Logisch denken over kansen

Maat: px
Weergave met pagina beginnen:

Download "Logisch denken over kansen"

Transcriptie

1 Logisch denken over kansen In zee met wiskunde D TU Eindhoven, 29 januari 2007 Mirte Dekkers en Klaas Landsman [email protected] [email protected] Radboud Universiteit Nijmegen Genootschap voor Meetkunde en Kwantumtheorie

2 Is kansrekening wiskunde? Meneer Jeavons zei dat ik van wiskunde hield omdat het veilig was. Hij zei dat ik van wiskunde hield omdat ik dan problemen kon oplossen, en die problemen waren moeilijk en interessant, maar er kwam wel altijd een duidelijk antwoord uit. En wat hij bedoelde was dat wiskunde anders was dan het leven, want in het leven komen er geen duidelijke antwoorden uit. (Mark Haddon, Het wonderbaarlijke voorval met de hond in de nacht)

3 Kansrekening is wiskunde! Kansrekening (en statistiek) is het onderdeel van de wiskunde dat dit vak met het leven verbindt Kansrekening geeft meestal een getal. Maar dat is nog geen duidelijk antwoord : betekenis is vaak onduidelijk Over de betekenis van die getallen moet je eerst logisch en conceptueel leren nadenken (ook daar ligt wiskunde!) Logisch en conceptueel nadenken over kansen is op het vwo zelfs belangrijker dan bij andere onderdelen van de wiskunde (waar dat op de universiteit kan of nooit)

4 Kansrekening op het vwo Huidige situatie: wiskunde A1, A12, B1, B12 bevatten hetzelfde pakket Combinatoriek en kansrekening en bovendien Statistiek (A B) : vier vakken wiskunde (A, B, C, D) A = A12 m.b.t. Kansrekening en statistiek (200 slu) B bevat geen Kansrekening en statistiek C heeft op papier hetzelfde programma als A D (experimenteerfase): slu voor K&S in te vullen als A12 (in 160 slu) of specifiek

5 Standpunt Resonansgroep K&S is zó belangrijk voor vervolgopleidingen en leven dat de basis in wiskunde A én B (en C) thuishoort Voortgezette meetkunde past beter in wiskunde D Logisch/axiomatisch-deductief denken kan via K&S (of Analyse) worden aangeleerd (i.p.v. via meetkunde) Wiskunde D moet K&S verdiepen De situatie in is dus onbevredigend

6 Mes snijdt aan twee kanten Op mijn school, Dalton Voorburg, wordt overwogen het vak Wiskunde D voorlopig niet in te voeren. Voornaamste redenen: nog geen vaststaand examenprogramma, wordt niet vereist door vervolgopleidingen, misschien kleine (dus dure) groepjes. Daar heeft de wiskundesectie bezwaar tegen gemaakt. Vooral ons argument dat er dan N&T leerlingen naar het vervolgonderwijs zullen gaan zonder enige kennis van kansrekening en statistiek vindt weerklank. Onze inventieve conrector heeft nu bedacht dat die module kansrekening en statistiek wel zo ongeveer in de 100 slu vrije ruimte binnen Wiskunde D (VWO) kan worden geschoven. Of dat we misschien het vak Wiskunde D (VWO) meer slu moeten geven (bijv. 760 slu) zodat kansrekening en statistiek er weer in zou kunnen. Heel creatief allemaal, wij als wiskundesectie zien hier niet veel in. Wij blijven pleiten voor invoering van het hele vak Wiskunde D. Daar zijn voldoende goede redenen voor. Maar, is bekend hoe andere scholen het probleem hebben opgelost? Dus in het bijzonder: wat gebeurt op scholen die Wiskunde D niet invoeren met de domeinen "kansrekening en statistiek"? En hoe wordt dat dan beloond bij de leerlingen? Jos Remijn, SG Dalton, Voorburg (WiskundEbrief )

7 Advies B & D voor Comprimeer A12 materiaal K&S voor D tot 120 slu Vul 40 slu in met spannend keuzeonderwerp Zorg dat logisch en conceptueel nadenken over kansen een rol speelt in dit keuzeonderwerp Een suggestie daartoe is het thema van vandaag: Het driedeurenprobleem (40 slu) Ander geschikt onderwerp voor wiskunde D (ligt tussen K&S en Wiskunde in wetenschap): Bestaat Toeval? (80 slu)

8 Het driedeurenprobleem (Monty Ha! Problem, Ziegenproblem) Quizmaster en deelnemer staan voor drie deuren Achter één deur staat een Ferrari Achter de andere twee deuren staat een geit De deelnemer kiest een deur (die dicht blijft) De quizmaster (die weet waar de auto staat) opent een andere deur, waar een geit staat De quizmaster vraagt de deelnemer of hij zijn keuze wil wijzigen Wat moet hij doen?

9 De juiste oplossing Als hij wisselt is de kans dat hij wint 2/3 Als hij niet wisselt is de kans dat hij wint 1/3 Het is dus verstandig om te wisselen Maar veel mensen denken dat het niets uitmaakt! De oplossing is contra-intuïtief

10 Kansboom Wat maakt de verschillende mogelijkheden even waarschijnlijk? Wat betekenen de kansen? Is de uitkomst niet van tevoren bepaald? De specifieke keuze van de quizmaster komt niet voor

11 Ask Marilyn (Vos Savant) Ik maak me grote zorgen over het gebrek aan wiskundig inzicht bij het grote publiek. Help alstublieft door uw fout toe te geven Ongelooflijk dat u uw fout nog steeds niet inziet nadat u door zeker drie wiskundigen bent verbeterd U hebt het volledig mis... Hoeveel woedende wiskundigen zijn ervoor nodig om u te overtuigen?

