Samenvatting snelheden en

Maat: px
Weergave met pagina beginnen:

Download "Samenvatting snelheden en 6.1 6.3"

Transcriptie

1 Samenvatting snelheden en Boekje snelheden en bewegen Een beweging kan je op verschillende manieren vastleggen: Fotograferen met tussenpozen, elke foto is een gedeelte van een beweging Stroboscopische foto --> foto s genomen in een donkere ruimte met een camera waarvan de sluiter gedurende de beweging open staat en de beweging zichtbaar wordt door middel van lichtflitsen (door een stroboscoop). Afstand-tijdtabel Aan de hand van een stroboscopische foto kan je een afstand-tijdtabel maken. Als je een afstand-tijdtabel wil maken moet je weten hoeveel tijd er tussen de tussenpozen zit en wat de afstanden in werkelijkheid zijn. In een afstand-tijdtabel kan je zien wat de afgelegde afstand is op een bepaald moment. Afstand-tijddiagram Van een afstand-tijdtabel kan je een afstand-tijddiagram maken, een (s,t)-diagram. De s staat voor de afstand (space) en de t voor de tijd. De s komt op de Y-as te staan en de t op de X-as. Uit een (s,t)-diagram kan je lezen wat de afgelegde afstand bij een bepaalde tijd is. Dit kan ook in een tabel maar het verschil is dat je uit een grafiek ook kan halen of de snelheid constant is, toeneemt of afneemt en dat is heel lastig uit een tabel te lezen Snelheid De snelheid (v, velocity) is de afgelegde afstand in meters per seconde of in kilometers per uur. De snelheid in m/s kan je berekenen met de formule v (m/s) = s (in m) t (in s) s (in km) t (in h).. De snelheid in kilometer per uur kan je berekenen met de formule v (km/h) = In het dagelijks leven wordt de snelheid vaak uitgedrukt in km/h en in de natuurkunde vaak in m/s. Het is handig om te weten hoe je deze kan omrekenen. Snelheden omrekenen kan op de volgende manier: Wesley Vos P a g i n a 1

2 Km/h --> m/s : 1 km h = 1 km = 1000 m = 1 = 0,2778 m/s 1 h 3600 s 3,6 o Je weet dat 1 km/h gelijk is aan 1 km afgelegd in 1 uur. 1 Km is gelijk aan 1000m en 1 uur= 3600 seconden. 1000m / 3600s = 0,2778 m/s. Oftewel als je 1 km per uur aflegt leg je ook 0,2278 m per seconde af. o 1 / 3,6 = 0,2778 dus van km/h naar m/s is delen door 3,6 m/s --> km/h : 1 m s = 1m 0,001 km = = 3,6 km/h 1s (1 3600) h = 0,001 km 0, h o Je weet dat 1 m/s gelijk is aan 1 meter afgelegd in 1 seconde. 1 Meter is gelijk aan 0,001 km en 1 seconde= gelijk aan 1/3600 uur. 0,001 / 0,000278= 3,6 km/h. Oftewel als je 1 meter per seconde aflegt leg je ook 3,6 km per uur af. o 0,001/ 0,000278= 3,6 dus van m/s naar km/h is keer 3,6 Eenparige beweging De snelheid bij een eenparige beweging is constant. Bij een eenparige beweging is de afstand-tijddiagram altijd een rechte lijn die begint in de oorsprong en is de afstandtijdtabel altijd recht evenredig dus als de tijd 2x zo groot wordt, wordt de afstand ook 2x zo groot. De formule voor een eenparige beweging is: V gem = s dan t = t s v gem en t = s v gem. Versnelde beweging Bij een versnelde beweging wordt de afgelegde afstand per tijdseenheid steeds groter. De lijn in de afstand-tijddiagram zal gebogen zijn en steeds steiler worden want in dezelfde tijdsperiode leg je meer afstand af. Vertraagde beweging Bij een vertraagde beweging wordt de afgelegde afstand per tijdseenheid steeds kleiner. De lijn bij een afstand-tijddiagram zal gebogen zijn en steeds minder steil lopen. Versnelling Wanneer er een versnelling is wordt de afgelegde afstand per tijdseenheid steeds groter. De versnelling kun je berekenen door het verschil in snelheid ( V --> snelheidsverandering) te delen door de daarvoor benodigde tijd om van snelheid te veranderen. De grootheid van versnelling is de A van acceleration en de eenheid is Wesley Vos P a g i n a 2

3 m/s 2. De formule luidt als volgt: A = V. De eenheid is T m/s2 omdat je de snelheid (m/s) deelt door de tijd (s) dus m/s delen door s is m/s 2. Het geeft aan hoeveel de snelheid per seconde stijgt dus hoeveel meter er per seconde per seconde meer wordt afgelegd. Een vertraging is een negatieve versnelling. De A zal bij een vertraging altijd een negatieve waarde zijn. Informatie uit grafieken Uit een (s,t)-diagram kan je de afstand berekenen door namelijk op een bepaald punt te kijken hoeveel tijd er nodig was om het voorwerp die afstand te verplaatsen. Zie het voorbeeld in het gele boekje. Ook kan je een (v,t)-diagram, een snelheid-tijddiagram hebben. Uit zo n diagram kan je uitlezen hoeveel de snelheid verandert in een bepaald tijdsbestek (bepaalde tijd). Als je de snelheid deelt door tijd weet je de versnelling op een bepaald moment. De verplaatsing van een voorwerp (afgelegde afstand) is gelijk aan de oppervlakte onder een (v,t)- diagram. De totale afgelegde afstand van een beweging is dan te bereken door de totale oppervlakte onder de lijn te berekenen. De afgelegde afstand kan je op deze manier berekenen want wanneer je de oppervlakte berekent doe je de lengte x de breedte en in dit geval doe je de afstand x de tijd doet. Uit een (a,t)-diagram kan je de snelheidsverandering bepalen. Namelijk door de oppervlakte van het gebied onder de lijn te berekenen. Want de snelheidsverandering is de versnelling x de tijd (kruisproduct). Als je een oppervlakte berekent doe je de lengte x de breedte en nu bereken je de snelheidsverandering door de versnelling x de tijd te doen. De eenheid van versnelling is gelijk aan de afstand delen door tijd tot de macht 2. Eigenlijk staat er: A = m s s. De eenheid van tijd is seconde. Wanneer je m/s2 x s doet wordt het m/s. Kortom: Helling (s,t)-diagram --> v= s / t Helling (v,t)-diagram --> a= v / t Oppervlakte (v,t)-diagram --> s= v t Oppervlakte (a,t)-diagram --> v= a t Wesley Vos P a g i n a 3

4 6.1 Arbeid Om een voorwerp te verplaatsen is er een trekkracht (F trek) nodig. Er zijn veel verschillende manieren om trekkracht uit te oefenen op een voorwerp. Behalve trekkrachten zijn er ook tegenwerkende krachten. Voorbeelden van tegenwerkende krachten zijn o.a. wrijvingskrachten. Wanneer je een voorwerp met een constante snelheid wil laten voortbewegen moet de resulterende kracht (Fres) gelijk zijn aan 0. Oftewel de trekkracht moet even groot zijn als de tegenwerkende krachten. Wanneer de resulterende kracht groter is dan o is er een versnelling en wanneer de resulterende kracht kleiner is dan 0 is er een vertraging en zal het voorwerp langzaam maar zeker tot stilstand komen. Versnelling Zie voorgaande bladzijdes Resultante De resulterende kracht van een voorwerp met een massa is gelijk aan F res = m a Arbeid Als bijvoorbeeld een mens een voorwerp verplaatst verricht in dit geval de mens arbeid. De arbeid kan je berekenen met de volgende formule: W= F s (work = Force space). De eenheid van arbeid is Newton-meter (Nm) want de eenheid van kracht is Newton en de eenheid van afstand is meter en Newton x meter is Newton-meter. Arbeid is een vorm van energie. Daarom is 1 Nm gelijk aan 1 J. De eenheid die voor arbeid gebruikt wordt is Nm om een verwarring met energie te voorkomen maar J is ook goed. Arbeid kleiner maken De arbeid wordt groter doordat er tegenwerkende krachten zijn. De arbeid kan je o.a. verkleinen door de tegenwerkende krachten te verkleinen. Voorbeelden van tegenwerkende krachten die je kleiner kan maken zijn: Luchtweerstand --> stroomlijnen Rolweerstand --> harde banden en vlakke ondergrond Wrijvingskracht --> oppervlakken gladder maken of smeren Wesley Vos P a g i n a 4

