtheid van de vloeistof, in dit geval lucht) kg/m³. De coëfficiënt C w stelt de coëfficiënt van de lucht weerstand voor. Deze is vrij moeilijk te bepalen en hebben we gedaan aan de hand van onderstaande tabel (figuur 13).

4 Figuur: gemeten luchtweerstandscoëfficiënten De vorm van onze SSV komt deels overeen met een kubus maar ook deels met halve kegel. We hebben dus een beetje moeten gokken en uiteindelijk 0.75 gekozen. F = 1 2 ρ v! A C! F = N P = F v = 0.32 W Voor het uiteindelijke sankey diagram moeten we besluiten dat de efficientie van het zonnepaneel, de tandwielen en de motor niet is wat we van hen verwachtten. We stellen dat hierin nog onverwacht vermogen kruipt dat e niet hadden kunnen voorspellen. Dit vermogen wordt vanaf hier de onverwachte ineficcientie genoemd.

5 Het diagram

6 Gedeelte sterkteleer Torsie bij vertrek Er zijn 3 momenten die de balk doen torsen. Deze bevinden zich in de punten A, B en C. De motor levert een maximum koppel bij vertrek (hier beweegt de motor as nog niet, dus gebruiken we stall torque ) van 20,7 mnm. Vermits de zonnewagen een gear ratio van 8 heeft zal het koppel dus ook 8x groter zijn aan de achteras. Het moment in punt C bedraagt dus 165,6 mnm. In de berekeningen van het Sankey- diagram zagen we dat het verlies door de tandwielen 2% bedraagt. Hierdoor wordt het moment in punt C gereduceerd tot 162,3 mnm. Vermits beide wielen hetzelfde moment zullen leveren om de motor tegen te werken mogen we het moment overgebracht op de as in punt C delen door 2 om zo de momenten te weten in punten A en B. Ma = Mb = 162,3 2 = 81,15 mnm We maken een aantal sneden zodat we de momenten kunnen berekenen. Snede in AC: M = 0 Mw = 81,15 mnm Snede in CB

7 81,15 162,3 + 𝑀𝑤 = 0 𝑀𝑤 = 81,15 𝑚𝑁𝑚 Nu berekenen we de torsie hoek tussen de punten A, C en B. Hiervoor is het eerst nodig om het oppervlaktetraagheidsmoment te berekenen. De achteras is hol en gemaakt van koper. De binnen- en buitendiameter bedragen respectievelijk 3 en 4 mm. De afstand (L) AC en BC bedraagt respectievelijk 25 mm en 137 mm. De glijmodulus van koper bedraagt 63,4 GPa. I! = 𝜋 𝑅! 𝜋 𝑟! 𝜋 = 0,002! 0,0015! = 1,718 10!!" 𝑚! = 17,18 𝑚𝑚! φ!! φ! =! 𝑀! 𝐿 81,15 10!! 0,025 = = 0, 𝑟𝑎𝑑 = 0,0107 𝐺 𝐼! 63,4 10! 1,718 10!!" = 𝑀! 𝐿 81,15 10!! 0,137 = = 0,00102 𝑟𝑎𝑑 = 0,0584 𝐺 𝐼! 63,4 10! 1,718 10!!" De maximale torsiespanning bedraagt dus: 𝜎! =!!!!! =!",!"!!",!" = 18,894 𝑁 𝑚𝑚² Buiging bij vertrek De achteras van de zonnenwagen kan eenvoudig worden voorgesteld door de balk die men kan zien in figuur hier onder. Hier werken een aantal krachten op in. Met behulp van een weegschaal hebben we de reactiekrachten van de wielen (F1 en F2) op de grond kunnen wegen. Hierbij plaatsen we het wiel van de gewenste kracht op de weegschaal en ondersteunen de rest zodat de zonnewagen perfect horizontaal blijft. De kracht op de wielen is natuurlijk sterk afhankelijk van de positie van het zonnepanneel. Dit is het grootste gewicht van de zonnewagen. Het gewicht van de zonnewagen grijpt aan in de krachten F3, F4 en F5 (de lagers). Het paneel stond licht gedraaid naar het linkse wiel (punt A) dus is het ook normaal dat hier een grotere kracht op zal inwerken. Uit de meting bleek dat het gewicht op punt A en B respectievelijk 380g en 192g bedraagt. Dit resulteert in een kracht van respectievelijk 0,0387N en 0,0196N.

8 Krachten in de xy richting Kracht F3 en F4 staan vrij dicht bij elkaar en hier zal dan ook ongeveer dezelfde kracht op inwerken. Om het rekenen wat te vergemakkelijken nemen we kracht F3 en F4 samen als kracht F34. Later zullen we deze terug opsplitsen en F34 delen door twee voor de krachten F3 en F4. Na het samennemen bekomen we de volgende balk. Krachten F1 en F2 zijn gekend. Nu berekenen we krachten F34 en F5 om het buigdiagram samen te ontwerpen. Fy = 0 F34 + F5 = F1 + F2 F34 + F5 = 0,0583N MoC = 0 0,0196 0,137 F5 0,121 0,0387 0,025 = 0 F5 = 0,0142N

9 F34 = 0,0441N En hieruit volgt dat: F3 = F4 = F34 2 = 0,02205N Snede 1: MoD = 0 M = D x = 0,0387x Snede 2: MoD = 0 M = 0,01665x 0, Snede 3:

10 MoD = 0 M = 0,0054x 0, Snede 4: MoD = 0 M = 0,0196x 0, Dwarskrachtendiagram:

11 Buigmomentendiagram: Krachten in de xz richting Om te bepalen welke krachten er in de xz richting aangrijpen op de achteras moeten we bepalen wat de kracht van de wielen is om de zonnewagen tegen te houden. Dit kunnen we eenvoudig doen door het geleverde moment van de wielen te delen door de straal om zo de kracht te bepalen. F! = 0, ,03 Krachten F1 en F2 stellen beiden de kracht F g voor. = 2,705 N We vereenvoudigen de bovenstaande balk weer door krachten F3 en F4 samen te nemen.

12 Als we dit dan uitwerken: Fz = 0 F34 + F5 = F1 + F2 F34 + F5 = 5,41 N MoC = 0 2,705 0,137 F5 0,121 2,705 0,025 = 0 F5 = 2,5038 N F34 = 2,906 N En hieruit volgt dat: F3 = F4 = F34 2 = 1,453 N Als we te werk gaan zoals bij de vorige methode bekomen we de volgende dwarskrachten en buigmomenten diagrammen. Buigmomenten door de wrijvingskracht (rijdende wagen) Bij een rijdende zonnewagen zullen er uiteraard wrijvingskrachten op treden tussen de grond en de wielen. Deze krachten zullen de as ook doen buigen, maar wel in het xz- vlak.

