Tentamen Toegepaste elasticiteitsleer (4A450)

Maat: px
Weergave met pagina beginnen:

Download "Tentamen Toegepaste elasticiteitsleer (4A450)"

Transcriptie

1 Tentamen Toegepaste elasticiteitsleer (4A450) Datum: 3 juni 003 Tijd: 4:00 7:00 uur Locatie: Hal Matrixgebouw Dit tentamen bestaat uit drie opgaven. Het gebruik van het dictaat, oefeningenbundel en notebook is niet toegestaan. Wel mogen het aangehechte formuleblad en een rekenmachine gebruikt worden. Tip: denk aan de correcte notatie van vectoren en tensoren. Succes! Opgave Ten behoeve van de sterkteberekening van een vlak constructieonderdeel is met het pakket MARC een eindige-elementenanalyse uitgevoerd. Het betrof een vlakke-rek (plane strain) analyse. Figuur toont een detail van het onderdeel met daarin getekend isokrommen (contourlijnen) van de maximale en minimale hoofdrek (principal strain) in het vlak. Dit wil zeggen dat de respectievelijke hoofdrekken constant zijn langs ieder van de krommen in het diagram. Merk op dat de waarden die bij de krommen zijn aangegeven nog vermenigvuldigd dienen te worden met 0 3 om de werkelijke hoofdrekken te vinden. Bij het aflezen mag afgerond worden naar de waarde van de dichtstbijzijnde isokromme P + P Figuur : Maximale (links) en minimale (rechts) hoofdrekverdelingen in een deel van het constructieonderdeel; waarden zijn vermenigvuldigd met 0 3 Het onderdeel is vervaardigd van staal, dat isotroop en lineair elastisch verondersteld kan worden. De elasticiteitsmodulus (Young s modulus) van het materiaal bedraagt E =. 0 5 MPa, voor de dwarscontractiecoëfficiënt (Poisson s ratio) kan genomen worden ν = Verder is de vloeispanning (yield stress) van het staal gelijk aan σ y = 360MPa en dient gewerkt te worden met een veiligheidsfactor (safety factor) van γ =.5. z.o.z.

2 a. Bepaal de volumetrische rek (volumetric strain) in het punt P zoals aangegeven in beide diagrammen. b. Bepaal in P de tweede invariant van de rektensor (strain tensor). c. Bepaal de maximale normaalrek (normal strain) in het afgebeelde deel van de constructie. d. Bepaal de maximaal optredende afschuiving (shear) γ max. e. Bereken de maximale afschuifspanning (shear stress) in het constructiedeel. f. Ga na of het vloeicriterium van Tresca overschreden wordt; houd hierbij rekening met de gegeven veiligheidsfactor. Opgave De toepassing van opblaasbare constructies als partytent, noodhospitaal, etc. wint aan populariteit. Een voorbeeld van een dergelijke constructie, namelijk een mobiele ontsmettings-unit, is afgebeeld in figuur. Het oprichten ervan geschiedt eenvoudigweg door met een compressor lucht te pompen in een voorgevormde flexibele structuur, welke meestal vervaardigd is van een met vezels versterkt rubberachtig materiaal. PSfrag replacements e α e e 3 e z e r e θ Figuur : Opblaasbare ontsmettingsruimte en detail van een cilindrisch structureel element Rechts in de figuur is een cilindervormig element uit de constructie schematisch weergegeven. We willen berekenen wat de maximale luchtdruk is die veilig in dit element kan worden aangebracht, zonder dat de wand scheurt. De spanningstoestand in de wand wordt bij goede benadering gegeven door de zogenaamde ketelformules, wat wil zeggen dat de spanningstensor (stress tensor) luidt σ = pr ( e θ e θ + e z e z ) waarin p de interne druk voorstelt, R de straal van de cilinder is en t de wanddikte. De eenheidsvectoren (unit vectors) e r, e θ en e z vormen een cilindrische basis zoals aangegeven in de figuur. De wand van de cilinder is gemaakt uit een rubber dat is versterkt met kruiselings aangebrachte glasvezels. De richting van deze vezels wordt gegeven door de eenheidsvectoren (zie ook de figuur) e = sin α e θ + cos α e z e = cos α e θ sin α e z waarbij de hoek α voorlopig onbepaald is; verder kunnen we definiëren e 3 = e r. Bepalend voor het ontstaan van scheuren blijkt te zijn de normaalspanning (normal stress) in de wand en loodrecht op de vezels, met andere woorden: de normaalspanning in de e - respectievelijk e -richting.

3 a. Druk de cilindrische basisvectoren e r, e θ en e z uit in de eenheidsvectoren e, e, e 3 en de hoek α. b. Laat zien dat bovenstaande spanningstensor in termen van de basis { e, e, e 3 } herschreven kan worden als σ = pr [ ( + sin α ) e e + sin α cos α ( e e + e e ) + ( + cos α ) ] e e c. Bepaal uitdrukkingen voor de normaalspanningen in de (vezel-)richtingen e en e ; schets hun verloop als functie van α voor 0 α π. d. Voor welke hoek α kan de interne druk p het hoogst opgevoerd worden voordat in één van beide vezelrichtingen falen optreedt? e. Bereken de maximaal toelaatbare druk p voor een vezelhoek α = 0 als verder gegeven is dat R = 50 mm, t =.5 mm en de toelaatbare normaalspanning σ y = 6.0 MPa. Opgave 3 Het spanningsveld rond een rechte randdislocatie in een oneindig groot, lineair elastisch medium wordt gegeven door σ (x, y) = σ x x (x, y) e x e x + σ xy (x, y) ( e x e y + e y e x ) + σyy (x, y) e y e y + ν ( σ x x (x, y) + σ yy (x, y) ) e z e z met { e x, e y, e z } een Cartesische basis met de oorsprong in de dislocatiekern (zie figuur 3) en de functies σ x x (x, y), σ xy (x, y) en σ yy (x, y) gegeven door σ x x (x, y) = Dy 3x + y (x + y ) σ yy (x, y) = Dy x y (x + y ) σ xy (x, y) = Dx x y (x + y ) Hierin is D = Gb π( ν) en G de glijdingsmodulus (shear modulus), b de lengte van de Burgers vector en ν de dwarscontractiecoëfficiënt (Poisson s ratio). PSfrag replacements e y x = 0 e x x = a glijvlak Figuur 3: Randdislocatie op het glijvlak y = 0 z.o.z. 3

4 a. Laat uitgaande van de algemene evenwichtsvergelijking (equilibrium equation) σ + ρ q = 0 zien dat voor evenwicht in dit geval moet gelden σ x x x σ xy x + σ xy y = 0 + σ yy y = 0 b. Ga na of de gegeven spanningscomponenten σ x x (x, y), σ yy (x, y) en σ xy (x, y), inderdaad aan deze vergelijkingen voldoen. c. Bepaal de spanningsvector (stress vector) p 0 (x) die werkt op het glijvlak y = 0 als gevolg van de aanwezigheid van de dislocatie in de oorsprong. Is de uitkomst realistisch voor alle waarden van x? d. Beargumenteer dat een dislocatie in (x, y) = (a, 0) in plaats van in de oorsprong zal leiden tot een spanningsvector op het glijvlak y = 0 die gelijk is aan p a (x) = p 0 (x a). e. Bereken voor het geval dat beide dislocaties, te weten in (x, y) = (0, 0) en (a, 0), gelijktijdig aanwezig zijn de spanningsvector op het glijvlak y = 0 midden tussen de dislocaties (dus voor x = a). 4