5 PLUS Een voorbeeld van een tegenwerkende kracht is de luchtweerstand. Deze kracht is te verkleinen door een voorwerp te stroomlijnen. De luchtweerstandskracht (Fw) kan je berekenen met de formule: Fw = ½ Cw ρ A V 2. Cw is de luchtweerstandcoëfficiënt. Hoe kleiner die luchtweerstandcoëfficiënt is hoe kleiner de luchtweerstand bij dezelfde doorsnede en snelheid is. ρ is de dichtheid van lucht in kg/m 3. A is het frontale oppervlak in m 2. Het frontale oppervlak is het oppervlak wat je ziet als je voor een voorwerp staat en de snelheid is in m/s. 6.2 Hefwerktuigen Om een voorwerp makkelijker omhoog te krijgen kan je gebruik maken van een katrol of van een takel. Vaste katrol --> verandert de richting (dus in plaats van een touw omhoog trekken kan je het touw naar beneden trekken.) Een vaste katrol verandert niet de grootte van de kracht (zie afbeelding 6 blz. 115). Takel --> combinatie van een vaste en een losse katrol. De vaste katrol hangt aan het plafond en de losse katrol ligt op het touw met aan de losse katrol de massa. Doordat de kracht die het voorwerp uitoefent op het touw wordt verdeelt over twee stukken touw en de muur als het ware ook mee tilt wordt de kracht twee keer zo klein (zie afbeelding 7 blz. 115). Winst en verlies Wanneer je een takel gebruikt verandert de richting van de kracht en ook de grootte van de kracht. Alleen moet je 2x zoveel touw binnen halen. De totale arbeid blijft gelijk. Want als je zonder katrol een kracht van 200N moest binnen halen en het touw 2 m moest binnen halen heb je een arbeid verricht van 400N. Als je een takel gebruikt met één vaste en losse katrol hoef je maar 100N binnen te halen maar wel 4m dus de verrichte arbeid is ook 400N. De verrichte arbeid blijft in alle gevallen dus gelijk. Hierboven is de gulden regel beschreven --> de verkleining in kracht is de vergroting in afstand. Dus als je de kracht 2x wil verkleinen moet je de afstand 2x zo groot maken. Wesley Vos P a g i n a 5

6 Helling Je kan ook gebruik maken van een helling om de kracht te verkleinen. Als je een rond voorwerpt 1 m omhoog moet tillen kan je ook een helling gebruiken. De kracht die je geeft om een voorwerp de helling op te rollen is de arbeid die je nodig hebt zonder helling delen door de lengte van de helling. Om een voorwerp van 300N 2 m op te tillen heb je een kracht van 600N nodig. Als je datzelfde voorwerp over een helling van 3 meter rolt heb je een kracht van 200N nodig maar is de verrichte arbeid nog steeds 600N. Als je datzelfde voorwerp over een helling van 6m rolt is de benodigde kracht 100N maar is de verrichte arbeid nog steeds 600N. PLUS Een hydraulisch werktuig is een werktuig waar een kracht vergroot wordt d.m.v. een vloeistof. Bijvoorbeeld olie --> hydraulische krik. Als je een kracht uitoefent op de arm van de krik ontstaat er een kracht op de rechter zuiger. Op de linker zuiger ontstaat een even grote kracht alleen doordat het een groter oppervlak is, is de kracht op de linker zuiger groter. De gulden regel geldt hier ook --> de verkleining in kracht is de verhouding tussen de grootte van beide zuigeroppervlakken. Zie vb. boek. 6.3 Vermogen en rendement Als je een elektromotor gebruikt heb je twee vermogens: het opgenomen vermogen en het nuttig vermogen. Het opgenomen vermogen is de totale energie die in de elektromotor is gestopt. Dit kan je berekenen met de formule Pop= U I en de eenheid is Joule. Het nuttig vermogen is de totale gebruikte energie. Dit is te vergelijken met de formule P nut = W. Oftewel het nuttig vermogen is de verrichte arbeid delen door de T tijd. Als je kracht en de tijd weet maar niet de afstand kan je de volgende formule gebruiken Pnut = F V om het nuttig vermogen te berekenen want P nut = W t Wesley Vos P a g i n a 6 = F s t Het nuttig vermogen is de arbeid delen door de tijd. De arbeid kan je ook schrijven als F s. Als je dit invult krijg je (F s)/t. s/t is gelijk aan de snelheid (v) dus het nuttig vermogen is gelijk aan de kracht x de afstand. = F v

7 Rendement Het rendement is het nuttig vermogen delen door het opgenomen vermogen. η = P nut P op 100% en η = E nut E op 100%. Voorbeelden van berekeningen staan in het tekstboek. Wesley Vos P a g i n a 7

Uitwerkingen van 3 klas NOVA natuurkunde hoofdstuk 6 arbeid en zo

Uitwerkingen van 3 klas NOVA natuurkunde hoofdstuk 6 arbeid en zo Uitwerkingen van 3 klas NOVA natuurkunde hoofdstuk 6 arbeid en zo 1 Arbeid verrichten 1 a) = 0 b) niet 0 en in de richting van de beweging c) =0 d) niet 0 e tegengesteld aan de beweging 2 a) De wrijvingskracht

Nadere informatie

Werkblad 3 Bewegen antwoorden- Thema 14 (NIVEAU BETA)

Werkblad 3 Bewegen antwoorden- Thema 14 (NIVEAU BETA) Werkblad 3 Bewegen antwoorden- Thema 14 (NIVEAU BETA) Theorie In werkblad 1 heb je geleerd dat krachten een snelheid willen veranderen. Je kunt het ook omdraaien, als er geen kracht werkt, dan verandert

Nadere informatie

Theorie: Snelheid (Herhaling klas 2)

Theorie: Snelheid (Herhaling klas 2) Theorie: Snelheid (Herhaling klas 2) Snelheid en gemiddelde snelheid Met de grootheid snelheid geef je aan welke afstand een voorwerp in een bepaalde tijd aflegt. Over een langere periode is de snelheid

Nadere informatie

VAK: natuurkunde KLAS: Havo 4 DATUM: 20 juni 2013. TIJD: 10.10 11.50 uur TOETS: T1 STOF: Hfd 1 t/m 4. Opmerkingen voor surveillant XXXXXXXXXXXXXXXXXXX

VAK: natuurkunde KLAS: Havo 4 DATUM: 20 juni 2013. TIJD: 10.10 11.50 uur TOETS: T1 STOF: Hfd 1 t/m 4. Opmerkingen voor surveillant XXXXXXXXXXXXXXXXXXX VAK: natuurkunde KLAS: Havo 4 DATUM: 20 juni 2013 TIJD: 10.10 11.50 uur TOETS: T1 STOF: Hfd 1 t/m 4 Toegestane hulpmiddelen: Binas + (gr) rekenmachine Bijlagen: 2 blz Opmerkingen voor surveillant XXXXXXXXXXXXXXXXXXX