13 F1 en F2 stellen de wrijvingskrachten voor en zijn respectievelijk 1,935 mn en 0,98 mn. F3, F4 en F5 zijn de reactiekrachten. We nemen F3 en F4 samen zoals in de vorige gevallen en ontbinden deze later. En hieruit volgt dat: Fz = 0 F34 + F5 = F1 + F2 F34 + F5 = 0,002915N MoC = 0 0, ,137 F5 0,121 0, ,025 = 0 F5 = 0,00071N F34 = 0,002205N F3 = F4 = F34 2 = 0, N Snede 1:

14 MoD = 0 M = D x = 0,001935x Snede 2: MoD = 0 M = 0, x 0, Snede 3:

15 MoD = 0 M = 0,00027x 0, Snede 4: MoD = 0 M = 0,00098x 0,000158

16 Maximaal resulterend moment Als we nu in de buigmomenten diagrammen van beiden analyses bekijken waar het grootste moment ligt kunnen we het totale resulterende maximale moment berekenen. In de xy richting zal dit in de kracht F4 plaatsnemen en hier bedraagt het maximale moment 0, Nm. In de xz richting neemt dit opnieuw plaats op F4 en bedraagt het 0, Nm. Als we deze samen tellen met behulp van Pythagoras bekomen we volgend maximaal buigmoment op de as: M = M!" + M!" = 0,06582 Nm Nu we het maximale buigmoment weten kunnen we ook de maximale buigspanning in het materiaal berekenen. In onderstaande formule stelt M y het maximale moment op een maximale afstand y voor. Y is gelijk aan de buitenstraal van de as en telt 4 mm. I p bedraagt zoals eerder berekend 17,18 mm 4. σ! = M! = 0, = 0, N I! 17,18 mm² = 15,325 kn m² Als we nu met behulp van Von Mises de totale spanning berekenen van de as bekomen we het volgende: σ!"#$%&'& = σ!! + σ! ² = 18,894 N mm² De maximale treksterkte van koper ligt tussen de N. Omdat we niet willen dat onze mm² achteras plastisch vervormd kunnen we zeggen dat we tot 80% van deze treksterkte kunnen gaan. Dit is dan de maximale spanning die er kan heersen binnen het materiaal. Omdat we een veilige constructie willen nemen van deze 80% nog eens 75%. σ!"# = 200 0,8 0,75 = 120 N mm² Onze achteras is dus ruim sterk genoeg voor de doeleinden.

17 De botsing Je SSV botst aan maximale snelheid op het vlakke stuk tegen de zijkant van de baan onder een hoek van 10. Wat is de stoot als je uitgaat van een elastische botsing? Hoe lang moet de botsing duren opdat de kracht onder 10 N zou blijven? Gegeven: Gevraagd: Massa SSV = Kg Maximale snelheid = 3.1 m/s Botsing is volledig elastisch è Invalsshoek is even groot als uittreehoek (10 ) è Snelheid wordt behouden Krachtstoot =? Δt opdat F = 10 N? Oplossing: Vraag 1is als volgt op te lossen!! I = F dt = m v!! We nemen dat de kracht die de wand op onze SSV levert constant is. Daardoor kunnen we bovenstaande formule vereenvoudigen tot de volgende: I = F t = m v I = F t = m v = m (v! v! ) Y X Als we de vectoren, v 2 en v 1,uittekenen krijgen we volgende figuur:

18 voor de grootte van de krachtstoot krijgen we: I = Kg 3.1 m s sin m s sin 10 Het plusteken tussen de haakjes wordt bekomen door een dubbele min. De y waarde van v 1 is namelijk negatief. Uitkomst: I = kg m = Ns s Om te weten hoelang de botsing mag duren opdat de kracht niet boven een waarde van 10N gaat gebruiken we volgende formule: I = F t We weten dat de impuls 0.970Ns is en de kracht 10N. Zo blijft voor deze vergelijking maar een onbekende over waardoor deze oplosbaar is. t = s

19 De fietser VrijlichaamsdiagramKinematisch diagram N m v² ρ Fs,m A M*g gg Gegevens: M=72 kg g= 9.81 N/kg ρ = 10 m v= 50 km/h = m/s μ = 0.3 Vergelijkingen: Volgens de y- richting N m g = 0 N = m g = Newton met Fs, m = μ N = μ m g Volgens de x- richting Fs, m = m v! = 1389 Newton ρ Moment rond A (positieve richting met de klok mee) m g d cos α = m v! d sin α ρ tan α = 1 μ

20 Hoek van de fietser tan α = α = N Fs, m = m g!!! De maximale hoek: 1 tan α = 0.3 α = 73.3! De fietser hangt te scheef en zal dus onderuit gaan. Maximale snelheid: N = m g m v! Fs, m = μ m g = ρ v = μ g ρ = 5.42 m s = km h De fietser heeft een snelheid van 50!"! hij zal zijn snelheid dus moeten minderen.

Groep 13 CASE SSV DEEL 2 EE4. Bas Jan Renders Mathijs Tielens Jitse Meulenijzer Alexander Blockhuys Casper Antonio Jan Van Hemelen

Groep 13 CASE SSV DEEL 2 EE4. Bas Jan Renders Mathijs Tielens Jitse Meulenijzer Alexander Blockhuys Casper Antonio Jan Van Hemelen Groep 13 CASE SSV DEEL 2 EE4 Bas Jan Renders Mathijs Tielens Jitse Meulenijzer Alexander Blockhuys Casper Antonio Jan Van Hemelen 0 1. Bevindingen & nieuwe Sankeydiagrammen Als we onze wagen van de helling

Nadere informatie

Case Simulink. Team name: SolarMatic. Group:AM13

Case Simulink. Team name: SolarMatic. Group:AM13 Team name: SolarMatic Group:AM13 Team members: Thomas Deliens Michaël Op de Beeck Renaud Peeters Tom Salens Jens Sneyers Karel Winderickx Case Simulink Weerstandswaarde waarbij het paneel een maximum vermogen

Nadere informatie

Case SSV 1. Team name: SolarMatic. Group: AM13

Case SSV 1. Team name: SolarMatic. Group: AM13 Team name: SolarMatic Group: AM13 Team members: Thomas Deliens Michaël Op de Beeck Renaud Peeters Tom Salens Jens Sneyers Karel Winderickx Case SSV 1 Gegevens sin ( ) = 0,125 𝑀 = 0,8 𝑘𝑔 𝑔 = 9,81 𝐶. 𝜙 =

Nadere informatie

Meting zonnepaneel. Voorbeeld berekening diodefactor: ( ) Als voorbeeld wordt deze formule uitgewerkt bij een spanning van 7 V en 0,76 A:

Meting zonnepaneel. Voorbeeld berekening diodefactor: ( ) Als voorbeeld wordt deze formule uitgewerkt bij een spanning van 7 V en 0,76 A: Meting zonnepaneel Om de beste overbrengingsverhouding te berekenen, moet de diodefactor van het zonnepaneel gekend zijn. Deze wordt bepaald door het zonnepaneel te schakelen aan een weerstand. Een multimeter

Nadere informatie

Case Simulink EE4- Building a SSV - Team PM1 21 maart 2014

Case Simulink EE4- Building a SSV - Team PM1 21 maart 2014 Case Simulink EE4- Building a SSV - Team PM1 21 maart 2014 Inhoudsopgave Inhoudsopgave... 1 Figurenlijst... 1 Inleiding... 2 Gedrag van het zonnepaneel gekoppeld aan een weerstand... 2 Gedrag van de DC-motor

Nadere informatie

Verslag: Case 1 Team: Hyperion

Verslag: Case 1 Team: Hyperion Verslag: Case 1 Team: Hyperion Glenn Sommerfeld Jeroen Vandebroeck Ilias viaene Christophe Vandenhoeck Jelle Smets Tom Wellens Jan Willems Gaetan Rans 1. Zonnepaneel 1.1 Meetwaarden Om de eigenschappen

Nadere informatie

Case 1 en Simulink. 1. Diodefactor bepalen. I = I sc - I s (e!

