Oefeningen statistiek
|
|
|
- Linda Adam
- 9 jaren geleden
- Aantal bezoeken:
Transcriptie
1 Oefeningen statistiek Hoofdstuk De wereld van de kansmodellen.. Tabel A en tabel B zijn de kansverdelingen van model X en van model Y. In beide tabellen is een getal verloren gegaan. Kan jij dat verloren getal terugvinden? x? P(X = x) 0,5 0, 0, Tabel A x 6 P (X=x) 0, 0,45? Tabel B. Hieronder zie je de dataset van alle 6 passagiers van de Titanic. Er is aangegeven welk soort ticket zij gekocht hadden en of zij verdronken of gered zijn. De som van de getallen is 6. Eerste klas Tweede klas Derde klas Uitkomst Gered Verdronken Maak een kansmodel X voor het soort ticket dat de passagiers hadden gekocht.. Een eerlijke zwarte dobbelsteen heeft de vorm van een octaëder. Het cijfer komt vier maal voor, het cijfer drie maal en komt één maal voor. a. Maak een vaasmodel, staafdiagram, kansverdeling. Vaasmodel Staafdiagram
2 Kansverdeling b. Voer het experiment 400 maal uit met je ZRM. Maak een frequentietabel. We vullen L 5 met de getallen: Frequentietabel: x Absolute frequentie: f i Relatieve frequentie f i/400 Vergelijk deze resultaten met je kansverdeling. Ben je tevreden? c. Je speelt volgend spel tegen Casino Pasasse : (experiment Y) inzet 5 EUR per spel als je gooit krijg je 0 EUR als je gooit krijg je de inzet terug als je gooit verlies je de inzet. d. Bepaal de verdeling van dit kansmodel Y ( = winst) e. Kan je een vaasmodel maken van Y? f.voer het experiment 400 maal uit en bereken je winst en gemiddelde winst.
3 .4 De winkel Lidaldi doet een onderzoek bij de firma Statipas. X is de wachttijd van een klant aan de kassa.de resultaten van dit onderzoek geven volgende dichtheidsfunctie: f ( x) = (0,0x³ + 0,4x²,6x + 8) 50,65 als 0 x 5 f ( x) = 0 als x < 0 x is de tijd in minuten f ( x) = 0 als x > 0 a.toon aan dat f(x) een dichtheidsfunctie is. b. Hoe groot is de kans dat een willekeurige klant minder dan 6 minuten moet wachten aan de kassa? c. Hoe groot is de kans dat een klant langer dan 0 minuten maar minder dan 5 minuten moet wachten?
4 Hoofdstuk Eigenschappen van kansmodellen.. Gegeven een kansmodel X met volgende kansverdeling x 0 4 P(X=x) Bereken E(X) en sd(x). Een dobbelspel. Om volgend spel één keer te mogen spelen moet je 8 euro betalen. Je gooit twee eerlijke dobbelstenen en je krijgt dubbel zoveel euro als het hoogste getal dat je gegooid hebt. Als je bijvoorbeeld een en een gooit dan is het maximum en dan krijg je 6 euro ( euro verlies). Heb je een 5 en 6 dan krijg je euro (4 euro winst). a. Is dit een eerlijk spel? Wat denk je? Gebruik ook volgende tabel: (,) (,) (,) (,) (,) (,4) Oefeningen statistiek de graad (,5) (,6) 4
5 (,) (4,) (5,) (6,) (6,6) b.maak een kansverdeling van X = het maximum van eerlijke dobbelstenen. x P(X=x) c.maak nu een kansverdeling van een nieuw model Y = winst die ik ;:maak bij het spelen van dit spel. y P(Y=y) d. Bereken E(Y) Is dit een eerlijk spel? (bij een eerlijk spel verwacht je een winst = 0) Als je dit spel 00 keer speelt hoeveel euro verwacht je (ongeveer) gewonnen te hebben? Kun je van Y een vaasmodel maken? Speel dan het spel met je GRM 00 keer. Wat is je winst, verlies?. Een (eerlijk) dobbelspel. Je hebt eerlijke dobbelstenen en ik vraag je of je volgend spel wil spelen. Gooi twee dobbelstenen en maak de som. Als de som even is dan moet je dat bedrag in euro aan mij betalen. Is de som oneven dan betaal ik jou zoveel euro als de som vooorbeeld (, 4) som is 7 winst 7 EUR (5, 5) som is 0 verlies 0 EUR a. Maak eerst een kansverdeling van het experiment X = som van de ogen x P(X=x)
