Objectgeoriënteerd Programmeren: WPO 1
|
|
|
- Daniël Moens
- 8 jaren geleden
- Aantal bezoeken:
Transcriptie
1 Objectgeoriënteerd Programmeren: WPO 1 1. Inhoud Opfrissing syntax, programmeermethodes, datatypes, functies/procedures, tekenen in C#. Herhaling Informatica 1 ste bachelor. 2. Oefeningen Demo 1: Volume bol Demo 2: Tel totdat... Demo 3: Geometrische figuren Demo 4: Vul de 1D-array/lijst A: Fahrenheit to Celsius A: Binnen bereik A: Why do I print? A: Schaakbord A: Kogelwerpen A: Biljarttafel A: Interpoleer E: Maaltafels E: Bijenkorf E: Waveforms 2.1 Demo 1: Volume bol Bereken het volume van een bol. Het volume van een bol wordt gegeven door vergelijking 1. V bol = 4πr3 (1) 3 Schrijf een programma dat de straal van de bol via een tekstveld inleest, en het resultaat in een ander tekstveld weergeeft. Voozie eveneens ook een knop Bereken om de berekening uit te voeren. 1
2 2.2 Demo 2: Tel totdat... Schrijf een programma dat de gebruiker om 2 getallen vraagt. Tel vanaf het eerste getal af totdat het 2 de getal bereikt is. Doe dit eerst a.d.h.v. een for-loop. Bouw daarna de loop om tot een while-loop. 2.3 Demo 3: Geometrische figuren In deze demo wordt het tekenen van eenvoudige geometrische figuren getoond. Om te tekenen wordt er een canvas op het formulier geplaatst. Verander de achtergrondskleur naar de gewenste kleur (hier zwart). Teken een horizontale witte lijn, waarop een rechthoek wordt getekend. Hiernaast wordt ook een rode bol getekend. Hint 1: Het assenkruis om te tekenen (canvas) is als volgt: het nulpunt van de tekening bevindt zich linksboven, horizontaal loopt de x-as van links naar rechts, verticaal loopt de y-as van boven naar beneden, dit betekent dat er in de verticale richting omgekeerd getekend wordt (spiegelen). Om een tekening volgens de y-as te plotten, vindt volgende omzetting plaats: 2.4 Demo 4: Vul de 1D-array/lijst y plot = Height canvas y (2) Schrijf een programma waarin een 1D-array gebruikt wordt. Deze array wordt oplopend gevuld door gebruik te maken van een loop. Nadien worden de waarden van deze array geprint binnen een tekstbox door gebruik te maken van een andere loop. Herhaal deze opgave door gebruik te maken van een lijst. 2.5 A: Fahrenheit to Celsius Een weerstation beschikt over thermometers die enkel in Fahrenheit (F ) geijkt zijn. Om dezelfde temperatuur in graden Celcius (C ) te bekomen, moet volgende omzetting plaatsvinden: T Celcius = 5 9 (T F ahrenheit 32) (3) Schrijf een programma dat de temperatuur in Fahrenheit inleest, en de temperatuur in Celcius weergeeft. Bij het weergeven dient ook de eenheid vermeld te worden! De output wordt in een label weergegeven. 2
3 2.6 A: Binnen bereik Schrijf een programma dat een getal van de gebruiker opvraagt. Via de knop Vergelijk wordt nagegaan of deze waarde zich tussen -100 en +100 bevindt. Indien dit zo is, wordt Binnen bereik in een messagebox getoond. In het andere geval geeft de messagebox Too bad, retry!!! weer. 2.7 A: Why do I print? In deze opgave wordt er gevraagd om de getallen van 0 t.e.m. X (door de gebruiker in te geven) te printen. Als het getal een veelvoud van 8 is, wordt er X geprint. Is het getal een veelvoud van zowel 8 en 5, wordt er Y geprint. 2.8 A: Schaakbord Teken een schaakbord door gebruik te maken van rode en groene vierkantjes die elkaar afwisselen (figuur 1). Elk vierkantje is 50 bij 50 pixels groot. Figuur 1: Voorbeeld programma 2.9 A: Kogelwerpen In een partijtje kogelwerpen worden massa s geworpen. De kromme die de massa s volgen wordt beschreven als: { x(t) = v cos(α) t y(t) = v sin(α) t 1 2 g t2 (4) Plot de baan die deze kogel aflegt. De beginsnelheid en de afschiethoek worden ingegeven worden door de gebruiker. Let hierbij op dat het mogelijk is dat de plot niet op het scherm past. Wanneer en op welke afstand raakt de kogel de grond? Ga ervan uit dat de kogel vanaf de grond afgeschoten wordt, en maak in het programma gebruik van een do-while lus. 3