Case 1 en Simulink. 1. Diodefactor bepalen. I = I sc - I s (e! Case 1 en Simulink 1. Diodefactor bepalen Om de diodefactor te berekenen werden eerst een aantal metingen gedaan met het zonnepaneel en de DC- motor. Er werd een kring gemaakt met het zonnepaneel en een

Nadere informatie

Case SSV Deel 2: PM3

Case SSV Deel 2: PM3 Case SSV Deel 2: PM3 Ontwerp en bouw een SSV Adriaenssens Ben, Billiet Alexander, Crabbé Joris, Rogiers Matthias, Timmerman Willem, Van Coillie Karst Sunshark 9 mei 2014 Sunshark - 9 mei 2014 II ABSTRACT

Nadere informatie

Case 1 en Case simulink

Case 1 en Case simulink Team Venture Groep AM12 E E 4 B u i l d i n g a s s v Voorbereid voor: Marc Smeulders Voorbereid door: Anton Rauw Jasper Derden Alexander Van Kerckhoven Yassir Habboub Felix Porres Bartel Buls Datum: 22-03

Nadere informatie

De bisectie methode uitgelegd met een makkelijk voorbeeld

De bisectie methode uitgelegd met een makkelijk voorbeeld De Bisectie methode De bisectie methode uitgelegd met een makkelijk voorbeeld De bisectie methode is een recursieve methode om punten van een functie te gaan afschatten. Hierbij gaat men de functiewaarde

Nadere informatie

Simulink. Deel1. Figuur 1 Model van het zonnepaneel in Simulink.

Simulink. Deel1. Figuur 1 Model van het zonnepaneel in Simulink. Simulink Deel1 In dit deel van het ontwerp simuleren we het gedrag van onze zonnepanneel bij weerstanden tussen 10 Ohm en 100 Ohm. Een beeld van hoe het model in Simulink is opgesteld is in figuur 1 opgenomen.

Nadere informatie

=0.327W Dit verlies komt overeen met een verlies van ongeveer 6.8%. =0.688W Dit verlies komt overeen met een verlies van ongeveer 14.33%.

=0.327W Dit verlies komt overeen met een verlies van ongeveer 6.8%. =0.688W Dit verlies komt overeen met een verlies van ongeveer 14.33%. Sankey-diagram Er wordt vertrokken van een beginsituatie waarbij er zonne-energie invalt op het. Het vermogen dat hierbij verkregen wordt kan aan de hand van het piekvermogen van het zonnepaneel (1000W/m²)

Nadere informatie

Case Simulink. Team PM 12: Joris Brankaer Arne Vanderlinden Jens Noë Carl Uydens Tom Vranckx Ben Eisenberg. 2e bac groep 11

Case Simulink. Team PM 12: Joris Brankaer Arne Vanderlinden Jens Noë Carl Uydens Tom Vranckx Ben Eisenberg. 2e bac groep 11 Case Simulink Team PM 12: Joris Brankaer Arne Vanderlinden Jens Noë Carl Uydens Tom Vranckx Ben Eisenberg 2e bac groep 11 22 maart 2013 Inleiding In deze Simulink case wordt het gedrag van onze SSV gesimuleerd

Nadere informatie

- KLAS 5. a) Bereken de hellingshoek met de horizontaal. (2p) Heb je bij a) geen antwoord gevonden, reken dan verder met een hellingshoek van 15.

- KLAS 5. a) Bereken de hellingshoek met de horizontaal. (2p) Heb je bij a) geen antwoord gevonden, reken dan verder met een hellingshoek van 15. NATUURKUNDE - KLAS 5 PROEFWERK H6 22-12-10 Het proefwerk bestaat uit 3 opgaven met in totaal 31 punten. Gebruik van BINAS en grafische rekenmachine is toegestaan. Opgave 1: De helling af (16p) Een wielrenner

Nadere informatie

VAK: natuurkunde KLAS: Havo 4 DATUM: 20 juni 2013. TIJD: 10.10 11.50 uur TOETS: T1 STOF: Hfd 1 t/m 4. Opmerkingen voor surveillant XXXXXXXXXXXXXXXXXXX

VAK: natuurkunde KLAS: Havo 4 DATUM: 20 juni 2013. TIJD: 10.10 11.50 uur TOETS: T1 STOF: Hfd 1 t/m 4. Opmerkingen voor surveillant XXXXXXXXXXXXXXXXXXX VAK: natuurkunde KLAS: Havo 4 DATUM: 20 juni 2013 TIJD: 10.10 11.50 uur TOETS: T1 STOF: Hfd 1 t/m 4 Toegestane hulpmiddelen: Binas + (gr) rekenmachine Bijlagen: 2 blz Opmerkingen voor surveillant XXXXXXXXXXXXXXXXXXX

Nadere informatie

Uitwerkingen opgaven hoofdstuk 4

Uitwerkingen opgaven hoofdstuk 4 Uitwerkingen opgaven hoofdstuk 4 4.1 De eerste wet van Newton Opgave 7 Opgave 8 a F zw = m g = 45 9,81 = 4,4 10 N b De zwaartekracht werkt verticaal. Er is geen verticale beweging. Er moet dus een tweede

Nadere informatie

RBEID 16/5/2011. Een rond voorwerp met een massa van 3,5 kg hangt stil aan twee touwtjes (zie bijlage figuur 2).

RBEID 16/5/2011. Een rond voorwerp met een massa van 3,5 kg hangt stil aan twee touwtjes (zie bijlage figuur 2). HOOFDSTUK OOFDSTUK 4: K NATUURKUNDE KLAS 4 4: KRACHT EN ARBEID RBEID 16/5/2011 Totaal te behalen: 33 punten. Gebruik eigen grafische rekenmachine en BINAS toegestaan. Opgave 0: Bereken op je rekenmachine

Nadere informatie

Productontwikkeling 3EM

Productontwikkeling 3EM Vragen Productontwikkeling 3EM Les 10 Sterkteleer (deel 3) Zijn er nog vragen over voorgaande lessen?? Paul Janssen 2 Schuifspanning Schuifspanning Schuifspanning (afschuiving) Dwarskrachten of afschuifkrachten

Nadere informatie

VAK: Mechanica - Sterkteleer HWTK

VAK: Mechanica - Sterkteleer HWTK VAK: Mechanica - Sterkteleer HWTK Proeftoets Beschikbare tijd: 100 minuten Instructies voor het invullen van het antwoordblad. 1. Dit open boek tentamen bestaat uit 10 opgaven.. U mag tijdens het tentamen

Nadere informatie

4. Maak een tekening:

4. Maak een tekening: . De versnelling van elk deel van de trein is hetzelfde, dus wordt de kracht op de koppeling tussen de 3e en 4e wagon bepaald door de fractie van de massa die er achter hangt, en wordt dus gegeven door

Nadere informatie

Het berekenen van de componenten: Gebruik maken van sinus, cosinus, tangens en/of de stelling van Pythagoras. Zie: Rekenen met vectoren.