6 b. Maak nu een kansverdeling van W = winst w P(W=w) c. Bereken E(W) 6
7 Hoofdstuk Populatie- Steekproef. Voorbereidende oefening. Een gezin telt kinderen. Bestudeer Y = aantal meisjes in het gezin (veronderstel dat de kans op een jongen = 0,5 kans op een meisje = 0,5. We maken de kansverdeling voor een gezin met kind. X : aantal meisjes in het gezin. x 0 P(X = x) Dit noemen we een POPULATIE. Voor een gezin met twee kinderen tekenen we een boomdiagram. We berekenen nu volgende kansen P(X = m, X = m)=. (dit noemen we de productregel uit kansrekening) P(X = m, X = j )=.. P(X = j, X = m)=. P(X = j, X = j)=. Dit noemen we een STEEKPROEF van grootte uit de gegeven POPULATIE. De kansverdeling van deze steekproef ziet er als volgt uit: (x, x ) (j, j) (j, m ) (m, j) (m, m) P(X = x, X =x ) Bepaal de kansverdeling van het experiment Y = aantal meisjes in een gezin van twee kinderen. Hoe groot is de kans dat het gezin twee meisjes telt? 7
8 Antwoord: P(Y = ) = 4 Hoe groot is de kans dat het gezin één meisje telt? Antwoord: P(Y= ) = + = 4 4 Hoe groot is de kans dat het gezin geen meisje telt? Antwoord:.. De kansverdeling van Y = aantal meisjes wordt nu: Y 0 P(Y = y) Bereken E (X) en E (Y ). 8
9 Taak: maak de berekening voor een gezin met kinderen. Populatie X x 0 P(X = x) Steekproef van grootte drie Boomstructuur (verder afwerken) Kansverdeling van de steekproef: (x,x,x ) (j,j,j) P(X =x,x =x,x =x ) 9
10 Bestudeer Y = aantal meisjes in een gezin met drie kinderen y 0 P(Y = y) Bereken: E ( Y) en sd(y). De rode dobbelsteen. We bestuderen nu de rode dobbelsteen als populatie X. X P(X = x) 6 6 We bepalen nu een steekproef van grootte. Maak een kansboom. (opgelet x takken) We maken nu de kansverdeling van de steekproef: (x,x ) (,) (6,6) P(X =x,x =x ). Project (hoofdstuk,, ) 0
11 Een gele dobbelsteen heeft 6 zijkanten met op drie zijvlakken, op twee zijvlakken 4 en op één zijvlak een 6. a. Bepaal de kansverdeling van dit experiment X. ( p) b. Maak een vaasmodel voor dit experiment: (p) c. Bepaal E(X) en sd(x). ( p) d. Voer dit experiment 400 maal uit met je GRM. Geef je frequentietabel. Bepaal je gemiddelde, welk symbool gebruik je hiervoor? (p) e. Bestudeer nu het experiment Y: we gooien tweemaal de gele dobbelsteen. Maak een kansverdeling van dit experiment. Vul in op de boomstructuur. ( p) Dit is dus een steekproef van grootte.
12 Kansverdeling we gooien maal. Vul de tabel in. (x,x) (,) (,4) (,6) (4,) (4,4) (4,6)) (6,) (6,4) (6,6) P(X = x,x = x) f. Bestudeer nu het experiment Z: de som van de ogen van de twee dobbelstenen. ( p) Bepaal de kansverdeling van Z. (gebruik de kansverdeling van e) g. Bereken E(Z) ( p)
13 g. Kan je een vaasmodel maken van Z? Doen. h. Je speelt volgend spel: als de som van de ogen even is dan krijg je de som in EUR, als de som oneven is dan moet je de som in EUR betalen. Bepaal de kansverdeling van dit experiment T ( p) i. Bepaal E(T). Is dit een eerlijk kansspel? ( p) i. Kan je een vaasmodel van dit spel maken? Speel dit spel 400 keer en bereken je winst- verlies.