4 Figuur 2: Voorbeeld kogelwerpen 2.10 A: Biljarttafel Schrijf een programma dat een bal op een veld laat rollen. Zorg ervoor dat deze bal bij het botsen tegen een wanden terugkaatst. Stel de wanden van het veld gelijk aan de randen van de canvas waarop je tekent. De beweging van deze bal wordt voorgesteld door een X en Y component. Samen vormen deze componenten een snelheidsvector. Dankzij een timer kan de beweging van de bal gevisualiseerd worden (zet deze aan, met een interval tussen 10 ms en 250 ms). De X en Y beweging worden aangepast in functie van de timerfrequentie, zodat deze bal een al dan niet vloeiende beweging uitvoert. De terugkaatsing kan plaatsvinden door één element van de snelheidsvector van teken te doen wisselen. Als de bal tegen een verticale wand aanbotst, wordt de horizontale richting omgedraaid. In het het geval dat de bal tegen een horizontale wand aanbotst, wordt de verticale richting omgedraaid (tekenwissel). Een voorbeeld van deze applicatie kan teruggevonden worden in figuur 3. Figuur 3: Voorbeeld biljarttafel 4
5 2.11 A: Interpoleer In onderstaande tabel worden alle getallen gegeven die op een even index staan. Het is nu aan jou om de waarden op de oneven plaatsen te berekenen. Die zijn momenteel aangeduid met X. Dit doe je door het gemiddelde te nemen van de naburige elementen. Print de hele array af in een tekstbox. Op hoeveel elementen moet je de array voorzien? Index Waarde X X X X X Kan je deze oefening herhalen door gebruik te maken van een list? 2.12 E: Maaltafels In de lagere school zal je ongetwijfeld de maaltafels hebben gezien. In deze opgave zal je een dergelijke tafel programmeren. Zorg ervoor dat je via 2 geneste for-loops onderstaande output (zie figuur 4) (textbox/label) kan genereren. Figuur 4: Voorbeeldprogramma maaltafels. Hint: Gebruik \n aan elk regeleinde. 5
6 2.13 E: Bijenkorf Schrijf een procedure die een zeshoek kan tekenen. Deze procedure heeft als argumenten: x coördinaat, y coördinaat, de straal van de zeshoek. Een zeshoek bestaat uit 6 punten die elk evenver liggen van het middelpunt. Hint: Een zeshoek heeft 6 gelijke zijden die elk overeenkomen met een hoekverdraaiing van 2 π 6. Roep deze functie aan om verschillende zeshoeken naast elkaar te tekenen. Op deze manier kan je een bijenkorf nabootsen. Figuur 5: Voorbeeld oplossing: Bijenkorf 2.14 E: Waveforms Schrijf een programma waarin je 4 functies voorziet. De eerste 3 functies berekenen een geluidsgolf (zie hieronder voor de type geluidsgolven) en retourneren een array met daarin de wave. De 4 de functie tekent een geluidsgolf a.d.h.v. een array van waarden. De te tekenen geluidsgolven zijn: een blokgolf, 6
7 een zaagtand, een sinusoïdaal. Deze worden weergegeven in afbeelding 6. Figuur 6: Voorbeelden van een blokgolf, zaagtand en sinusgolf. Elk van deze functies retourneert een array met daarin de samples. volgende argumenten: Elke functie heeft de breedte van de canvas (pixels), de frequentie van de golf: aantal keren op en afgaan van de golf t.o.v. de breedte van de canvas, 7
8 de amplitude: verhouding t.o.v. de hoogte van de canvas (een amplitude van 1 neemt dus de volledige canvashoogte in). De 4 de en laatste functie tekent 1 golf uit op de canvas. De keuze van welke golf getekend wordt, wordt bepaald door de keuze van een combobox. Deze functie heeft als argument de array met de samples en retourneert niets (tekent alleen). In het programma zijn de frequentie, golfvorm en amplitude in te geven door de gebruiker. 8
Objectgeoriënteerd Programmeren: WPO 1
Objectgeoriënteerd Programmeren: WPO 1 1. Inhoud Opfrissing syntax, programmeermethodes, datatypes, functies/procedures, tekenen in C#. Herhaling Informatica 1 ste bachelor. 2. Oefeningen Demo 1: Volume
Informatica: C# WPO 6
Informatica: C# WPO 6 1. Inhoud Timers, switch cases, combobox 2. Oefeningen Demo 1: Bounce Demo 2: Hex to decimal converter Demo 3: Debug oplossing demo 1 A: Count to 10 A: Biljarttafel A: To reverse
Informatica: C# WPO 5
Informatica: C# WPO 5 1. Inhoud While-loop, do while, debuggen, graphics 2. Oefeningen Demo 1: Power of 2 Demo 2: Tel totdat... Demo 3: Debug oplossing demo s 1 en 2 A: Count down A: Random counting A:
Informatica: C# WPO 6
Informatica: C# WPO 6 1. Inhoud Timers, switch cases, combobox 2. Oefeningen Demo 1: Bounce Demo 2: Hex to decimal converter Demo 3: Debug oplossing demo 1 A: Count to 10 A: Biljarttafel A: Azerty to qwerty
Informatica: C# WPO 8
