Auteur(s): Harry Oonk Titel: In de afdaling Jaargang: 10 Jaartal: 1992 Nummer: 2 Oorspronkelijke paginanummers: 67-76

Save this PDF as:
 WORD  PNG  TXT  JPG

Maat: px
Weergave met pagina beginnen:

Download "Auteur(s): Harry Oonk Titel: In de afdaling Jaargang: 10 Jaartal: 1992 Nummer: 2 Oorspronkelijke paginanummers: 67-76"

Transcriptie

1 Auteur(s): Harry Oonk Titel: In de afdaling Jaargang: 10 Jaartal: 1992 Nummer: 2 Oorspronkelijke paginanummers: Deze online uitgave mag, onder duidelijke bronvermelding, vrij gebruikt worden voor (para-) medische, informatieve en educatieve doeleinden en ander niet-commercieel gebruik. Zonder kosten te downloaden van:

2 In de afdaling Harry Oonk Inleiding Twee maal eerder is in de column op de rand (1990 nr. 3 en 1991 nr. 5) aandacht besteed aan wielrijders en skiërs die zich in een vrije val een helling afstorten. Daar beweerde ik dat de massa van de afdaler geen invloed heeft op de snelheid. Op- en aanmerkingen bleven komen. Dit heeft waarschijnlijk te maken met het feit dat de zware wielrenners in de beklimming zo veel meer energie moeten gebruiken en het zou zo rechtvaardig zijn als de zwaarderen in de afdaling eens flink voordeel zouden hebben in snelheid. Echter, in de beklimming wordt in het algemeen gekeken naar het energieverbruik bij een konstante snelheid, terwijl in de afdaling gelet wordt op de snelheid. Maar energieverbruik en snelheid zijn verschillende grootheden! In de eerder genoemde rubriek werd steeds beweerd dat, afgezien van luchtweerstand en rolweerstand, de massa geen invloed heeft op de snelheid in de afdaling. Het lijkt dan ook zinvol om het probleem van wielrenners in de afdaling en de invloed van de massa hierop, van begin tot eind, uit te werken. Achtereenvolgens komen aan de orde: 1. Afdaling zonder luchtweerstand en rolweerstand 2. Afdaling met rolweerstand 3. Afdaling met rolweerstand en luchtweerstand Probleemstelling Wat is de invloed van de massa op de snelheids-ontwikkeling van wielrijders in de afdaling. Analyse 1. Afdaling zonder luchtweerstand en rolweerstand De zwaartekracht die op een fietser (inclusief fiets) werkt in de afdaling is het produkt van zijn massa en de versnelling van de zwaartekracht (Fz = m g). De fietser beweegt echter niet in de richting van die zwaartekracht, maar in de richting van de veronderstelde helling. De komponent van de zwaartekracht die de fietser zal doen versnellen in de afdaling is dan ook die komponent die ontbonden is in de wegrichting (figuur 1). Deze is gelijk aan m g sin( α). m = massa van fietser met fiets (kg) g = versnelling van de zwaartekracht (m/s 2 ) α = hellingshoek met de horizontaal in graden Figuur 1. Zwaartekracht ontbonden in wegrichting en loodrecht daarop.

3 Indien geen rekening wordt gehouden met rol- en lucht-weerstand zal alleen deze kracht de fietser doen versnellen. Volgens Newton is deze kracht de veroorzaker van de versnelling a: m g sin(α) = m.a (figuur 2). Daar we meer geïnteresseerd zijn in de snelheid in plaats van in de versnelling, wordt de versnelling uitgedrukt in de snelheid. De versnelling is per definitie gelijk is aan de verandering van de snelheid (a = dv/dt). De vergelijking is dan ook te schrijven als een eerste orde differentiaal vergelijking: dv m g sin( α) = m dt Figuur 2. Afdaling onder invloed van de zwaartekracht Zowel in het linker als het rechter lid van de vergelijking, komt de massa in de eerste graad voor, hetgeen betekent dat de versnelling a onafhankelijk is van deze massa. De versnelling is dus konstant: a = g sin(α). Zware en lichtere fietsers zijn dus gelijk beneden omdat hun snelheid op elk moment hetzelfde is. Indien de hellingshoek 90 graden bedraagt, is de sinus gelijk aan 1 en de versnelling a is dan gelijk aan g; het lichaam versnelt dan met de versnelling van de zwaartekracht. Een vrije val dus. 2. Afdaling met rolweerstand. Rolweerstand kan, evenals slepende wrijving, worden beschreven met een weerstandscoefficiënt. De grootte van de weerstandskracht is dan gelijk aan de weerstands-coefficiënt (fr) vermenigvuldigd met de normaalkracht die op een lichaam werkt: Frol = f r Fn De normaalkracht (Fn) op het lichaam is evengroot als de komponent van de zwaartekracht die loodrecht op de weg staat en tegengesteld van richting: Fn = m g cos(α) De tegenwerkende rolweerstand kan dan worden uitgedrukt in: Frol = f r Fn = f r m g cos(α) De grootte van de rolweerstandscoefficiënt f, hangt af van de ruwheid van zowel wegdek als band, de stijfheid van de banden en de diameter van het wiel. De krachten op de wielrenner die hem doen versnellen zijn zoals in figuur Figuur 3. Afdaling onder invloed van zwaartekracht en rolweerstand. 3 staan geschetst. De krachtenbalans is dan te schrijven als: dv m g sin( α) fr m g cos( α) = m dt Ook in deze differentiaalvergelijking komt de massa in alle termen voor. Alle leden kunnen dus ongestraft gedeeld worden door de massa m, zodat ook, wanneer rekening wordt gehouden met de rolweerstand, de versnelling van zware en lichtere renners gelijk is. Zij zijn nog steeds even snel beneden.