14 .4 Project (taak) Een blauwe dobbelsteen heeft de vorm van een tetraëder (zoek een afbeelding). Op de vier vlakken komen de cijfers,,, 4 voor. Schets.. Bepaal een vaasmodel van dit kansexperiment X.. Bepaal de kansverdeling van deze populatie. x 4
15 . Bepaal E(X). Welk symbool mag je gebruiken als je weet dat X een populatie is? Berekening: E(X) =. Symbool:.. 4. Bepaal sd(x). Welk symbool mag je gebruiken? Berekening: Symbool: 5. Voer het experiment 00 keer uit (00 maal de blauwe dobbelsteen gooien met met je GRM )en geef je frequentietabel, bereken ook je gemiddelde (welk symbool gebruik je hiervoor?) 6. We gooien nu twee blauwe dobbelstenen. We noemen Y de som van de ogen. Bepaal een kansverdeling van Y. 5
16 7. Speel volgend kansspel. Inzet 5 EURO. Je gooit twee blauwe dobbelstenen en je krijgt dubbel zoveel euro als het hoogste getal dat je gegooid hebt. a. Bepaal de kansverdeling van het experiment U: het maximum van twee dobbelstenen. b. Bepaal de kansverdeling van de winst W. c. Bepaal E(W). Is dit een eerlijk spel? d.kan je een vaasmodel maken van W? e. Voer het experiment met je GRM 400 keer uit en bereken je winst (of verlies) 6
17 .5 Uitbreiding de zwarte dobbelsteen (zie oefening.) We gooien twee zwarte dobbelstenen. a. Bepaal nu een steekproef van grootte n = Maak een boomstructuur en bepaal de kansverdeling van de steekproef. b. Bestudeer het steekproefgemiddelde (n = ). Populatie wordt gegeven door. E( X ) =... =...( nieuw symbool ) sd ( X ) =... =... Bepaal de kansverdeling van dit gemiddelde. Bepaal verwachtingswaarde en standaardfout. Welke eigenschappen vind je terug? E ( X ) =... =... se( X ) =... =... c. Voer het experiment 00 maal uit met n= Schrijf je frequentietabel op + staafdiagram (enkel op GRM). Bereken het gemiddelde van je resultaten; is dit een goede benadering van E (X )? d. Voer het experiment 00 maal uit met n = 0 Schrijf je frequentietabel op + staafdiagram (enkel op GRM). Bereken nu het gemiddelde en van je resultaten. e. Gooi nu twee dobbelstenen en bepaal het maximum van de som van de ogen: M a. Bepaal een kansverdeling van M b.speel nu volgend spel: Inzet 4 EUR. Je gooit met twee zwarte dobbelstenen en je bepaalt het maximum. Je krijgt het dubbele van dit maximum terug. Bepaal een kansverdeling van dit experiment W. Is dit een eerlijk spel? Waarom? 7
1. De wereld van de kansmodellen.
STATISTIEK 3 DE GRAAD.. De wereld van de kansmodellen... Kansmodellen X kansmodel Discreet model Continu model Kansverdeling Vaas Staafdiagram Dichtheidsfunctie f(x) GraJiek van f Definitie: Een kansmodel
VOOR HET SECUNDAIR ONDERWIJS
VOOR HET SECUNDAIR ONDERWIJS Steekproefmodellen en normaal verdeelde steekproefgrootheden 5. Werktekst voor de leerling Prof. dr. Herman Callaert Hans Bekaert Cecile Goethals Lies Provoost Marc Vancaudenberg
VOOR HET SECUNDAIR ONDERWIJS. Kansmodellen. 4. Het steekproefgemiddelde. Werktekst voor de leerling. Prof. dr. Herman Callaert
VOOR HET SECUNDAIR ONDERWIJS Kansmodellen 4. Werktekst voor de leerling Prof. dr. Herman Callaert Hans Bekaert Cecile Goethals Lies Provoost Marc Vancaudenberg . Een concreet voorbeeld.... Een kansmodel
VOOR HET SECUNDAIR ONDERWIJS. Kansmodellen. 3. Populatie en steekproef. Werktekst voor de leerling. Prof. dr. Herman Callaert
VOOR HET SECUNDAIR ONDERWIJS Kansmodellen. Werktekst voor de leerling Prof. dr. Herman Callaert Hans Bekaert Cecile Goethals Lies Provoost Marc Vancaudenberg . Populatie: een intuïtieve definitie.... Een
Kansrekening en Statistiek
Kansrekening en Statistiek College 8 Donderdag 13 Oktober 1 / 23 2 Statistiek Vandaag: Stochast en populatie Experimenten herhalen Wet van de Grote Getallen Centrale Limietstelling 2 / 23 Stochast en populatie
3.1 Het herhalen van kansexperimenten [1]
3.1 Het herhalen van kansexperimenten [1] Voorbeeld: Op een schijf staan een zestal afbeeldingen in even grote vakjes: 3 keer appel, 2 keer banaan, 1 keer peer. Sandra draait zes keer aan de schijf. a)
13.1 Kansberekeningen [1]
13.1 Kansberekeningen [1] Herhaling kansberekeningen: Somregel: Als de gebeurtenissen G 1 en G 2 geen gemeenschappelijke uitkomsten hebben geldt: P(G 1 of G 2 ) = P(G 1 ) + P(G 2 ) B.v. P(3 of 4 gooien