Informatica: C# WPO 8 1. Inhoud Procedures (functies zonder return-waarde) 2. Oefeningen Demo 1: Teken driehoeken Demo 2: Print array of double A: Stapel blokken A: Weerstanden 1 A: Weerstanden 2 A: Draw
Informatica: C# WPO 9
Informatica: C# WPO 9 1. Inhoud Functies (functies met return-waarde) 2. Oefeningen Demo 1: Som Demo 2: Min en max of array Demo 3: Retourneer array van randomwaarden A: Absolute waarde A: Afstand A: Aantrekkingskracht
Informatica: C# WPO 4
Informatica: C# WPO 4 1. Inhoud For-loop, debuggen, inleiding tot graphics 2. Oefeningen Demo 1: Geometrische figuren Demo 2: Teken een 10 bij 10 rooster Demo 3: Debug oplossingen demo s 1 en 2 A: Flowerpower
Informatica: C# WPO 7
Informatica: C# WPO 7 1. Inhoud 1D-arrays, Lijsten 2. Oefeningen Demo 1: Vul de 1D-array Demo 2: Stringreplace Demo 3: Vul de lijst Demo 4: Debug oplossingen demo s 1, 2 en 3 A: Array reversal A: Gemiddelde
Informatica: C# WPO 12
Informatica: C# WPO 12 1. Inhoud Datacontainers, bestanden uitlezen, bestanden schrijven en data toevoegen aan en bestand, csv-bestanden 2. Oefeningen Demo 1: Point2D Demo 2: Notepad Demo 3: Read CSV-file
Informatica: C# WPO 11
Informatica: C# WPO 11 1. Inhoud Pass by reference (ref, out), recursie, code opdelen in verschillende codebestanden 2. Oefeningen Demo 1: Swapfunctie Demo 2: TryParse(int) Demo 3: Recursion Tree Demo
Objectgeoriënteerd Programmeren: WPO 2
Objectgeoriënteerd Programmeren: WPO 2 1. Inhoud Klassen, objecten, methoden, properties, private vs. object, this. public, velden, instantie, reference to 2. Oefeningen Demo 1: Bugs Demo 2: Kleurcodes
Graphics. Small Basic graphics 1/6
Small Basic graphics 1/6 Graphics Naast het werken met tekst kan je in Small Basic ook werken met grafische elementen: lijnen, vormen en kleuren. Hierbij gebruik je het grafische venster met de witte achtergrond.
Informatica: C# WPO 2
Informatica: C# WPO 2 1. Inhoud If, globale variabelen, debuggen, randomgetallen, strings vergelijken 2. Oefeningen Demo 1: Deelbaar door 0 Demo 2: Kassa Demo 3: Debug oplossingen demo s 1 en 2 A: Verschillend
Informatica: C# WPO 10
Informatica: C# WPO 10 1. Inhoud 2D arrays, lijsten van arrays, NULL-values 2. Oefeningen Demo 1: Fill and print 2D array Demo 2: Fill and print list of array A: Matrix optelling A: Matrix * constante
Objectgeoriënteerd Programmeren: WPO 4B
Objectgeoriënteerd Programmeren: WPO 4B 1. Inhoud Polymorfie 2. Oefeningen A: Polygon A: Rekenmachine A: Infection A: Waves E: Snake X: Pacman X: Planetendans 2.1 A: Polygon Herneem de opgave Polygon van
Informatica: C# WPO 13
Informatica: C# WPO 13 1. Inhoud Bestanden uitlezen, bestanden schrijven en data toevoegen aan een bestand, csv-bestanden 2. Oefeningen Demo 1: Notepad Demo 2: Read CSV-file Demo 3: Write CSV-file A: Plot
OEFENINGEN PYTHON REEKS 5
Vraag 1: Interpoleren (vervolg) OEFENINGEN PYTHON REEKS 5 Bouw verder op je code van Reeks 3, vraag 4. Voeg vier constanten toe aan je code: X0 = 280, Y0 = 0, Z0 = 50 en SIZE = 8. a) Teken een kubus met
Labo 2 Programmeren II
Labo 2 Programmeren II L. Schoofs K. van Assche Gebruik Visual Studio 2005 om een programma te ontwikkelen dat eenvoudige grafieken tekent. Deze opgave heb je vorig academiejaar reeds in Java geïmplementeerd.
Objectgeoriënteerd Programmeren: WPO 1
Objectgeoriënteerd Programmeren: WPO 1 1. Inhoud Klassen, objecten, methoden, properties, private vs. object, this. public, velden, instantie, reference to 2. Inleiding 2.1 Objecten en klassen 2.1.1 Punt
1.1 Differentiëren, geknipt voor jou
1.1 Differentiëren, geknipt voor jou Je hebt leren omgaan met hellings of, wat hetzelfde is: s. We frissen de begrippen en rekenmethoden die hierbij horen nu wat op. Stel dat je met een (gewone) schaar
PYTHON REEKS 2: FUNCTIES. Mathias Polfliet
PYTHON REEKS 2: FUNCTIES Mathias Polfliet [email protected] TERUG NAAR PYTHON BASICS VRAAG 1: VOLUME BOL Het volume van een bol met straal r is 4 3 πr3 π Wat is het volume in cm³ van een bol met straal
OEFENINGEN PYTHON REEKS 4
Vraag 1: Introductie Tekenen OEFENINGEN PYTHON REEKS 4 Vanaf deze les gaan we gebruik maken van het pakket VPython om de objecten te tekenen en weer te geven. Om aan alle functies te kunnen die VPython
GEOGEBRA 4. R. Van Nieuwenhuyze. Hoofdlector wiskunde, lerarenopleiding HUB, Brussel. Auteur Van Basis tot Limiet. roger.van.nieuwenhuyze@skynet.