4 3. Afdaling met rol en luchtweerstand De luchtweerstand van een bewegend voorwerp hangt af van de druk die de lucht op dat lichaam uitoefent. Deze stuwdruk is volgens Bernoulli afhankelijk van het kwadraat van de snelheid (v) en de soortelijke massa (ρ) van het medium, volgens: Stuwdruk =.5 ρ v 2. De betekenis hiervan is dat bij hoge luchtdruk de weerstand groter is dan in lage drukgebieden. Verder neemt de weerstand toe met het kwadraat van de snelheid: bij twee keer zo hoge snelheid is de tegenwerkende luchtweerstand vier maal zo groot. De kracht die op het oppervlak A (contour oppervlak van een frontaal aanzicht) van de renner werkt, is dan gelijk aan de stuwdruk maal oppervlak: F =½.ro v 2 A Echter, niet alle lichamen met gelijk oppervlak en gelijke snelheid ondervinden eenzelfde tegenwerkende luchtweerstand. Deze kracht hangt ook nog af van de vorm, ofwel de stroomlijn van het lichaam. De invloed van deze stroomlijn is vastgelegd in de zogenaamde Q,- waarde ofwel vormweerstandscoefficiënt. Hoe gestroomlijnder des te minder weerstand, des te kleiner de CDwaarde. Hiermee komt de tegenwerkende kracht tengevolge van de luchtweerstand op: Fwind =½.ro v 2 A C D. De krachtenbalans ziet er dan als volgt uit: 2 mg sin( α) fr mg cos( α).5ρ AC D v = m dt Figuur 4. Afdaling onderinvloed van zwaartekracht, rolweerstand en luchtweerstand. dv Niet in alle termen van de vergelijking komt de massa voor, zodat in dit geval de massa wel een rol speelt in de versnelling en dus de snelheid van de daler. Verder is voor specifiek gedefinieerde vormen een bekende relatie tussen het frontale oppervlak A van het lichaam en zijn massa. In het algemeen geldt, dat wanneer de massa groter wordt, het frontale oppervlak ook groter wordt, maar niet in dezelfde mate. Wanneer gemakshalve wordt gekozen voor een dalende bolvorm geldt, dat indien de straal van de bol 2 maal zo groot wordt, de massa 8 maal zo groot wordt en het frontale oppervlak vier maal zo groot. De massa neemt dus meer toe dan het frontale oppervlak en dus ook meer toe dan de luchtweerstand. De dalende kracht neemt bij een toenemende massa dus meer toe dan de tegenwerkende luchtweerstand. Dit betekent dat, rekening houdende met de luchtweerstand, de zwaardere dalers iets in het voordeel zijn. De voordelen zijn echter nogal klein en bij versnellen vanuit stilstand tot snelheden in de buurt van de 100 km/h, heeft een 1.5 maal zwaardere afdaler een voordeel in snelheid in de orde van grootte van 4 % en niet 50 % zoals vaak gedacht wordt. Numerieke benadering Om de minieme voordelen van de zwaardere daler numeriek te kunnen afschatten is de oplossing nodig van de bovenstaande differentiaal-vergelijking. Dit is een eerste orde differentiaal-vergelijking met niet konstante coefficiënten en die laat zich zo niet analytisch oplossen. Hoewel Euler ( ) niet beschikte over een computer heeft hij wel een numerieke benadering van de oplossing van dergelijke differentiaal-vergelijkingen beschreven. We zullen hier overigens volstaan met het vermelden van de resultaten. In de numerieke benadering worden de volgende symbolen en waarden gekozen: t v a m ρ C D = tijd (s) = snelheid (m/s) = dv/dt (m/s 2 ); versnelling = 60 en 90 (kg); massa van fietser plus fiets = 1.25 (kg/m 3 ); soortelijke massa van lucht = 0.45; vormweerstandscoefficient van bolvorm

5 f r = 0.005; rolweerstandscoefficient van beide wielen α = 5.7 graden ofwel 10 % g = 9.81 (m/s2) versnelling van de zwaartekracht A = 0.19 (m2) bij m = 60 kg en 0.23 (m2) bij 90 kg Resultaten Bij toenemende snelheid in de afdaling wordt de tegenwerkende kracht als gevolg van luchtweerstand kwadratisch groter, waardoor de versnelling steeds meer afneemt. Op den duur wordt deze luchtweerstand zo groot dat een evenwichtstoestand wordt bereikt indien de versnelling nul bedraagt en de snelheid een maximale konstante waarde bereikt. De laatste differentiaal vergelijking gaat dan over in een gewone vergelijking: m g f m g A C v = 2 sin( α) r cos( α).5ρ D 0 Voor de verschillende massa's kan de maximale snelheid uit deze vergelijking worden berekend. Na anderhalve minuut is deze maximale snelheid bereikt en bedraagt zo'n 120 km/h. De waarden zijn te lezen in onderstaande tabel en figuur 5. tijd (s) snelheid (km/h) afstand (m) m = 60 m = 90 m = 60 m = Figuur 5. Snelheid en afgelegde afstand in relatie met de tijd voor verschillende massa's.

6 Konklusies In figuur 5 geeft de convexe lijn de snelheid weer. De bovenste is die van de massa van 60 kg en de onderste is de snelheid die behoort bij de massa van 90 kg. De concave lijnen zijn de grafische voorstellingen van de afgelegde afstand. De bovenste voor de massa van 60 kg en de onderste voor de massa van 90 kg. U ziet dat er iets verschil in snelheid en afstand is tussen de massa's van 60 kg en die van 90 kg, maar de verschillen zijn zeer gering. Uit de slipstream van de zwaardere op kop, kan de massa van 60 kg die van 90 kg makkelijk inhalen, om even daarna weer aan de zwaardere af te staan.

Tentamen Mechanica ( )

Tentamen Mechanica ( ) Tentamen Mechanica (20-12-2006) Achter iedere opgave is een indicatie van de tijdsbesteding in minuten gegeven. correspondeert ook met de te behalen punten, in totaal 150. Gebruik van rekenapparaat en

Nadere informatie

BIOFYSICA: Toets I.4. Dynamica: Oplossing

BIOFYSICA: Toets I.4. Dynamica: Oplossing 1 ste jaar Bachelor BIOMEDISCHE WETENSCHAPPEN Academiejaar 006-007 BIOFYSICA: Toets I.4. Dynamica: Oplossing 1 Opgave 1 Een blokje met massa 0, kg heeft onder aan een vlakke helling een snelheid van 7,

Nadere informatie

Krachten (4VWO) www.betales.nl

Krachten (4VWO) www.betales.nl www.betales.nl Grootheden Scalairen Vectoren - Grootte - Eenheid - Grootte - Eenheid - Richting Bv: m = 987 kg x = 10m (x = plaats) V = 3L Bv: F = 17N s = Δx (verplaatsing) v = 2km/h Krachten optellen

Nadere informatie

Auteur(s): H. Oonk Titel: De rollator Jaargang: 26 Jaartal: 2008 Nummer: 3 Oorspronkelijke paginanummers:

Auteur(s): H. Oonk Titel: De rollator Jaargang: 26 Jaartal: 2008 Nummer: 3 Oorspronkelijke paginanummers: Auteur(s): H. Oonk Titel: De rollator Jaargang: 26 Jaartal: 2008 Nummer: 3 Oorspronkelijke paginanummers: 98-105 Deze online uitgave mag, onder duidelijke bronvermelding, vrij gebruikt worden voor (para-)

Nadere informatie

- KLAS 5. a) Bereken de hellingshoek met de horizontaal. (2p) Heb je bij a) geen antwoord gevonden, reken dan verder met een hellingshoek van 15.

- KLAS 5. a) Bereken de hellingshoek met de horizontaal. (2p) Heb je bij a) geen antwoord gevonden, reken dan verder met een hellingshoek van 15. NATUURKUNDE - KLAS 5 PROEFWERK H6 22-12-10 Het proefwerk bestaat uit 3 opgaven met in totaal 31 punten. Gebruik van BINAS en grafische rekenmachine is toegestaan. Opgave 1: De helling af (16p) Een wielrenner

Nadere informatie

Uitwerkingen opgaven hoofdstuk 4

Uitwerkingen opgaven hoofdstuk 4 Uitwerkingen opgaven hoofdstuk 4 4.1 De eerste wet van Newton Opgave 7 Opgave 8 a F zw = m g = 45 9,81 = 4,4 10 N b De zwaartekracht werkt verticaal. Er is geen verticale beweging. Er moet dus een tweede

Nadere informatie

4. Maak een tekening:

4. Maak een tekening: . De versnelling van elk deel van de trein is hetzelfde, dus wordt de kracht op de koppeling tussen de 3e en 4e wagon bepaald door de fractie van de massa die er achter hangt, en wordt dus gegeven door

Nadere informatie

Samenvatting snelheden en 6.1 6.3

Samenvatting snelheden en 6.1 6.3 Samenvatting snelheden en 6.1 6.3 Boekje snelheden en bewegen Een beweging kan je op verschillende manieren vastleggen: Fotograferen met tussenpozen, elke foto is een gedeelte van een beweging Stroboscopische

Nadere informatie

De hoogte tijd grafiek is ook gegeven. d. Bepaal met deze grafiek de grootste snelheid van de vuurpijl.