5 Uitwerkingen Tentamen Toegepaste elasticiteitsleer (4A450) Datum: 3 juni 003 Tijd: 4:00 7:00 uur Locatie: Hal Matrixgebouw Opgave a. In punt P zijn de hoofdrekken gelijk aan ɛ =.0 0 3, ɛ = 0 (vanwege vlakke rek) en ɛ 3 = De rektensor in dit punt kan geschreven worden als ε = ɛ N N + ɛ N N + ɛ 3 N 3 N 3 met N, N en N 3 de (onbekende) hoofdrekrichtingen. De volumetrische rek e is hiermee gelijk aan e = tr(ε) = ɛ + ɛ + ɛ 3 = b. De tweede invariant van ε is gegeven door ( J (ε) = tr (ε) tr(ε ε) ) [ = (ε + ε + ε 3 ) ( ε + ε + 3)] ε Uitwerken voor de afgelezen hoofdrekken levert dan J (ε) = c. De maximale normaalrek wordt in ieder punt gegeven door de maximale hoofdrek: ε nn,max = ɛ Uit het linker diagram is eenvoudig af te lezen dat het maximum hiervan (bij benadering) gelijk is aan ε nn,max = d. De maximale afschuiving in een punt is gelijk aan het verschil van de maximale en minimale hoofdrek: γ max = ɛ ɛ 3 Het grootste verschil van hoofdrekken wordt gevonden bij de bovenste afronding, namelijk: γ max = ( ) = e. De schuifspanning op een vlakje wordt gegeven door τ ns = Gγ ns De maximale schuifspanning zal dus ook gelijk zijn aan τ max = Gγ max = E ( + ν) γ max Invullen van de gegeven materiaalparameters en de hierboven berekende γ max levert τ max = 0 MPa

6 f. Het Tresca-vloeicriterium stelt dat de grens van het elastische gebied wordt gegeven door σ σ 3 = σ y ofwel, tevens rekening houdend met de veiligheidsfactor, τ max = σ a Op basis van het vorige antwoord en de gegeven parameters vinden we τ max = 40 MPa σ a = σ y γ = 88 MPa Het Tresca-criterium wordt dus inderdaad overschreden. Opgave a. Aangezien { e, e, e 3 } een orthonormale basis vormt kunnen we schrijven e r = ( e r e ) e + ( e r e ) e + ( e r e 3 ) e 3 e θ = ( e θ e ) e + ( e θ e ) e + ( e θ e 3 ) e 3 e z = ( e z e ) e + ( e z e ) e + ( e z e 3 ) e 3 Uitwerken van de inproducten levert e r = e 3 e θ = sin α e cos α e e z = cos α e sin α e Deze relaties kunnen ook direct uit de figuur afgeleid worden. b. De gegeven uitdrukking volgt rechtstreeks door invullen van bovenstaande relaties voor e r, e θ en e z. c. De normaalspanningen in de e - en e -richting volgen uit σ nn = e σ e = pr ( + sin α ) = pr (3 cos α) 4t σ nn = e σ e = pr ( + cos α ) = pr (3 + cos α) 4t Als functie van α hebben deze uitdrukkingen het volgende verloop: PSfrag replacements pr t σ nn pr σ nn σ nn π π α

7 d. De optimale sterkte wordt gevonden voor die hoek waarvoor de grootste waarde van σ nn en σ nn minimaal is. Uit bovenstaand diagram kan eenvoudig worden afgelezen dat dit voor α = 4 π is. e. Voor α = 0 zijn de normaalspanningen loodrecht op de vezelrichtingen gegeven door σ nn = pr σ nn = pr t Bepalend is dus wanneer σ nn = σ y. Uitwerken van deze vergelijking levert: p max = t R σ y = MPa = 0 bar Opgave 3 a. Aangezien er geen sprake is van een verdeelde belasting is q = 0 in de algemene evenwichtsvergelijking. Uitwerken van de divergentie voor de gegeven uitdrukking van de spanningstensor leidt dan tot ( σx x x + σ ) ( xy σxy e x + y x + σ ) yy e y = 0 y Gelijkstellen van de componenten in x- en y-richting van deze vergelijking levert de gevraagde relaties. b. Uitwerken van de relevante afgeleiden van σ x x (x, y), σ xy (x, y) en σ yy (x, y) levert: σ x x = D 6x 3 y xy 3 σ yy x (x + y ) 3 y = D x 4 6x y + y 4 (x + y ) 3 σ xy x = D x 4 + 6x y y 4 σ xy (x + y ) 3 y = D 6x 3 y + xy 3 (x + y ) 3 Invullen laat onmiddellijk zien dat aan de evenwichtsvergelijkingen wordt voldaan voor alle (x, y) = (0, 0). c. Het glijvlak heeft als normaal n = e y. De spanningsvector op dit vlak volgt dus uit p(x) = σ(x, 0) e y = σ xy (x, 0) e x + σ yy (x, 0) e y = D x e x = Gb π( ν) Voor x 0 gaat de lengte van deze vector naar oneindig. Dit is niet erg realistisch; het gegeven spanningsveld kan dan ook alleen gebruikt worden op enige afstand van de dislocatie. d. Als de dislocatie verschuift van x = 0 naar x = a zal het spanningsveld meeschuiven. Dit betekent dat de spanningsvector in een punt (x, y) ten gevolge van de dislocatie in x = a gelijk moet zijn aan de spanning in (x a, y) ten gevolge van de oorspronkelijke dislocatie in x = 0. Voor de spanningsvector op het glijvlak moet dan ook gelden dat p a (x) = p 0 (x a) e. Aangezien de evenwichtsvergelijking een lineaire differentiaalvergelijking is mogen we gebruik maken van superpositie. Dit wil zeggen dat de spanningstensor in (x, y) = ( a, 0) ten gevolge van beide dislocaties gelijk is aan de som van de spanningen ten gevolge van de individuele dislocaties. De spanningsvector hangt op lineaire wijze af van de spanningstensoren, dus mogen we ook meteen de spanningsvectoren p 0 (x) en p a (x) optellen. Voor x = a vinden we dan, gebruik makend van de antwoorden op de vorige twee vragen: ( p( a) = p 0( a) + p a( a) = p 0( a) + p 0( a) = D a ) e x = 0 a x e x 3

Solid Mechanics (4MB00) Toets 2 versie 1

Solid Mechanics (4MB00) Toets 2 versie 1 Solid Mechanics (4MB00) Toets 2 versie 1 Faculteit : Werktuigbouwkunde Datum : 1 april 2015 Tijd : 13.45-15.30 uur Locatie : Matrix Atelier Deze toets bestaat uit 3 opgaven. De opgaven moeten worden gemaakt