Nadere informatie

Uitwerkingen opgaven hoofdstuk 4

Uitwerkingen opgaven hoofdstuk 4 Uitwerkingen opgaven hoofdstuk 4 4.1 De eerste wet van Newton Opgave 7 Opgave 8 a F zw = m g = 45 9,81 = 4,4 10 N b De zwaartekracht werkt verticaal. Er is geen verticale beweging. Er moet dus een tweede

Nadere informatie

Krachten (4VWO) www.betales.nl

Krachten (4VWO) www.betales.nl www.betales.nl Grootheden Scalairen Vectoren - Grootte - Eenheid - Grootte - Eenheid - Richting Bv: m = 987 kg x = 10m (x = plaats) V = 3L Bv: F = 17N s = Δx (verplaatsing) v = 2km/h Krachten optellen

Nadere informatie

Inleiding kracht en energie 3hv

Inleiding kracht en energie 3hv Inleiding kracht en energie 3hv Opdracht 1. Wat doen krachten? Leg uit wat krachten kunnen doen. Opdracht 2. Grootheden en eenheden. Vul in: Grootheid Eenheid Andere eenheid Naam Symbool Naam Symbool Naam

Nadere informatie

NASK1 - SAMENVATTING KRACHTEN en BEWEGING. Snelheid. De snelheid kun je uitrekenen door de afstand te delen door de tijd.

NASK1 - SAMENVATTING KRACHTEN en BEWEGING. Snelheid. De snelheid kun je uitrekenen door de afstand te delen door de tijd. NASK1 - SAMENVATTING KRACHTEN en BEWEGING Snelheid De snelheid kun je uitrekenen door de afstand te delen door de tijd. Stel dat je een uur lang 40 km/h rijdt. Je gemiddelde snelheid in dat uur is dan

Nadere informatie

Natuur- en scheikunde 1, energie en snelheid, uitwerkingen

Natuur- en scheikunde 1, energie en snelheid, uitwerkingen 4M versie 1 Natuur- en scheikunde 1, energie en snelheid, uitwerkingen Werk netjes en nauwkeurig Geef altijd een duidelijke berekening of een verklaring Veel succes, Zan Kracht, snelheid, versnelling,

Nadere informatie

De hoogte tijd grafiek is ook gegeven. d. Bepaal met deze grafiek de grootste snelheid van de vuurpijl.

De hoogte tijd grafiek is ook gegeven. d. Bepaal met deze grafiek de grootste snelheid van de vuurpijl. et1-stof Havo4: havo4 A: hoofdstuk 1 t/m 4 Deze opgaven en uitwerkingen vind je op www.agtijmensen.nl Bij het et krijg je in 1 minuten ongeveer deelvragen. Oefen-examentoets et-1 havo 4 1/11 1. Een lancering.

Nadere informatie

Mooie samenvatting: http://members.ziggo.nl/mmm.bessems/kinematica%20 Stencil%20V4%20samenvatting.doc.

Mooie samenvatting: http://members.ziggo.nl/mmm.bessems/kinematica%20 Stencil%20V4%20samenvatting.doc. studiewijzer : natuurkunde leerjaar : 010-011 klas :6 periode : stof : (Sub)domeinen C1 en A 6 s() t vt s v t gem v a t s() t at 1 Boek klas 5 H5 Domein C: Mechanica; Subdomein: Rechtlijnige beweging De

Nadere informatie

UITWERKINGEN OEFENVRAAGSTUKKEN 5 HAVO. natuurkunde

UITWERKINGEN OEFENVRAAGSTUKKEN 5 HAVO. natuurkunde UITWERKINGEN OEFENVRAAGSTUKKEN voor schoolexamen (SE0) en examen 5 HAVO natuurkunde katern 1: Mechanica editie 01-013 UITWERKINGEN OEFENVRAAGSTUKKEN voor schoolexamen (SE0) en examen 5 HAVO natuurkunde

Nadere informatie

Een kogel die van een helling afrolt, ondervindt een constante versnelling. Deze versnelling kan berekend worden met de formule:

Een kogel die van een helling afrolt, ondervindt een constante versnelling. Deze versnelling kan berekend worden met de formule: Voorbeeldmeetrapport (eenparig versnelde beweging stopwatch en meetlat) Eenparig versnelde beweging stopwatch en meetlat. Doel van de proef Een kogel die van een helling afrolt, voert een eenparig versnelde

Nadere informatie

HOGESCHOOL ROTTERDAM:

HOGESCHOOL ROTTERDAM: HOGESCHOOL ROTTERDAM: Toets: Natuurkunde Docent: vd Maas VERSIE B Opgave A: Een kogel wordt vertikaal omhoog geschoten met een snelheid van 300km/h. De kogel heeft een gewicht van 10N. 1. Wat is de tijd

Nadere informatie

a. Bepaal hoeveel langer. b. Bepaal met figuur 1 de snelheid waarmee de parachutist neerkomt.

a. Bepaal hoeveel langer. b. Bepaal met figuur 1 de snelheid waarmee de parachutist neerkomt. Deze examentoets en uitwerkingen vind je op www.agtijmensen.nl Bij het et krijg je in 100 minuten ongeveer 22 vragen Et3 stof vwo6 volgens het PTA: Onderwerpen uit samengevat: Rechtlijnige beweging Kracht

Nadere informatie

CRUESLI. Een pak Cruesli heeft een massa van 375 gram. De bodem van het pak is 4,5 cm breed en 14 cm lang. 1. Bereken de oppervlakte van de bodem.

CRUESLI. Een pak Cruesli heeft een massa van 375 gram. De bodem van het pak is 4,5 cm breed en 14 cm lang. 1. Bereken de oppervlakte van de bodem. CRUESLI Een pak Cruesli heeft een massa van 375 gram. De bodem van het pak is 4,5 cm breed en 14 cm lang. 1. Bereken de oppervlakte van de bodem. gegeven: b = 4,5 cm l = 14 cm gevraagd: A formule: A =

Nadere informatie

Het berekenen van de componenten: Gebruik maken van sinus, cosinus, tangens en/of de stelling van Pythagoras. Zie: Rekenen met vectoren.

Het berekenen van de componenten: Gebruik maken van sinus, cosinus, tangens en/of de stelling van Pythagoras. Zie: Rekenen met vectoren. 3.1 + 3.2 Kracht is een vectorgrootheid Kracht is een vectorgrootheid 1 : een grootheid met een grootte én een richting. Bij het tekenen van een krachtpijl geldt: De pijl begint in het aangrijpingspunt

Nadere informatie

Space Experience Curaçao

Space Experience Curaçao Space Experience Curaçao PTA T1 Natuurkunde SUCCES Gebruik onbeschreven BINAS en (grafische) rekenmachine toegestaan. De K.L.M. heeft onlangs aangekondigd, in samenwerking met Xcor Aerospace, ruimte-toerisme

Nadere informatie

bij het oplossen van vraagstukken uit Systematische Natuurkunde -------- deel VWO4 --------- Hoofdstuk 2

bij het oplossen van vraagstukken uit Systematische Natuurkunde -------- deel VWO4 --------- Hoofdstuk 2 bij het oplossen van vraagstukken uit Systematische Natuurkunde -------- deel VWO4 --------- Hoofdstuk 2 B.vanLeeuwen 2010 Hints 2 HINTS 2.1 Vragen en Opgaven De vragen 1 t/m 6 Als er bij zulke vragen