? GEOGEBRA 4 R. Van Nieuwenhuyze Hoofdlector wiskunde, lerarenopleiding HUB, Brussel. Auteur Van Basis tot Limiet. [email protected] Roger Van Nieuwenhuyze GeoGebra 4 Pagina 1 1. Schermen
Eindexamen vwo wiskunde B pilot 2013-I
Eindeamen vwo wiskunde pilot 03-I Formules Goniometrie sin( t u) sintcosu costsinu sin( t u) sintcosu costsinu cos( t u) costcosu sintsinu cos( t u) costcosu sintsinu sin( t) sintcost cos( t) cos t sin
IJkingstoets Wiskunde-Informatica-Fysica september 2017: algemene feedback
IJkingstoets wiskunde-informatica-fysica 18 september 017 - reeks 1 - p. 1/14 IJkingstoets Wiskunde-Informatica-Fysica september 017: algemene feedback Positionering ten opzichte van andere deelnemers
Eindexamen vmbo gl/tl wiskunde 2011 - I
OVERZICHT FORMULES: omtrek cirkel = diameter oppervlakte cirkel = straal 2 inhoud prisma = oppervlakte grondvlak hoogte inhoud cilinder = oppervlakte grondvlak hoogte inhoud kegel = 1 3 oppervlakte grondvlak
vwo wiskunde b Baanversnelling de Wageningse Methode
1 1 vwo wiskunde b Baanversnelling de Wageningse Methode 1 1 2 2 Copyright 2018 Stichting de Wageningse Methode Auteurs Leon van den Broek, Ton Geurtz, Maris van Haandel, Erik van Haren, Dolf van den Hombergh,
Objectgeoriënteerd Programmeren: WPO 3
Objectgeoriënteerd Programmeren: WPO 3 1. Inhoud Eenvoudige (enkelvoudige) overerving, override, ToString(), base, private, public, protected, virtual 2. Oefeningen Demo: Scheepvaart A: Polygon A: Rekenmachine
Voorbeeldtentamen Wiskunde B
CENTRALE COMMISSIE VOORTENTAMEN WISKUNDE Datum: Najaar 2018 Tijd: 3 uur Aantal opgaven: 6 Voorbeeldtentamen Wiskunde B Lees onderstaande aanwijzingen s.v.p. goed door voordat u met het tentamen begint.
44 De stelling van Pythagoras
44 De stelling van Pythagoras Verkennen Pythagoras Uitleg Je kunt nu lezen wat de stelling van Pythagoras is. In de applet kun je de twee rode punten verschuiven. Opgave 1 a) Verschuif in de applet punt
Een computerprogramma is opgebouwd uit een aantal instructies die op elkaar volgen en die normaal na elkaar uitgevoerd worden.
2 Programmeren 2.1 Computerprogramma s Een computerprogramma is opgebouwd uit een aantal instructies die op elkaar volgen en die normaal na elkaar uitgevoerd worden. (=sequentie) Niet alle instructies
6.0 Voorkennis AD BC. Kruislings vermenigvuldigen: Voorbeeld: 50 10x. 50 10( x 1) Willem-Jan van der Zanden
6.0 Voorkennis Kruislings vermenigvuldigen: A C AD BC B D Voorbeeld: 50 0 x 50 0( x ) 50 0x 0 0x 60 x 6 6.0 Voorkennis Herhaling van rekenregels voor machten: p p q pq a pq a a a [] a [2] q a q p pq p
2.1 Lineaire functies [1]
2.1 Lineaire functies [1] De lijn heeft een helling (richtingscoëfficiënt) van 1; De lijn gaat in het punt (0,2) door de y-as; In het plaatje is de lijn y = x + 2 getekend. Omdat de grafiek een rechte
IJkingstoets Wiskunde-Informatica-Fysica 29 juni Nummer vragenreeks: 1
IJkingstoets Wiskunde-Informatica-Fysica 29 juni 206 Nummer vragenreeks: IJkingstoets wiskunde-informatica-fysica 29 juni 206 - reeks - p. /0 Oefening Welke studierichting wil je graag volgen? (vraag
Android apps met App Inventor 2 antwoorden
2014 Android apps met App Inventor 2 antwoorden F. Vonk versie 1 11-11-2014 inhoudsopgave Mollen Meppen... - 2 - Schrandere Scholier... - 15 - Meteoor... - 21 - Dit werk is gelicenseerd onder een Creative
De vergelijking van Antoine
De vergelijking van Antoine Als een vloeistof een gesloten ruimte niet geheel opvult, dan verdampt een deel van de vloeistof. De damp oefent druk uit op de wanden van de gesloten ruimte: de dampdruk. De
Achter het correctievoorschrift is een aanvulling op het correctievoorschrift opgenomen.