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Lineaire Algebra en Lineaire Analyse (Y550/Y530), op donderdag 5 november 00, 9:00 :00 uur. De uitwerkingen van de opgaven dienen

Nadere informatie

Basic Creative Engineering Skills

Basic Creative Engineering Skills Mechanica: Sterkteleer Januari 2015 Theaterschool OTT-1 1 Sterkteleer Sterkteleer legt een relatie tussen uitwendige krachten (MEC1-A) en inwendige krachten Waarom lopen de balken taps toe? Materiaaleigenschappen

Nadere informatie

Plasticiteit. B. Verlinden Inleiding tot de materiaalkunde. Structuur van de lessen 1-4

Plasticiteit. B. Verlinden Inleiding tot de materiaalkunde. Structuur van de lessen 1-4 Plasticiteit Hoofdstuk 6 B. Verlinden Inleiding tot de materiaalkunde Structuur van de lessen 1-4 Algemene introductie in de wereld van de materialen Les 1 materialen ontwerp materialen en milieu Elastische

Nadere informatie

8.1. Sterktebepaling in SE?

8.1. Sterktebepaling in SE? 8.1. Sterktebepaling in SE? 1 : Wat? In Solid Edge kan men een ontworpen constructiedeel analyseren op : sterkte, vervorming, toelaatbare spanning, wringing, buiging, knik, Hiervoor bestaan 2 manieren

Nadere informatie

Matthias Van Wonterghem, Pieter Vanhulsel Aluminium en hoge snelheid, een mooie toekomst?

Matthias Van Wonterghem, Pieter Vanhulsel Aluminium en hoge snelheid, een mooie toekomst? Matthias Van Wonterghem, Pieter Vanhulsel Aluminium en hoge snelheid, een mooie toekomst? Milieu is een hot topic. En terecht. Het is nu dat er moet gediscussieerd worden om onze huidige levenskwaliteit

Nadere informatie

Examen Klassieke Mechanica

Examen Klassieke Mechanica Examen Klassieke Mechanica Herbert De Gersem, Eef Temmerman 2de bachelor burgerlijk ingenieur en bio-ingenieur 14 januari 2008, academiejaar 07-08 NAAM: RICHTING: vraag 1 (/3) vraag 2 (/5) vraag 3 (/5)

Nadere informatie

Trillingen en geluid wiskundig. 1 De sinus van een hoek 2 Uitwijking van een trilling berekenen 3 Macht en logaritme 4 Geluidsniveau en amplitude

Trillingen en geluid wiskundig. 1 De sinus van een hoek 2 Uitwijking van een trilling berekenen 3 Macht en logaritme 4 Geluidsniveau en amplitude Trillingen en geluid wiskundig 1 De sinus van een hoek 2 Uitwijking van een trilling berekenen 3 Macht en logaritme 4 Geluidsniveau en amplitude 1 De sinus van een hoek Eenheidscirkel In de figuur hiernaast

Nadere informatie

Mechanica - Sterkteleer - HWTK PROEFTOETS versie C - OPGAVEN en UITWERKINGEN.doc 1/16

Mechanica - Sterkteleer - HWTK PROEFTOETS versie C - OPGAVEN en UITWERKINGEN.doc 1/16 VAK: Mechanica - Sterkteleer HWTK Set Proeftoets 07-0 versie C Mechanica - Sterkteleer - HWTK PROEFTOETS- 07-0-versie C - OPGAVEN en UITWERKINGEN.doc 1/16 DIT EERST LEZEN EN VOORZIEN VAN NAAM EN LEERLINGNUMMER!

Nadere informatie

Examen Klassieke Mechanica

Examen Klassieke Mechanica Examen Klassieke Mechanica Herbert De Gersem, Eef Temmerman 23 januari 2009, academiejaar 08-09 IW2 en BIW2 NAAM: RICHTING: vraag 1 (/4) vraag 2 (/4) vraag 3 (/5) vraag 4 (/4) vraag 5 (/3) TOTAAL (/20)

Nadere informatie

Productontwikkeling 3EM

Productontwikkeling 3EM Vragen Productontwikkeling 3EM Les 10 Sterkteleer (deel 3) Zijn er nog vragen over voorgaande lessen?? Paul Janssen 2 Schuifspanning Schuifspanning Schuifspanning (afschuiving) Dwarskrachten of afschuifkrachten

Nadere informatie

Module 3 Uitwerkingen van de opdrachten

Module 3 Uitwerkingen van de opdrachten Module 3 Uitwerkingen van de opdrachten Opdracht 1 a De trekkracht volgt uit: F t A f s 10 100 235 235000 N 235 kn b De kracht kan als volgt worden bepaald: 1 l l l E l F E A F EA l 2,1 10 5 10 100 10/2000

Nadere informatie

Vraag 1. F G = 18500 N F M = 1000 N k 1 = 100 kn/m k 2 = 77 kn/m

Vraag 1. F G = 18500 N F M = 1000 N k 1 = 100 kn/m k 2 = 77 kn/m Vraag 1 Beschouw onderstaande pickup truck met de afmetingen in mm zoals gegeven. F G is de massa van de wagen en bedraagt 18,5 kn. De volledige combinatie van wielen, banden en vering vooraan wordt voorgesteld

Nadere informatie

2 Kromming van een geparametriseerde kromme in het vlak

2 Kromming van een geparametriseerde kromme in het vlak Kromming Extra leerstof bij het vak Wiskunde voor Bouwkunde (DB00) 1 Inleiding De begrippen kromming en kromtestraal worden in het boek Calculus behandeld in hoofdstuk 11. Daar worden deze begrippen echter

Nadere informatie

Module 8 Uitwerkingen van de opdrachten

Module 8 Uitwerkingen van de opdrachten Module 8 Uitwerkingen van de opdrachten Opdracht 1 Analyse De constructie bestaat uit een drie keer geknikte staaf die bij A is ingeklemd en bij B in verticale richting is gesteund. De staafdelen waarvan

Nadere informatie

Productontwikkeling 3EM

Productontwikkeling 3EM Vragen Productontwikkeling 3EM Les 8 Sterkteleer (deel 1) Zijn er nog vragen over voorgaande lessen?? Paul Janssen 2 Doel van de sterkteleer Berekenen van de vereiste afmetingen van constructieonderdelen

Nadere informatie

Technische Universiteit Delft. ANTWOORDEN van Tentamen Gewone differentiaalvergelijkingen, TW2030 Vrijdag 30 januari 2015,

Technische Universiteit Delft. ANTWOORDEN van Tentamen Gewone differentiaalvergelijkingen, TW2030 Vrijdag 30 januari 2015, Technische Universiteit Delft Faculteit EWI ANTWOORDEN van Tentamen Gewone differentiaalvergelijkingen, TW23 Vrijdag 3 januari 25, 4.-7. Dit tentamen bestaat uit 6 opgaven. Alle antwoorden dienen beargumenteerd

Nadere informatie

2004 Gemeenschappelijke proef Algebra - Analyse - Meetkunde - Driehoeksmeting 14 vragen - 2:30 uur Reeks 1 Notatie: tan x is de tangens van de hoek x, cot x is de cotangens van de hoek x Vraag 1 In een

Nadere informatie

Oefenzitting 2: Parametrisaties.