De hoogte tijd grafiek is ook gegeven. d. Bepaal met deze grafiek de grootste snelheid van de vuurpijl. et1-stof Havo4: havo4 A: hoofdstuk 1 t/m 4 Deze opgaven en uitwerkingen vind je op www.agtijmensen.nl Bij het et krijg je in 1 minuten ongeveer deelvragen. Oefen-examentoets et-1 havo 4 1/11 1. Een lancering.

Nadere informatie

a. Bepaal hoeveel langer. b. Bepaal met figuur 1 de snelheid waarmee de parachutist neerkomt.

a. Bepaal hoeveel langer. b. Bepaal met figuur 1 de snelheid waarmee de parachutist neerkomt. Deze examentoets en uitwerkingen vind je op www.agtijmensen.nl Bij het et krijg je in 100 minuten ongeveer 22 vragen Et3 stof vwo6 volgens het PTA: Onderwerpen uit samengevat: Rechtlijnige beweging Kracht

Nadere informatie

Groep 13 CASE SSV DEEL 2 EE4. Bas Jan Renders Mathijs Tielens Jitse Meulenijzer Alexander Blockhuys Casper Antonio Jan Van Hemelen

Groep 13 CASE SSV DEEL 2 EE4. Bas Jan Renders Mathijs Tielens Jitse Meulenijzer Alexander Blockhuys Casper Antonio Jan Van Hemelen Groep 13 CASE SSV DEEL 2 EE4 Bas Jan Renders Mathijs Tielens Jitse Meulenijzer Alexander Blockhuys Casper Antonio Jan Van Hemelen 0 1. Bevindingen & nieuwe Sankeydiagrammen Als we onze wagen van de helling

Nadere informatie

Inleiding kracht en energie 3hv

Inleiding kracht en energie 3hv Inleiding kracht en energie 3hv Opdracht 1. Wat doen krachten? Leg uit wat krachten kunnen doen. Opdracht 2. Grootheden en eenheden. Vul in: Grootheid Eenheid Andere eenheid Naam Symbool Naam Symbool Naam

Nadere informatie

Theorie: Snelheid (Herhaling klas 2)

Theorie: Snelheid (Herhaling klas 2) Theorie: Snelheid (Herhaling klas 2) Snelheid en gemiddelde snelheid Met de grootheid snelheid geef je aan welke afstand een voorwerp in een bepaalde tijd aflegt. Over een langere periode is de snelheid

Nadere informatie

Programmeren en Wetenschappelijk Rekenen in Python. Wi1205AE I.A.M. Goddijn, Faculteit EWI 6 mei 2014

Programmeren en Wetenschappelijk Rekenen in Python. Wi1205AE I.A.M. Goddijn, Faculteit EWI 6 mei 2014 Programmeren en Wetenschappelijk Rekenen in Python Wi1205AE, 6 mei 2014 Bijeenkomst 5 Onderwerpen Het maken van een model Numerieke integratie Grafische weergave 6 mei 2014 1 Voorbeeld: sprong van een

Nadere informatie

Verslag: Case 1 Team: Hyperion

Verslag: Case 1 Team: Hyperion Verslag: Case 1 Team: Hyperion Glenn Sommerfeld Jeroen Vandebroeck Ilias viaene Christophe Vandenhoeck Jelle Smets Tom Wellens Jan Willems Gaetan Rans 1. Zonnepaneel 1.1 Meetwaarden Om de eigenschappen

Nadere informatie

jaar: 1990 nummer: 06

jaar: 1990 nummer: 06 jaar: 1990 nummer: 06 In een wagentje zweeft een ballon aan een koord en hangt een metalen kogel via een touw aan het dak (zie figuur). Het wagentje versnelt in de richting en in de zin aangegeven door

Nadere informatie

4 Krachten in de sport

4 Krachten in de sport Newton havo deel Uitwerkingen Hoofdstuk 4 Krachten in de sport 58 4 Krachten in de sport 4. Inleiding Voorkennis Krachten a Spierkracht, veerkracht, zwaartekracht, wrijvingskracht, elektrische kracht,

Nadere informatie

Het berekenen van de componenten: Gebruik maken van sinus, cosinus, tangens en/of de stelling van Pythagoras. Zie: Rekenen met vectoren.

Het berekenen van de componenten: Gebruik maken van sinus, cosinus, tangens en/of de stelling van Pythagoras. Zie: Rekenen met vectoren. 3.1 + 3.2 Kracht is een vectorgrootheid Kracht is een vectorgrootheid 1 : een grootheid met een grootte én een richting. Bij het tekenen van een krachtpijl geldt: De pijl begint in het aangrijpingspunt

Nadere informatie

ATWOOD Blok A en blok B zijn verbonden door een koord dat over een katrol hangt. Er is geen wrijving in de katrol. Het stelsel gaat bewegen.

ATWOOD Blok A en blok B zijn verbonden door een koord dat over een katrol hangt. Er is geen wrijving in de katrol. Het stelsel gaat bewegen. ATWOOD Blok A en blok B zijn verbonden door een koord dat over een katrol hangt. Er is geen wrijving in de katrol. Het stelsel gaat bewegen. Bereken de spankracht in het koord. ATWOOD Over een katrol hangt

Nadere informatie

a. Bepaal hoeveel langer. b. Bepaal met figuur 1 de snelheid waarmee de parachutist neerkomt.

a. Bepaal hoeveel langer. b. Bepaal met figuur 1 de snelheid waarmee de parachutist neerkomt. Deze examentoets en uitwerkingen vind je op www.agtijmensen.nl Bij het et krijg je in 100 minuten ongeveer 22 vragen Et3 stof vwo6 volgens het PTA: Onderwerpen uit samengevat: Rechtlijnige beweging Kracht

Nadere informatie

Opgave 1 Afdaling. Opgave 2 Fietser

Opgave 1 Afdaling. Opgave 2 Fietser Opgave 1 Afdaling Een skiër daalt een 1500 m lange helling af, het hoogteverschil is 300 m. De massa van de skiër, inclusief de uitrusting, is 86 kg. De wrijvingskracht met de sneeuw is gemiddeld 4,5%

Nadere informatie

www. Fysica 1997-1 Vraag 1 Een herdershond moet een kudde schapen, die over haar totale lengte steeds 50 meter lang blijft, naar een 800 meter verderop gelegen schuur brengen. Door steeds van de kop van

Nadere informatie

2QGHU]RHNGRHQ. VWO-versie Onderzoek doen

2QGHU]RHNGRHQ. VWO-versie Onderzoek doen NAAM: 2QGHU]RHNGRHQ Fase 1. Plan van aanpak (De voorbereiding)...2 1.1 Het onderwerp:...2 1.2 De hoofdvraag:...2 1.3 De deelvragen:...2 1.4 Een meetplan....2 1.5 De theorie...3 Fase 2: De waarnemingen....4