Nadere informatie

J De centrale draait (met de gegevens) gedurende één jaar. Het gemiddelde vermogen van de centrale kan dan berekend worden:

J De centrale draait (met de gegevens) gedurende één jaar. Het gemiddelde vermogen van de centrale kan dan berekend worden: Uitwerking examen Natuurkunde1 HAVO 00 (1 e tijdvak) Opgave 1 Itaipu 1. De verbruikte elektrische energie kan worden omgerekend in oules: 17 = 9,3 kwh( = 9,3 3, ) = 3,3 De centrale draait (met de gegevens)

Nadere informatie

a. Bepaal hoeveel langer. b. Bepaal met figuur 1 de snelheid waarmee de parachutist neerkomt.

a. Bepaal hoeveel langer. b. Bepaal met figuur 1 de snelheid waarmee de parachutist neerkomt. Deze examentoets en uitwerkingen vind je op www.agtijmensen.nl Bij het et krijg je in 100 minuten ongeveer 22 vragen Et3 stof vwo6 volgens het PTA: Onderwerpen uit samengevat: Rechtlijnige beweging Kracht

Nadere informatie

Diagrammen Voor beide typen beweging moet je drie diagrammen kunnen tekenen, te weten een (s,t)-diagram, een (v,t)-diagram en een (a,t)-diagram.

Diagrammen Voor beide typen beweging moet je drie diagrammen kunnen tekenen, te weten een (s,t)-diagram, een (v,t)-diagram en een (a,t)-diagram. Inhoud... 2 Diagrammen... 3 Informatie uit diagrammen halen... 4 Formules... 7 Opgaven... 8 Opgave: Aventador LP 700-4 Roadster... 8 Opgave: Boeiing 747-400F op startbaan... 8 Opgave: Fietser voor stoplicht...

Nadere informatie

Grootheid: eigenschap die je kunt meten (met een meetinstrument) Eenheid: maat waarin de grootheid wordt uitgedrukt

Grootheid: eigenschap die je kunt meten (met een meetinstrument) Eenheid: maat waarin de grootheid wordt uitgedrukt 1.3 Grootheden en eenheden Grootheid: eigenschap die je kunt meten (met een meetinstrument) Eenheid: maat waarin de grootheid wordt uitgedrukt BINAS : BINAS 3A: BINAS 4: vermenigvuldigingsfactoren basisgrootheden

Nadere informatie

3 Veranderende krachten

3 Veranderende krachten 3 Veranderende krachten B Modelleren Een computermodel van bewegingen in SCYDynamics NLT-module Het lesmateriaal bij deze paragraaf vormt een onderdeel van de NLT-module Dynamische Modellen VWO. Wat gaan

Nadere informatie

MBO College Hilversum. Afdeling Media. Hans Minjon Versie 2

MBO College Hilversum. Afdeling Media. Hans Minjon Versie 2 MBO College Hilversum Afdeling Media Hans Minjon Versie 2 Soorten krachten Er zijn veel soorten krachten. Een aantal voorbeelden: Spierkracht. Deze ontstaat als spieren in je lichaam zich spannen. Op die

Nadere informatie

Extra opdrachten Module: bewegen

Extra opdrachten Module: bewegen Extra opdrachten Module: bewegen Opdracht 1: Zet de juiste letters van de grootheden in de driehoeken. Opdracht 2: Zet boven de pijl de juiste omrekeningsfactor. Opdracht 3: Bereken de ontbrekende gegevens

Nadere informatie

Studievoorbereiding. Vak: Natuurkunde voorbeeldexamen. Toegestane hulpmiddelen: Rekenmachine. Het examen bestaat uit: 32 meerkeuzevragen

Studievoorbereiding. Vak: Natuurkunde voorbeeldexamen. Toegestane hulpmiddelen: Rekenmachine. Het examen bestaat uit: 32 meerkeuzevragen Studievoorbereiding VOORBLAD EXAMENOPGAVE Vak: Natuurkunde voorbeeldexamen Tijdsduur: Toegestane hulpmiddelen: Rekenmachine Het examen bestaat uit: 32 meerkeuzevragen Aantal pagina s: 10 Beoordeling van

Nadere informatie

Vraag Antwoord Scores

Vraag Antwoord Scores Eindexamen vwo natuurkunde pilot 03-II Beoordelingsmodel Opgave Splijtstof in een kerncentrale maximumscore 3 35 7 87 U + n Ba + Kr + n of 9 0 56 36 0 35 7 87 U + n Ba + Kr + n één neutron links van de

Nadere informatie

5 Kracht en beweging. Beweging in diagrammen. Nova

5 Kracht en beweging. Beweging in diagrammen. Nova 5 Kracht en beweging 1 Beweging in diagrammen 1 a Een beweging waarbij de snelheid gelijkmatig groter wordt, noem je een eenparig versnelde beweging. Een beweging waarbij de snelheid steeds even groot

Nadere informatie

NATUURKUNDE. Figuur 1

NATUURKUNDE. Figuur 1 NATUURKUNDE KLAS 5 PROEFWERK HOOFDSTUK 12-13: KRACHT EN BEWEGING OOFDSTUK 12-13: K 6/7/2009 Deze toets bestaat uit 5 opgaven (51 + 4 punten) en een uitwerkbijlage. Gebruik eigen grafische rekenmachine

Nadere informatie

HEREXAMEN EIND MULO tevens IIe ZITTING STAATSEXAMEN EIND MULO 2009

HEREXAMEN EIND MULO tevens IIe ZITTING STAATSEXAMEN EIND MULO 2009 MNSTERE VAN ONDERWJS EN VOLKSONTWKKELNG EXAMENBUREAU HEREXAMEN END MULO tevens e ZTTNG STAATSEXAMEN END MULO 2009 VAK : NATUURKUNDE DATUM : VRJDAG 07 AUGUSTUS 2009 TJD : 7.30 9.30 UUR DEZE TAAK BESTAAT

Nadere informatie

Eindexamen natuurkunde 1-2 havo 2000-I

Eindexamen natuurkunde 1-2 havo 2000-I - + - + Eindexamen natuurkunde -2 havo 2000-I 4 Antwoordmodel Opgave LEDs voorbeelden van schakelschema s: 50 Ω V LED A 50 Ω A V LED Als slechts één meter juist is geschakeld: punt. 2 uitkomst: R = 45

Nadere informatie

Inleiding opgaven 3hv

Inleiding opgaven 3hv Inleiding opgaven 3hv Opgave 1 Leg uit wat een eenparige beweging is. Opgave De maan beweegt met (bijna) constante snelheid om de aarde. Leg uit of dit een eenparige beweging is. Opgave 3 Geef twee voorbeelden

Nadere informatie

Een model voor een lift

Een model voor een lift Een model voor een lift 2 de Leergang Wiskunde schooljaar 213/14 2 Inhoudsopgave Achtergrondinformatie... 4 Inleiding... 5 Model 1, oriëntatie... 7 Model 1... 9 Model 2, oriëntatie... 11 Model 2... 13

Nadere informatie

Diagrammen Voor beide typen beweging moet je drie diagrammen kunnen tekenen, te weten een (s,t)-diagram, een (v,t)-diagram en een (a,t)-diagram.