Het berekenen van de componenten: Gebruik maken van sinus, cosinus, tangens en/of de stelling van Pythagoras. Zie: Rekenen met vectoren. 3.1 + 3.2 Kracht is een vectorgrootheid Kracht is een vectorgrootheid 1 : een grootheid met een grootte én een richting. Bij het tekenen van een krachtpijl geldt: De pijl begint in het aangrijpingspunt

Nadere informatie

Eindexamen natuurkunde 1-2 vwo 2007-I

Eindexamen natuurkunde 1-2 vwo 2007-I Opgave 5 Kanaalspringer Lees onderstaand artikel en bekijk figuur 5. Sprong over Het Kanaal Stuntman Felix Baumgartner is er als eerste mens in geslaagd om over Het Kanaal te springen. Hij heeft zich boven

Nadere informatie

Procesverslag. Inleiding. Planning

Procesverslag. Inleiding. Planning Procesverslag Inleiding Dit verslag dient vooral om te bespreken hoe we zelf alles ervaren hebben. In het begin van ons project hebben we een hele planning gemaakt waarin staat wie welke verantwoordelijkheden

Nadere informatie

Naam van de kracht: Uitleg: Afkorting: Spierkracht De kracht die wordt uitgeoefend door spieren van de mens. F spier

Naam van de kracht: Uitleg: Afkorting: Spierkracht De kracht die wordt uitgeoefend door spieren van de mens. F spier Samenvatting door F. 823 woorden 3 maart 2015 7,4 32 keer beoordeeld Vak NaSk Sport, kracht en beweging 1 Naam van de kracht: Uitleg: Afkorting: Spierkracht De kracht die wordt uitgeoefend door spieren

Nadere informatie

Auteur(s): Harry Oonk Titel: In de afdaling Jaargang: 10 Jaartal: 1992 Nummer: 2 Oorspronkelijke paginanummers: 67-76

Auteur(s): Harry Oonk Titel: In de afdaling Jaargang: 10 Jaartal: 1992 Nummer: 2 Oorspronkelijke paginanummers: 67-76 Auteur(s): Harry Oonk Titel: In de afdaling Jaargang: 10 Jaartal: 1992 Nummer: 2 Oorspronkelijke paginanummers: 67-76 Deze online uitgave mag, onder duidelijke bronvermelding, vrij gebruikt worden voor

Nadere informatie

E E 4 B u i l d i n g a s s v

E E 4 B u i l d i n g a s s v Docent: Marc Smeulders Team Venture (AM 12): Anton Rauws Jasper Derden Bartel Buls Felix Porres Alexander Van Kerckhoven YassirHabboub Datum: 9/05/2013 E E B u i l d i n g a s s v Inhoudstafel Case SSV,

Nadere informatie

[ENGINEERING EXPERIENCE 4: CASE SSV] Bachelor in de Industriële Wetenschappen 2de fase

[ENGINEERING EXPERIENCE 4: CASE SSV] Bachelor in de Industriële Wetenschappen 2de fase 2012-2013 Internationale Hogeschool Leuven Engineering College Groep T Joeri Alles Tijs Eysermans Anja Verledens Julien Haumont Bas Van Loo Maximiliaan Vanackere [ENGINEERING EXPERIENCE 4: CASE SSV] Bachelor

Nadere informatie

jaar: 1989 nummer: 25

jaar: 1989 nummer: 25 jaar: 1989 nummer: 25 Op een hoogte h 1 = 3 m heeft een verticaal vallend voorwerp, met een massa m = 0,200 kg, een snelheid v = 12 m/s. Dit voorwerp botst op een horizontale vloer en bereikt daarna een

Nadere informatie

a. Bepaal hoeveel langer. b. Bepaal met figuur 1 de snelheid waarmee de parachutist neerkomt.

a. Bepaal hoeveel langer. b. Bepaal met figuur 1 de snelheid waarmee de parachutist neerkomt. Deze examentoets en uitwerkingen vind je op www.agtijmensen.nl Bij het et krijg je in 100 minuten ongeveer 22 vragen Et3 stof vwo6 volgens het PTA: Onderwerpen uit samengevat: Rechtlijnige beweging Kracht

Nadere informatie

De hoogte tijd grafiek is ook gegeven. d. Bepaal met deze grafiek de grootste snelheid van de vuurpijl.

De hoogte tijd grafiek is ook gegeven. d. Bepaal met deze grafiek de grootste snelheid van de vuurpijl. et1-stof Havo4: havo4 A: hoofdstuk 1 t/m 4 Deze opgaven en uitwerkingen vind je op www.agtijmensen.nl Bij het et krijg je in 1 minuten ongeveer deelvragen. Oefen-examentoets et-1 havo 4 1/11 1. Een lancering.

Nadere informatie

Examen mechanica: oefeningen

Examen mechanica: oefeningen Examen mechanica: oefeningen 22 februari 2013 1 Behoudswetten 1. Een wielrenner met een massa van 80 kg (inclusief de fiets) kan een helling van 4.0 afbollen aan een constante snelheid van 6.0 km/u. Door

Nadere informatie

jaar: 1990 nummer: 06

jaar: 1990 nummer: 06 jaar: 1990 nummer: 06 In een wagentje zweeft een ballon aan een koord en hangt een metalen kogel via een touw aan het dak (zie figuur). Het wagentje versnelt in de richting en in de zin aangegeven door

Nadere informatie

Leerstof: Hoofdstukken 1, 2, 4, 9 en 10. Hulpmiddelen: Niet grafische rekenmachine, binas 6 de druk. Let op dat je alle vragen beantwoordt.

Leerstof: Hoofdstukken 1, 2, 4, 9 en 10. Hulpmiddelen: Niet grafische rekenmachine, binas 6 de druk. Let op dat je alle vragen beantwoordt. Oefentoets Schoolexamen 5 Vwo Natuurkunde Leerstof: Hoofdstukken 1, 2, 4, 9 en 10 Tijdsduur: Versie: A Vragen: Punten: Hulpmiddelen: Niet grafische rekenmachine, binas 6 de druk Opmerking: Let op dat je

Nadere informatie

Mechanica - Sterkteleer - HWTK PROEFTOETS versie C - OPGAVEN en UITWERKINGEN.doc 1/16

Mechanica - Sterkteleer - HWTK PROEFTOETS versie C - OPGAVEN en UITWERKINGEN.doc 1/16 VAK: Mechanica - Sterkteleer HWTK Set Proeftoets 07-0 versie C Mechanica - Sterkteleer - HWTK PROEFTOETS- 07-0-versie C - OPGAVEN en UITWERKINGEN.doc 1/16 DIT EERST LEZEN EN VOORZIEN VAN NAAM EN LEERLINGNUMMER!