Nadere informatie

je kunt T ook uitrekenen via 33 omwentelingen in 60 s betekent 1 omwenteling in 60/33 s.

je kunt T ook uitrekenen via 33 omwentelingen in 60 s betekent 1 omwenteling in 60/33 s. C Overige bewegingen cirkelbaan PLATENSPELER In een disco draait men een langspeelplaat. Deze draaien normaliter met 33 omwentelingen per minuut. Op 10 cm van het midden ligt een stofje van 1,2 mg. Dat

Nadere informatie

Arbeid & Energie. Dr. Pieter Neyskens Monitoraat Wetenschappen pieter.neyskens@wet.kuleuven.be. Assistent: Erik Lambrechts

Arbeid & Energie. Dr. Pieter Neyskens Monitoraat Wetenschappen pieter.neyskens@wet.kuleuven.be. Assistent: Erik Lambrechts Introductieweek Faculteit Bewegings- en Revalidatiewetenschappen 25 29 Augustus 2014 Arbeid & Energie Dr. Pieter Neyskens Monitoraat Wetenschappen pieter.neyskens@wet.kuleuven.be Assistent: Erik Lambrechts

Nadere informatie

Space Experience Curaçao

Space Experience Curaçao Space Experience Curaçao PTA T1 Natuurkunde SUCCES Gebruik onbeschreven BINAS en (grafische) rekenmachine toegestaan. De K.L.M. heeft onlangs aangekondigd, in samenwerking met Xcor Aerospace, ruimte-toerisme

Nadere informatie

BIOFYSICA: WERKZITTING 2 (Oplossingen) DYNAMICA

BIOFYSICA: WERKZITTING 2 (Oplossingen) DYNAMICA 1ste Kandidatuur ARTS of TANDARTS Academiejaar -3 Oefening 6 BIOFYSICA: WERKZITTING (Oplossingen) DYNAMICA Een blok met massa kg rust op een horizontaal vlak. De wrijvingscoëfficiënt tussen de blok en

Nadere informatie

Voortgangstoets NAT 5 VWO 45 min. Week 49 SUCCES!!!

Voortgangstoets NAT 5 VWO 45 min. Week 49 SUCCES!!! Naam: Voortgangstoets NAT 5 VWO 45 min. Week 49 SUCCES!!! Noteer niet uitsluitend de antwoorden, maar ook je redeneringen (in correct Nederlands) en de formules die je gebruikt hebt! Maak daar waar nodig

Nadere informatie

Eindexamen natuurkunde 1-2 vwo 2007-I

Eindexamen natuurkunde 1-2 vwo 2007-I Opgave 5 Kanaalspringer Lees onderstaand artikel en bekijk figuur 5. Sprong over Het Kanaal Stuntman Felix Baumgartner is er als eerste mens in geslaagd om over Het Kanaal te springen. Hij heeft zich boven

Nadere informatie

VAK: natuurkunde KLAS: Havo 4 DATUM: 20 juni 2013. TIJD: 10.10 11.50 uur TOETS: T1 STOF: Hfd 1 t/m 4. Opmerkingen voor surveillant XXXXXXXXXXXXXXXXXXX

VAK: natuurkunde KLAS: Havo 4 DATUM: 20 juni 2013. TIJD: 10.10 11.50 uur TOETS: T1 STOF: Hfd 1 t/m 4. Opmerkingen voor surveillant XXXXXXXXXXXXXXXXXXX VAK: natuurkunde KLAS: Havo 4 DATUM: 20 juni 2013 TIJD: 10.10 11.50 uur TOETS: T1 STOF: Hfd 1 t/m 4 Toegestane hulpmiddelen: Binas + (gr) rekenmachine Bijlagen: 2 blz Opmerkingen voor surveillant XXXXXXXXXXXXXXXXXXX

Nadere informatie

Naam: Klas: Practicum veerconstante

Naam: Klas: Practicum veerconstante Naam: Klas: Practicum veerconstante stap Bouw de opstelling zoals hiernaast is weergegeven. stap 2 Hang achtereenvolgens verschillende massa's aan een spiraalveer en meet bij elke massa de veerlengte in

Nadere informatie

Lessen in Krachten. Door: Gaby Sondagh en Isabel Duin Eckartcollege

Lessen in Krachten. Door: Gaby Sondagh en Isabel Duin Eckartcollege Lessen in Krachten Door: Gaby Sondagh en Isabel Duin Eckartcollege Krachten werken op alles en iedereen. Sommige krachten zijn nodig om te blijven leven. Als er bijv. geen zwaartekracht zou zijn, zouden

Nadere informatie

Mechanica - Sterkteleer - HWTK PROEFTOETS versie C - OPGAVEN en UITWERKINGEN.doc 1/16

Mechanica - Sterkteleer - HWTK PROEFTOETS versie C - OPGAVEN en UITWERKINGEN.doc 1/16 VAK: Mechanica - Sterkteleer HWTK Set Proeftoets 07-0 versie C Mechanica - Sterkteleer - HWTK PROEFTOETS- 07-0-versie C - OPGAVEN en UITWERKINGEN.doc 1/16 DIT EERST LEZEN EN VOORZIEN VAN NAAM EN LEERLINGNUMMER!

Nadere informatie

Examen mechanica: oefeningen

Examen mechanica: oefeningen Examen mechanica: oefeningen 22 februari 2013 1 Behoudswetten 1. Een wielrenner met een massa van 80 kg (inclusief de fiets) kan een helling van 4.0 afbollen aan een constante snelheid van 6.0 km/u. Door

Nadere informatie

Toegepaste wiskunde. voor het hoger beroepsonderwijs. Deel 2 Derde, herziene druk. Uitwerking herhalingsopgaven hoofdstuk 7.

Toegepaste wiskunde. voor het hoger beroepsonderwijs. Deel 2 Derde, herziene druk. Uitwerking herhalingsopgaven hoofdstuk 7. Drs. J.H. Blankespoor Drs.. de Joode Ir. A. Sluijter Toegepaste wiskunde voor het hoger beroepsonderwijs Deel Derde, herziene druk herhalingsopgaven hoofdstuk 7 augustus 009 HBuitgevers, Baarn Toegepaste

Nadere informatie

Versus Tijdschrift voor Fysiotherapie, 22 e jrg 2004, no. 2 (pp )

Versus Tijdschrift voor Fysiotherapie, 22 e jrg 2004, no. 2 (pp ) Auteur(s): F. van de Beld Titel: De excentrische crank Jaargang: 22 Jaartal: 2004 Nummer: 2 Oorspronkelijke paginanummers: 79-89 Deze online uitgave mag, onder duidelijke bronvermelding, vrij gebruikt

Nadere informatie

Fase 2: De waarnemingen... 4. Fase 3: De resultaten... 4

Fase 2: De waarnemingen... 4. Fase 3: De resultaten... 4 NAAM: Onderzoek doen HAVO versie Fase 1. Plan van aanpak (De voorbereiding)... 2 1.1 Het onderwerp:... 2 1.2 De hoofdvraag:... 2 1.3 De deelvragen:... 2 1.4 Een meetplan... 2 1.5 De theorie... 3 Fase 2:

Nadere informatie

Fysica: mechanica, golven en thermodynamica PROEFEXAMEN VAN 12 NOVEMBER 2008

Fysica: mechanica, golven en thermodynamica PROEFEXAMEN VAN 12 NOVEMBER 2008 Fysica: mechanica, golven en thermodynamica Prof. J. Danckaert PROEFEXAMEN VAN 12 NOVEMBER 2008 OPGEPAST Veel succes! Dit proefexamen bestaat grotendeels uit meerkeuzevragen waarbij je de letter overeenstemmend

Nadere informatie

Tijdsduur 100 minuten. Deze toets bestaat uit 4 opgaven (55 punten). Gebruik eigen grafische rekenmachine en BINAS toegestaan. Veel succes!