Diagrammen Voor beide typen beweging moet je drie diagrammen kunnen tekenen, te weten een (s,t)-diagram, een (v,t)-diagram en een (a,t)-diagram. Inhoud... 2 Diagrammen... 3 Informatie uit diagrammen halen... 4 Formules... 7 Opgaven... 10 Opgave: Aventador LP 700-4 Roadster... 10 Opgave: Boeiing 747-400F op startbaan... 10 Opgave: Versnellen op

Nadere informatie

c. Bereken van welke hoogte Humpty kan vallen zonder dat hij breekt. {2p}

c. Bereken van welke hoogte Humpty kan vallen zonder dat hij breekt. {2p} NATUURKUNDE KLAS 5 INHAALPROEFWERK ARBEID EN ENERGIE 17/01/11 Denk aan FIRES! Dit proefwerk bestaat uit 3 opgaves, met totaal 33 punten. Opgave 1. Humpty Dumpty (9p) In een Engels liedje is Humpty Dumpty

Nadere informatie

5. Lineaire verbanden.

5. Lineaire verbanden. Uitwerkingen opgaven hoofdstuk 5 versie 15 5. Lineaire veranden. Opgave 5.1 Recht evenredig lineair verand F (N) 1 9 8 Uitrekking van een veer a = F 9 k = 37,5 x 4 = 7 6 5 4 F 9 N N k = = = 37,5 x 4 cm

Nadere informatie

- KLAS 5. a) Bereken de hellingshoek met de horizontaal. (2p) Heb je bij a) geen antwoord gevonden, reken dan verder met een hellingshoek van 15.

- KLAS 5. a) Bereken de hellingshoek met de horizontaal. (2p) Heb je bij a) geen antwoord gevonden, reken dan verder met een hellingshoek van 15. NATUURKUNDE - KLAS 5 PROEFWERK H6 22-12-10 Het proefwerk bestaat uit 3 opgaven met in totaal 31 punten. Gebruik van BINAS en grafische rekenmachine is toegestaan. Opgave 1: De helling af (16p) Een wielrenner

Nadere informatie

Opgave 1 Afdaling. Opgave 2 Fietser

Opgave 1 Afdaling. Opgave 2 Fietser Opgave 1 Afdaling Een skiër daalt een 1500 m lange helling af, het hoogteverschil is 300 m. De massa van de skiër, inclusief de uitrusting, is 86 kg. De wrijvingskracht met de sneeuw is gemiddeld 4,5%

Nadere informatie

Inhoud. Eenheden... 2 Omrekenen van eenheden I... 4 Omrekenen van eenheden II... 9 Omrekenen van eenheden III... 10

Inhoud. Eenheden... 2 Omrekenen van eenheden I... 4 Omrekenen van eenheden II... 9 Omrekenen van eenheden III... 10 Inhoud Eenheden... 2 Omrekenen van eenheden I... 4 Omrekenen van eenheden II... 9 Omrekenen van eenheden III... 10 1/10 Eenheden Iedere grootheid heeft zijn eigen eenheid. Vaak zijn er meerdere eenheden

Nadere informatie

OEFENEN SNELHEID EN KRACHTEN VWO 3 Na Swa

OEFENEN SNELHEID EN KRACHTEN VWO 3 Na Swa v (m/s) OEFENEN SNELHEID EN KRACHTEN VWO 3 Na Swa Moeite met het maken van s-t en v-t diagrammen?? Doe mee, werk de vragen uit en gebruik je gezonde verstand en dan zul je zien dat het allemaal niet zo

Nadere informatie

Tijdsduur 100 minuten. Deze toets bestaat uit 4 opgaven (54 punten). Gebruik eigen grafische rekenmachine en BINAS toegestaan. Veel succes!

Tijdsduur 100 minuten. Deze toets bestaat uit 4 opgaven (54 punten). Gebruik eigen grafische rekenmachine en BINAS toegestaan. Veel succes! PROEFWERK NATUURKUNDE KLAS 5 ROEFWERK H10 + H6 10/3/2009 Tijdsduur 100 minuten. Deze toets bestaat uit 4 opgaven (54 punten). Gebruik eigen grafische rekenmachine en BINAS toegestaan. Veel succes! Opgave

Nadere informatie

Arbeid & Energie. Dr. Pieter Neyskens Monitoraat Wetenschappen pieter.neyskens@wet.kuleuven.be. Assistent: Erik Lambrechts

Arbeid & Energie. Dr. Pieter Neyskens Monitoraat Wetenschappen pieter.neyskens@wet.kuleuven.be. Assistent: Erik Lambrechts Introductieweek Faculteit Bewegings- en Revalidatiewetenschappen 25 29 Augustus 2014 Arbeid & Energie Dr. Pieter Neyskens Monitoraat Wetenschappen pieter.neyskens@wet.kuleuven.be Assistent: Erik Lambrechts

Nadere informatie

vwo: Het maken van een natuurkunde-verslag vs 21062011

vwo: Het maken van een natuurkunde-verslag vs 21062011 Het maken van een verslag voor natuurkunde, vwo versie Deze tekst vind je op www.agtijmensen.nl: Een voorbeeld van een verslag Daar vind je ook een po of pws verslag dat wat uitgebreider is. Gebruik volledige

Nadere informatie

BEWEGING HAVO. Raaklijnmethode Hokjesmethode

BEWEGING HAVO. Raaklijnmethode Hokjesmethode BEWEGING HAVO Foton is een opgavenverzameling voor het nieuwe eindexamenprogramma natuurkunde. Foton is te downloaden via natuurkundeuitgelegd.nl/foton Uitwerkingen van alle opgaven staan op natuurkundeuitgelegd.nl/uitwerkingen

Nadere informatie

Hoofdstuk 4: Arbeid en energie

Hoofdstuk 4: Arbeid en energie Hoofdstuk 4: Arbeid en energie 4.1 Energiebronnen Arbeid: W =............. Energie:............................................................................... Potentiële energie: E p =.............

Nadere informatie

Kracht en Energie Inhoud

Kracht en Energie Inhoud Kracht en Energie Inhoud Wat is kracht? (Inleiding) Kracht is een vector Krachten saenstellen ( optellen ) Krachten ontbinden ( aftrekken ) Resulterende kracht 1 e wet van Newton: wet van de traagheid

Nadere informatie

Fysica: mechanica, golven en thermodynamica PROEFEXAMEN VAN 12 NOVEMBER 2008

Fysica: mechanica, golven en thermodynamica PROEFEXAMEN VAN 12 NOVEMBER 2008 Fysica: mechanica, golven en thermodynamica Prof. J. Danckaert PROEFEXAMEN VAN 12 NOVEMBER 2008 OPGEPAST Veel succes! Dit proefexamen bestaat grotendeels uit meerkeuzevragen waarbij je de letter overeenstemmend

Nadere informatie

In autotijdschriften staan vaak testrapporten van nieuwe auto s. In de figuur op de bijlage is zo n overzicht afgedrukt.

In autotijdschriften staan vaak testrapporten van nieuwe auto s. In de figuur op de bijlage is zo n overzicht afgedrukt. Opgave 1 Autotest In autotijdschriften staan vaak testrapporten van nieuwe auto s. In de figuur op de bijlage is zo n overzicht afgedrukt. 0p 0 Zet je naam op de bijlage. De wettelijk verplichte minimale

Nadere informatie

CRUESLI. Een pak Cruesli heeft een massa van 375 gram. De bodem van het pak is 4,5 cm breed en 14 cm lang. 1. Bereken de oppervlakte van de bodem.

CRUESLI. Een pak Cruesli heeft een massa van 375 gram. De bodem van het pak is 4,5 cm breed en 14 cm lang. 1. Bereken de oppervlakte van de bodem. CRUESLI Een pak Cruesli heeft een massa van 375 gram. De bodem van het pak is 4,5 cm breed en 14 cm lang. 1. Bereken de oppervlakte van de bodem. 2. Bereken het gewicht (de zwaartekracht) van het pak cruesli.