Nadere informatie

Mechanica - Sterkteleer - HWTK PROEFTOETS- AT1 - OPGAVEN 1/6

Mechanica - Sterkteleer - HWTK PROEFTOETS- AT1 - OPGAVEN 1/6 VAK: Mechanica - Sterkteleer HWTK Set Proeftoets - AT1 Mechanica - Sterkteleer - HWTK PROEFTOETS- AT1 - OPGAVEN 1/6 DIT EERST LEZEN EN VOORZIEN VAN NAAM EN LEERLINGNUMMER! Beschikbare tijd: 100 minuten

Nadere informatie

a. Bepaal hoeveel langer. b. Bepaal met figuur 1 de snelheid waarmee de parachutist neerkomt.

a. Bepaal hoeveel langer. b. Bepaal met figuur 1 de snelheid waarmee de parachutist neerkomt. Deze examentoets en uitwerkingen vind je op www.agtijmensen.nl Bij het et krijg je in 100 minuten ongeveer 22 vragen Et3 stof vwo6 volgens het PTA: Onderwerpen uit samengevat: Rechtlijnige beweging Kracht

Nadere informatie

Hoofdstuk 3 Kracht en beweging. Gemaakt als toevoeging op methode Natuurkunde Overal

Hoofdstuk 3 Kracht en beweging. Gemaakt als toevoeging op methode Natuurkunde Overal Hoofdstuk 3 Kracht en beweging Gemaakt als toevoeging op methode Natuurkunde Overal 3.1 Soorten krachten Twee soorten grootheden Scalars - Grootte - Eenheid Vectoren - Grootte - Eenheid - Richting Bijvoorbeeld:

Nadere informatie

Hoofdstuk 3 Kracht en beweging. Gemaakt als toevoeging op methode Natuurkunde Overal

Hoofdstuk 3 Kracht en beweging. Gemaakt als toevoeging op methode Natuurkunde Overal Hoofdstuk 3 Kracht en beweging Gemaakt als toevoeging op methode Natuurkunde Overal 3.1 Soorten krachten Twee soorten grootheden Scalars - Grootte - Eenheid Vectoren - Grootte - Eenheid - Richting Bijvoorbeeld:

Nadere informatie

NATUURKUNDE. Figuur 1

NATUURKUNDE. Figuur 1 NATUURKUNDE KLAS 5 PROEFWERK HOOFDSTUK 12-13: KRACHT EN BEWEGING OOFDSTUK 12-13: K 6/7/2009 Deze toets bestaat uit 5 opgaven (51 + 4 punten) en een uitwerkbijlage. Gebruik eigen grafische rekenmachine

Nadere informatie

Theorie: Snelheid (Herhaling klas 2)

Theorie: Snelheid (Herhaling klas 2) Theorie: Snelheid (Herhaling klas 2) Snelheid en gemiddelde snelheid Met de grootheid snelheid geef je aan welke afstand een voorwerp in een bepaalde tijd aflegt. Over een langere periode is de snelheid

Nadere informatie

ATWOOD Blok A en blok B zijn verbonden door een koord dat over een katrol hangt. Er is geen wrijving in de katrol. Het stelsel gaat bewegen.

ATWOOD Blok A en blok B zijn verbonden door een koord dat over een katrol hangt. Er is geen wrijving in de katrol. Het stelsel gaat bewegen. ATWOOD Blok A en blok B zijn verbonden door een koord dat over een katrol hangt. Er is geen wrijving in de katrol. Het stelsel gaat bewegen. Bereken de spankracht in het koord. ATWOOD Over een katrol hangt

Nadere informatie

S3 Oefeningen Krachtenleer Hoofdstuk II II-3. II-3 Grafisch: 1cm. II-3 Analytisch. Sinusregel: R F 1

S3 Oefeningen Krachtenleer Hoofdstuk II II-3. II-3 Grafisch: 1cm. II-3 Analytisch. Sinusregel: R F 1 S3 Oefeningen Krachtenleer Hoofdstuk II II-3 Bepaal grafisch en analytisch de richting en grootte van de resultante, in volgende gevallen; F 1 = 4 kn F = 7 kn : 1) α = 30 ) α = 45 F 1 3) α = 90 α 4) α

Nadere informatie

Decremer Wim Smits Floris Van der Zee Alexander Vandenbrande Jasper Veulemans Jens

Decremer Wim Smits Floris Van der Zee Alexander Vandenbrande Jasper Veulemans Jens i Teamleden: 19 maart 13 Aendekerk Jef Decremer Wim Smits Floris Van der Zee Alexander Vandenbrande Jasper Veulemans Jens i ii Geschreven voor N. Dekeyser Teamleden: 19 Maart 13 Aendekerk Jef Decremer

Nadere informatie

IJkingstoets Wiskunde-Informatica-Fysica september 2018: algemene feedback

IJkingstoets Wiskunde-Informatica-Fysica september 2018: algemene feedback IJkingstoets wiskunde-informatica-fysica september 8 - reeks - p. IJkingstoets Wiskunde-Informatica-Fysica september 8: algemene feedback Positionering ten opzichte van andere deelnemers In totaal namen

Nadere informatie

jaar: 1989 nummer: 17

jaar: 1989 nummer: 17 jaar: 1989 nummer: 17 De snelheidscomponent van een deeltje voldoet aan : v x = a x t, waarin a x constant is en negatief. De plaats van het deeltje wordt voorgesteld door x. Aangenomen wordt dat x= 0

Nadere informatie

Bepaal k met behulp van de grafiek. Geef de uitkomst in twee significante cijfers.

Bepaal k met behulp van de grafiek. Geef de uitkomst in twee significante cijfers. Natuurkunde Havo 1999-II Opgave 1 Fietser Bij het fietsen speelt wrijving een belangrijke rol. In de grafiek van figuur 1 is de grootte van de totale wrijvingskracht uitgezet tegen de snelheid waarmee

Nadere informatie

2011-2012 [EE4: CASE SSV]

2011-2012 [EE4: CASE SSV] 2011-2012 Internationale Hogeschool Leuven Engineering College Groep T Sus Benoit, Zeger Boels, Sam Laermans, Joris Vandebosch, Sander Vanvuchelen, Jason Verheulpen, Raphaël Weuts, Lennert Wouters [EE4:

Nadere informatie

Eindexamen havo natuurkunde pilot 2013-I

Eindexamen havo natuurkunde pilot 2013-I Eindexamen havo natuurkunde pilot 203-I Beoordelingsmodel Opgave Radontherapie maximumscore 2 Uit de figuur blijkt dat door het verval een kern ontstaat met twee protonen en in totaal vier nucleonen minder

Nadere informatie

Eindexamen natuurkunde vwo II

Eindexamen natuurkunde vwo II Eindexamen natuurkunde vwo 00 - II Beoordelingsmodel Opgave Sopraansaxofoon maximumscore 4 uitkomst: F d = 7, N voorbeeld van een bepaling: Er geldt: Fr z z= Fr d d. Opmeten in de figuur levert: rz =,7

Nadere informatie

OEFENEN SNELHEID EN KRACHTEN VWO 3 Na Swa

OEFENEN SNELHEID EN KRACHTEN VWO 3 Na Swa v (m/s) OEFENEN SNELHEID EN KRACHTEN VWO 3 Na Swa Moeite met het maken van s-t en v-t diagrammen?? Doe mee, werk de vragen uit en gebruik je gezonde verstand en dan zul je zien dat het allemaal niet zo

Nadere informatie

Uitwerkingen van 3 klas NOVA natuurkunde hoofdstuk 6 arbeid en zo

Uitwerkingen van 3 klas NOVA natuurkunde hoofdstuk 6 arbeid en zo Uitwerkingen van 3 klas NOVA natuurkunde hoofdstuk 6 arbeid en zo 1 Arbeid verrichten 1 a) = 0 b) niet 0 en in de richting van de beweging c) =0 d) niet 0 e tegengesteld aan de beweging 2 a) De wrijvingskracht