Tijdsduur 100 minuten. Deze toets bestaat uit 4 opgaven (55 punten). Gebruik eigen grafische rekenmachine en BINAS toegestaan. Veel succes! NATUURKUNDE KLAS 5 INHAAL PROEFWERK ROEFWERK H10 + H6 3/2010 Tijdsduur 100 minuten. Deze toets bestaat uit 4 opgaven (55 punten). Gebruik eigen grafische rekenmachine en BINAS toegestaan. Veel succes!

Nadere informatie

Construeren III: opdracht B Groep B Docent: Bert Broeren

Construeren III: opdracht B Groep B Docent: Bert Broeren Construeren III: opdracht B Groep B Docent: Bert Broeren Vermogen gebruiker Om er achter te komen hoeveel vermogen de persoon kan leveren tijdens het vluchten op de vluchtvoertuig is er gekeken naar een

Nadere informatie

DE XXXIII INTERNATIONALE NATUURKUNDE OLYMPIADE

DE XXXIII INTERNATIONALE NATUURKUNDE OLYMPIADE NEDERLAND DE XXXIII INTERNATIONALE NATUURKUNDE OLYMPIADE BALI, INDONESIË THEORIE TOETS Dinsdag, 23 juli 2002 Lees dit eerst: 1. Voor de theorietoets heb je 5 uur tot je beschikking. 2. Gebruik uitsluitend

Nadere informatie

NAAM:... OPLEIDING:... Fysica: mechanica, golven en thermodynamica PROEFEXAME VA 3 OVEMBER 2009

NAAM:... OPLEIDING:... Fysica: mechanica, golven en thermodynamica PROEFEXAME VA 3 OVEMBER 2009 NAAM:... OPLEIDING:... Fysica: mechanica, golven en thermodynamica Prof. J. Danckaert PROEFEXAME VA 3 OVEMBER 2009 Bij meerkeuzevragen wordt giscorrectie toegepast: voor elk fout verlies je 0.25 punten.

Nadere informatie

TECHNISCHE UNIVERSITEIT DELFT Faculteit der Civiele Techniek en Geowetenschappen

TECHNISCHE UNIVERSITEIT DELFT Faculteit der Civiele Techniek en Geowetenschappen TECHNISCHE UNIVERSITEIT DELFT Faculteit der Civiele Techniek en Geowetenschappen TENTAMEN CTB1210 DYNAMICA en MODELVORMING d.d. 28 januari 2015 van 9:00-12:00 uur Let op: Voor de antwoorden op de conceptuele

Nadere informatie

Uitwerkingen van 3 klas NOVA natuurkunde hoofdstuk 6 arbeid en zo

Uitwerkingen van 3 klas NOVA natuurkunde hoofdstuk 6 arbeid en zo Uitwerkingen van 3 klas NOVA natuurkunde hoofdstuk 6 arbeid en zo 1 Arbeid verrichten 1 a) = 0 b) niet 0 en in de richting van de beweging c) =0 d) niet 0 e tegengesteld aan de beweging 2 a) De wrijvingskracht

Nadere informatie

Fietsen Martijn Carol TCT 2008

Fietsen Martijn Carol TCT 2008 Fietsen Martijn Carol TCT 2008 Inhoud Voorwoord... 2 Fietsafstelling... 4 Comfort... 5 Weerstand... 6 Frontaal... 7 Drag... 8 Vermogen en Efficiëntie... 9 Techniektraining... 10 Trapbeweging... 10 Rechtuit,

Nadere informatie

toelatingsexamen-geneeskunde.be

toelatingsexamen-geneeskunde.be Fysica juli 2009 Laatste update: 31/07/2009. Vragen gebaseerd op het ingangsexamen juli 2009. Vraag 1 Een landingsbaan is 500 lang. Een vliegtuig heeft de volledige lengte van de startbaan nodig om op

Nadere informatie

TENTAMEN DYNAMICA (140302) 29 januari 2010, 9:00-12:30

TENTAMEN DYNAMICA (140302) 29 januari 2010, 9:00-12:30 TENTAMEN DYNAMICA (14030) 9 januari 010, 9:00-1:30 Verzoek: begin de beantwoording van een nieuwe vraag op een nieuwe pagina. En schrijf duidelijk: alleen leesbaar en verzorgd werk kan worden nagekeken.

Nadere informatie

Krachten Opgave: Vering van een auto

Krachten Opgave: Vering van een auto Krachten Opgave: Vering van een auto Als een auto een oneffenheid in het wegdek tegenkomt is het de bedoeling dat de inzittenden hier zo min mogelijk van merken. Onder andere om deze reden is een auto

Nadere informatie

Fysica. Indien dezelfde kracht werkt op een voorwerp met massa m 1 + m 2, is de versnelling van dat voorwerp gelijk aan: <A> 18,0 m/s 2.

Fysica. Indien dezelfde kracht werkt op een voorwerp met massa m 1 + m 2, is de versnelling van dat voorwerp gelijk aan: <A> 18,0 m/s 2. Vraag 1 Beschouw volgende situatie nabij het aardoppervlak. Een blok met massa m 1 is via een touw verbonden met een ander blok met massa m 2 (zie figuur). Het blok met massa m 1 schuift over een helling

Nadere informatie

We hebben 3 verschillende soorten van wrijving, geef bij elk een voorbeeld: - Rollende wrijving: - Glijdende wrijving: - Luchtweerstand:

We hebben 3 verschillende soorten van wrijving, geef bij elk een voorbeeld: - Rollende wrijving: - Glijdende wrijving: - Luchtweerstand: Lespakket wrijving Inleiding Wrijving is een natuurkundig begrip dat de weerstandskracht aanduidt, die ontstaat als twee oppervlakken langs elkaar schuiven, terwijl ze tegen elkaar aan gedrukt worden.