Oefenzitting 2: Parametrisaties. Oefenzitting : Parametrisaties. Modeloplossingen Oefening.5:. Beschouw vooreerst de cirkel C in het xz-vlak met straal r en middelpunt (x, y, z) = (R,, ) (zie Figuur ). De parametrisatie van C wordt dan

Nadere informatie

STERKTE BEPALING. Opdracht 1 : Onderzoek aluminium constructiedeel

STERKTE BEPALING. Opdracht 1 : Onderzoek aluminium constructiedeel STERKTE BEPALING In de lessen sterkteleer heb je een berekeningsmethode gezien om de spanningen in een materiaal te bepalen en hieruit de nodige afmetingen te berekenen. In solid edge kan dit op een soepele

Nadere informatie

TENTAMEN. x 2 x 3. x x2. cos( x y) cos ( x) cos( y) + sin( x) sin( y) d dx arcsin( x)

TENTAMEN. x 2 x 3. x x2. cos( x y) cos ( x) cos( y) + sin( x) sin( y) d dx arcsin( x) FACULTEIT TECHNISCHE NATUURWETENSCHAPPEN Opleiding Technische Natuurkunde Kenmerk: 46055907/VGr/KGr Vak : Inleiding Optica (4602) Datum : 29 januari 200 Tijd : 3:45 uur 7.5 uur TENTAMEN Indien U een onderdeel

Nadere informatie

Korte handleiding Maple bij de cursus Meetkunde voor B

Korte handleiding Maple bij de cursus Meetkunde voor B Korte handleiding Maple bij de cursus Meetkunde voor B Deze handleiding sluit aan op en is gedeeltelijk gelijk aan de handleidingen die gebruikt worden bij de cursussen Wiskunde 2 en 3 voor B. Er zijn

Nadere informatie

TENTAMEN ELEKTROMAGNETISME (8N010)

TENTAMEN ELEKTROMAGNETISME (8N010) TENTAMEN ELEKTROMAGNETISME (8N010) 25 april, 2008, 14.00-17.00 uur Opmerkingen: 1. Dit tentamen bestaat uit 4 vragen met in totaal 18 deelvragen. 2. Het is toegestaan gebruik te maken van bijgeleverd formuleblad

Nadere informatie

Vectormeetkunde in R 3

Vectormeetkunde in R 3 Vectormeetkunde in R Definitie. Een punt in R wordt gegeven door middel van drie coördinaten : P = (x, y, z). Een lijnstuk tussen twee punten P en Q voorzien van een richting noemen we een pijltje. Notatie

Nadere informatie

Opgaven Functies en Reeksen. E.P. van den Ban

Opgaven Functies en Reeksen. E.P. van den Ban Opgaven Functies en Reeksen E.P. van den Ban c Mathematisch Instituut Universiteit Utrecht Augustus 2014 1 Opgaven bij Hoofdstuk 1 Opgave 1.1 Zij f : R n R partieel differentieerbaar naar iedere variabele

Nadere informatie

Voortgangstoets NAT 5 VWO 45 min. Week 49 SUCCES!!!

Voortgangstoets NAT 5 VWO 45 min. Week 49 SUCCES!!! Naam: Voortgangstoets NAT 5 VWO 45 min. Week 49 SUCCES!!! Noteer niet uitsluitend de antwoorden, maar ook je redeneringen (in correct Nederlands) en de formules die je gebruikt hebt! Maak daar waar nodig

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Technische Natuurkunde Examen Elektromagnetisme 3 (3NC30) donderdag 30 juni 2011 van 14u00-17u00

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Technische Natuurkunde Examen Elektromagnetisme 3 (3NC30) donderdag 30 juni 2011 van 14u00-17u00 TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Technische Natuurkunde Examen Elektromagnetisme 3 (3NC30) donderdag 30 juni 20 van 4u00-7u00 Dit tentamen bestaat uit 5 opgaven met elk 3 onderdelen. Voor elk

Nadere informatie

Inwendig product, lengte en orthogonaliteit

Inwendig product, lengte en orthogonaliteit Inwendig product, lengte en orthogonaliteit We beginnen met een definitie : u u Definitie. Als u =. en v = u n v v. v n twee vectoren in Rn zijn, dan heet u v := u T v = u v + u v +... + u n v n het inwendig

Nadere informatie

Tentamen E&M 13-mei-2004

Tentamen E&M 13-mei-2004 E&M Tentamen E&M 3-mei-2004 Boller, Offerhaus, Verschuur E&M 40305 Aanwijzingen De toets bestaat uit twee delen, waarvan het eerste deel binnen 60 minuten moet worden ingeleverd. In het eerste deel worden

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamen Calculus C (2WCB1) op zaterdag 25 januari 2014, 9:00 12:00 uur

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamen Calculus C (2WCB1) op zaterdag 25 januari 2014, 9:00 12:00 uur TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Calculus C (WCB) op zaterdag 5 januari 04, 9:00 :00 uur Maak dit vel los van de rest van het tentamen. Vul uw naam etc. in op

Nadere informatie

(B) L_- Tentamen optica en optisch waarnemen

(B) L_- Tentamen optica en optisch waarnemen Tentamen optica en optisch waarnemen 27 maart20l2,15:15-18:00 docenten: dr. W. Vassen, prof.dr. J.F. de Boer Geef altijd een motivatie voor je antwoord. Er zijn 8 vragen. Iedere vraag levert evenveel punten

Nadere informatie

De n-dimensionale ruimte Arjen Stolk

De n-dimensionale ruimte Arjen Stolk De n-dimensionale ruimte Arjen Stolk In het vorige college hebben jullie gezien wat R 2 (het vlak) is. Een vector v R 2 is een paar v = (x,y) van reële getallen. Voor vectoren v = (a,b) en w = (c,d) in

Nadere informatie

Gaap, ja, nog een keer. In één variabele hebben we deze formule nu al een paar keer gezien:

Gaap, ja, nog een keer. In één variabele hebben we deze formule nu al een paar keer gezien: Van de opgaven met een letter en dus zonder nummer staat het antwoord achterin. De vragen met een nummer behoren tot het huiswerk. Spieken achterin helpt je niets in het beter snappen... 1 Stelling van

Nadere informatie

4051CALC1Y Calculus 1

4051CALC1Y Calculus 1 4051CALC1Y Calculus 1 College 1 2 september 2014 1 Even voorstellen Theresia van Essen Docent bij Technische Wiskunde Aanwezig op maandag en donderdag EWI 04.130 j.t.vanessen@tudelft.nl Slides op http://homepage.tudelft.nl/v9r7r/

Nadere informatie

Elk vermoeden van fraude wordt gemeld bij de examencommissie.