Nadere informatie

www. Fysica 1997-1 Vraag 1 Een herdershond moet een kudde schapen, die over haar totale lengte steeds 50 meter lang blijft, naar een 800 meter verderop gelegen schuur brengen. Door steeds van de kop van

Nadere informatie

zwaartekracht (N of kn) Dus moeten we Fz bepalen dat kan alleen als we de massa weten. Want

zwaartekracht (N of kn) Dus moeten we Fz bepalen dat kan alleen als we de massa weten. Want Sterkteberekening Dissel berekenen op afschuiving. Uitleg over de methode Om de dissel te berekenen op afschuiving moet men weten welke kracht de trekker kan uitoefenen op de bloemkoolmachine. Daarvoor

Nadere informatie

IJkingstoets Wiskunde-Informatica-Fysica 29 juni Nummer vragenreeks: 1

IJkingstoets Wiskunde-Informatica-Fysica 29 juni Nummer vragenreeks: 1 IJkingstoets Wiskunde-Informatica-Fysica 29 juni 206 Nummer vragenreeks: IJkingstoets wiskunde-informatica-fysica 29 juni 206 - reeks - p. /0 Oefening Welke studierichting wil je graag volgen? (vraag

Nadere informatie

Krachten (4VWO) www.betales.nl

Krachten (4VWO) www.betales.nl www.betales.nl Grootheden Scalairen Vectoren - Grootte - Eenheid - Grootte - Eenheid - Richting Bv: m = 987 kg x = 10m (x = plaats) V = 3L Bv: F = 17N s = Δx (verplaatsing) v = 2km/h Krachten optellen

Nadere informatie

Vraag Antwoord Scores. 1 maximumscore 2 De staplengte is 1600 : 2754 1 De staplengte is 0,580 meter, dit is 58 (cm) (of 0,58 meter) 1

Vraag Antwoord Scores. 1 maximumscore 2 De staplengte is 1600 : 2754 1 De staplengte is 0,580 meter, dit is 58 (cm) (of 0,58 meter) 1 Eindexamen wiskunde vmbo gl/tl 00 - I Beoordelingsmodel Stappenteller maximumscore De staplengte is 600 : 754 De staplengte is 0,580 meter, dit is 58 (cm) ( 0,58 meter) Als het antwoord in meters gegeven

Nadere informatie

Opgave 1 Afdaling. Opgave 2 Fietser

Opgave 1 Afdaling. Opgave 2 Fietser Opgave 1 Afdaling Een skiër daalt een 1500 m lange helling af, het hoogteverschil is 300 m. De massa van de skiër, inclusief de uitrusting, is 86 kg. De wrijvingskracht met de sneeuw is gemiddeld 4,5%

Nadere informatie

Eindexamen natuurkunde 1-2 compex vwo I

Eindexamen natuurkunde 1-2 compex vwo I Eindexamen natuurkunde -2 compex vo 2009 - I Beoordelingsmodel Opgave Mondharmonica maximumscore 3 voorbeeld van een antoord: In figuur 3 zijn minder trillingen te zien dan in figuur 2. De frequentie in

Nadere informatie

IJkingstoets burgerlijk ingenieur-architect september 2018: feedback deel wiskunde

IJkingstoets burgerlijk ingenieur-architect september 2018: feedback deel wiskunde IJkingstoets burgerlijk ingenieur-architect september 8: feedback deel wiskunde Positionering ten opzichte van andere deelnemers In totaal namen 5 studenten deel aan de ijkingstoets burgerlijk ingenieur-architect

Nadere informatie

IJkingstoets burgerlijk ingenieur-architect september 2018: feedback deel wiskunde

IJkingstoets burgerlijk ingenieur-architect september 2018: feedback deel wiskunde IJkingstoets burgerlijk ingenieur-architect september 8: feedback deel wiskunde Positionering ten opzichte van andere deelnemers In totaal namen 5 studenten deel aan de ijkingstoets burgerlijk ingenieur-architect

Nadere informatie

Q l = 23ste Vlaamse Fysica Olympiade. R s. ρ water = 1, kg/m 3 ( ϑ = 4 C ) Eerste ronde - 23ste Vlaamse Fysica Olympiade 1

Q l = 23ste Vlaamse Fysica Olympiade. R s. ρ water = 1, kg/m 3 ( ϑ = 4 C ) Eerste ronde - 23ste Vlaamse Fysica Olympiade 1 Eerste ronde - 3ste Vlaamse Fysica Olympiade 3ste Vlaamse Fysica Olympiade Eerste ronde. De eerste ronde van deze Vlaamse Fysica Olympiade bestaat uit 5 vragen met vier mogelijke antwoorden. Er is telkens

Nadere informatie

Oefenopgaven versnelling, kracht, arbeid. Werk netjes en nauwkeurig. Geef altijd berekeningen met Gegeven Gevraagd Formule Berekening Antwoord

Oefenopgaven versnelling, kracht, arbeid. Werk netjes en nauwkeurig. Geef altijd berekeningen met Gegeven Gevraagd Formule Berekening Antwoord Oefenopgaven versnelling, kracht, arbeid Werk netjes en nauwkeurig. Geef altijd berekeningen met Gegeven Gevraagd Formule Berekening Antwoord Noteer bij je antwoord de juiste eenheid. s = v * t s = afstand

Nadere informatie

Mechanica van Materialen: Voorbeeldoefeningen uit de cursus

Mechanica van Materialen: Voorbeeldoefeningen uit de cursus Mechanica van Materialen: Voorbeeldoefeningen uit de cursus Hoofdstuk 1 : Krachten, spanningen en rekken Voorbeeld 1.1 (p. 11) Gegeven is een vakwerk met twee steunpunten A en B. Bereken de reactiekrachten/momenten

Nadere informatie

MECHANICAII FLUIDO 55

MECHANICAII FLUIDO 55 MECHANICAII FLUIDO 55 Figuur (3.4): De atmosferische druk hoeft niet in rekening te worden gebracht aangezien ze in alle richtingen werkt. Opmerking 3: In sommige gevallen dient met een controlevolume

Nadere informatie

Mkv Dynamica. 1. Bereken de versnelling van het wagentje in de volgende figuur. Wrijving is te verwaarlozen. 10 kg

Mkv Dynamica. 1. Bereken de versnelling van het wagentje in de volgende figuur. Wrijving is te verwaarlozen. 10 kg Mkv Dynamica 1. Bereken de versnelling van het wagentje in de volgende figuur. Wrijving is te verwaarlozen. 10 kg 2 /3 g 5 /6 g 1 /6 g 1 /5 g 2 kg 2. Variant1: Een wagentje met massa m1

Nadere informatie

Wiskunde krachten als vectoren oefeningensessie 1 Bron: Wiskunde in de bouw Jos Ariëns, Daniël Baldé

Wiskunde krachten als vectoren oefeningensessie 1 Bron: Wiskunde in de bouw Jos Ariëns, Daniël Baldé Wiskunde krachten als vectoren oefeningensessie 1 Bron: Wiskunde in de bouw Jos Ariëns, Daniël Baldé Oefening 1 Een groot nieuw brugdek van 40m lang moet over een rivier geplaatst worden. Eén kraan alleen

Nadere informatie

Gegeven de starre balk in figuur 1. Op het gedeelte A D werkt een verdeelde belasting waarvoor geldt: Figuur 1: Opgave 1.