Examen VMBO-GL en TL 2011 tijdvak 1 maandag 23 mei 13.30-15.30 uur wiskunde CSE GL en TL Bij dit examen hoort een uitwerkbijlage. Achter het correctievoorschrift is een aanvulling op het correctievoorschrift
Klassen & objecten, overerving, abstracte klassen, debuggen, interfaces, formulieren, polymorfie, statische methoden, event-handlers
1 Inhoud Klassen & objecten, overerving, abstracte klassen, debuggen, interfaces, formulieren, polymorfie, statische methoden, event-handlers 2 Geluidsbronnen simulator, deel 2 Inleiding De weergave versnellen
Paragraaf 8.1 : Eenheidscirkel
Hoofdstuk 8 Goniometrische functies (H4 Wis B) Pagina 1 van 10 Paragraaf 8.1 : Eenheidscirkel Les 1 : De eenheidscirkel Definities Eenheidscirkel = { Cirkel met middelpunt O en straal 1 } cos(θ) = x coordinaat
VISUALISATIE VAN KROMMEN EN OPPERVLAKKEN. 1. Inleiding
VISUALISATIE VAN KROMMEN EN OPPERVLAKKEN IGNACE VAN DE WOESTNE. Inleiding In diverse wetenschappelijke disciplines maakt men gebruik van functies om fenomenen of processen te beschrijven. Hiervoor biedt
Eindexamen wiskunde B1 vwo 2008-II
Een eponentiële functie De functie f is gegeven door f( ) = e. is het snijpunt van de grafiek van f met de y-as. B is het snijpunt van de raaklijn aan de grafiek van f in met de -as. Zie figuur 1. figuur
PYTHON REEKS 1: BASICS. Mathias Polfliet
PYTHON REEKS 1: BASICS Mathias Polfliet [email protected] EENVOUDIGE REKENMACHINE 2 soorten getallen Getallen Z -> integers (gehele getallen) Getallen R -> floating points (reële getallen) Door beperkte
Paragraaf 7.1 : Eenheidscirkel en radiaal
Hoofdstuk 7 Goniometrische functies (V5 Wis B) Pagina 1 van 15 Paragraaf 7.1 : Eenheidscirkel en radiaal Les 1 : De eenheidscirkel Definities Eenheidscirkel = { Cirkel met middelpunt O en straal 1 } cos(θ)
Functies. Verdieping. 6N-3p 2013-2014 gghm
Functies Verdieping 6N-p 01-014 gghm Standaardfuncties Hieronder is telkens een standaard functie gegeven. Maak steeds een schets van de bijbehorende grafiek. Je mag de GRM hierbij gebruiken. Y f ( x)
Eindronde Natuurkunde Olympiade 2018 theorietoets deel 1
Eindronde Natuurkunde Olympiade 2018 theorietoets deel 1 1. Spelen met water (3 punten) Water wordt aan de bovenkant met een verwaarloosbare snelheid in een dakgoot met lengte L = 100 cm gegoten en dat
Probeer de vragen bij Verkennen zo goed mogelijk te beantwoorden.
1 Formules gebruiken Verkennen www.math4all.nl MAThADORE-basic HAVO/VWO 4/5/6 VWO wi-b Werken met formules Formules gebruiken Inleiding Verkennen Probeer de vragen bij Verkennen zo goed mogelijk te beantwoorden.
Fysica. Een lichtstraal gaat van middenstof A via middenstof B naar middenstof C. De stralengang van de lichtstraal is aangegeven in de figuur.
Vraag 1 Een lichtstraal gaat van middenstof A via middenstof B naar middenstof C. De stralengang van de lichtstraal is aangegeven in de figuur. A n A B n B C n C Dan geldt voor de brekingsindices n A,
Wat is de som van de getallen binnen een cirkel? Geef alle mogelijke sommen!
Estafette-opgave 1 (20 punten, rest 480 punten) Zeven gebieden Drie cirkels omheinen zeven gebieden. We verdelen de getallen 1 tot en met 7 over de zeven gebieden, in elk gebied één getal. De getallen
IJkingstoets Wiskunde-Informatica-Fysica september 2018: algemene feedback
IJkingstoets wiskunde-informatica-fysica september 8 - reeks - p. IJkingstoets Wiskunde-Informatica-Fysica september 8: algemene feedback Positionering ten opzichte van andere deelnemers In totaal namen
Examen VWO. wiskunde B1. tijdvak 2 woensdag 18 juni uur
Eamen VWO 008 tijdvak woensdag 18 juni 13.30-16.30 uur wiskunde B1 Dit eamen bestaat uit 18 vragen. Voor dit eamen zijn maimaal 84 punten te behalen. Voor elk vraagnummer staat hoeveel punten met een goed
8.1 Rekenen met complexe getallen [1]
8.1 Rekenen met complexe getallen [1] Natuurlijke getallen: Dit zijn alle positieve gehele getallen en nul. 0, 1, 2, 3, 4, 5, 6,... Het symbool voor de natuurlijke getallen is Gehele getallen: Dit zijn
Opdracht 1 bladzijde 8
Opdrachten Opdracht bladzijde 8 Uit een stuk karton met lengte 45 cm en breedte 8 cm knip je in de vier hoeken vierkantjes af met zijde cm. Zo verkrijg je een open doos. 8 cm 45 cm Hoe groot is het volume
12.0 Voorkennis. Voorbeeld 1: Los de vergelijking sin(a) = 0 op. We zoeken nu de punten op de eenheidscirkel met y-coördinaat 0.