9.0 Voorkennis. Bij samengestelde kansexperimenten maak je gebruik van de productregel.
9.0 Voorkennis Bij samengestelde kansexperimenten maak je gebruik van de productregel. Productregel: Voor de gebeurtenis G 1 bij het ene kansexperiment en de gebeurtenis G 2 bij het andere kansexperiment
Populaties beschrijven met kansmodellen
Populaties beschrijven met kansmodellen Prof. dr. Herman Callaert Deze tekst probeert, met voorbeelden, inzicht te geven in de manier waarop je in de statistiek populaties bestudeert. Dat doe je met kansmodellen.
11.1 Kansberekeningen [1]
11.1 Kansberekeningen [1] Kansdefinitie van Laplace: P(gebeurtenis) = Aantal gunstige uitkomsten/aantal mogelijke uitkomsten Voorbeeld 1: Wat is de kans om minstens 16 te gooien, als je met 3 dobbelstenen
van de verwachtingswaarde groen is te verkiezen boven blauw en blauw is te verkiezen boven rood is dan groen te verkiezen boven rood?..
Verwacht winst altijd Prof. dr. Herman Callaert Een verrassende toepassing van de verwachtingswaarde bij kansmodellen. groen is te verkiezen boven blauw en blauw is te verkiezen boven rood is dan groen
Statistiek I Samenvatting. Prof. dr. Carette
Statistiek I Samenvatting Prof. dr. Carette Opleiding: bachelor of science in de Handelswetenschappen Academiejaar 2016 2017 Inhoudsopgave Hoofdstuk 1: Statistiek, gegevens en statistisch denken... 3 De
14.1 Kansberekeningen [1]
14.1 Kansberekeningen [1] Herhaling kansberekeningen: Somregel: Als de gebeurtenissen G 1 en G 2 geen gemeenschappelijke uitkomsten hebben geldt: P(G 1 of G 2 ) = P(G 1 ) + P(G 2 ) B.v. P(3 of 4 gooien
Empirische kansen = op ervaring gegrond; bereken je door relatieve frequenties te gebruiken. Wet van de grote aantallen.
Samenvatting Kansen Definitie van Laplace : P(G) = aantal _ gunstige _ uitkomsten aantal _ mogelijke _ uitkomsten Voorbeeld : Vb kans op 4 gooien met dobbelsteen: Aantal gunstige uitkomsten = 1 ( namelijk
VOOR HET SECUNDAIR ONDERWIJS. Kansmodellen. 1. De wereld van de kansmodellen. Werktekst voor de leerling. Prof. dr.
VOOR HET SECUNDAIR ONDERWIJS Kansmodellen 1. Werktekst voor de leerling Prof. dr. Herman Callaert Hans Bekaert Cecile Goethals Lies Provoost Marc Vancaudenberg 1. De realiteit en het model...2 2. Kansmodellen...2
7.0 Voorkennis , ,
7.0 Voorkennis Een gokkast bestaat uit een drietal schijven die ronddraaien. Op schijf 1 staan: 5 bananen, 4 appels, 3 citroenen en 3 kersen; Op schijf 2 staan: 7 bananen, 3 appels, 2 citroenen en 3 kersen;
Antwoorden Kans en Stat H4 Discrete verdelingen 1 = 7 = Opg. 3a. aantal kans. P(aantal=10) = aantal kans.