Gegeven de starre balk in figuur 1. Op het gedeelte A D werkt een verdeelde belasting waarvoor geldt: Figuur 1: Opgave 1. Universiteit Twente Faculteit Construerende Technische Wetenschappen Opleidingen Werktuigbouwkunde & Industrieel Ontwerpen Kenmerk: CTW.3/TM-573 ONDERDEEL : Statica DATUM : 5 november 03 TIJD : 3:45 5:30

Nadere informatie

Eindexamen vwo natuurkunde 2013-I

Eindexamen vwo natuurkunde 2013-I Eindexamen vwo natuurkunde 03-I Beoordelingsmodel Opgave Sprint maximumscore De snelheid is constant omdat het (s,t)-diagram (vanaf 4 seconde) een rechte lijn is. De snelheid is gelijk aan de helling van

Nadere informatie

Samenvatting snelheden en 6.1 6.3

Samenvatting snelheden en 6.1 6.3 Samenvatting snelheden en 6.1 6.3 Boekje snelheden en bewegen Een beweging kan je op verschillende manieren vastleggen: Fotograferen met tussenpozen, elke foto is een gedeelte van een beweging Stroboscopische

Nadere informatie

Statica (WB) college 12 Friction Ch Guido Janssen

Statica (WB) college 12 Friction Ch Guido Janssen Statica (WB) college 12 Friction Ch. 8.1-8.4 Guido Janssen G.c.a.m.janssen@tudelft.nl Droge wrijving i.t.t. smering Wrijving werkt de beweging tegen van twee voorwerpen die over elkaar glijden. Wrijving

Nadere informatie

SAMENSTELLEN EN ONTBINDEN VAN SNIJDENDE KRACHTEN

SAMENSTELLEN EN ONTBINDEN VAN SNIJDENDE KRACHTEN II - 1 HOODSTUK SAMENSTELLEN EN ONTBINDEN VAN SNIJDENDE KRACHTEN Snijdende (of samenlopende) krachten zijn krachten waarvan de werklijnen door één punt gaan..1. Resultante van twee snijdende krachten Het

Nadere informatie

Bouwverslag SSV: Team Small Solar 25/03/11

Bouwverslag SSV: Team Small Solar 25/03/11 Team Small Solar 25/03/11 Bouwverslag SSV: Bij de bouw van een SSV moeten allerlei moeilijke beslissingen gemaakt worden. Deze keuzes kunnen de uitkom van de race beïnvloeden dus het maken van de juiste

Nadere informatie

Samenvatting Natuurkunde Natuurkunde Samenvatting NOVA 3 vwo

Samenvatting Natuurkunde Natuurkunde Samenvatting NOVA 3 vwo Samenvatting Natuurkunde Natuurkunde Samenvatting NOVA 3 vwo Samenvatting door N. 1441 woorden 9 oktober 2012 7,6 27 keer beoordeeld Vak Methode Natuurkunde Nova PARAGRAAF 1; KRACHT Krachten herkennen

Nadere informatie

Tentamen Mechanica ( )

Tentamen Mechanica ( ) Tentamen Mechanica (20-12-2006) Achter iedere opgave is een indicatie van de tijdsbesteding in minuten gegeven. correspondeert ook met de te behalen punten, in totaal 150. Gebruik van rekenapparaat en

Nadere informatie

Vraag Antwoord Scores. Aan het juiste antwoord op een meerkeuzevraag wordt 1 scorepunt toegekend.

Vraag Antwoord Scores. Aan het juiste antwoord op een meerkeuzevraag wordt 1 scorepunt toegekend. Beoordelingsmodel Aan het juiste antwoord op een meerkeuzevraag wordt scorepunt toegekend. Opgave SPECT-CT-scan B maximumscore 3 antwoord: 99 99 Mo Tc + 0 e + ( γ) of 99 99 Mo Tc + e + ( γ ) 4 43 het elektron

Nadere informatie

HAVO & VHBO 1995 Natuurkunde tijdvak 1

HAVO & VHBO 1995 Natuurkunde tijdvak 1 2 2 1 uitkomst: 1,2 10 2 W 1 gebruik van P = I 2 R 3 3 2 uitkomst: 2,9 10 2 A 1 gebruik van P p = P s 1 gebruik van P = VI 3 3 3 uitkomst: 2,5 h 1 berekenen laadvermogen 1 gebruik van U = Pt 2 2 4 uitkomst:

Nadere informatie

Tentamen Toegepaste elasticiteitsleer (4A450)

Tentamen Toegepaste elasticiteitsleer (4A450) Tentamen Toegepaste elasticiteitsleer (4A450) Datum: 3 juni 003 Tijd: 4:00 7:00 uur Locatie: Hal Matrixgebouw Dit tentamen bestaat uit drie opgaven. Het gebruik van het dictaat, oefeningenbundel en notebook

Nadere informatie

Statica & Sterkteleer 1. Statica en Sterkteleer: Voorkennis:

Statica & Sterkteleer 1. Statica en Sterkteleer: Voorkennis: Statica & Sterkteleer 1 Statica en Sterkteleer: Voorkennis: Statica & Sterkteleer 2 Statica & Sterkteleer 3 Stappenplan bij een krachtenveelhoek: Statica & Sterkteleer 4 F1 = 10 N F2 = 15 N F3 = 26 N F4

Nadere informatie

Een kogel die van een helling afrolt, ondervindt een constante versnelling. Deze versnelling kan berekend worden met de formule:

Een kogel die van een helling afrolt, ondervindt een constante versnelling. Deze versnelling kan berekend worden met de formule: Voorbeeldmeetrapport (eenparig versnelde beweging stopwatch en meetlat) Eenparig versnelde beweging stopwatch en meetlat. Doel van de proef Een kogel die van een helling afrolt, voert een eenparig versnelde

Nadere informatie

Inleiding kracht en energie 3hv

Inleiding kracht en energie 3hv Inleiding kracht en energie 3hv Opdracht 1. Wat doen krachten? Leg uit wat krachten kunnen doen. Opdracht 2. Grootheden en eenheden. Vul in: Grootheid Eenheid Andere eenheid Naam Symbool Naam Symbool Naam

Nadere informatie

Construeren III: opdracht B Groep B Docent: Bert Broeren

Construeren III: opdracht B Groep B Docent: Bert Broeren Construeren III: opdracht B Groep B Docent: Bert Broeren Vermogen gebruiker Om er achter te komen hoeveel vermogen de persoon kan leveren tijdens het vluchten op de vluchtvoertuig is er gekeken naar een

Nadere informatie

natuurkunde havo 2017-II

natuurkunde havo 2017-II Aan het juiste antwoord op een meerkeuzevraag wordt scorepunt toegekend. Panfluit maximumscore In de buis bevinden zich longitudinale geluidsgolven met verschillende frequenties. Er treedt resonantie op

Nadere informatie

Vraag 1. F G = 18500 N F M = 1000 N k 1 = 100 kn/m k 2 = 77 kn/m

Vraag 1. F G = 18500 N F M = 1000 N k 1 = 100 kn/m k 2 = 77 kn/m Vraag 1 Beschouw onderstaande pickup truck met de afmetingen in mm zoals gegeven. F G is de massa van de wagen en bedraagt 18,5 kn. De volledige combinatie van wielen, banden en vering vooraan wordt voorgesteld