Elk vermoeden van fraude wordt gemeld bij de examencommissie. Faculteit Civiele Techniek en Geowetenschappen Schriftelijk tentamen CTB1110 ConstructieMEchanica 1 Totaal aantal pagina s Datum en tijd Verantwoordelijk docent 5 pagina s excl voorblad 02-11-2015 van

Nadere informatie

IJkingstoets september 2015: statistisch rapport

IJkingstoets september 2015: statistisch rapport IJkingstoets burgerlijk ingenieur 4 september 05 - reeks - p. IJkingstoets september 05: statistisch rapport In totaal namen 33 studenten deel aan deze toets. Hiervan waren er 06 geslaagd. Verdeling van

Nadere informatie

Schuifspanningen loodrecht op een cilindrisch gat

Schuifspanningen loodrecht op een cilindrisch gat Schuifspanningen loodrecht op een cilindrisch gat Colin van Weelden CT3000 Bachelor Eindwerk Begeleiders: 1379550 TU Delft P.C.J. Hoogenboom Delft, Juni 2010 C.B.M. Blom Voorwoord Dit rapport is het eindresultaat

Nadere informatie

BIOFYSICA: Toets I.4. Dynamica: Oplossing

BIOFYSICA: Toets I.4. Dynamica: Oplossing 1 ste jaar Bachelor BIOMEDISCHE WETENSCHAPPEN Academiejaar 006-007 BIOFYSICA: Toets I.4. Dynamica: Oplossing 1 Opgave 1 Een blokje met massa 0, kg heeft onder aan een vlakke helling een snelheid van 7,

Nadere informatie

Opgave 5 Solswitch. Eindexamen havo natuurkunde 2013-II

Opgave 5 Solswitch. Eindexamen havo natuurkunde 2013-II Opgave 5 Solswitch De Vrije Universiteit in Amsterdam heeft in 2008 een patent verworven op de Solswitch. De Solswitch is een dubbelwandig paneel van dat alleen licht doorlaat als het gevuld is met. Voorwerpen

Nadere informatie

Examen VWO. wiskunde B (pilot) tijdvak 1 woensdag 18 mei uur

Examen VWO. wiskunde B (pilot) tijdvak 1 woensdag 18 mei uur Eamen VW 016 tijdvak 1 woensdag 18 mei 13.30-16.30 uur wiskunde (pilot) it eamen bestaat uit 16 vragen. Voor dit eamen zijn maimaal 79 punten te behalen. Voor elk vraagnummer staat hoeveel punten met een

Nadere informatie

Faculteit Biomedische Technologie. 28 januari 2016, 18:00-21:00 uur

Faculteit Biomedische Technologie. 28 januari 2016, 18:00-21:00 uur Faculteit Biomedische Technologie Tentamen EEKTROMAGNETISME en OPTICA (8NC00) 28 januari 2016, 18:00-21:00 uur Opmerkingen: 1) Het is toegestaan gebruik te maken van het formuleblad (zie Oase 8NC00). Het

Nadere informatie

Je moet nu voor jezelf een overzicht zien te krijgen over het onderwerp Complexe getallen. Een eigen samenvatting maken is nuttig.

Je moet nu voor jezelf een overzicht zien te krijgen over het onderwerp Complexe getallen. Een eigen samenvatting maken is nuttig. 6 Totaalbeeld Samenvatten Je moet nu voor jezelf een overzicht zien te krijgen over het onderwerp Complexe getallen. Een eigen samenvatting maken is nuttig. Begrippenlijst: 21: complex getal reëel deel

Nadere informatie

Tentamen Inleiding Meten Vakcode 8E020 22 april 2009, 9.00-12.00 uur

Tentamen Inleiding Meten Vakcode 8E020 22 april 2009, 9.00-12.00 uur Tentamen Inleiding Meten Vakcode 8E april 9, 9. -. uur Dit tentamen bestaat uit opgaven. Indien u een opgave niet kunt maken, geeft u dan aan hoe u de opgave zou maken. Dat kan een deel van de punten opleveren.

Nadere informatie

Bekijk nog een keer het stelsel van twee vergelijkingen met twee onbekenden x en y: { De tweede vergelijking van de eerste aftrekken geeft:

Bekijk nog een keer het stelsel van twee vergelijkingen met twee onbekenden x en y: { De tweede vergelijking van de eerste aftrekken geeft: Determinanten Invoeren van het begrip determinant Bekijk nog een keer het stelsel van twee vergelijkingen met twee onbekenden x en y: { a x + b y = c a 2 a 2 x + b 2 y = c 2 a Dit levert op: { a a 2 x

Nadere informatie

VISUALISATIE VAN KROMMEN EN OPPERVLAKKEN. 1. Inleiding

VISUALISATIE VAN KROMMEN EN OPPERVLAKKEN. 1. Inleiding VISUALISATIE VAN KROMMEN EN OPPERVLAKKEN IGNACE VAN DE WOESTNE. Inleiding In diverse wetenschappelijke disciplines maakt men gebruik van functies om fenomenen of processen te beschrijven. Hiervoor biedt

Nadere informatie

Elektromagnetische veldtheorie (121007) Proeftentamen

Elektromagnetische veldtheorie (121007) Proeftentamen Elektromagnetische veldtheorie (121007) Proeftentamen Tijdens dit tentamen is het gebruik van het studieboek van Feynman toegestaan, en zelfs noodzakelijk. Een formuleblad is bijgevoegd. Ander studiemateriaal

Nadere informatie

Tentamen WISN101 Wiskundige Technieken 1 Ma 7 nov :30 16:30

Tentamen WISN101 Wiskundige Technieken 1 Ma 7 nov :30 16:30 Tentamen WISN11 Wiskundige Technieken 1 Ma 7 nov 16 13:3 16:3 Normering voor 4 pt vragen (andere vragen naar rato): 4pt Goed begrepen en goed uitgevoerd met voldoende toelichting, eventueel enkele onbelangrijke

Nadere informatie

Ijkingstoets industrieel ingenieur aangeboden door UGent en VUB op 30 juni 2014: algemene feedback

Ijkingstoets industrieel ingenieur aangeboden door UGent en VUB op 30 juni 2014: algemene feedback IJkingstoets juni 4 - reeks - p. / Ijkingstoets industrieel ingenieur aangeboden door UGent en VUB op juni 4: algemene feedback In totaal namen studenten deel aan deze ijkingstoets industrieel ingenieur

Nadere informatie

FACULTEIT ECONOMIE EN BEDRIJFSKUNDE Afdeling Kwantitatieve Economie

FACULTEIT ECONOMIE EN BEDRIJFSKUNDE Afdeling Kwantitatieve Economie FACULTEIT ECONOMIE EN BEDRIJFSKUNDE Afdeling Kwantitatieve Economie Analyse A, deeltentamen Uitwerkingen maandag 1 november 2010, 9 11 uur Gebruik van een formuleblad of rekenmachine is niet toegestaan

Nadere informatie

Lijnen, vlakken, normaalvector, shading

Lijnen, vlakken, normaalvector, shading Lijnen, vlakken, normaalvector, shading Inproduct (dotproduct Parametervoorstelling en vergelijking Uitproduct (crossproduct Normaalvector Flat shading en Gouraud shading Opgaven /7 Februari, 05 Definitie

Nadere informatie

Tentamen Golven en Optica

Tentamen Golven en Optica Tentamen Golven en Optica 5 juni 008, uitwerking 1 Lopende golven en interferentie op een snaar a In[1]:= y 0 1; y 1 x, t : y x, t : y 0 x 300 t 4 y 0 x 300 t 4 4 In[4]:= Ploty 1 x, 0, y x, 0, x, 10, 10,