12.0 Voorkennis Voorbeeld 1: Los de vergelijking sin(a) = 0 op. We zoeken nu de punten op de eenheidscirkel met y-coördinaat 0. Dit is in de punten (1,0) en (-1,0) (1,0) heeft draaiingshoek 0 (-1,0) heeft
9.1 Recursieve en directe formules [1]
9.1 Recursieve en directe formules [1] Voorbeeld: 8, 12, 16, 20, 24, is een getallenrij. De getallen in de rij zijn de termen. 8 is de eerste term (startwaarde, u 0 ) 12 is de tweede term (u 1 ) 24 is
****** Deel theorie. Opgave 1
HIR - Theor **** IN DRUKLETTERS: NAAM.... VOORNAAM... Opleidingsfase en OPLEIDING... ****** EXAMEN CONCEPTUELE NATUURKUNDE MET TECHNISCHE TOEPASSINGEN Deel theorie Algemene instructies: Naam vooraf rechtsbovenaan
Eindexamen wiskunde B1-2 vwo 2006-II
Drinkbak In figuur staat een tekening van een drinkbak voor dieren. De bak bestaat uit drie delen: een rechthoekige, metalen plaat die gebogen is tot een symmetrische goot, een voorkant en een achterkant
Hoofdstuk 1 Spiegelen in lijn en in cirkel. Eigenschappen.
Hoofdstuk 1 Spiegelen in lijn en in cirkel. Eigenschappen. Jakob Steiner (Utzenstorf (kanton Bern), 18 maart 1796 - Bern, 1 april 1863) was een Zwitsers wiskundige. Hij wordt beschouwd als een van de belangrijkste
13 Vlaamse Wiskunde Olympiade: tweede ronde
3 Vlaamse Wiskunde Olympiade: tweede ronde De tweede ronde bestaat uit 30 meerkeuzevragen Het quoteringssysteem werkt als volgt: per goed antwoord krijgt de deelnemer 5 punten, een blanco antwoord bezorgt
14.0 Voorkennis. sin sin sin. Sinusregel: In elke ABC geldt de sinusregel:
14.0 Voorkennis Sinusregel: In elke ABC geldt de sinusregel: a b c sin sin sin Voorbeeld 1: Gegeven is ΔABC met c = 1, α = 54 en β = 6 Bereken a in twee decimalen nauwkeurig. a c sin sin a 1 sin54 sin64
3.0 Voorkennis. Voorbeeld 1: Los op: 6x + 28 = 30 10x.
3.0 Voorkennis Voorbeeld 1: Los op: 6x + 28 = 30 10x. 6x + 28 = 30 10x +10x +10x 16x + 28 = 30-28 -28 16x = 2 :16 :16 x = 2 1 16 8 Stappenplan: 1) Zorg dat alles met x links van het = teken komt te staan;
Zomercursus Wiskunde. Katholieke Universiteit Leuven Groep Wetenschap & Technologie. September 2008
Katholieke Universiteit Leuven September 2008 Minimum-Maimumproblemen (versie 11 augustus 2008) Inleiding In heel wat vraagstukken gaan we op zoek naar het maimum of het minimum van een zekere grootheid.
Opgave 1 Bestudeer de Uitleg, pagina 1. Laat zien dat ook voor punten buiten lijnstuk AB maar wel op lijn AB geldt: x + 3y = 5
2 Vergelijkingen Verkennen Meetkunde Vergelijkingen Inleiding Verkennen Beantwoord de vragen bij Verkennen. Uitleg Meetkunde Vergelijkingen Uitleg Opgave Bestudeer de Uitleg, pagina. Laat zien dat ook
Examen VMBO-KB. wiskunde CSE KB. tijdvak 2 dinsdag 22 juni uur. Bij dit examen hoort een uitwerkbijlage.
Examen VMBO-KB 2010 tijdvak 2 dinsdag 22 juni 13.30-15.30 uur wiskunde CSE KB Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 26 vragen. Voor dit examen zijn maximaal 77 punten te behalen.
Aanvulling hoofdstuk 1 uitwerkingen
Natuur-scheikunde Aanvulling hoofdstuk 1 uitwerkingen Temperatuur in C en K Metriek stelsel voorvoegsels lengtematen, oppervlaktematen, inhoudsmaten en massa Eenheden van tijd 2 Havo- VWO H. Aelmans SG
toelatingsexamen-geneeskunde.be
Fysica juli 2009 Laatste update: 31/07/2009. Vragen gebaseerd op het ingangsexamen juli 2009. Vraag 1 Een landingsbaan is 500 lang. Een vliegtuig heeft de volledige lengte van de startbaan nodig om op
15 a De rechthoeken zijn 1 bij 6 lucifers, of 2 bij 5 lucifers, of 3 bij 4 lucifers. Zie figuur: Hoofdstuk 21 OPPERVLAKTE HAVO 21.
Hoofdstuk 1 OPPERVLAKTE HAVO 1.1 INTRO 15 a De rechthoeken zijn 1 bij 6 lucifers, of bij 5 lucifers, of 3 bij 4 lucifers. Zie figuur: 1 Oppervlakte snelweg = 0 km 18 m = 0.000 m 18 m = 360.000 m. Zijde
Het warmteverlies van het lichaamsoppervlak aan de wordt gegeven door de volgende formule:
Opgave 1. (4 punten) Inleiding: Een vleermuis is een warmbloedig zoogdier. Dat wil zeggen dat hij zijn lichaamstemperatuur op een konstante waarde moet zien te houden. Als de omgeving kouder is dan de
10.0 Voorkennis. y = -4x + 8 is de vergelijking van een lijn. Hier wordt y uitgedrukt in x.
10.0 Voorkennis y = -4x + 8 is de vergelijking van een lijn. Hier wordt y uitgedrukt in x. Algemeen: Van de lijn y = ax + b is de richtingscoëfficiënt a en het snijpunt met de y-as (0, b) y = -4x + 8 kan
TWEEDE RONDE NATUURKUNDE OLYMPIADE 2013 TOETS APRIL :00 12:45 uur
TWEEDE RONDE NATUURKUNDE OLYMPIADE 2013 TOETS 1 24 APRIL 2013 11:00 12:45 uur MECHANICA 1 Blok en veer. (5 punten) Een blok van 3,0 kg glijdt over een wrijvingsloos tafelblad met een snelheid van 8,0 m/s
Het installatiepakket haal je af van de website http://www.gedesasoft.be/.