Antwoorden Kans en Stat H Discrete verdelingen Opg. a c d f b aantal 7 7 P(aantal) e aantal ` P(aantal) 7 0 0 7 0 0 7 7 g 0 (nul) h i aantal 0 7 7 7 0 Opg. a Alle mogelijkheden J of M, J of M, J of M,
Antwoorden Kans en Stat H3 Discrete verdelingen
Antwoorden Kans en Stat H Discrete verdelingen Opg. a b c d e f g h i 9 9 8 7 8 aantal 9 0 kans 8 8 8 P(aantal0) 8 9 8 0 7 7 0 aantal 9 0 kans 7 0 0 0 7 P(aantal0) 0 0 0 0 (nul) 7 7 7 7 aantal 9 0 kans
Hoe bereken je een kans? Voorbeeld. aantal gunstige uitkomsten aantal mogelijke uitkomsten P(G) =
Hoe bereken je een kans? P(G) = aantal gunstige uitkomsten aantal mogelijke uitkomsten Voorbeeld Je gooit met twee dobbelstenen. Hoe groot is de kans dat de som van de ogen 7 is? Regels Een kans is een
In de Theorie worden de begrippen toevalsvariabele, kansverdeling en verwachtingswaarde toegelicht.
Toevalsvariabelen Verkennen www.mathall.nl MAThADORE-basic HAVO/VWO /5/6 VWO wi-a Kansrekening Toevalsvariabelen Inleiding Verkennen Beantwoord de vragen bij Verkennen. Uitleg www.mathall.nl MAThADORE-basic
5.0 Voorkennis. Voorbeeld 1: In een vaas zitten 10 rode, 5 witte en 6 blauwe knikkers. Er worden 9 knikkers uit de vaas gepakt.
5.0 Voorkennis Voorbeeld 1: In een vaas zitten 10 rode, 5 witte en 6 blauwe knikkers. Er worden 9 knikkers uit de vaas gepakt. a) Bereken de kans op minstens 7 rode knikkers: P(minstens 7 rood) = P(7 rood)
VOOR HET SECUNDAIR ONDERWIJS
VOOR HET SECUNDAIR ONDERWIJS Populatiemodellen en normaal verdeelde populaties 1. Werktekst voor de leerling Prof. dr. Herman Callaert Hans Bekaert Cecile Goethals Lies Provoost Marc Vancaudenberg 1. De
VB: De hoeveelheid neemt nu met 12% af. Hoeveel was de oorspronkelijke hoeveelheid? = 1655 oud = 1655 nieuw = 0,88 x 1655 = 1456
Formules, grafieken en tabellen Procenten - altijd afronden op 1 decimaal tenzij anders vermeld VB: Een hoeveelheid neemt met 12% toe to 1456. Hoeveel was de oorspronkelijke hoeveelheid? Oud =? Nieuw =
Paragraaf 7.1 : Het Vaasmodel
Hoofdstuk 7 Kansrekening (V4 Wis A) Pagina 1 van 8 Paragraaf 7.1 : Het Vaasmodel Les 1 : Kansen Herhalen kansen berekenen Hoe bereken je de kans als je een aantal keren achter elkaar een experiment uitvoert?