Nadere informatie

2010-I. A heeft de coördinaten (4 a, 4a a 2 ). Vraag 1. Toon dit aan. Gelijkstellen: y= 4x x 2 A. y= ax

2010-I. A heeft de coördinaten (4 a, 4a a 2 ). Vraag 1. Toon dit aan. Gelijkstellen: y= 4x x 2 A. y= ax 00-I De parabool met vergelijking y = 4x x en de x-as sluiten een vlakdeel V in. De lijn y = ax (met 0 a < 4) snijdt de parabool in de oorsprong en in punt. Zie de figuur. y= 4x x y= ax heeft de coördinaten

Nadere informatie

Inwendig product, lengte en orthogonaliteit in R n

Inwendig product, lengte en orthogonaliteit in R n Inwendig product, lengte en orthogonaliteit in R n Het inwendig product kan eenvoudig worden gegeneraliseerd tot : u v u v Definitie Als u = u n en v = v n twee vectoren in Rn zijn, dan heet u v := u T

Nadere informatie

SAMENSTELLEN EN ONTBINDEN VAN SNIJDENDE KRACHTEN

SAMENSTELLEN EN ONTBINDEN VAN SNIJDENDE KRACHTEN II - 1 HOODSTUK SAMENSTELLEN EN ONTBINDEN VAN SNIJDENDE KRACHTEN Snijdende (of samenlopende) krachten zijn krachten waarvan de werklijnen door één punt gaan..1. Resultante van twee snijdende krachten Het

Nadere informatie

OF (vermits y = dy. dx ) P (x, y) dy + Q(x, y) dx = 0

OF (vermits y = dy. dx ) P (x, y) dy + Q(x, y) dx = 0 Algemeen kunnen we een eerste orde differentiaalvergelijking schrijven als: y = Φ(x, y) OF (vermits y = dy dx ) P (x, y) dy + Q(x, y) dx = 0 Indien we dan P (x, y) en Q(x, y) kunnen schrijven als P (x,

Nadere informatie

Dossier 4 VECTOREN. Dr. Luc Gheysens. bouwstenen van de lineaire algebra

Dossier 4 VECTOREN. Dr. Luc Gheysens. bouwstenen van de lineaire algebra Dossier 4 VECTOREN bouwstenen van de lineaire algebra Dr. Luc Gheysens 1 Coördinaat van een vector In het vlak π 0 is het punt O de oorsprong en de punten E 1 en E 2 zijn zodanig gekozen dat OE 1 OE 2

Nadere informatie

Respons van een voertuig bij passage over een verkeersdrempel

Respons van een voertuig bij passage over een verkeersdrempel Respons van een voertuig bij passage over een verkeersdrempel G. Lombaert en G. Degrande. Departement Burgerlijke Bouwkunde, K.U.Leuven, Kasteelpark Arenberg 40, B-3001 Leuven 1 Formulering van het probleem

Nadere informatie

Voorbereidend Wetenschappelijk Onderwijs Tijdvak 1 Donderdag 25 mei uur

Voorbereidend Wetenschappelijk Onderwijs Tijdvak 1 Donderdag 25 mei uur Wiskunde B Profi Eamen VWO Voorbereidend Wetenschappelijk Onderwijs Tijdvak Donderdag 25 mei 3.30 6.30 uur 20 00 Dit eamen bestaat uit 7 vragen. Voor elk vraagnummer is aangegeven hoeveel punten met een

Nadere informatie

Tussentoets Analyse 2. Natuur- en sterrenkunde.

Tussentoets Analyse 2. Natuur- en sterrenkunde. Tussentoets Analyse 2. Natuur- en sterrenkunde. Dinsdag 9 maart 2010, 9.00-11.00. Het gebruik van een rekenmachine is toegestaan. Motiveer elk antwoord dat je geeft d.m.v. een berekening of redenering.

Nadere informatie

UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica

UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica Uitwerking tentamen Functies van één veranderlijke (5260) op donderdag 25 oktober 2007, 9.00 2.00 uur. De uitwerkingen van de opgaven

Nadere informatie

1 Inleiding. Zomercursus Wiskunde. Poolcoördinaten (versie 27 juni 2008) Katholieke Universiteit Leuven Groep Wetenschap & Technologie.

1 Inleiding. Zomercursus Wiskunde. Poolcoördinaten (versie 27 juni 2008) Katholieke Universiteit Leuven Groep Wetenschap & Technologie. Katholieke Universiteit Leuven September 2008 Poolcoördinaten (versie 27 juni 2008) Inleiding Y y p o θ r X fig In fig worden er op twee verschillende manieren coördinaten gegeven aan het punt p Een eerste

Nadere informatie

Productontwikkeling 3EM

Productontwikkeling 3EM Vragen Productontwikkeling 3EM Les 9 Sterkteleer (deel 2) Zijn er nog vragen over voorgaande lessen?? Paul Janssen 2 Inleiding Inleiding Sterkteberekening van liggers (en assen) Voorbeelden Berekening

Nadere informatie

Wiskundige Technieken 1 Uitwerkingen Hertentamen 2 januari 2014

Wiskundige Technieken 1 Uitwerkingen Hertentamen 2 januari 2014 Wiskundige Technieken Uitwerkingen Hertentamen januari 4 Normering voor 4 pt vragen (andere vragen naar rato): 4pt 3pt pt pt pt goed begrepen én goed uitgevoerd, eventueel met of onbelangrijke rekenfoutjes

Nadere informatie

Uitwerkingen Mei 2012. Eindexamen VWO Wiskunde B. Nederlands Mathematisch Instituut Voor Onderwijs en Onderzoek

Uitwerkingen Mei 2012. Eindexamen VWO Wiskunde B. Nederlands Mathematisch Instituut Voor Onderwijs en Onderzoek Uitwerkingen Mei 01 Eindexamen VWO Wiskunde B A B C Nederlands Mathematisch Instituut Voor Onderwijs en Onderzoek Onafhankelijkheid van a Opgave 1. We moeten aantonen dat F a een primitieve is van de

Nadere informatie

Practicum Torsiebalans

Practicum Torsiebalans Practicum Torsiebalans Patrick Aeschlimann Yves Henri Nzakamwita Pieter Verbeirens 25 april 2013 1 Inleiding In dit practicum bestuderen we elastische vervormingen in vaste lichamen, hiervoor zullen we

Nadere informatie

Mechanica - Sterkteleer - HWTK PROEFTOETS versie C - OPGAVEN.doc 1/7

Mechanica - Sterkteleer - HWTK PROEFTOETS versie C - OPGAVEN.doc 1/7 VAK: Mechanica - Sterkteleer HWTK Set Proeftoets 07-02 versie C Mechanica - Sterkteleer - HWTK PROEFTOETS- 07-02-versie C - OPGAVEN.doc 1/7 DIT EERST LEZEN EN VOORZIEN VAN NAAM EN LEERLINGNUMMER! Beschikbare