Softmaths 1 Softmaths Het installatiepakket haal je af van de website http://www.gedesasoft.be/. De code kan je bekomen op de school. Goniometrie en driehoeken Oplossen van driehoeken - Start van het programma:
Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: goniometrie en meetkunde. 22 juli 2015. dr. Brenda Casteleyn
Voorbereiding toelatingsexamen arts/tandarts Wiskunde: goniometrie en meetkunde 22 juli 2015 dr. Brenda Casteleyn Met dank aan: Atheneum van Veurne (http://www.natuurdigitaal.be/geneeskunde/fysica/wiskunde/wiskunde.htm),
OPDRACHT Opdracht 2.1 Beschrijf in eigen woorden wat het bovenstaande PSD doet.
Les C-02: Werken met Programma Structuur Diagrammen 2.0 Inleiding In deze lesbrief bekijken we een methode om een algoritme zodanig structuur te geven dat er gemakkelijk programmacode bij te schrijven
Rekentijger - Groep 7 Tips bij werkboekje A
Rekentijger - Groep 7 Tips bij werkboekje A Omtrek en oppervlakte (1) Werkblad 1 Van een rechthoek die mooi in het rooster past zijn lengte en breedte hele getallen. Lengte en breedte zijn samen gelijk
1.0 Voorkennis. Voorbeeld 1: Los op: 6x + 28 = 30 10x.
1.0 Voorkennis Voorbeeld 1: Los op: 6x + 28 = 30 10x. 6x + 28 = 30 10x +10x +10x 16x + 28 = 30-28 -28 16x = 2 :16 :16 x = 2 1 16 8 Stappenplan: 1) Zorg dat alles met x links van het = teken komt te staan;
START WISKUNDE-ESTAFETTE RU 2007 Je hebt 60 minuten voor 20 opgaven. Het totaal aantal te behalen punten is 600.
START WISKUNDE-ESTAFETTE RU 2007 Je hebt 60 minuten voor 20 opgaven. Het totaal aantal te behalen punten is 600. Estafette-opgave 1 (20 punten, rest 580 punten) Vier bij vier. In een schema van vier maal
TWEEDE RONDE NATUURKUNDE OLYMPIADE 2019 TOETS APRIL 2019 Tijdsduur: 1h45
TWEEDE RONDE NATUURKUNDE OLYMPIADE 2019 TOETS 1 17 APRIL 2019 Tijdsduur: 1h45 Enige constanten en dergelijke MECHANICA 1 Twee prisma`s. (4 punten) Twee gelijkvormige prisma s met een hoek α van 30 hebben
1.1 Lineaire vergelijkingen [1]
1.1 Lineaire vergelijkingen [1] Voorbeeld: Los de vergelijking 4x + 3 = 2x + 11 op. Om deze vergelijking op te lossen moet nu een x gevonden worden zodat 4x + 3 gelijk wordt aan 2x + 11. = x kg = 1 kg
Eenparig rechtlijnige beweging met de NXT
Eenparig rechtlijnige beweging met de NXT Project tweede graad : VRIJ TECHNISCH INSTITUUT VEURNE Iepersesteenweg 90 8630 VEURNE e-mail: [email protected] vzw Katholiek Secundair Onderwijs Veurne Nieuwpoort,
0. voorkennis. Periodieke verbanden. Bijzonder rechthoekige driehoeken en goniometrische verhoudingen
0. voorkennis Periodieke verbanden Bijzonder rechthoekige driehoeken en goniometrische verhoudingen Er zijn twee verschillende tekendriehoeken: de 45-45 -90 driehoek en de 30-0 -90 -driehoek. Kenmerken
jaar: 1989 nummer: 17
jaar: 1989 nummer: 17 De snelheidscomponent van een deeltje voldoet aan : v x = a x t, waarin a x constant is en negatief. De plaats van het deeltje wordt voorgesteld door x. Aangenomen wordt dat x= 0
Functies. Verdieping. 6N-3p gghm
Functies Verdieping 6N-p 010-011 gghm Standaardfuncties Hieronder is telkens een standaard functie gegeven. Maak steeds een schets van de bijbehorende grafiek. Je mag de GRM hierbij gebruiken. Y f ( x)
Wiskunde Vraag 1. Vraag 2. Vraag 3. Vraag 4 21/12/2008
Wiskunde 007- //008 Vraag Veronderstel dat de concentraties in het bloed van stof A en van stof B omgekeerd evenredig zijn en positief. Als de concentratie van stof A met p % toeneemt, dan zal de concentratie
Examen VWO. wiskunde B. tijdvak 2 woensdag 19 juni uur. Bij dit examen hoort een uitwerkbijlage.