Nadere informatie

Advanced Creative Enigneering Skills

Advanced Creative Enigneering Skills Enigneering Skills Kinetica November 2015 Theaterschool OTT-2 1 Kinematica Kijkt naar de geometrische aspecten en niet naar de feitelijke krachten op het systeem Kinetica Beschouwt de krachten Bewegingsvergelijkingen

Nadere informatie

Trillingen en geluid wiskundig

Trillingen en geluid wiskundig Trillingen en geluid wiskundig 1 De sinus van een hoek 2 Radialen 3 Uitwijking van een harmonische trilling 4 Macht en logaritme 5 Geluidsniveau en amplitude 1 De sinus van een hoek Sinus van een hoek

Nadere informatie

TWEEDE RONDE NATUURKUNDE OLYMPIADE 2013 TOETS APRIL :00 12:45 uur

TWEEDE RONDE NATUURKUNDE OLYMPIADE 2013 TOETS APRIL :00 12:45 uur TWEEDE RONDE NATUURKUNDE OLYMPIADE 2013 TOETS 1 24 APRIL 2013 11:00 12:45 uur MECHANICA 1 Blok en veer. (5 punten) Een blok van 3,0 kg glijdt over een wrijvingsloos tafelblad met een snelheid van 8,0 m/s

Nadere informatie

Kracht en Energie Inhoud

Kracht en Energie Inhoud Kracht en Energie Inhoud Wat is kracht? (Inleiding) Kracht is een vector Krachten saenstellen ( optellen ) Krachten ontbinden ( aftrekken ) Resulterende kracht 1 e wet van Newton: wet van de traagheid

Nadere informatie

B = 3. Eenparig vertraagde beweging B = 4. Stilstand C = 3. Eenparig vertraagde beweging

B = 3. Eenparig vertraagde beweging B = 4. Stilstand C = 3. Eenparig vertraagde beweging Opdracht 1: Opdracht 2: Opdracht 3: a. Gegeven: S = 4,5 km Berekening: v = S / t S = 4500 m v = 4500 / 7200 t = 120 minuten v = 0,63 m/s t = 120 * 60 = 7200 s b. Gegeven: t = 12,5 h Berekening: S = v *

Nadere informatie

Eindexamen havo natuurkunde pilot 2013-I

Eindexamen havo natuurkunde pilot 2013-I Eindexamen havo natuurkunde pilot 203-I Beoordelingsmodel Opgave Radontherapie maximumscore 2 Uit de figuur blijkt dat door het verval een kern ontstaat met twee protonen en in totaal vier nucleonen minder

Nadere informatie

Mkv Dynamica. 1. Bereken de versnelling van het wagentje in de volgende figuur. Wrijving is te verwaarlozen. 10 kg

Mkv Dynamica. 1. Bereken de versnelling van het wagentje in de volgende figuur. Wrijving is te verwaarlozen. 10 kg Mkv Dynamica 1. Bereken de versnelling van het wagentje in de volgende figuur. Wrijving is te verwaarlozen. 10 kg 2 /3 g 5 /6 g 1 /6 g 1 /5 g 2 kg 2. Variant1: Een wagentje met massa m1

Nadere informatie

NATIONALE NATUURKUNDE OLYMPIADE. Tweede ronde - theorie toets. 21 juni beschikbare tijd : 2 x 2 uur

NATIONALE NATUURKUNDE OLYMPIADE. Tweede ronde - theorie toets. 21 juni beschikbare tijd : 2 x 2 uur NATIONALE NATUURKUNDE OLYMPIADE Tweede ronde - theorie toets 21 juni 2000 beschikbare tijd : 2 x 2 uur 52 --- 12 de tweede ronde DEEL I 1. Eugenia. Onlangs is met een telescoop vanaf de Aarde de ongeveer

Nadere informatie

Versus, Tijdschrift voor Fysiotherapie, 7e jrg 1989, no. 4 (pp )

Versus, Tijdschrift voor Fysiotherapie, 7e jrg 1989, no. 4 (pp ) Auteur(s): C. Riezebos, F. Krijgsman, A. Lagerberg Titel: De effektiviteit van borst- en buikademhaling Jaargang: 7 Jaartal: 1989 Nummer: 4 Oorspronkelijke paginanummers: 202-215 Deze online uitgave mag,

Nadere informatie

Motor- en voertuigprestatie (4)

Motor- en voertuigprestatie (4) Motor- en voertuigprestatie (4) E. Gernaat, ISBN 978-90-79302-01-7 1 Benodigd vermogen Nadat we hebben gezien hoeveel vermogen de motor levert dienen we vervolgens te bekijken hoeveel vermogen de auto

Nadere informatie

Klassieke en Kwantummechanica (EE1P11)

Klassieke en Kwantummechanica (EE1P11) Maandag 3 oktober 2016, 9.00 11.00 uur; DW-TZ 2 TECHNISCHE UNIVERSITEIT DELFT Faculteit Elektrotechniek, Wiskunde en Informatica Opleiding Elektrotechniek Aanwijzingen: Er zijn 2 opgaven in dit tentamen.

Nadere informatie

Augustus blauw Fysica Vraag 1

Augustus blauw Fysica Vraag 1 Fysica Vraag 1 We lanceren in het zwaartekrachtveld van de aarde een knikker met een horizontale snelheid v = 1,5 m/s op de hoogste trede van een trap (zie figuur). Elke trede van de trap heeft een lengte

Nadere informatie

Meting zonnepaneel. Voorbeeld berekening diodefactor: ( ) Als voorbeeld wordt deze formule uitgewerkt bij een spanning van 7 V en 0,76 A:

Meting zonnepaneel. Voorbeeld berekening diodefactor: ( ) Als voorbeeld wordt deze formule uitgewerkt bij een spanning van 7 V en 0,76 A: Meting zonnepaneel Om de beste overbrengingsverhouding te berekenen, moet de diodefactor van het zonnepaneel gekend zijn. Deze wordt bepaald door het zonnepaneel te schakelen aan een weerstand. Een multimeter

Nadere informatie

Dit tentamen bestaat uit vier opgaven. Iedere opgave bestaat uit meerdere onderdelen. Ieder onderdeel is zes punten waard.

Dit tentamen bestaat uit vier opgaven. Iedere opgave bestaat uit meerdere onderdelen. Ieder onderdeel is zes punten waard. TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Technische Natuurkunde Tentamen Mechanica 1 voor N en Wsk (3NA40 en 3AA40) Donderdag 21 januari 2010 van 09.00u tot 12.00u Dit tentamen bestaat uit vier opgaven.

Nadere informatie

NASK1 - SAMENVATTING KRACHTEN en BEWEGING. Snelheid. De snelheid kun je uitrekenen door de afstand te delen door de tijd.

NASK1 - SAMENVATTING KRACHTEN en BEWEGING. Snelheid. De snelheid kun je uitrekenen door de afstand te delen door de tijd. NASK1 - SAMENVATTING KRACHTEN en BEWEGING Snelheid De snelheid kun je uitrekenen door de afstand te delen door de tijd. Stel dat je een uur lang 40 km/h rijdt. Je gemiddelde snelheid in dat uur is dan

Nadere informatie

Kracht en beweging (Mechanics Baseline Test)

Kracht en beweging (Mechanics Baseline Test) Kracht en beweging (Mechanics Baseline Test) Gegevens voor vragen 1, 2 en 3 De figuur stelt een stroboscoopfoto voor. Daarin is de beweging te zien van een voorwerp over een horizontaal oppervlak. Het

Nadere informatie

2.1 Onderzoek naar bewegingen

2.1 Onderzoek naar bewegingen 2.1 Onderzoek naar bewegingen Opgave 1 afstand a De (gemiddelde) snelheid leid je af met snelheid =. tijd Je moet afstand en snelheid bespreken om iets over snelheid te kunnen zeggen. afstand snelheid

Nadere informatie

Vallen Wat houdt je tegen?