12 Probleem is kapstok voor: Axioma s van de kansrekening Bayes, 1761 (eindig veel mogelijke uitkomsten) Kolmogorov, 1933 (willekeurig veel uitkomsten) Interpretatie(s) van de kansrekening Gebruik voorwaardelijke kansen en regel v. Bayes

13 Axioma s kansrekening Kansexperiment heeft (eindige) lijst Z van uitkomsten Voorbeeld: Z = {1,2,3,4,5,6} bij worp met dobbelsteen Kans is functie P: {Combinaties van uitkomsten} [0,1] Voorbeeld: { {1},..., {6}, {1,2},..., {1,2,3},..., Z = {1,2,3,4,5,6} } P(A of B) = P(A) + P(B) als A en B elkaar uitsluiten P(Z) = 1 (de zekere gebeurtenis heeft kans 1)

14 Met verzamelingen: Uitkomstruimte van kansexperiment is verzameling Z Kans is functie P: {deelverzamelingen van Z} [0,1] P(A B) = P(A) + P(B) als A B = P(Z) = 1 (de zekere gebeurtenis heeft kans 1) N.B. dit geldt voor eindige verzamelingen Z

15 Voorwaardelijke kansen Een voorwaardelijke kans heeft 2 argumenten P(A B) = P(A en B)/P(B) (als P(B) 0) Hieruit volgt de regel van Bayes: P (A B) = P (B A)P (A) P (B) Let op hoe deze regel in de praktijk wordt gebruikt: P(A B) als kans op A nadat B heeft plaatsgevonden (terwijl P(A B) eigenlijk slaat op tijd vóór B zeker was)

16 Interpretaties kansrekening Objectief: kans bestaat echt (in de natuur) kans is relatieve frequentie Geldt alleen voor herhaalbare kansexperimenten Subjectief: kans is mentale constructie kans is mate van geloof Ook van toepassing op éénmalige kansexperimenten Beide interpretaties kennen problemen, maar voldoen aan axioma s als ze van toepassing zijn

17 Relatieve frequentie als getal Herhaal een kansexperiment N keer: kans op A is P (A) = #(A) N Nadeel: soms grote afwijkingen van objectieve kans Neem dus limiet voor grote N: kans op A is #(A) P (A) = lim N N Talloze problemen: bestaat limiet? Hangt deze af van volgorde experimenten? Operationele definitie?... Met en zonder limiet is aan axioma s voldaan

18 Mentale kans als getal Mate van geloof uitgedrukt als wed-ratio Docent en leerling sluiten weddenschap af op A Leerling kiest wed-ratio P(A) Docent kiest inzet I(A) positief of negatief Leerling betaalt docent P(A)I(A) Als A optreedt betaalt docent aan leerling I(A) Als A niet optreedt betaalt docent niets Wie wint hangt af van uitkomst en van het teken van I(A) Dutch book stelling: functie P voldoet aan axioma s desda docent niet door slimme keuze van inzetten een Dutch book kan maken (i.e. weddenschap die leerling altijd verliest)

19 Oplossing driedeurenprobleem Met frequentie-interpretatie: speel het spel N keer met toevallige keuzes quizmaster (auto) en deelnemer (deur) zonder correlaties (dus niet auto achter deur 1, 2, 3, 1, 2, 3,.. en keuze deur idem dito). Uitmiddeling geeft dan het juiste antwoord (kansboom) Met mentale interpretatie: bepaal subjectieve kansen die deelnemer aan relevante gebeurtenissen toekent (bijv. A₁: auto staat achter deur 1) Druk kans op auto met en zonder wisselen uit in (subjectieve) voorwaardelijke kansen Regel van Bayes geeft vervolgens het juiste antwoord

20 Subjectieve kansen Voor de quizmaster zijn alle kansen 0 of 1 Voor de deelnemer zijn de kansen als volgt: P(A₁) = P(A₂) = P(A₃) = 1/3 (A₁: auto staat achter deur 1) Stel dat deelnemer deur 1 kiest, dan geldt tevens: P(Q₁) = 0; P(Q₂) = P(Q₃) = 1/2 (Q₁: quizmaster opent deur 1) Quizmaster opent deur die niet gekozen was én geit toont: P(Q₂ A₃) = P(Q₃ A₂) = 1 maar P(Q₂ A₁) = P(Q₃ A₁) = 1/2

21 Berekening Deelnemer kiest deur 1 en quizmaster opent deur 2 Kans dat deelnemer wint als hij wisselt is P(A₃ Q₂) Kans dat hij wint als hij niet wisselt is P(A₁ Q₂) Regel van Bayes: P(A B) = P(B A)P(A)/P(B) P(A₃ Q₂) = P(Q₂ A₃)P(A₃)/P(Q₂) = (1 ⅓) / ½ = ⅔ P(A₁ Q₂) = P(Q₂ A₁)P(A₁)/P(Q₂) = (½ ⅓) / ½ = ⅓ Dit is het juiste antwoord: Kans dat deelnemer wint als hij wisselt is 2/3 Kans dat hij wint als hij niet wisselt is 1/3

22 Wat leren de scholieren? Kansrekening heeft een axiomatische fundering (net als euclidische meetkunde, analyse,...) Er bestaan verschillende interpretaties van de kansrekening, die elk aan de axioma s voldoen Het driedeurenprobleem kan worden opgelost met zowel de objectieve frequentie-interpretatie als met de subjectieve mentale interpretatie Andere illustratie voorwaardelijke kansen en regel van Bayes: de zaak Lucia de B.

Kansrekening en Statistiek

Kansrekening en Statistiek Kansrekening en Statistiek College 8 Vrijdag 2 Oktober 1 / 17 1 Kansrekening Geschiedenis en filosofie 2 / 17 De Kolmogorov Axioma s De kansrekening kan uit deze axioma s worden opgebouwd: 3 / 17 De Kolmogorov

Nadere informatie

Kansrekening en Statistiek

Kansrekening en Statistiek Kansrekening en Statistiek College 1 Dinsdag 14 September 1 / 34 Literatuur http://www.phil.uu.nl/ iemhoff Applied Statistics for the Behavioral Sciences - 5th edition, Dennis E. Hinkle, William Wiersma,

Nadere informatie

Laplace Experimenteel Intuïtie Axiomatisch. Het kansbegrip. W. Oele. 27 januari 2014. W. Oele Het kansbegrip