Nadere informatie

Natuurkunde - MBO Niveau 4. Beweging

Natuurkunde - MBO Niveau 4. Beweging Natuurkunde - MBO Niveau 4 Beweging OPLEIDING: Noorderpoort MBO Niveau 4 DOCENT: H.J. Riksen LEERJAAR: Leerjaar 3 - Periode 4 UITGAVE: 2014/2015 Natuurkunde - MBO Niveau 4 Beweging OPLEIDING: Noorderpoort

Nadere informatie

Vraag 1 Vraag 2 Vraag 3 Vraag 4 Vraag 5

Vraag 1 Vraag 2 Vraag 3 Vraag 4 Vraag 5 Vraag 1 Een hoeveelheid ideaal gas is opgesloten in een vat van 1 liter bij 10 C en bij een druk van 3 bar. We vergroten het volume tot 10 liter bij 100 C. De einddruk van het gas is dan gelijk aan: a.

Nadere informatie

Uitwerkingen van de opgaven in Basisboek Natuurkunde

Uitwerkingen van de opgaven in Basisboek Natuurkunde opgave (blz 4) Uitwerkingen van de opgaven in Basisboek Natuurkunde De zwaarte-energie wordt gegeven door de formule W zwaarte = m g h In de opgave is de massa m = 0(kg) en de energie W zwaarte = 270(Joule)

Nadere informatie

Auteur(s): Harry Oonk Titel: In de afdaling Jaargang: 10 Jaartal: 1992 Nummer: 2 Oorspronkelijke paginanummers: 67-76

Auteur(s): Harry Oonk Titel: In de afdaling Jaargang: 10 Jaartal: 1992 Nummer: 2 Oorspronkelijke paginanummers: 67-76 Auteur(s): Harry Oonk Titel: In de afdaling Jaargang: 10 Jaartal: 1992 Nummer: 2 Oorspronkelijke paginanummers: 67-76 Deze online uitgave mag, onder duidelijke bronvermelding, vrij gebruikt worden voor

Nadere informatie

SaLVO! 8 Formules en evenredigheden WISKUNDE KLAS 3 HAVO/VWO NAAM: KLAS: I (ma) I R=c. R ( ) boter (gra m) massa massa=2 volume.

SaLVO! 8 Formules en evenredigheden WISKUNDE KLAS 3 HAVO/VWO NAAM: KLAS: I (ma) I R=c. R ( ) boter (gra m) massa massa=2 volume. NAAM: KLAS: SaLVO! 8 Formules en evenredigheden I (ma) I R=c massa massa=2 volume massa=0,5 volume R ( ) boter (gra m) volume WISKUNDE KLAS 3 HAVO/VWO SaLVO! Dit lesmateriaal is een onderdeel van het samenwerkingsproject

Nadere informatie

ATWOOD Blok A en blok B zijn verbonden door een koord dat over een katrol hangt. Er is geen wrijving in de katrol. Het stelsel gaat bewegen.

ATWOOD Blok A en blok B zijn verbonden door een koord dat over een katrol hangt. Er is geen wrijving in de katrol. Het stelsel gaat bewegen. ATWOOD Blok A en blok B zijn verbonden door een koord dat over een katrol hangt. Er is geen wrijving in de katrol. Het stelsel gaat bewegen. Bereken de spankracht in het koord. ATWOOD Over een katrol hangt

Nadere informatie

Bergtrein. Figuur 2 staat ook op de uitwerkbijlage. a. Bepaal de afstand die de trein op t = 20 s heeft afgelegd.

Bergtrein. Figuur 2 staat ook op de uitwerkbijlage. a. Bepaal de afstand die de trein op t = 20 s heeft afgelegd. Bergtrein In een bergachtig gebied kunnen toeristen met een bergtrein naar een mooi uitzichtpunt reizen De trein wordt aangedreven door een elektromotor en begint aan een rit naar boven In figuur 2 is

Nadere informatie

snelheid in m/s Fig. 2

snelheid in m/s Fig. 2 Dit oefen-vt en de uitwerking vind je op Itslearning en op www.agtijmensen.nl 1. Oversteken. Een BMW nadert eenparig met 21 m/s een 53 m verder gelegen zebrapad. Ria die bij de zebra stond te wachten steekt

Nadere informatie

Tijdsduur 100 minuten. Deze toets bestaat uit 4 opgaven (55 punten). Gebruik eigen grafische rekenmachine en BINAS toegestaan. Veel succes!

Tijdsduur 100 minuten. Deze toets bestaat uit 4 opgaven (55 punten). Gebruik eigen grafische rekenmachine en BINAS toegestaan. Veel succes! NATUURKUNDE KLAS 5 INHAAL PROEFWERK ROEFWERK H10 + H6 3/2010 Tijdsduur 100 minuten. Deze toets bestaat uit 4 opgaven (55 punten). Gebruik eigen grafische rekenmachine en BINAS toegestaan. Veel succes!

Nadere informatie

Eindexamen natuurkunde / scheikunde 1 compex vmbo gl/tl 2006 - I

Eindexamen natuurkunde / scheikunde 1 compex vmbo gl/tl 2006 - I BEOORDELINGSMODEL Vraag Antwoord Scores Aan het juiste antwoord op een meerkeuzevraag wordt één punt toegekend. PAAL BIJT HOND 1 maximumscore 2 Er heeft een stroom gelopen. (Dus moet de weerstand klein

Nadere informatie

10 m/s = 36 km/h 5 km = 5000 m 4 m/s = 14,4 km/h. 15 m/s = 54 km/h 81 km/h = 22,5 m/s 25 m/s = 90 km/h

10 m/s = 36 km/h 5 km = 5000 m 4 m/s = 14,4 km/h. 15 m/s = 54 km/h 81 km/h = 22,5 m/s 25 m/s = 90 km/h Het omrekenen van gegevens 1 Reken de volgende gegevens om: 10 m/s = 36 km/h 5 km = 5000 m 4 m/s = 14,4 km/h 15 m/s = 54 km/h 81 km/h = 22,5 m/s 25 m/s = 90 km/h 2,25 h = 2 h 15 min 3 m/s = 10,8 km/h 6

Nadere informatie

Een tweede punt van kritiek is dat er in de natuurkunde alleen een kracht (en geen plank) arbeid kan verrichten.

Een tweede punt van kritiek is dat er in de natuurkunde alleen een kracht (en geen plank) arbeid kan verrichten. Uitwerkingen 1 W = F s Opgave Eenheid van arbeid: joule (symbool J). W = F s = 40,0 N 8,00 m = 30 J W 10 J F = = = 400 N s 0,300 m W 350 J s = = =,33 m F 150 N W 7300 kj s = = = 90 m =,9 km F,5 kn In de

Nadere informatie

ENERGIE & ARBEID VWO

ENERGIE & ARBEID VWO ENERGIE & ARBEID VWO Foton is een opgavenverzameling voor het nieuwe eindexamenprogramma natuurkunde. Foton is gratis te downloaden via natuurkundeuitgelegd.nl/foton Uitwerkingen van alle opgaven staan

Nadere informatie

2.0 Beweging

2.0 Beweging 2.0 Beweging www.natuurkundecompact.nl 2.1 Sporen 2.2 Eenparig 2.3 Vertraagd en versneld 2.4 Aflezen en bepalen 2.5 Strijd Beweging bevriezen en ontdooien wikimedia/phenakistoscope youtube/hugo trailer

Nadere informatie

NAAM:... OPLEIDING:... Fysica: mechanica, golven en thermodynamica PROEFEXAME VA 3 OVEMBER 2009

NAAM:... OPLEIDING:... Fysica: mechanica, golven en thermodynamica PROEFEXAME VA 3 OVEMBER 2009 NAAM:... OPLEIDING:... Fysica: mechanica, golven en thermodynamica Prof. J. Danckaert PROEFEXAME VA 3 OVEMBER 2009 Bij meerkeuzevragen wordt giscorrectie toegepast: voor elk fout verlies je 0.25 punten.