Kansrekening en Statistiek
Kansrekening en Statistiek College 12 Vrijdag 16 Oktober 1 / 38 2 Statistiek Indeling vandaag: Normale verdeling Wet van de Grote Getallen Centrale Limietstelling Deductieve statistiek Hypothese toetsen
Kansrekening en Statistiek
Kansrekening en Statistiek College 12 Donderdag 21 Oktober 1 / 38 2 Statistiek Indeling: Stochast en populatie Experimenten herhalen Wet van de Grote Getallen Centrale Limietstelling 2 / 38 Deductieve
Kansrekening en statistiek WI2105IN deel I 4 november 2011, uur
Kansrekening en statistiek WI05IN deel I 4 november 0, 4.00 7.00 uur Bij dit examen is het gebruik van een (evt. grafische) rekenmachine toegestaan. Een formuleblad wordt uitgereikt. Meerkeuzevragen Toelichting:
Praktische opdracht Wiskunde som van de ogen van drie dobbelstenen
Praktische opdracht Wiskunde som van de ogen van drie dobbelstenen Praktische-opdracht door een scholier 918 woorden 17 maart 2002 4,9 60 keer beoordeeld Vak Wiskunde Inleiding Wij hebben gekozen voor
Kansrekening en statistiek wi2105in deel I 29 januari 2010, uur
Kansrekening en statistiek wi20in deel I 29 januari 200, 400 700 uur Bij dit examen is het gebruik van een (evt grafische rekenmachine toegestaan Tevens krijgt u een formuleblad uitgereikt na afloop inleveren
Statistiek. Beschrijvend statistiek
Statistiek Beschrijvend statistiek Verzameling van gegevens en beschrijvingen Populatie, steekproef Populatie = o de gehele groep ondervragen o parameter is een kerngetal Steekproef = o een onderdeel van
Paragraaf 4.1 : Kansen
Hoofdstuk 4 Het kansbegrip (V4 Wis A) Pagina 1 van 5 Paragraaf 4.1 : Kansen Les 1 Kansen met dobbelstenen Definitie GGGGGGGGGGGGGGGG uuuuuuuuuuuuuuuuuuuu KKKKKKKK = TTTTTTTTTTTT aaaaaaaaaaaa uuuuuuuuuuuuuuuuuuuu
Inleiding Applicatie Software - Statgraphics
Inleiding Applicatie Software - Statgraphics Beschrijvende Statistiek /k 1/35 OPDRACHT OVER BESCHRIJVENDE STATISTIEK Beleggen Door een erfenis heeft een vriend van u onverwacht de beschikking over een
Inleiding Applicatie Software - Statgraphics. Beschrijvende Statistiek
Inleiding Applicatie Software - Statgraphics Beschrijvende Statistiek OPDRACHT OVER BESCHRIJVENDE STATISTIEK Beleggen Door een erfenis heeft een vriend van u onverwacht de beschikking over een klein kapitaaltje
TECHNISCHE UNIVERSITEIT EINDHOVEN. Faculteit Wiskunde en Informatica
TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Kansrekening en Statistiek (2S27), dinsdag 14 juni 25, 9. - 12. uur. Dit is een tentamen met gesloten boek. De uitwerkingen
Bij het oplossen van een telprobleem zijn de volgende 2 dingen belangrijk: Is de volgorde van de gekozen dingen van belang?
4. tellen & kansen 4.1 Tellen Herkennen Je kunt een vraag over telproblemen herkennen aan signaalwoorden: - hoeveel mogelijkheden, manieren, routes, volgordes etc. zijn er?, - bereken het aantal mogelijkheden/manieren
Tentamen Kansrekening en Statistiek (2WS04), woensdag 30 juni 2010, van 9.00 12.00 uur.
Technische Universiteit Eindhoven Faculteit Wiskunde en Informatica Tentamen Kansrekening en Statistiek (WS4), woensdag 3 juni, van 9.. uur. Dit is een tentamen met gesloten boek. De uitwerkingen van de
Lesbrief hypothesetoetsen
Lesbrief hypothesetoetsen 00 "Je gaat het pas zien als je het door hebt" Johan Cruijff Willem van Ravenstein Inhoudsopgave Inhoudsopgave... Hoofdstuk - voorkennis... Hoofdstuk - mens erger je niet... 3
Tentamenset A. 2. Welke van de volgende beweringen is waar? c. N R N d. R Z R
Tentamenset A. Gegeven de volgende verzamelingen A en B. A is de verzameling van alle gehele getallen tussen de 0 en 0 die deelbaar zijn door, en B is de verzameling gehele positieve getallen deelbaar
bijspijkercursus wiskunde voor psychologiestudenten bijeenkomst 8 [PW] appendix D.1: kansrekening extra stof
bijspijkercursus wiskunde voor psychologiestudenten bijeenkomst 8 [PW] appendix D.1: kansrekening extra stof [PW] appendix D.1 kansrekening kansen: 1. Je gooit met een dobbelsteen. Wat is de kans dat je
9.1 Gemiddelde, modus en mediaan [1]
9.1 Gemiddelde, modus en mediaan [1] De onderstaande frequentietabel geeft aan hoeveel auto s er in een bepaald uur in een straat geteld zijn. Aantal auto s per uur 15 16 17 18 19 20 21 frequentie 2 7
Tentamen Kansrekening en Statistiek (2WS04), dinsdag 17 juni 2008, van uur.