Laplace Experimenteel Intuïtie Axiomatisch. Het kansbegrip. W. Oele. 27 januari 2014. W. Oele Het kansbegrip 27 januari 2014 Deze les Kanstheorie volgens Laplace Experimentele kanstheorie Axiomatische kanstheorie Intuïtie Kanstheorie volgens Laplace (1749-1827) De kans op een gebeurtenis wordt verkregen door

Nadere informatie

Toeval is logisch. Van Huygens tot Freudenthal. Inleiding. Is kansrekening wel wiskunde? 42 Toeval is logisch

Toeval is logisch. Van Huygens tot Freudenthal. Inleiding. Is kansrekening wel wiskunde? 42 Toeval is logisch Over de invulling van wiskunde D hebben velen hun mening gegeven. De Resonansgroep heeft voor kansrekening en statistiek in plaats van meetkunde in wiskunde B gepleit. Nu het in D terechtgekomen is, komt

Nadere informatie

Voorwaardelijke kansen, de Bayes regel en onafhankelijkheid

Voorwaardelijke kansen, de Bayes regel en onafhankelijkheid Les 2 Voorwaardelijke kansen, de Bayes regel en onafhankelijkheid Sommige vragen uit de kanstheorie hebben een antwoord die intuïtief niet verwacht zou worden. Een voorbeeld hiervoor is het Monty-Hall

Nadere informatie

college 4: Kansrekening

college 4: Kansrekening college 4: Kansrekening Deelgebied van de statistiek Doel: Kansen berekenen voor het waarnemen van bepaalde uitkomsten Kansrekening 1. Volgordeproblemen Permutaties Variaties Combinaties 2. Kans 3. Voorwaardelijke

Nadere informatie

Combinatoriek en rekenregels

Combinatoriek en rekenregels Combinatoriek en rekenregels Les 4: Rekenregels (deze les sluit aan bij de paragraaf 8 van Hoofdstuk 1 Combinatoriek en Rekenregels van de Wageningse Methode, http://www.wageningsemethode.nl/methode/het-lesmateriaal/?s=y456v-d)

Nadere informatie

Kansrekening en Statistiek

Kansrekening en Statistiek Kansrekening en Statistiek College 13 Dinsdag 1 November 1 / 26 2 Statistiek Vandaag: Power Grootte steekproef Filosofie 2 / 26 Power 3 / 26 Power Def. De power (kracht) van een hypothese toets is (1 β),

Nadere informatie

Kansrekening en statistiek wi2105in deel I 29 januari 2010, uur

Kansrekening en statistiek wi2105in deel I 29 januari 2010, uur Kansrekening en statistiek wi20in deel I 29 januari 200, 400 700 uur Bij dit examen is het gebruik van een (evt grafische rekenmachine toegestaan Tevens krijgt u een formuleblad uitgereikt na afloop inleveren

Nadere informatie

Bij het oplossen van een telprobleem zijn de volgende 2 dingen belangrijk: Is de volgorde van de gekozen dingen van belang?

Bij het oplossen van een telprobleem zijn de volgende 2 dingen belangrijk: Is de volgorde van de gekozen dingen van belang? 4. tellen & kansen 4.1 Tellen Herkennen Je kunt een vraag over telproblemen herkennen aan signaalwoorden: - hoeveel mogelijkheden, manieren, routes, volgordes etc. zijn er?, - bereken het aantal mogelijkheden/manieren

Nadere informatie

Kansrekening en Statistiek

Kansrekening en Statistiek Kansrekening en Statistiek College 1 Woensdag 9 September 1 / 39 Site: http://www.phil.uu.nl/ iemhoff Literatuur: Applied Statistics for the Behavioral Sciences - 5th edition, Dennis E. Hinkle, William

Nadere informatie

Voorwaardelijke kansen, de Bayes regel en onafhankelijkheid

Voorwaardelijke kansen, de Bayes regel en onafhankelijkheid Les 4 Voorwaardelijke kansen, de Bayes regel en onafhankelijkheid Sommige vragen uit de kanstheorie hebben een antwoord dat niet met de intuïtie van iedereen klopt. Een voorbeeld hiervoor is het Monty-Hall

Nadere informatie

Puzzeltje Jan kijkt naar Annie, maar Annie kijkt naar Kees. Jan is getrouwd, maar Kees niet. Kijkt er een getrouwd persoon naar een ongetrouwd

Puzzeltje Jan kijkt naar Annie, maar Annie kijkt naar Kees. Jan is getrouwd, maar Kees niet. Kijkt er een getrouwd persoon naar een ongetrouwd Puzzeltje Jan kijkt naar Annie, maar Annie kijkt naar Kees. Jan is getrouwd, maar Kees niet. Kijkt er een getrouwd persoon naar een ongetrouwd persoon? A)Ja B)Nee C)Dat weet je niet Wiskunde D Wat is het

Nadere informatie

Statistiek. Beschrijvend statistiek

Statistiek. Beschrijvend statistiek Statistiek Beschrijvend statistiek Verzameling van gegevens en beschrijvingen Populatie, steekproef Populatie = o de gehele groep ondervragen o parameter is een kerngetal Steekproef = o een onderdeel van

Nadere informatie

Kansrekening en Statistiek

Kansrekening en Statistiek Kansrekening en Statistiek College 2 Donderdag 15 September 1 / 42 1 Kansrekening Vandaag: Vragen Eigenschappen van kansen Oneindige discrete uitkomstenruimtes Continue uitkomstenruimtes Continue stochasten

Nadere informatie

Voorwaardelijke kansen, de Regel van Bayes en onafhankelijkheid

Voorwaardelijke kansen, de Regel van Bayes en onafhankelijkheid Wiskunde voor kunstmatige intelligentie, 2006 Les 9 Voorwaardelijke kansen, de Regel van Bayes en onafhankelijkheid Sommige vragen uit de kanstheorie hebben een antwoord dat niet met de intuïtie van iedereen

Nadere informatie

Op het vwo heb je wiskunde A, B, C en D. Wiskunde A, B en C horen bij een profiel, wiskunde D is een keuzevak.