Nadere informatie

Natuurkunde. Lj2P4. Beweging

Natuurkunde. Lj2P4. Beweging Natuurkunde Lj2P4 Beweging Oefening 1 Een Intercitytrein rijdt met een constante snelheid van 140 km/h langs staaon Beilen en passeert 16 minuten later staaon Hoogeveen. De trein rijdt daarna verder met

Nadere informatie

Compex natuurkunde 1-2 havo 2003-I

Compex natuurkunde 1-2 havo 2003-I Compex natuurkunde -2 havo 2003-I 4 Antwoordmodel Opgave Verwarmingslint voorbeeld van een antwoord: Ook bij hoge buitentemperaturen (waarbij geen gevaar voor bevriezing is) geeft het lint warmte af. Je

Nadere informatie

Eindexamen vmbo gl/tl nask1 compex 2011 - I

Eindexamen vmbo gl/tl nask1 compex 2011 - I Beoordelingsmodel Vraag Antwoord Scores Aan het juiste antwoord op een meerkeuzevraag wordt scorepunt toegekend. Lichte Jeep maximumscore koolstofdioxide / CO 2 2 C 3 maximumscore 3 methode 2,4 ((km) minder)

Nadere informatie

Wiskundige vaardigheden

Wiskundige vaardigheden Inleiding Bij het vak natuurkunde ga je veel rekenstappen zetten. Het is noodzakelijk dat je deze rekenstappen goed en snel kunt uitvoeren. In deze presentatie behandelen we de belangrijkste wiskundige

Nadere informatie

Eindexamen natuurkunde pilot havo II

Eindexamen natuurkunde pilot havo II Eindexamen natuurkunde pilot havo 0 - II Beoordelingsmodel Vraag Antwoord Scores Opgave Vooruitgang maximumscore 4 uitkomst: (met een marge van 5 m) s = 8 (m) voorbeeld van een bepaling: De afstand s die

Nadere informatie

KINEMATICA 1 KINEMATICA

KINEMATICA 1 KINEMATICA KINEMATICA 1 KINEMATICA 1 Inleidende begrippen 1.1 Rust en beweging van een punt 1.1.1 Toestand van beweging 1 Inleidende begrippen Een punt is in beweging ten opzichte van een referentiepunt wanneer

Nadere informatie

Natuurkunde - MBO Niveau 4. Beweging

Natuurkunde - MBO Niveau 4. Beweging Natuurkunde - MBO Niveau 4 Beweging OPLEIDING: Noorderpoort MBO Niveau 4 DOCENT: H.J. Riksen LEERJAAR: Leerjaar 3 - Periode 4 UITGAVE: 2014/2015 Natuurkunde - MBO Niveau 4 Beweging OPLEIDING: Noorderpoort

Nadere informatie

Viscositeit. par. 1 Inleiding

Viscositeit. par. 1 Inleiding Viscositeit par. 1 Inleiding Viscositeit is een eigenschap van vloeistoffen (en van gassen) die aangeeft hoe ondoordringbaar de vloeistof is voor een vast voorwerp. Anders gezegd met de grootheid viscositeit

Nadere informatie

Een bal wegschoppen Een veer indrukken en/of uitrekken Een lat ombuigen Een wagentjes voorduwen

Een bal wegschoppen Een veer indrukken en/of uitrekken Een lat ombuigen Een wagentjes voorduwen - 31 - Krachten 1. Voorbeelden Een bal wegschoppen Een veer indrukken en/of uitrekken Een lat ombuigen Een wagentjes voorduwen 2. Definitie Krachten herken je aan hun werking, aan wat ze veranderen of

Nadere informatie

BIOFYSICA: Toets I.4. Dynamica: Oplossing

BIOFYSICA: Toets I.4. Dynamica: Oplossing 1 ste jaar Bachelor BIOMEDISCHE WETENSCHAPPEN Academiejaar 006-007 BIOFYSICA: Toets I.4. Dynamica: Oplossing 1 Opgave 1 Een blokje met massa 0, kg heeft onder aan een vlakke helling een snelheid van 7,

Nadere informatie

6 Bewegen. Bewegingen vastleggen. Nova

6 Bewegen. Bewegingen vastleggen. Nova 6 Bewegen 1 Bewegingen vastleggen 1 a 1 door de beweging met korte tussenpozen te fotograferen (dat komt overeen met wat er bij filmen gebeurt) 2 door een stroboscopische foto te maken van de beweging

Nadere informatie

KeCo-opgaven mechanica (arbeid en energie) HAVO4

KeCo-opgaven mechanica (arbeid en energie) HAVO4 KeCo-opgaven mechanica (arbeid en energie) HVO KeCo-opgaven mechanica (arbeid en energie) HVO M.. en bepaald type aterpomp is in staat om in redelijk korte tijd 30 liter ater omhoog te pompen over een

Nadere informatie

KLAS 5 EN BEWEGING. a) Bereken de snelheid waarmee de auto reed en leg uit of de auto te hard heeft gereden. (4p)

KLAS 5 EN BEWEGING. a) Bereken de snelheid waarmee de auto reed en leg uit of de auto te hard heeft gereden. (4p) NATUURKUNDE KLAS 5 PROEFWERK HOOFDSTUK 12-13: KRACHT EN BEWEGING OOFDSTUK 12-13: K 28/6/2011 Deze toets bestaat uit 3 opgaven (46 punten) en een uitwerkbijlage. Gebruik eigen grafische rekenmachine en

Nadere informatie

natuurkunde havo 2015-II

natuurkunde havo 2015-II natuurkunde havo 05-II Aan het juiste antwoord op een meerkeuzevraag wordt scorepunt toegekend. Vleugel maimumscore antwoord: vier knopen en drie buiken, afwisselend afstand KB = afstand BK B maimumscore,70

Nadere informatie

REKENTECHNIEKEN - OPLOSSINGEN

REKENTECHNIEKEN - OPLOSSINGEN REKENTECHNIEKEN - OPLOSSINGEN 1] 3,52 m + 13,6 cm =? 3,52 m 3,52 m - 2 13,6 cm 0,136 m - 3 3,656 m eindresultaat 3,66 m 2 cijfers na komma en afronden naar boven 3,52 m 352 cm - 0 13,6 cm 13,6 cm - 1 365,6

Nadere informatie

Meting zonnepaneel. Voorbeeld berekening diodefactor: ( ) Als voorbeeld wordt deze formule uitgewerkt bij een spanning van 7 V en 0,76 A:

Meting zonnepaneel. Voorbeeld berekening diodefactor: ( ) Als voorbeeld wordt deze formule uitgewerkt bij een spanning van 7 V en 0,76 A: Meting zonnepaneel Om de beste overbrengingsverhouding te berekenen, moet de diodefactor van het zonnepaneel gekend zijn. Deze wordt bepaald door het zonnepaneel te schakelen aan een weerstand. Een multimeter

Nadere informatie

Essential University Physics Richard Wolfson 2 nd Edition

Essential University Physics Richard Wolfson 2 nd Edition 4-9-013 Chapter Hoofdstuk 6 Lecture 6 Essential University Physics Richard Wolfson nd Edition Arbeid, Energie, en Vermogen 01 Pearson Education, Inc. Slide 6-1 6.1 Arbeid door een Constante Kracht Voor

Nadere informatie

GOOI DE SCHOOLSTRESS VAN JE AF!