Nadere informatie

HERTENTAMEN WISKUNDIGE BEELDVERWERKINGSTECHNIEKEN

HERTENTAMEN WISKUNDIGE BEELDVERWERKINGSTECHNIEKEN HERTENTAMEN WISKUNDIGE BEELDVERWERKINGSTECHNIEKEN Vakcode: 8D. Datum: Vrijdag juli 3. Tijd: 9.. uur. Plaats: AUD 5. Lees dit vóórdat je begint! Maak iedere opgave op een apart vel. Schrijf je naam en studentnummer

Nadere informatie

Aanvulling bij de cursus Calculus 1. Complexe getallen

Aanvulling bij de cursus Calculus 1. Complexe getallen Aanvulling bij de cursus Calculus 1 Complexe getallen A.C.M. Ran In dit dictaat worden complexe getallen behandeld. Ook in het Calculusboek van Adams kun je iets over complexe getallen lezen, namelijk

Nadere informatie

Kies voor i een willekeurige index tussen 1 en r. Neem het inproduct van v i met de relatie. We krijgen

Kies voor i een willekeurige index tussen 1 en r. Neem het inproduct van v i met de relatie. We krijgen Hoofdstuk 95 Orthogonaliteit 95. Orthonormale basis Definitie 95.. Een r-tal niet-triviale vectoren v,..., v r R n heet een orthogonaal stelsel als v i v j = 0 voor elk paar i, j met i j. Het stelsel heet

Nadere informatie

Significante cijfers en meetonzekerheid

Significante cijfers en meetonzekerheid Inhoud Significante cijfers en meetonzekerheid... 2 Significante cijfers... 2 Wetenschappelijke notatie... 3 Meetonzekerheid... 3 Significante cijfers en meetonzekerheid... 4 Opgaven... 5 Opgave 1... 5

Nadere informatie

Advanced Creative Engineering Skills

Advanced Creative Engineering Skills Les 2 September 2015 Theaterschool OTT-2 1 Terugblik buiging Zuivere buiging belasting door buigend moment Neutrale laag Buigingsformule M b = σ b W b W b is weerstandsmoment [mm 3 ] Afhankelijk van vorm

Nadere informatie

8 Aanvulling Hoofdstuk 8 Metalen

8 Aanvulling Hoofdstuk 8 Metalen 8 Aanvulling Hoofdstuk 8 Metalen 8.1 Vervaardiging van staalproducten 8.2 Verschil warm- en koudwalsen 8.3 Vermoeiing 8.1 De vervaardiging van staalproducten Bij paragraaf 8.2.3 in het boek. Bij de vervaardiging

Nadere informatie

7 College 01/12: Electrische velden, Wet van Gauss

7 College 01/12: Electrische velden, Wet van Gauss 7 College 01/12: Electrische velden, Wet van Gauss Berekening van electrische flux Alleen de component van het veld loodrecht op het oppervlak draagt bij aan de netto flux. We definieren de electrische

Nadere informatie

Vectoranalyse voor TG

Vectoranalyse voor TG college 6 van een vectorveld collegejaar college build slides Vandaag : : : : 14-15 6 22 september 214 51 1 2 3 4 5 Gradiënt van een vectorveld 1 VA vandaag Section 16.2 Hoofdstu 4 Definitie Een vectorveld

Nadere informatie

Tentamen Warmte-overdracht

Tentamen Warmte-overdracht Tentamen Warmte-overdracht vakcode: 4B680 datum: 7 april 2014 tijd: 9.00-12.00 uur LET OP Er zijn in totaal 4 opgaven waarvan de eerste opgave bestaat uit losse vragen. Alle opgaven tellen even zwaar mee.

Nadere informatie

Tentamen Constructief Ontwerpen met Materialen B (7P118)

Tentamen Constructief Ontwerpen met Materialen B (7P118) Tentamen Constructief Ontwerpen met Materialen B (7P118) Naam en voorletters: TENTAMEN COM B (7P118) BESTAAT UIT TWEE MATERIALEN: BETON EN STEEN. PUNTENVERDELING: BETON: STEEN: 55 PUNTEN 45 PUNTEN - Voor

Nadere informatie

Uitwerking tentamen Stroming 15 juli 2005

Uitwerking tentamen Stroming 15 juli 2005 Uitwerking tentamen Stroming 5 juli 005 Opgave Hydrostatica : Manometer ρ A = 890 kg/m3 g= 9.8 m/s ρ B = 590 kg/m3 ρ ZUIGER = 700 kg/m3 D ZUIGER = m ha= 30 m hb= 5 m pb= 50000 Pa (overdruk) Vraag : Hoogte

Nadere informatie

Ijkingstoets 4 juli 2012

Ijkingstoets 4 juli 2012 Ijkingtoets 4 juli 2012 -vragenreeks 1 1 Ijkingstoets 4 juli 2012 Oefening 1 In de apotheek bezorgt de apotheker zijn assistent op verschillende tijdstippen van de dag een voorschrift voor een te bereiden

Nadere informatie

Tentamen Moleculaire Simulaties - 8C November uur

Tentamen Moleculaire Simulaties - 8C November uur Tentamen Moleculaire Simulaties - 8C030 11 November 2008-14.00-17.00 uur Vier algemene opmerkingen: Het tentamen bestaat uit 6 opgaven verdeeld over 3 pagina's. Op pagina 3 staat voor iedere opgave het

Nadere informatie

WISKUNDE 5 PERIODEN. DATUM : 5 juni 2008 ( s morgens) Niet-programmeerbare, niet-grafische rekenmachine

WISKUNDE 5 PERIODEN. DATUM : 5 juni 2008 ( s morgens) Niet-programmeerbare, niet-grafische rekenmachine EUROPEES BACCALAUREAAT 2008 WISKUNDE 5 PERIODEN DATUM : 5 juni 2008 ( s morgens) DUUR VAN HET EXAMEN : 4 uur (240 minuten) TOEGESTANE HULPMIDDELEN Formuleboekje voor de Europese scholen Niet-programmeerbare,

Nadere informatie

Voorblad bij tentamen

Voorblad bij tentamen Voorblad bij tentamen (in te vullen door de examinator) Vaknaam: MECHANICA Vakcode: 8MB09 Datum: 22 Januari 2015 Begintijd: 9.00 Eindtijd: 12.00 Aantal pagina s: 11 Aantal vragen: 10 Aantal te behalen

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Uitwerking Tentamen Calculus, 2DM10, maandag 22 januari 2007

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Uitwerking Tentamen Calculus, 2DM10, maandag 22 januari 2007 TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Uitwerking Tentamen Calculus, DM, maandag januari 7. (a) Gevraagd is het polynoom f() + f () (x ) + f (x ). Een eenvoudige rekenpartij

Nadere informatie

(Assistenten zijn Sofie Burggraeve, Bart Jacobs, Annelies Jaspers, Nele Lejon, Daan Michiels, Michael Moreels, Berdien Peeters en Pieter Segaert).