Technische Universiteit Eindhoven Faculteit Wiskunde en Informatica Tentamen Kansrekening en Statistiek (2WS4, dinsdag 17 juni 28, van 9. 12. uur. Dit is een tentamen met gesloten boek. De uitwerkingen
Samenvatting Wiskunde A
Bereken: Bereken algebraisch: Bereken exact: De opgave mag berekend worden met de hand of met de GR. Geef bij GR gebruik de ingevoerde formules en gebruikte opties. Kies op een examen in dit geval voor
Binomiale verdelingen
Binomiale verdelingen Les 1: Kans en combinatoriek (Deze les sluit aan bij paragraaf 1 van Hoofdstuk 2 Binomiale en normale verdelingen van de Wageningse Methode, http://www.wageningsemethode.nl/methode/het-lesmateriaal/?s=y456v-d)
6. Op tafel liggen 10 verschillende boeken. Op hoeveel verschillende manieren kunnen 3 jongens daar ieder 1 boek uit kiezen?
1. Iemand heeft thuis 12 CD s in een rekje waar er precies 12 inpassen. a. Op hoeveel manieren kan hij ze in het rekje leggen. b. Hij wil er 2 weggeven aan zijn vriendin, hoeveel mogelijkheden? c. Hij
Medische Statistiek Kansrekening
Medische Statistiek Kansrekening Medisch statistiek- kansrekening Hoorcollege 1 Uitkomstenruimte vaststellen Ook wel S of E. Bij dobbelsteen: E= {1,2,3,4,5,6} Een eindige uitkomstenreeks Bij het gooien
2.1 Kansen [1] Er geldt nu dat de kans op som is 6 gelijk is aan: P(som is 6) =
2.1 Kansen [1] Voorbeeld 1: Als je gooit met twee dobbelstenen zijn er in totaal 6 6 = 36 mogelijke uitkomsten. Deze staan in het rooster hiernaast. De gebeurtenis som is 6 komt vijf keer voor. Het aantal
6.1 Beschouw de populatie die beschreven wordt door onderstaande kansverdeling.
Opgaven hoofdstuk 6 I Basistechnieken 6.1 Beschouw de populatie die beschreven wordt door onderstaande kansverdeling. x 0 2 4 6 p(x) ¼ ¼ ¼ ¼ a. Schrijf alle mogelijke verschillende steekproeven van n =
5 keer beoordeeld 4 maart Wiskunde H6, H7, H8 Samenvatting
4,4 Samenvatting door Syb 954 woorden 5 keer beoordeeld 4 maart 2018 Vak Wiskunde Methode Getal en Ruimte Wiskunde H6, H7, H8 Samenvatting HOOFDSTUK 6 Procenten, Diagrammen en Kansrekening (10 en 100 zijn
TECHNISCHE UNIVERSITEIT EINDHOVEN. Faculteit Wiskunde en Informatica
TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Kansrekening (2WS2), Vrijdag 24 januari 24, om 9:-2:. Dit is een tentamen met gesloten boek. De uitwerkingen van de opgaven
extra sommen Statistiek en Kans
extra sommen Statistiek en Kans 1. Bepaal bij de volgende rijen de modus, de mediaan en het gemiddelde a. 1, 4, 2, 3, 5, 3, 6, 3 b. 12, 11, 13, 11, 12, 11, 12, 13, 11, 14, 75, 15 c. 1, 43, 12, 32, 43,
Zwijsen. jaargroep 4. naam: reken-wiskundemethode voor het basisonderwijs. rekentrainer. jij. Bezoek alle leuke dingen. Teken de weg.