Vallen Wat houdt je tegen? Wat houdt je tegen? Inleiding Stroming speelt een grote rol in vele processen. Of we het nu hebben over vliegtuigbouw, de stroming van bloed door onze aderen, formule 1 racing, het zwemmen van vissen of

Nadere informatie

koper hout water Als de bovenkant van het blokje hout zich net aan het wateroppervlak bevindt, is de massa van het blokje koper gelijk aan:

koper hout water Als de bovenkant van het blokje hout zich net aan het wateroppervlak bevindt, is de massa van het blokje koper gelijk aan: Fysica Vraag 1 Een blokje koper ligt bovenop een blokje hout (massa mhout = 0,60 kg ; dichtheid ρhout = 0,60 10³ kg.m -3 ). Het blokje hout drijft in water. koper hout water Als de bovenkant van het blokje

Nadere informatie

TWEEDE RONDE NATUURKUNDE OLYMPIADE 2014 TOETS 1. 23 APRIL 2014 10.30 12.30 uur

TWEEDE RONDE NATUURKUNDE OLYMPIADE 2014 TOETS 1. 23 APRIL 2014 10.30 12.30 uur TWEEDE RONDE NATUURKUNDE OLYMPIADE 2014 TOETS 1 23 APRIL 2014 10.30 12.30 uur 1 RONDDRAAIENDE MASSA 5pt Een massa zit aan een uiteinde van een touw. De massa ligt op een wrijvingloos oppervlak waar het

Nadere informatie

Snelheid en kracht. 4.1 Inleiding. 4.2 Soorten krachten

Snelheid en kracht. 4.1 Inleiding. 4.2 Soorten krachten 4 Snelheid en kracht 4.1 Inleiding 4.2 Soorten krachten B 1 a Zwaartekracht en wrijvingskracht b Zwaartekracht, kracht van de lucht op de vleugels omhoog (= opwaartse kracht of lift), stuwkracht van de

Nadere informatie

5 Kracht en beweging. Beweging in diagrammen. Nova

5 Kracht en beweging. Beweging in diagrammen. Nova 5 Kracht en beweging 1 Beweging in diagrammen 1 a Een beweging waarbij de snelheid gelijkmatig groter wordt, noem je een eenparig versnelde beweging. Een beweging waarbij de snelheid steeds even groot

Nadere informatie

Natuurkunde. Lj2P4. Beweging

Natuurkunde. Lj2P4. Beweging Natuurkunde Lj2P4 Beweging Vrije val Welk voorwerp is het eerst beneden? Steen Veer Welk voorwerp is het eerst beneden? Kogel Sjaal 400 g 400 g Welk voorwerp is het eerst beneden? Voetbal Bowlingbal 24

Nadere informatie

Q l = 23ste Vlaamse Fysica Olympiade. R s. ρ water = 1, kg/m 3 ( ϑ = 4 C ) Eerste ronde - 23ste Vlaamse Fysica Olympiade 1

Q l = 23ste Vlaamse Fysica Olympiade. R s. ρ water = 1, kg/m 3 ( ϑ = 4 C ) Eerste ronde - 23ste Vlaamse Fysica Olympiade 1 Eerste ronde - 3ste Vlaamse Fysica Olympiade 3ste Vlaamse Fysica Olympiade Eerste ronde. De eerste ronde van deze Vlaamse Fysica Olympiade bestaat uit 5 vragen met vier mogelijke antwoorden. Er is telkens

Nadere informatie

HAVO. Wetten van Newton

HAVO. Wetten van Newton Inhoud Wetten van Newton... 2 1 e wet van Newton... 3 2 e wet van Newton... 3 Krachten en de derde wet van Newton... 4 Krachten ontbinden en optellen... 5 Opgaven... 6 Opgave: Bepalen van de resulterende

Nadere informatie

Case 1 en Simulink. 1. Diodefactor bepalen. I = I sc - I s (e!

Case 1 en Simulink. 1. Diodefactor bepalen. I = I sc - I s (e! Case 1 en Simulink 1. Diodefactor bepalen Om de diodefactor te berekenen werden eerst een aantal metingen gedaan met het zonnepaneel en de DC- motor. Er werd een kring gemaakt met het zonnepaneel en een

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN FACULTEIT DER TECHNISCHE NATUURKUNDE GROEP TRANSPORTFYSICA

TECHNISCHE UNIVERSITEIT EINDHOVEN FACULTEIT DER TECHNISCHE NATUURKUNDE GROEP TRANSPORTFYSICA TECHNISCHE UNIVERSITEIT EINDHOVEN FACULTEIT DER TECHNISCHE NATUURKUNDE GROEP TRANSPORTFYSICA Tentamen Fysische Transportverschijnselen voor W (3B470) op woensdag 23 juni 2010, 14.00-17.00 uur. Het tentamen

Nadere informatie

2 a De snelheid is constant, de nettokracht is nul, dus de luchtweerstand is even groot als de zwaartekracht.

2 a De snelheid is constant, de nettokracht is nul, dus de luchtweerstand is even groot als de zwaartekracht. 8 Sport en verkeer Arbeid, energie en vermogen havo Uitwerkingen basisboek 8.1 INTRODUCTIE 1 [W] Voorkennistest 2 a De snelheid is constant, de nettokracht is nul, dus de luchtweerstand is even groot als

Nadere informatie

jaar: 1989 nummer: 25

jaar: 1989 nummer: 25 jaar: 1989 nummer: 25 Op een hoogte h 1 = 3 m heeft een verticaal vallend voorwerp, met een massa m = 0,200 kg, een snelheid v = 12 m/s. Dit voorwerp botst op een horizontale vloer en bereikt daarna een

Nadere informatie

Case 1 en Case simulink

Case 1 en Case simulink Team Venture Groep AM12 E E 4 B u i l d i n g a s s v Voorbereid voor: Marc Smeulders Voorbereid door: Anton Rauw Jasper Derden Alexander Van Kerckhoven Yassir Habboub Felix Porres Bartel Buls Datum: 22-03

Nadere informatie

Tijdsduur 100 minuten. Deze toets bestaat uit 4 opgaven (54 punten). Gebruik eigen grafische rekenmachine en BINAS toegestaan. Veel succes!

Tijdsduur 100 minuten. Deze toets bestaat uit 4 opgaven (54 punten). Gebruik eigen grafische rekenmachine en BINAS toegestaan. Veel succes! PROEFWERK NATUURKUNDE KLAS 5 ROEFWERK H10 + H6 10/3/2009 Tijdsduur 100 minuten. Deze toets bestaat uit 4 opgaven (54 punten). Gebruik eigen grafische rekenmachine en BINAS toegestaan. Veel succes! Opgave

Nadere informatie

Module Aerodynamica ADY03 Reader aerodynamica, Bijlage symbolenlijst

Module Aerodynamica ADY03 Reader aerodynamica, Bijlage symbolenlijst Hogeschool Rotterdam Instituut voor Engineering and Applied Science Studierichting Autotechniek Module Aerodynamica ADY03 Reader aerodynamica, Bijlage symbolenlijst Auteur: Versie 0.05 31 oktober 2012,

Nadere informatie

Transmissietechniek in motorvoertuigen (1)

Transmissietechniek in motorvoertuigen (1) Transmissietechniek in motorvoertuigen (1) E. Gernaat (ISBN 978-90-79302-02-4) 1 Benodigde trekkracht Wanneer we een elektromotor met de verbrandingsmotor vergelijken dan zien we dat een elektromotor in

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Biomedische Technologie, groep Cardiovasculaire Biomechanica

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Biomedische Technologie, groep Cardiovasculaire Biomechanica TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Biomedische Technologie, groep Cardiovasculaire Biomechanica Tentamen Fysica in de Fysiologie (8N7) deel A1, blad 1/4 maandag 1 oktober 27, 9.-1.3 uur Het tentamen

Nadere informatie

Simulink. Deel1. Figuur 1 Model van het zonnepaneel in Simulink.