Op het vwo heb je wiskunde A, B, C en D. Wiskunde A, B en C horen bij een profiel, wiskunde D is een keuzevak. Let op: In de wiskundefilm wordt gezegd dat je naast wiskunde B ook wiskunde A kunt kiezen als examenvak in het vrije deel. Dit is niet toegestaan. De enige combinatie die is toegestaan, is wiskunde B

Nadere informatie

Statistiek I Samenvatting. Prof. dr. Carette

Statistiek I Samenvatting. Prof. dr. Carette Statistiek I Samenvatting Prof. dr. Carette Opleiding: bachelor of science in de Handelswetenschappen Academiejaar 2016 2017 Inhoudsopgave Hoofdstuk 1: Statistiek, gegevens en statistisch denken... 3 De

Nadere informatie

Kansrekening en Statistiek

Kansrekening en Statistiek Kansrekening en Statistiek College 2 Donderdag 16 September 1 / 31 1 Kansrekening Indeling: Eigenschappen van kansen Continue uitkomstenruimtes Continue stochasten 2 / 31 Vragen: cirkels Een computer genereert

Nadere informatie

Kansrekening en Statistiek

Kansrekening en Statistiek Kansrekening en Statistiek College 4 Donderdag 22 September 1 / 31 1 Kansrekening Vandaag : Vragen Bernouilli verdelingen Binomiale verdelingen Voorwaardelijke kansen 2 / 31 Vragen: multiple choice Bij

Nadere informatie

De enveloppenparadox

De enveloppenparadox De enveloppenparadox Mats Vermeeren Berlin Mathematical School) 6 april 013 1 Inleiding Een spel gaat als volgt. Je krijgt twee identiek uitziende enveloppen aangeboden, waarvan je er één moet kiezen.

Nadere informatie

Samenvatting Wiskunde A kansen

Samenvatting Wiskunde A kansen Samenvatting Wiskunde A kansen Samenvatting door een scholier 857 woorden 19 juni 2016 1 1 keer beoordeeld Vak Methode Wiskunde A Moderne wiskunde H1 Machtsboom Mogelijkheden tellen Aantal takken is gelijk

Nadere informatie

Kansrekenen: Beliefs & Bayes

Kansrekenen: Beliefs & Bayes Kansrekenen: Beliefs & Bayes L. Schomaker, juni 2001 Bereik van kansen 0 P (A) 1 (1) Kansen op valide en onvervulbare proposities P (W aar) = 1, P (Onwaar) = 0 (2) Somregel P (A B) = P (A) + P (B) P (A

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN. Faculteit Wiskunde en Informatica

TECHNISCHE UNIVERSITEIT EINDHOVEN. Faculteit Wiskunde en Informatica TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Eindtentamen Kansrekening en Statistiek (WS), Tussentoets Kansrekening en Statistiek (WS), Vrijdag 8 april, om 9:-:. Dit is een tentamen

Nadere informatie

Kansrekening en Statistiek

Kansrekening en Statistiek Kansrekening en Statistiek College 6 Donderdag 30 September 1 / 25 1 Kansrekening Indeling: Voorwaardelijke kansen Onafhankelijkheid Stelling van Bayes 2 / 25 Vraag: Afghanistan Vb. In het leger wordt

Nadere informatie

LANDSEXAMEN VWO Het examenprogramma Het examenprogramma voor het commissie-examen Wiskunde D bestaat uit de volgende (sub)domeinen:

LANDSEXAMEN VWO Het examenprogramma Het examenprogramma voor het commissie-examen Wiskunde D bestaat uit de volgende (sub)domeinen: LANDSEXAMEN VWO 2017-2018 Examenprogramma WISKUNDE D (V.W.O. ) (nieuw programma) 1 Het eindexamen Wiskunde D kent slechts het commissie-examen. Er is voor wiskunde D dus geen centraal schriftelijk examen.

Nadere informatie

Kansrekenen. Lesbrief kansexperimenten Havo 4 wiskunde A Maart 2012 Versie 3: Dobbelstenen

Kansrekenen. Lesbrief kansexperimenten Havo 4 wiskunde A Maart 2012 Versie 3: Dobbelstenen Kansrekenen Lesbrief kansexperimenten Havo 4 wiskunde A Maart 2012 Versie 3: Dobbelstenen Inhoud Inleiding...3 Doel van het experiment...3 Organisatie van het experiment...3 Voorkennis...4 Uitvoeren van

Nadere informatie

Kansrekening en Statistiek

Kansrekening en Statistiek Kansrekening en Statistiek Henk Broer Instituut voor Wiskunde en Informatica Rijksuniversiteit Groningen Kansrekening en Statistiek p.1 Overzicht Kansrekening en Statistiek - Geschiedenis - Loterij - Toetsen

Nadere informatie

Praktische toepassing van functies

Praktische toepassing van functies Excellerend Heemraadweg 21 2741 NC Waddinxveen 06 5115 97 46 [email protected] BTW: NL0021459225 ABN/AMRO: NL72ABNA0536825491 KVK: 24389967 Praktische toepassing van functies De laatste twee functies

Nadere informatie

Kansrekening en Statistiek

Kansrekening en Statistiek Kansrekening en Statistiek College 7 Dinsdag 5 Oktober 1 / 20 1 Kansrekening Indeling: Binomiaalcoëfficiënten Monty Hall Geschiedenis Filosofie 2 / 20 Binomiaalcoëfficiënten 3 / 20 Binomiaalcoëfficiënten

Nadere informatie

Hoofdstuk 4 Kansrekening

Hoofdstuk 4 Kansrekening Hoofdstuk 4 Kansrekening Marnix Van Daele MarnixVanDaele@UGentbe Vakgroep Toegepaste Wiskunde en Informatica Universiteit Gent Kansrekening p 1/29 Gebeurtenissen experiment : gooien met een dobbelsteen

Nadere informatie

Paragraaf 4.1 : Kansen

Paragraaf 4.1 : Kansen Hoofdstuk 4 Het kansbegrip (V4 Wis A) Pagina 1 van 5 Paragraaf 4.1 : Kansen Les 1 Kansen met dobbelstenen Definitie GGGGGGGGGGGGGGGG uuuuuuuuuuuuuuuuuuuu KKKKKKKK = TTTTTTTTTTTT aaaaaaaaaaaa uuuuuuuuuuuuuuuuuuuu