GOOI DE SCHOOLSTRESS VAN JE AF! GOOI DE SCHOOLSTRESS VAN JE AF! BELEEF DE NATUURKUNDE IN DE PRAKTIJK 1 Inleiding 5 2 Beweging 6 Beweging vastleggen 6 Snelheid 8 Beweging in grafieken 12 Eenparige beweging 15 Versnellen en vertragen 18

Nadere informatie

Voorbereiding toelatingsexamen arts/tandarts. Fysica: Kinematica. 25 juli 2015. dr. Brenda Casteleyn

Voorbereiding toelatingsexamen arts/tandarts. Fysica: Kinematica. 25 juli 2015. dr. Brenda Casteleyn Voorbereiding toelatingsexamen arts/tandarts Fysica: Kinematica 25 juli 2015 dr. Brenda Casteleyn Met dank aan: Atheneum van Veurne (http://www.natuurdigitaal.be/geneeskunde/fysica/wiskunde/wiskunde.htm),

Nadere informatie

Uitwerking examen Natuurkunde1,2 HAVO 2007 (1 e tijdvak)

Uitwerking examen Natuurkunde1,2 HAVO 2007 (1 e tijdvak) Uitwerking examen Natuurkunde, HAVO 007 ( e tijdvak) Opgave Optrekkende auto. Naarmate de grafieklijn in een (v,t)-diagram steiler loopt, zal de versnelling groter zijn. De versnelling volgt immers uit

Nadere informatie

De bisectie methode uitgelegd met een makkelijk voorbeeld

De bisectie methode uitgelegd met een makkelijk voorbeeld De Bisectie methode De bisectie methode uitgelegd met een makkelijk voorbeeld De bisectie methode is een recursieve methode om punten van een functie te gaan afschatten. Hierbij gaat men de functiewaarde

Nadere informatie

jaar: 1989 nummer: 25

jaar: 1989 nummer: 25 jaar: 1989 nummer: 25 Op een hoogte h 1 = 3 m heeft een verticaal vallend voorwerp, met een massa m = 0,200 kg, een snelheid v = 12 m/s. Dit voorwerp botst op een horizontale vloer en bereikt daarna een

Nadere informatie

formules havo natuurkunde

formules havo natuurkunde Subdomein B1: lektriciteit De kandidaat kan toepassingen van het gebruik van elektriciteit beschrijven, de bijbehorende schakelingen en de onderdelen daarvan analyseren en de volgende formules toepassen:

Nadere informatie

aluminium 2,7 0, ,024 ijzer 7,9 0, ,012

aluminium 2,7 0, ,024 ijzer 7,9 0, ,012 DEZE TAAK BESTAAT UIT 36 ITEMS. --------------------------------------------------------------------------------------------------------------------------------------------------------- Dichtheid Soortelijke

Nadere informatie

Viscositeit. par. 1 Inleiding

Viscositeit. par. 1 Inleiding Viscositeit par. 1 Inleiding Viscositeit is een eigenschap van vloeistoffen (en van gassen) die aangeeft hoe ondoordringbaar de vloeistof is voor een vast voorwerp. Anders gezegd met de grootheid viscositeit

Nadere informatie

Krachten Opgave: Vering van een auto

Krachten Opgave: Vering van een auto Krachten Opgave: Vering van een auto Als een auto een oneffenheid in het wegdek tegenkomt is het de bedoeling dat de inzittenden hier zo min mogelijk van merken. Onder andere om deze reden is een auto

Nadere informatie

Tentamen Natuurkunde I Herkansing uur uur donderdag 7 juli 2005 Docent Drs.J.B. Vrijdaghs

Tentamen Natuurkunde I Herkansing uur uur donderdag 7 juli 2005 Docent Drs.J.B. Vrijdaghs Tentamen Natuurkunde I Herkansing 09.00 uur -.00 uur donderdag 7 juli 005 Docent Drs.J.. Vrijdaghs Aanwijzingen: Dit tentamen omvat 5 opgaven met totaal 0 deelvragen Maak elke opgave op een apart vel voorzien

Nadere informatie

Eindexamen natuurkunde 1-2 havo 2002-I

Eindexamen natuurkunde 1-2 havo 2002-I Eindexamen natuurkunde -2 havo 2002-I Opgave Binnenverlichting Maximumscore 4 uitkomst: R tot = 4 Ω voorbeelden van een berekening: methode Het totale vermogen van de twee lampjes is gelijk aan 25,0 =

Nadere informatie

Relativiteitstheorie met de computer

Relativiteitstheorie met de computer Relativiteitstheorie met de computer Jan Mooij Mendelcollege Haarlem Met een serie eenvoudige grafiekjes wordt de (speciale) relativiteitstheorie verduidelijkt. In vijf stappen naar de tweelingparadox!

Nadere informatie

Eindexamen natuurkunde 1-2 havo 2000-II

Eindexamen natuurkunde 1-2 havo 2000-II Eindexamen natuurkunde -2 havo 2000-II 4 Antwoordmodel Opgave Slijtage bovenleiding uitkomst: m =,87 0 6 kg Het afgesleten volume is: V = (98,8 78,7) 0-6 5200 0 3 2 = 2,090 0 2 m 3. Hieruit volgt dat m

Nadere informatie

Werken met eenheden. Introductie 275. Leerkern 275

Werken met eenheden. Introductie 275. Leerkern 275 Open Inhoud Universiteit Appendix B Wiskunde voor milieuwetenschappen Werken met eenheden Introductie 275 Leerkern 275 1 Grootheden en eenheden 275 2 SI-eenhedenstelsel 275 3 Tekenen en grafieken 276 4

Nadere informatie

Naam (plus beschrijving) Symbool Eenheid Formules. Druk = kracht per eenheid van oppervlakte p (N/m² = ) Pa

Naam (plus beschrijving) Symbool Eenheid Formules. Druk = kracht per eenheid van oppervlakte p (N/m² = ) Pa Naam (lus beschrijving) Symbool enheid ormules MHANIA in het derde jaar Dichtheid massa er eenheid van volume ρ kg /m³ m ρ V Druk kracht er eenheid van oervlakte (N/m² ) a A Hydrostatische druk in een

Nadere informatie

Verslag: Case 1 Team: Hyperion

Verslag: Case 1 Team: Hyperion Verslag: Case 1 Team: Hyperion Glenn Sommerfeld Jeroen Vandebroeck Ilias viaene Christophe Vandenhoeck Jelle Smets Tom Wellens Jan Willems Gaetan Rans 1. Zonnepaneel 1.1 Meetwaarden Om de eigenschappen

Nadere informatie

Deel 4: Krachten. 4.1 De grootheid kracht. 4.1.1 Soorten krachten

Deel 4: Krachten. 4.1 De grootheid kracht. 4.1.1 Soorten krachten Deel 4: Krachten 4.1 De grootheid kracht 4.1.1 Soorten krachten We kennen krachten uit het dagelijks leven: vul in welke krachten werkzaam zijn: trekkracht, magneetkracht, spierkracht, veerkracht, waterkracht,

Nadere informatie

Onderzoek doen. VWO versie. VWO-versie Onderzoek doen Versie 15.04.2011 NAAM:

Onderzoek doen. VWO versie. VWO-versie Onderzoek doen Versie 15.04.2011 NAAM: NAAM: Onderzoek doen VWO versie 1. Technieken bij het doen van een onderzoek...2 1a. Coordinaten transformatie: van krom naar recht...2 1b. Een nulmeting doen....3 1c. Meetgegevens meteen verwerken....3

Nadere informatie