(Assistenten zijn Sofie Burggraeve, Bart Jacobs, Annelies Jaspers, Nele Lejon, Daan Michiels, Michael Moreels, Berdien Peeters en Pieter Segaert). Tussentijdse Toets Wiskunde I 1ste bachelor Biochemie & Biotechnologie, Chemie, Geografie, Geologie, Informatica, Schakelprogramma Master Toegepaste Informatica, donderdag 17 november 011, 8:30 10:00 uur

Nadere informatie

HOOFDSTUK VII REGRESSIE ANALYSE

HOOFDSTUK VII REGRESSIE ANALYSE HOOFDSTUK VII REGRESSIE ANALYSE 1 DOEL VAN REGRESSIE ANALYSE De relatie te bestuderen tussen een response variabele en een verzameling verklarende variabelen 1. LINEAIRE REGRESSIE Veronderstel dat gegevens

Nadere informatie

Elk vermoeden van fraude wordt gemeld bij de examencommissie.

Elk vermoeden van fraude wordt gemeld bij de examencommissie. Faculteit Civiele Techniek en Geowetenschappen Naam : Studienr : Schriftelijk tentamen CTB1110 ConstructieMechanica 1 Totaal aantal pagina s Datum en tijd Verantwoordelijk docent 20 pagina s excl voorblad

Nadere informatie

Correcties en verbeteringen Wiskunde voor het Hoger Onderwijs, deel A.

Correcties en verbeteringen Wiskunde voor het Hoger Onderwijs, deel A. Wiskunde voor het hoger onderwijs deel A Errata 00 Noordhoff Uitgevers Correcties en verbeteringen Wiskunde voor het Hoger Onderwijs, deel A. Hoofdstuk. 4 Op blz. in het Theorieboek staat halverwege de

Nadere informatie

Zomercursus Wiskunde. Module 7 Poolcoördinaten (versie 22 augustus 2011)

Zomercursus Wiskunde. Module 7 Poolcoördinaten (versie 22 augustus 2011) Katholieke Universiteit Leuven September 2011 Module 7 Poolcoördinaten (versie 22 augustus 2011) Inhoudsopgave 1 Poolcoördinaten 1 2 Poolvergelijkingen 3 21 Cartesiaanse coördinaten versus poolcoördinaten

Nadere informatie

Toelatingstoets havoniveau natuurkunde max. 42 p, vold 24 p

Toelatingstoets havoniveau natuurkunde max. 42 p, vold 24 p Toelatingstoets havoniveau natuurkunde max. 42 p, vold 24 p Verantwoording: Opgave 1 uit havo natuurkunde 1,2: 2009_1 opg 4 (elektriciteit) Opgave 2 uit havo natuurkunde 1,2: 2009_2 opg 1 (licht en geluid)

Nadere informatie

11.1 De parabool [1]

11.1 De parabool [1] 11.1 De parabool [1] Algemeen: Het punt F heet het brandpunt van de parabool. De lijn l heet de richtlijn van de parabool. De afstand van F tot l heet de parameter van de parabool. Defintie van een parabool:

Nadere informatie

Tentamen Systeemanalyse (113117)

Tentamen Systeemanalyse (113117) Systeemanalyse (113117) 1/6 Vooraf Tentamen Systeemanalyse (113117) 17 augustus 2010, 8:45 12:15 uur Dit is een open boek tentamen, hetgeen betekent dat gebruik mag worden gemaakt van het dictaat Systeemanalyse

Nadere informatie

Oefeningen Smering : toepassing van de Navier-Stokes vergelijkingen

Oefeningen Smering : toepassing van de Navier-Stokes vergelijkingen Oefeningen Smering : toepassing van de Navier-Stokes vergelijkingen 1. Beschouw een permanente, laminaire stroming in de x-richting van een fluïdum met een laagdikte h, dichtheid en dnamische viscositeit

Nadere informatie

zwaartekracht (N of kn) Dus moeten we Fz bepalen dat kan alleen als we de massa weten. Want

zwaartekracht (N of kn) Dus moeten we Fz bepalen dat kan alleen als we de massa weten. Want Sterkteberekening Dissel berekenen op afschuiving. Uitleg over de methode Om de dissel te berekenen op afschuiving moet men weten welke kracht de trekker kan uitoefenen op de bloemkoolmachine. Daarvoor

Nadere informatie

8.1 Rekenen met complexe getallen [1]

8.1 Rekenen met complexe getallen [1] 8.1 Rekenen met complexe getallen [1] Natuurlijke getallen: Dit zijn alle positieve gehele getallen en nul. 0, 1, 2, 3, 4, 5, 6,... Het symbool voor de natuurlijke getallen is Gehele getallen: Dit zijn

Nadere informatie

Eindexamen wiskunde B havo I

Eindexamen wiskunde B havo I Archimedes Wave Swing De Archimedes Wave Swing (afgekort AWS) is ontwikkeld om de golfbeweging van de zee te gebruiken om energie op te wekken. Elke AWS bestaat uit twee halfopen delen. Het onderste deel

Nadere informatie

Differentiaalvergelijkingen I : separabele en lineaire 1ste orde DV

Differentiaalvergelijkingen I : separabele en lineaire 1ste orde DV WISKUNDIGE ANALYSE OEFENZITTING 0 c D. Keppens 2004 Differentiaalvergelijkingen I : separabele en lineaire ste orde DV Onderwerp : separabele differentiaalvergelijkingen van de eerste orde en vergelijkingen

Nadere informatie

Mechanica - Sterkteleer - HWTK PROEFTOETS- AT1 - OPGAVEN 1/6

Mechanica - Sterkteleer - HWTK PROEFTOETS- AT1 - OPGAVEN 1/6 VAK: Mechanica - Sterkteleer HWTK Set Proeftoets - AT1 Mechanica - Sterkteleer - HWTK PROEFTOETS- AT1 - OPGAVEN 1/6 DIT EERST LEZEN EN VOORZIEN VAN NAAM EN LEERLINGNUMMER! Beschikbare tijd: 100 minuten

Nadere informatie

Eenvoud bij tekenen en rekenen

Eenvoud bij tekenen en rekenen Eenvoud bij tekenen en rekenen Jan van de Craats In het decembernummer 2005 van Euclides doen Paul Drijvers, Swier Garst, Peter Kop en Jenneke Krüger verslag van een experimenteel project in vwo-5 wiskunde-b

Nadere informatie

Gevorderde onderwerpen

Gevorderde onderwerpen Hoofdstuk 5 Gevorderde onderwerpen Doelstellingen 1. Weten wat M-cirkels voorstellen en de functie ervan begrijpen 2. Bodediagram van een algemene transfertfunctie kunnen tekenen 3. Begrijpen dat een regelaar

Nadere informatie

DOORBUIGING VAN BETONCONSTRUCTIES

DOORBUIGING VAN BETONCONSTRUCTIES DOORBUIGING VAN BETONCONSTRUCTIES 1. De buigstijfheid EI 1.1 Inleiding 1.2 De relatie tussen moment en kromming: EI 1.3 Tension Stiffening 1.4 M-κ diagrammen voor de UGT en de BGT 1.4.1 Berekening van

Nadere informatie

Vectoranalyse voor TG

Vectoranalyse voor TG college en scalarelden in R Vandaag collegejaar college build slides : : : : 4-5 7 augustus 4 33 Coördinatenstelsels in R VA andaag Voorkennis Zelf bestuderen uit.,. en.3: ptellen en scalair ermeniguldigen

Nadere informatie