Eamen VW 2019 tijdvak 2 woensdag 19 juni 13.30-16.30 uur wiskunde B Bij dit eamen hoort een uitwerkbijlage. Dit eamen bestaat uit 17 vragen. Voor dit eamen zijn maimaal 76 punten te behalen. Voor elk vraagnummer
15.1 Oppervlakten en afstanden bij grafieken [1]
15.1 Oppervlakten en afstanden bij grafieken [1] Bereken: Bereken algebraisch: Bereken exact: De opgave mag berekend worden met de hand of met de GR. Geef bij GR gebruik de ingevoerde formules en gebruikte
SEQUENTIE-STRUCTUUR. Oefening: Dichtheid
SEQUETIE-STRUCTUUR Oefening: Dichtheid geef diameter vd bol(m) //Declaratie input variabelen double diameter; double soortmassa; //Declaratie variabelen voor tussenresultaten double volume; diameter //Declaratie
2010-I. A heeft de coördinaten (4 a, 4a a 2 ). Vraag 1. Toon dit aan. Gelijkstellen: y= 4x x 2 A. y= ax
00-I De parabool met vergelijking y = 4x x en de x-as sluiten een vlakdeel V in. De lijn y = ax (met 0 a < 4) snijdt de parabool in de oorsprong en in punt. Zie de figuur. y= 4x x y= ax heeft de coördinaten
3 Formules en de grafische rekenmachine
3 Formules en de grafische rekenmachine Verkennen www.math4all.nl MAThADORE-basic HAVO/VWO 4/5/6 VWO wi-b Werken met formules Formules en de GR Inleiding Verkennen Werk het Practicum Basistechnieken met
0.25x. Het buitengebied - vanuit elk punt kun je twee raaklijnen tekenen - bevat twee oplossingen. De parabool zelf staat voor één oplossing.
Uitwerkingen opgaven Zichtbaar maken van discriminantkrommen Opgave 1.1 a. Het binnengebied van de dalparabool oplossingen. y 0.5x, het holle deel, bevat geen Het buitengebied - vanuit elk punt kun je
Trillingen en geluid wiskundig
Trillingen en geluid wiskundig 1 De sinus van een hoek 2 Radialen 3 Uitwijking van een harmonische trilling 4 Macht en logaritme 5 Geluidsniveau en amplitude 1 De sinus van een hoek Sinus van een hoek
ZESDE KLAS MEETKUNDE
ZESDE KLAS MEETKUNDE maandag 1. Het vierkant. Eigenschappen. 2. Vierkanten tekenen met passer en lat vanuit zeshoek 3. Vierkanten tekenen met passer en lat binnen cirkel 4. Vierkanten tekenen met passer
EXAMEN SCHAKELCURSUS MIDDELBARE LASTECHNIEK WISKUNDE 2010
EXAMEN SCHAKELCURSUS MIDDELBARE LASTECHNIEK WISKUNDE 010 Datum: 13 januari 010 Aantal opgaven: 6 Beschikbare tijd: 100 minuten De maximale score is 90 punten, vooraf 10 punten: totaal 100 punten. Aantal
Analyse I. 1ste Bachelor Ingenieurswetenschappen Academiejaar 2005-2006 1ste semester 31 januari 2006
1ste semester 31 januari 2006 Analyse I 1. Onderstel dat f : [a, b] R continu is, en dat f(a)f(b) < 0. Toon aan dat f minstens 1 nulpunt heeft gelegen in het interval (a, b). 2. Gegeven is een functie
stap voor stap; zonder GR-functies; tussen- en eindantwoorden mogen benaderd worden genoteerd (wel doorrekenen met exacte antwoorden).
Samenvatting door Sterre 1437 woorden 5 mei 2018 7.8 3 keer beoordeeld Vak Methode Wiskunde B Getal en ruimte Vocabulair Algebraïsch stap voor stap; zonder GR-functies; tussen- en eindantwoorden mogen
Eindexamen wiskunde B1-2 vwo 2007-II
ier tappen ij het tappen van bier treden verschillen op in de hoeveelheid bier per glas. Uit onderzoek blijkt dat de hoeveelheid bier die per glas getapt wordt bij benadering normaal verdeeld is met een
Eindexamen vwo wiskunde B pilot 2014-I
Eindeamen vwo wiskunde B pilot 04-I Formules Goniometrie sin( tu) sintcosu costsinu sin( tu) sintcosu costsinu cos( tu) costcosusintsinu cos( tu) costcosusintsinu sin( t) sintcost cos( t) cos tsin t cos
16.0 Voorkennis. Voorbeeld 1: Los op in 2x + 3i = 5x + 6i -3x = 3i x = -i
16.0 Voorkennis Voorbeeld 1: Los op in 2x + 3i = 5x + 6i -3x = 3i x = -i Voorbeeld 2: Los op in 4x 2 + 12x + 15 = 0 4x 2 + 12x + 9 + 6 = 0 (2x + 3) 2 + 6 = 0 (2x + 3) 2 = -6 (2x + 3) 2 = 6i 2 2x + 3 =
Technische Universiteit Eindhoven Bachelor College
Technische Universiteit Eindhoven Bachelor College Herkansing Eindtoets Toegepaste Natuurwetenschappen and Second Chance final assessment Applied Natural Sciences (3NBB) Maandag 15 April, 2013, 14.00 17.00