Nadere informatie

Wiskunde in de profielen

Wiskunde in de profielen Wiskunde in de profielen Wiskunde in de profielen Wiskunde staat los van de rekentoets Alle leerlingen doen de rekentoets deze telt voor VWO mee in zak-slaag-regeling C&M Wiskunde C (of A) E&M Wiskunde

Nadere informatie

Kansrekening en Statistiek

Kansrekening en Statistiek Kansrekening en Statistiek College 13 Dinsdag 26 Oktober 1 / 24 2 Statistiek Indeling: Hypothese toetsen Filosofie 2 / 24 Hypothese toetsen 3 / 24 Hypothese toetsen: toepassingen Vb. Een medicijn wordt

Nadere informatie

Medische Statistiek Kansrekening

Medische Statistiek Kansrekening Medische Statistiek Kansrekening Medisch statistiek- kansrekening Hoorcollege 1 Uitkomstenruimte vaststellen Ook wel S of E. Bij dobbelsteen: E= {1,2,3,4,5,6} Een eindige uitkomstenreeks Bij het gooien

Nadere informatie

Statistiek voor A.I. College 6. Donderdag 27 September

Statistiek voor A.I. College 6. Donderdag 27 September Statistiek voor A.I. College 6 Donderdag 27 September 1 / 1 2 Deductieve statistiek Kansrekening 2 / 1 Vraag: Afghanistan In het leger wordt uit een groep van 6 vrouwelijke en 14 mannelijke soldaten een

Nadere informatie

3.0 Voorkennis. Het complement van de verzameling V is de verzameling Dit zijn alle elementen van de uitkomstenverzameling U die niet in V zitten.

3.0 Voorkennis. Het complement van de verzameling V is de verzameling Dit zijn alle elementen van de uitkomstenverzameling U die niet in V zitten. 3.0 Voorkennis De vereniging van de verzamelingen V en is gelijk aan de uitkomstenverzameling U in het plaatje hiernaast. De doorsnede van de verzamelingen V en V is een lege verzameling. Het complement

Nadere informatie

Examenprogramma wiskunde D vwo

Examenprogramma wiskunde D vwo Examenprogramma wiskunde D vwo Het eindexamen Het eindexamen bestaat uit het schoolexamen. Het examenprogramma bestaat uit de volgende domeinen: Domein A Vaardigheden Domein B Kansrekening en statistiek

Nadere informatie

Faculteit, Binomium van Newton en Driehoek van Pascal

Faculteit, Binomium van Newton en Driehoek van Pascal Faculteit, Binomium van Newton en Driehoek van Pascal 1 Faculteit Definitie van de faculteit Wisnet-hbo update aug. 2007 (spreek uit k-faculteit) is: k Dit geldt voor elk geheel getal k groter dan 0 en

Nadere informatie

Statistiek voor A.I. College 7. Dinsdag 2 Oktober

Statistiek voor A.I. College 7. Dinsdag 2 Oktober Statistiek voor A.I. College 7 Dinsdag 2 Oktober 1 / 30 2 Deductieve statistiek Kansrekening 2 / 30 Vraag: test Een test op HIV is 90% betrouwbaar: als een persoon HIV heeft is de kans op een positieve

Nadere informatie

van de verwachtingswaarde groen is te verkiezen boven blauw en blauw is te verkiezen boven rood is dan groen te verkiezen boven rood?..

van de verwachtingswaarde groen is te verkiezen boven blauw en blauw is te verkiezen boven rood is dan groen te verkiezen boven rood?.. Verwacht winst altijd Prof. dr. Herman Callaert Een verrassende toepassing van de verwachtingswaarde bij kansmodellen. groen is te verkiezen boven blauw en blauw is te verkiezen boven rood is dan groen

Nadere informatie

Twee keuzevakken. NLT en Wiskunde D De een of de ander? 1 juli 2011. Nelleke den Braber Landelijk coördinatiepunt NLT

Twee keuzevakken. NLT en Wiskunde D De een of de ander? 1 juli 2011. Nelleke den Braber Landelijk coördinatiepunt NLT Twee keuzevakken NLT en Wiskunde D De een of de ander? 1 juli 2011 Nelleke den Braber Landelijk coördinatiepunt NLT Schoolexamenvakken sinds 2007 NLT: NG&NT leerlingen Wiskunde D: Alleen leerlingen met

Nadere informatie

In havo 4&5 kun je kiezen uit wiskunde A, B of D. Wiskunde C wordt alleen op het VWO aangeboden.

In havo 4&5 kun je kiezen uit wiskunde A, B of D. Wiskunde C wordt alleen op het VWO aangeboden. In havo 4&5 kun je kiezen uit wiskunde A, B of D. Wiskunde C wordt alleen op het VWO aangeboden. Wiskunde is een verplicht vak bij de profielen EM, NG en NT. Als je CM kiest hoef je wiskunde niet verplicht

Nadere informatie

Kansrekening en Statistiek

Kansrekening en Statistiek Kansrekening en Statistiek College 8 Donderdag 13 Oktober 1 / 23 2 Statistiek Vandaag: Stochast en populatie Experimenten herhalen Wet van de Grote Getallen Centrale Limietstelling 2 / 23 Stochast en populatie

Nadere informatie

Samenvatting Wiskunde B Leerboek 1 examenstof

Samenvatting Wiskunde B Leerboek 1 examenstof Samenvatting Wiskunde B Leerboek 1 examenst Samenvatting door een scholier 1925 woorden 2 mei 2003 5,4 123 keer beoordeeld Vak Methode Wiskunde B Getal en ruimte Wiskunde boek 1. Hodstuk 1. Procenten.