Nadere informatie

Naam : F. Outloos Nummer : 1302

Naam : F. Outloos Nummer : 1302 1 ste bach. burg.ir.-arch. EXAMEN FYSICA 1 2011-2012, 1 ste zittijd 13 januari 2012 Naam : F. Outloos Nummer : 1302 Wie wat vindt heeft slecht gezocht. Rutger Kopland 1.1 1.2 1.3 A B C D A B C D A B C

Nadere informatie

Op basis van de tweede wet van Newton kan onderstaand verband worden afgeleid. F = m a = m Δv Δt

Op basis van de tweede wet van Newton kan onderstaand verband worden afgeleid. F = m a = m Δv Δt Inhoud en stoot... 2 Voorbeeld: Kanonschot... 3 Opgaven... 4 Opgave: Tennisbal... 4 Opgave: Frontale botsing... 5 Opgave: Niet-frontale botsing... 5 1/5 en stoot Op basis van de tweede wet van Newton kan

Nadere informatie

Vraag 1 Vraag 2 Vraag 3 Vraag 4 Vraag 5

Vraag 1 Vraag 2 Vraag 3 Vraag 4 Vraag 5 Vraag 1 Een hoeveelheid ideaal gas is opgesloten in een vat van 1 liter bij 10 C en bij een druk van 3 bar. We vergroten het volume tot 10 liter bij 100 C. De einddruk van het gas is dan gelijk aan: a.

Nadere informatie

SAMENSTELLEN EN ONTBINDEN VAN SNIJDENDE KRACHTEN OPGAVEN

SAMENSTELLEN EN ONTBINDEN VAN SNIJDENDE KRACHTEN OPGAVEN 1 HOODSTUK SAMENSTELLEN EN ONTBINDEN VAN SNIJDENDE KACHTEN OPGAVEN.4. Opgaven 1. Bepaal grafisch en analtisch de richting en grootte van de resultante, in volgende gevallen; 1 = 4 kn = 7 kn : 1) = 30 )

Nadere informatie

Statica (WB/MT) college 1 wetten van Newton. Guido Janssen

Statica (WB/MT) college 1 wetten van Newton. Guido Janssen Statica (WB/MT) college 1 wetten van Newton Guido Janssen G.c.a.m.janssen@tudelft.nl Opzet van de cursus Eerste week: colleges en huiswerk Dinsdag 3 september: 8h45-9h30 of 13h45-14h30 Woensdag 4 september:

Nadere informatie

Motor- en voertuigprestatie (4)

Motor- en voertuigprestatie (4) Motor- en voertuigprestatie (4) E. Gernaat, ISBN 978-90-79302-01-7 1 Benodigd vermogen Nadat we hebben gezien hoeveel vermogen de motor levert dienen we vervolgens te bekijken hoeveel vermogen de auto

Nadere informatie

Elektro-magnetisme Q B Q A

Elektro-magnetisme Q B Q A Elektro-magnetisme 1. Een lading QA =4Q bevindt zich in de buurt van een tweede lading QB = Q. In welk punt zal de resulterende kracht op een kleine positieve lading QC gelijk zijn aan nul? X O P Y

Nadere informatie

natuurkunde havo 2017-I

natuurkunde havo 2017-I Aan het juiste antwoord op een meerkeuzevraag wordt scorepunt toegekend. Elektrische doorstroomverwarmer maximumscore voorbeelden van antwoorden: Er gaat minder energie verloren aan de buitenlucht. / De

Nadere informatie

PROJECT 1: Kinematics of a four-bar mechanism

PROJECT 1: Kinematics of a four-bar mechanism KINEMATICA EN DYNAMICA VAN MECHANISMEN PROJECT 1: Kinematics of a four-bar mechanism Lien De Dijn en Celine Carbonez 3 e bachelor in de Ingenieurswetenschappen: Werktuigkunde-Elektrotechniek Prof. Dr.

Nadere informatie

Uitwerkingen opgaven hoofdstuk 1

Uitwerkingen opgaven hoofdstuk 1 Uitwerkingen opgaven hoofdstuk 1 1. Grootheden en eenheden Opgave 1 Opgave Opgave Opgave 4 Opgave 5 a De afstand tot een stoplicht om nog door groen te kunnen fietsen. b Als je linksaf wilt slaan moet

Nadere informatie

Tentamen Natuurkunde A. 9.00 uur 12.00 uur woensdag 10 januari 2007 Docent Drs.J.B. Vrijdaghs. Vul Uw gegevens op het deelnameformulier in

Tentamen Natuurkunde A. 9.00 uur 12.00 uur woensdag 10 januari 2007 Docent Drs.J.B. Vrijdaghs. Vul Uw gegevens op het deelnameformulier in Tentamen Natuurkunde A 9. uur. uur woensdag januari 7 Docent Drs.J.B. Vrijdaghs Aanwijzingen: Vul Uw gegevens op het deelnameformulier in Dit tentamen omvat 8 opgaven met totaal deelvragen Maak elke opgave

Nadere informatie

Eindexamen natuurkunde 1 havo 2001-II

Eindexamen natuurkunde 1 havo 2001-II Eindexamen natuurkunde havo 00-II 4 Antwoordmodel Opgave Vliegen met menskracht uitkomst: t = 5,0 (uur) s Voor de gemiddelde snelheid geldt: v gem =. t De gemiddelde snelheid van het vliegtuig is 8,9 m/s

Nadere informatie

Toegepaste mechanica 1. Daniël Slenders Faculteit Ingenieurswetenschappen Katholieke Universiteit Leuven

Toegepaste mechanica 1. Daniël Slenders Faculteit Ingenieurswetenschappen Katholieke Universiteit Leuven Toegepaste mechanica 1 Daniël Slenders Faculteit Ingenieurswetenschappen Katholieke Universiteit Leuven Academiejaar 29-21 Inhoudsopgave Vectorrekenen 5 Oefening 1.......................................

Nadere informatie

Eindexamen natuurkunde pilot vwo II

Eindexamen natuurkunde pilot vwo II Beoordelingsmodel Opgave Sopraansaxofoon maximumscore 4 uitkomst: F d = 7, N voorbeeld van een bepaling: Er geldt: Fr z z= Fr d d. Opmeten in de figuur levert: rz =,7 cm en rd= 5,4 cm. Invullen levert:,

Nadere informatie

Proef Natuurkunde Massa en zwaartekracht; veerconstante

Proef Natuurkunde Massa en zwaartekracht; veerconstante Proef Natuurkunde Massa en zwaartekracht; ve Proef door een scholier 1568 woorden 20 januari 2003 4,9 273 keer beoordeeld Vak Natuurkunde Natuurkunde practicum 1.3 Massa en zwaartekracht; ve De probleemstelling

Nadere informatie

4900 snelheid = = 50 m/s Grootheden en eenheden. Havo 4 Hoofdstuk 1 Uitwerkingen

4900 snelheid = = 50 m/s Grootheden en eenheden. Havo 4 Hoofdstuk 1 Uitwerkingen 1.1 Grootheden en eenheden Opgave 1 a Kwantitatieve metingen zijn metingen waarbij je de waarneming uitdrukt in een getal, meestal met een eenheid. De volgende metingen zijn kwantitatief: het aantal kinderen

Nadere informatie