Simulink. Deel1. Figuur 1 Model van het zonnepaneel in Simulink. Simulink Deel1 In dit deel van het ontwerp simuleren we het gedrag van onze zonnepanneel bij weerstanden tussen 10 Ohm en 100 Ohm. Een beeld van hoe het model in Simulink is opgesteld is in figuur 1 opgenomen.

Nadere informatie

1 VRIJE TRILLINGEN 1.0 INLEIDING 1.1 HARMONISCHE OSCILLATOREN. 1.1.1 het massa-veersysteem. Hoofdstuk 1 - Vrije trillingen

1 VRIJE TRILLINGEN 1.0 INLEIDING 1.1 HARMONISCHE OSCILLATOREN. 1.1.1 het massa-veersysteem. Hoofdstuk 1 - Vrije trillingen 1 VRIJE TRILLINGEN 1.0 INLEIDING Veel fysische systemen, van groot tot klein, mechanisch en elektrisch, kunnen trillingen uitvoeren. Daarom is in de natuurkunde het bestuderen van trillingen van groot

Nadere informatie

Opgave 2 Een kracht heeft een grootte, een richting en een aangrijpingspunt.

Opgave 2 Een kracht heeft een grootte, een richting en een aangrijpingspunt. Uitwerkingen 1 Opgave 1 Het aangrijpingspunt van een kracht is de plaats waar de kracht op het voorwerp werkt. De werklijn van een kracht is de denkbeeldige (rechte) lijn die samenvalt met de bijbehorende

Nadere informatie

3.1 Krachten en hun eigenschappen

3.1 Krachten en hun eigenschappen 3.1 Krachten en hun eigenschappen Opgave 1 a Zie figuur 3.1. Beide pijlen zijn even lang, want de krachten zijn even groot. De veerconstante ereken je met ehulp van de formule voor de veerkracht. De veerkracht

Nadere informatie

Diagrammen Voor beide typen beweging moet je drie diagrammen kunnen tekenen, te weten een (s,t)-diagram, een (v,t)-diagram en een (a,t)-diagram.

Diagrammen Voor beide typen beweging moet je drie diagrammen kunnen tekenen, te weten een (s,t)-diagram, een (v,t)-diagram en een (a,t)-diagram. Inhoud... 2 Diagrammen... 3 Informatie uit diagrammen halen... 4 Formules... 7 Opgaven... 8 Opgave: Aventador LP 700-4 Roadster... 8 Opgave: Boeiing 747-400F op startbaan... 8 Opgave: Fietser voor stoplicht...

Nadere informatie

De bisectie methode uitgelegd met een makkelijk voorbeeld

De bisectie methode uitgelegd met een makkelijk voorbeeld De Bisectie methode De bisectie methode uitgelegd met een makkelijk voorbeeld De bisectie methode is een recursieve methode om punten van een functie te gaan afschatten. Hierbij gaat men de functiewaarde

Nadere informatie

Extra opdrachten Module: bewegen

Extra opdrachten Module: bewegen Extra opdrachten Module: bewegen Opdracht 1: Zet de juiste letters van de grootheden in de driehoeken. Opdracht 2: Zet boven de pijl de juiste omrekeningsfactor. Opdracht 3: Bereken de ontbrekende gegevens

Nadere informatie

Examen H1B0 Toegepaste Mechanica 1

Examen H1B0 Toegepaste Mechanica 1 16 augustus 2010, 8u30 naam :................................... Examen H1B0 Toegepaste Mechanica 1 Het verloop van het examen Uiterlijk om 12u30 geeft iedereen af. Lees de vragen grondig. De vraag begrijpen

Nadere informatie

Inleiding tot de dynamica van atmosferen Krachten

Inleiding tot de dynamica van atmosferen Krachten Inleiding tot de dynamica van atmosferen Krachten P. Termonia vakgroep wiskundige natuurkunde en sterrenkunde, UGent Inleiding tot de dynamica van atmosferen p.1/35 Inhoud 1. conventies: notatie 2. luchtdeeltjes

Nadere informatie

Rekenmachine met grafische display voor functies

Rekenmachine met grafische display voor functies Te gebruiken rekenmachine Duur Rekenmachine met grafische display voor functies 100 minuten 1/5 Opgave 1. Een personenauto rijdt met een beginsnelheid v 0=30 m/s en komt terecht op een stuk weg waar olie

Nadere informatie

VWO. Wetten van Newton

VWO. Wetten van Newton Inhoud Wetten van Newton... 2 1 e wet van Newton... 3 2 e wet van Newton... 3 Krachten en de derde wet van Newton... 4 Krachten ontbinden... 5 Opgaven... 6 Opgave: Bepalen van de resulterende kracht op

Nadere informatie

1. Zwaartekracht. Hoe groot is die zwaartekracht nu eigenlijk?

1. Zwaartekracht. Hoe groot is die zwaartekracht nu eigenlijk? 1. Zwaartekracht Als een appel van een boom valt, wat gebeurt er dan eigenlijk? Er is iets dat zorgt dat de appel begint te vallen. De geleerde Newton kwam er in 1684 achter wat dat iets was. Hij kwam

Nadere informatie

KRACHTEN VWO. Luchtwrijving Schuifwrijving Helling

KRACHTEN VWO. Luchtwrijving Schuifwrijving Helling KRACHTEN VWO Foton is een opgavenverzameling voor het nieuwe eindexamenprogramma natuurkunde. Foton is gratis te downloaden via natuurkundeuitgelegd.nl/foton Uitwerkingen van alle opgaven staan op natuurkundeuitgelegd.nl/uitwerkingen

Nadere informatie

MBO College Hilversum. Afdeling Media. Hans Minjon Versie 2

MBO College Hilversum. Afdeling Media. Hans Minjon Versie 2 MBO College Hilversum Afdeling Media Hans Minjon Versie 2 Soorten krachten Er zijn veel soorten krachten. Een aantal voorbeelden: Spierkracht. Deze ontstaat als spieren in je lichaam zich spannen. Op die

Nadere informatie

Viscositeit. par. 1 Inleiding

Viscositeit. par. 1 Inleiding Viscositeit par. 1 Inleiding Viscositeit is een eigenschap van vloeistoffen (en van gassen) die aangeeft hoe ondoordringbaar de vloeistof is voor een vast voorwerp. Anders gezegd met de grootheid viscositeit

Nadere informatie

Schuiven van een voertuig in een bocht met positieve verkanting

Schuiven van een voertuig in een bocht met positieve verkanting Voertuigtechniek Technisch Specialist LESBRIEF Schuiven van een voertuig in een bocht met positieve verkanting Deze lesbrief behandelt positieve verkanting en centripetale kracht in relatie tot het schuiven

Nadere informatie