Nadere informatie

Kansrekening en Statistiek

Kansrekening en Statistiek Kansrekening en Statistiek College 5 Dinsdag 27 September 1 / 30 1 Kansrekening Vandaag: Voorwaardelijke kansen Onafhankelijkheid Stelling van Bayes 2 / 30 Vraag: test Een test op HIV is 90% betrouwbaar:

Nadere informatie

Hier komt de titel van de presentatie

Hier komt de titel van de presentatie Wiskunde in de bovenbouw van het vwo Hier komt de titel van de presentatie H. Bronkhorst docent wiskunde Welke wiskunde ga ik kiezen? Welke wiskunde past bij mij? Wiskunde A, B of C? En wanneer is het

Nadere informatie

Kansrekening en Statistiek

Kansrekening en Statistiek Kansrekening en Statistiek College 12 Donderdag 21 Oktober 1 / 38 2 Statistiek Indeling: Stochast en populatie Experimenten herhalen Wet van de Grote Getallen Centrale Limietstelling 2 / 38 Deductieve

Nadere informatie

Examenprogramma wiskunde A vwo

Examenprogramma wiskunde A vwo Examenprogramma wiskunde A vwo Het eindexamen Het eindexamen bestaat uit het centraal examen en het schoolexamen. Het examenprogramma bestaat uit de volgende domeinen: Domein A Vaardigheden Domein Bg Functies

Nadere informatie

Overzicht. Statistiek voor Informatica Hoofdstuk 2: Voorwaardelijke kansen. Voorwaardelijke kans. Voorbeeld: Probabilistisch redeneren

Overzicht. Statistiek voor Informatica Hoofdstuk 2: Voorwaardelijke kansen. Voorwaardelijke kans. Voorbeeld: Probabilistisch redeneren Overzicht Statistiek voor Informatica Hoofdstuk 2: Voorwaardelijke kansen Cursusjaar 2009 Peter de Waal Departement Informatica Voorwaardelijke kans Rekenregels Onafhankelijkheid Voorwaardelijke Onafhankelijkheid

Nadere informatie

vwo A deel 4 13 Mathematische statistiek 14 Algebraïsche vaardigheden 15 Toetsen van hypothesen 16 Toepassingen van de differentiaalrekening

vwo A deel 4 13 Mathematische statistiek 14 Algebraïsche vaardigheden 15 Toetsen van hypothesen 16 Toepassingen van de differentiaalrekening vwo A deel 4 13 Mathematische statistiek 13.1 Kansberekeningen 13.2 Kansmodellen 13.3 De normale verdeling 13.4 De n -wet 13.5 Discrete en continue verdelingen 13.6 Diagnostische toets 14 Algebraïsche

Nadere informatie

Officiële uitgave van het Koninkrijk der Nederlanden sinds 1814.

Officiële uitgave van het Koninkrijk der Nederlanden sinds 1814. STAATSCOURANT Officiële uitgave van het Koninkrijk der Nederlanden sinds 1814. Nr. 7228 14 maart 2014 Regeling van de Staatssecretaris van Onderwijs, Cultuur en Wetenschap van 22 februari 2014, nr. VO/599178,

Nadere informatie

3 Kansen vermenigvuldigen

3 Kansen vermenigvuldigen 3 Kansen vermenigvuldigen Verkennen www.math4all.nl MAThADORE-basic HAVO/VWO 4/5/6 VWO wi-a Kansrekening Vermenigvuldigen Inleiding Verkennen Beantwoord de vragen bij Verkennen. Uitleg www.math4all.nl

Nadere informatie

totale studielast: 320 uur Dit vak heeft ook een Centraal Examen, dat voor 50% het eindcijfer bepaalt.

totale studielast: 320 uur Dit vak heeft ook een Centraal Examen, dat voor 50% het eindcijfer bepaalt. PTA wiskunde A HAVO cohort 2014-2016 ST=SE-toets SP=SE-praktische opdracht VT=voortgangstoets VP=voortgangs-praktische opdracht HD=handelingsdeel Weeknummers zijn een indicatie: er kunnen geen rechten

Nadere informatie

Praktische opdracht Wiskunde som van de ogen van drie dobbelstenen

Praktische opdracht Wiskunde som van de ogen van drie dobbelstenen Praktische opdracht Wiskunde som van de ogen van drie dobbelstenen Praktische-opdracht door een scholier 918 woorden 17 maart 2002 4,9 60 keer beoordeeld Vak Wiskunde Inleiding Wij hebben gekozen voor

Nadere informatie

Kansloos: van Willem Ruis tot Lucia de B.

Kansloos: van Willem Ruis tot Lucia de B. Kansloos: van Willem Ruis tot Lucia de B. Peter Grünwald Centrum voor Wiskunde en Informatica Kruislaan 413, 1098 XJ Amsterdam homepages.cwi.nl/~pdg 1.1 Kansloze Situaties Uitspraken van de vorm deze gebeurtenis

Nadere informatie

VOOR HET SECUNDAIR ONDERWIJS. Kansmodellen. 3. Populatie en steekproef. Werktekst voor de leerling. Prof. dr. Herman Callaert

VOOR HET SECUNDAIR ONDERWIJS. Kansmodellen. 3. Populatie en steekproef. Werktekst voor de leerling. Prof. dr. Herman Callaert VOOR HET SECUNDAIR ONDERWIJS Kansmodellen. Werktekst voor de leerling Prof. dr. Herman Callaert Hans Bekaert Cecile Goethals Lies Provoost Marc Vancaudenberg . Populatie: een intuïtieve definitie.... Een

Nadere informatie

2.1 Kansen [1] Er geldt nu dat de kans op som is 6 gelijk is aan: P(som is 6) =

2.1 Kansen [1] Er geldt nu dat de kans op som is 6 gelijk is aan: P(som is 6) = 2.1 Kansen [1] Voorbeeld 1: Als je gooit met twee dobbelstenen zijn er in totaal 6 6 = 36 mogelijke uitkomsten. Deze staan in het rooster hiernaast. De gebeurtenis som is 6 komt vijf keer voor. Het aantal

Nadere informatie

Wiskunde A (of C) of wiskunde B (en D) in de bovenbouw VWO

Wiskunde A (of C) of wiskunde B (en D) in de bovenbouw VWO Wiskunde A (of C) of wiskunde B (en D) in de bovenbouw VWO Keuze profielen Cultuur en Maatschappij Economie en Maatschappij Natuur en Gezondheid Natuur en Techniek Wiskunde C Wiskunde A wiskunde A wiskunde

Nadere informatie

Leve de Wiskunde! 2011 W I N G O! Uw Wingo-master van vandaag: Jan Brandts Korteweg-de Vries Instituut voor Wiskunde Universiteit van Amsterdam

Leve de Wiskunde! 2011 W I N G O! Uw Wingo-master van vandaag: Jan Brandts Korteweg-de Vries Instituut voor Wiskunde Universiteit van Amsterdam Leve de Wiskunde! 2011 W I N G O! Uw Wingo-master van vandaag: Jan Brandts Korteweg-de Vries Instituut voor Wiskunde Universiteit van Amsterdam W I N G O = W I S K U N D E - B I N G O W I N G O 17 15 π

Nadere informatie

Tentamen Inleiding Kansrekening wi juni 2010, uur

Tentamen Inleiding Kansrekening wi juni 2010, uur Technische Universiteit Delft Mekelweg Faculteit Electrotechniek, Wiskunde en Informatica 8 CD Delft Tentamen Inleiding Kansrekening wi juni, 9.. uur Bij dit examen is het gebruik van een (evt. grafische

Nadere informatie

HOOFDSTUK 6: Kansrekening. 6.1 De productregel. Opgave 1: a. 3 van de 4 knikkers zijn rood. P(rood uit II. Opgave 2: a. P(twee wit

HOOFDSTUK 6: Kansrekening. 6.1 De productregel. Opgave 1: a. 3 van de 4 knikkers zijn rood. P(rood uit II. Opgave 2: a. P(twee wit HOOFDSTUK : Kansrekening. De productregel Opgave : van de knikkers zijn rood rood uit II ) d. 0, e. 0, Opgave : 0 twee wit 0, ) 0 0 ) 0 0 ) 0 0 blauw en rood 0, wit en groen 0, d. geen blauw 7 0, ) 0 0

Nadere informatie

Tekst lezen en vragen stellen

Tekst lezen en vragen stellen 1. Lees de uitleg. Tekst lezen en vragen stellen Als je een tekst leest, kunnen er allerlei vragen bij je opkomen. Bijvoorbeeld: Welke leerwegen zijn er binnen het vmbo? Waarom moet je kritisch zijn bij

Nadere informatie

Kansrekening en Statistiek

Kansrekening en Statistiek Kansrekening en Statistiek College 9 Dinsdag 12 Oktober 1 / 21 1 Kansrekening Indeling: Stelling van Bayes Bayesiaans leren 2 / 21 Vraag: test Een test op HIV is 90% betrouwbaar: als een persoon HIV heeft

Nadere informatie

Welke Wiskunde moet ik kiezen?

Welke Wiskunde moet ik kiezen? Welke Wiskunde moet ik kiezen? Welke Wiskundes zijn er? Welke Wiskunde past bij mij? Welke Wiskunde heb ik nodig? Welke Wiskunde kan ik op het Erasmiaans volgen? Welke Wiskundes zijn er? Wiskunde A Wiskunde

Nadere informatie

GETAL& RUIMTE. Verbeteringen havo A 10e editie (2011) t.o.v. editie 2007

GETAL& RUIMTE. Verbeteringen havo A 10e editie (2011) t.o.v. editie 2007 Verbeteringen havo A 10e editie (2011) t.o.v. editie 2007 Havo A deel 1 begint met het niet-examenonderwerp Statistiek (was hoofdstuk 4). Al snel wordt de grafische rekenmachine ingezet en ook bij de andere

Nadere informatie

onthouden. Schrijfdoelen Schrijfdoel Inhoud schrijfdoel Voorbeeld vermaakt door een leuk, spannen, aangrijpend of interessante tekst.

onthouden. Schrijfdoelen Schrijfdoel Inhoud schrijfdoel Voorbeeld vermaakt door een leuk, spannen, aangrijpend of interessante tekst. Nederlands Leesvaardigheid Leesstrategieën Oriënterend lezen Globaal lezen Intensief lezen Zoekend lezen Kritisch lezen Studerend lezen Om het onderwerp vast te stellen en te bepalen of de tekst bruikbaar

Nadere informatie

Kansrekening en statistiek WI2105IN deel I 4 november 2011, uur

Kansrekening en statistiek WI2105IN deel I 4 november 2011, uur Kansrekening en statistiek WI05IN deel I 4 november 0, 4.00 7.00 uur Bij dit examen is het gebruik van een (evt. grafische) rekenmachine toegestaan. Een formuleblad wordt uitgereikt. Meerkeuzevragen Toelichting:

Nadere informatie

2: vergaderen VASTE VOORZITTER EN NOTULIST

2: vergaderen VASTE VOORZITTER EN NOTULIST 2: vergaderen Als je lid bent van een studentenraad, vergader je vaak. Je hebt vergaderen met de studentenraad, maar ook vergaderingen met het College van Bestuur en de Ondernemingsraad (OR). Gemiddeld

Nadere informatie

Vak Wiskunde Niveau Mavo. Jaar Toetsnaam Type Omschrijving Afnamemoment Weegfactor Herkansbaar Examendomein

Vak Wiskunde Niveau Mavo. Jaar Toetsnaam Type Omschrijving Afnamemoment Weegfactor Herkansbaar Examendomein 2018-2019 Vak Wiskunde Niveau Mavo Klas 9 en Jaar Toetsnaam Type Omschrijving Afnamemoment 9 Toets 1 Toets Verbanden I trim1/tw 1 5% ja K4 9 Toets 2 Toets Meetkunde I trim2 / TW 2 5% ja K5, K6 9 Toets

Nadere informatie

Het Land van Oct. Marte Koning Frans Ballering. Vierkant voor Wiskunde Wiskundeclubs

Het Land van Oct. Marte Koning Frans Ballering. Vierkant voor Wiskunde Wiskundeclubs Het Land van Oct Marte Koning Frans Ballering Vierkant voor Wiskunde Wiskundeclubs Hoofdstuk 1 Inleiding Hoi, ik ben de Vertellende Teller, en die naam heb ik gekregen na mijn meest bekende reis, de reis

Nadere informatie

Algemene relativiteitstheorie

Algemene relativiteitstheorie Algemene relativiteitstheorie HOVO cursus Jo van den Brand Les 1: 5 november 015 Copyright (C) Vrije Universiteit 015 Overzicht Docent informatie Jo van den Brand, Gideon Koekoek Email: [email protected], [email protected]

Nadere informatie

5. Functies. In deze module leert u:

5. Functies. In deze module leert u: 5. Functies In deze module leert u: - Wat functies zijn; - Functies uitvoeren; - De verschillende functies van Calc kennen. - Naar een ander werkblad verwijzen. U kunt eenvoudige berekeningen, zoals aftrekken,

Nadere informatie

WETENSCHAPPELIJK ONDERZOEK. Wat is dat? Eva van de Sande. Radboud Universiteit Nijmegen

WETENSCHAPPELIJK ONDERZOEK. Wat is dat? Eva van de Sande. Radboud Universiteit Nijmegen WETENSCHAPPELIJK ONDERZOEK Wat is dat? Eva van de Sande Radboud Universiteit Nijmegen EERST.. WETENSCHAPSQUIZ 1: Hoe komen we dingen te weten? kdsjas Google onderzoek boeken A B C 1: We weten dingen door

Nadere informatie

Workshop voorbereiden Authentieke instructiemodel

Workshop voorbereiden Authentieke instructiemodel Workshop voorbereiden Authentieke instructiemodel Workshop voorbereiden Uitleg Start De workshop start met een echte, herkenbare en uitdagende situatie. (v.b. het is een probleem, een prestatie, het heeft

Nadere informatie

Kansrekening en Statistiek

Kansrekening en Statistiek Kansrekening en Statistiek College 1 Dinsdag 13 September 1 / 47 Literatuur http://www.phil.uu.nl/ iemhoff Applied Statistics for the Behavioral Sciences - 5th edition, Dennis E. Hinkle, William Wiersma,

Nadere informatie

Domein A: Vaardigheden

Domein A: Vaardigheden Examenprogramma Wiskunde A havo Het eindexamen bestaat uit het centraal examen en het schoolexamen. Het examenprogramma bestaat uit de volgende domeinen: Domein A Vaardigheden Domein B Algebra en tellen

Nadere informatie

4.0 Voorkennis. Bereken het aantal manieren om de functies te verdelen:

4.0 Voorkennis. Bereken het aantal manieren om de functies te verdelen: 4.0 Voorkennis Voorbeeld 1: Een bestuur bestaat uit 6 personen. Uit deze 6 personen wordt eerst een voorzitter, dan een secretaris en tot slot een penningmeester gekozen. Bereken het aantal manieren om

Nadere informatie

http://www.kidzlab.nl/index2.php?option=com_content&task=vi...

http://www.kidzlab.nl/index2.php?option=com_content&task=vi... Veelvlakken De perfecte vorm Plato was een grote denker in de tijd van de Oude Grieken. Hij was een van de eerste die de regelmatige veelvlakken heel bijzonder vond. Hij hield ervan omdat ze zulke mooie,

Nadere informatie

Welke wiskundes zijn er?

Welke wiskundes zijn er? Welke wiskundes zijn er? Wiskunde C wiskundige vaardigheden Wiskunde A wiskundige vaardigheden Wiskunde B wiskundige vaardigheden algebra en tellen verbanden verandering statistiek logisch redeneren vorm

Nadere informatie

Oefeningen statistiek

Oefeningen statistiek Oefeningen statistiek Hoofdstuk De wereld van de kansmodellen.. Tabel A en tabel B zijn de kansverdelingen van model X en van model Y. In beide tabellen is een getal verloren gegaan. Kan jij dat verloren

Nadere informatie

1.0 Voorkennis. Getallenverzameling = Verzameling van getallen met een bepaalde eigenschap

1.0 Voorkennis. Getallenverzameling = Verzameling van getallen met een bepaalde eigenschap 1.0 Voorkennis Getallenverzameling = Verzameling van getallen met een bepaalde eigenschap Natuurlijke getallen: Dit zijn alle positieve gehele getallen en nul. = {0, 1, 2, 3, 4, 5, 6,...} De getallen 0,

Nadere informatie

5 Totaalbeeld. Samenvatten. Achtergronden. Testen

5 Totaalbeeld. Samenvatten. Achtergronden. Testen 5 Totaalbeeld Samenvatten Je hebt nu het onderwerp Kansrekening doorgewerkt. Er moet een totaalbeeld van deze leerstof ontstaan... Ga na, of je al de bij dit onderwerp horende begrippen kent en weet wat

Nadere informatie

11.1 Kansberekeningen [1]

11.1 Kansberekeningen [1] 11.1 Kansberekeningen [1] Kansdefinitie van Laplace: P(gebeurtenis) = Aantal gunstige uitkomsten/aantal mogelijke uitkomsten Voorbeeld 1: Wat is de kans om minstens 16 te gooien, als je met 3 dobbelstenen

Nadere informatie

5.0 Voorkennis. Voorbeeld 1: In een vaas zitten 10 rode, 5 witte en 6 blauwe knikkers. Er worden 9 knikkers uit de vaas gepakt.

5.0 Voorkennis. Voorbeeld 1: In een vaas zitten 10 rode, 5 witte en 6 blauwe knikkers. Er worden 9 knikkers uit de vaas gepakt. 5.0 Voorkennis Voorbeeld 1: In een vaas zitten 10 rode, 5 witte en 6 blauwe knikkers. Er worden 9 knikkers uit de vaas gepakt. a) Bereken de kans op minstens 7 rode knikkers: P(minstens 7 rood) = P(7 rood)

Nadere informatie

is, dat de zijde met cijfer boven te liggen komt, evenzo als de kans voor de koningin 1 2

is, dat de zijde met cijfer boven te liggen komt, evenzo als de kans voor de koningin 1 2 Hoofdstuk III Kansrekening Les Combinatoriek Als we het over de kans hebben dat iets gebeurt, hebben we daar wel intuïtief een idee over, wat we hiermee bedoelen. Bijvoorbeeld zeggen we, dat bij het werpen

Nadere informatie