Zwijsen jaargroep naam: reken-wiskundemethode voor het basisonderwijs! jij rekentrainer Bezoek alle leuke dingen. Teken de weg. Groep blad 1 Hoe komt de hond bij het bot? Teken. Kleur de tegels. Kleur
KANSREKENEN EN VERDELINGEN REEKS 1
KANSREKENEN EN VERDELINGEN REEKS 1 Moeilijkere oefeningen zijn aangegeven met een gevarendriehoek Niet elke regel met R-code zal je kunnen/moeten gebruiken Versie 18/07/2019 1. Verdelingsfunctie Het aantal
extra sommen Statistiek en Kans
extra sommen Statistiek en Kans 1. Bepaal bij de volgende rijen de modus, de mediaan en het gemiddelde a. 1, 4, 2, 3, 5, 3, 6, 3 b. 12, 11, 13, 11, 12, 11, 12, 13, 11, 14, 75, 15 c. 1, 43, 12, 32, 43,
1BA PSYCH Statistiek 1 Oefeningenreeks 3 1
Juno KOEKELKOREN D.1.3. OEFENINGENREEKS 3 OEFENING 1 In onderstaande tabel vind je zes waarnemingen van twee variabelen (ratio meetniveau). Eén van de waarden van y is onbekend. Waarde x y 1 1 2 2 9 2
LANDSEXAMEN VWO Het examenprogramma Het examenprogramma voor het commissie-examen Wiskunde D bestaat uit de volgende (sub)domeinen:
LANDSEXAMEN VWO 2017-2018 Examenprogramma WISKUNDE D (V.W.O. ) (nieuw programma) 1 Het eindexamen Wiskunde D kent slechts het commissie-examen. Er is voor wiskunde D dus geen centraal schriftelijk examen.
Kansrekenen. Lesbrief kansexperimenten Havo 4 wiskunde A Maart 2012 Versie 3: Dobbelstenen
Kansrekenen Lesbrief kansexperimenten Havo 4 wiskunde A Maart 2012 Versie 3: Dobbelstenen Inhoud Inleiding...3 Doel van het experiment...3 Organisatie van het experiment...3 Voorkennis...4 Uitvoeren van
Bugs Bunny heeft een dobbelsteen bij zich. Hij zal zijn aanvalspunten bepalen door wat er op de kaart staat.
Looney Tunes Verdeel de kinderen in twee groepen van 10 tot 15 kinderen. Iedere groep krijgt zijn eigen stad in het bos. Iedere stad is 75 punten waard. Maar omdat er maar 1 echte looneytunescity is zullen
Voorbeeld 1: kansverdeling discrete stochast discrete kansverdeling
12.0 Voorkennis Voorbeeld 1: Yvette pakt vier knikkers uit een vaas waar er 20 inzitten. 9 van de knikkers zijn rood en 11 van de knikkers zijn blauw. X = het aantal rode knikkers dat Yvette pakt. Er zijn
5 Totaalbeeld. Samenvatten. Achtergronden. Testen
5 Totaalbeeld Samenvatten Je hebt nu het onderwerp Kansrekening doorgewerkt. Er moet een totaalbeeld van deze leerstof ontstaan... Ga na, of je al de bij dit onderwerp horende begrippen kent en weet wat
3.0 Voorkennis. Het complement van de verzameling V is de verzameling Dit zijn alle elementen van de uitkomstenverzameling U die niet in V zitten.
3.0 Voorkennis De vereniging van de verzamelingen V en is gelijk aan de uitkomstenverzameling U in het plaatje hiernaast. De doorsnede van de verzamelingen V en V is een lege verzameling. Het complement
o Geef bij de beantwoording van de vragen ALTIJD JE BEREKENINGEN. Als je alleen een antwoord geeft worden er GEEN PUNTEN toegekend!
Examentoets 2 6VWO-A Statistiek woensdag 20 januari 2010 o Geef bij de beantwoording van de vragen ALTIJD JE BEREKENINGEN. Als je alleen een antwoord geeft worden er GEEN PUNTEN toegekend! o Geef bij gebruik
Uitwerkingen Hst. 10 Kansverdelingen
Uitwerkingen Hst. 0 Kansverdelingen. Uittellen: 663 ; 636 ; 366 ; 654 (6 keer) ; 555 0 mogelijkheden met som 5.. Som geen 5 = 36 som 5 Som 5: 4, 3, 3, 4 4 mogelijkheden dus 3 mogelijkheden voor som geen
Docenten: Het viel me op dat in boek 2 vmbo alle ontbrekende theorie staat.( bijvoorbeeld beelddiagrammen)
Docenten: Voor mij is dit ook de eerste keer dat deze p.o. gebruikt wordt. Mijn bedoeling is een tussenstap van 2 vmbo statistiek naar PO statistiek PTA 3 vmbo. In het grote PO moeten de leerlingen zelf
Cursus Statistiek Hoofdstuk 4. Statistiek voor Informatica Hoofdstuk 4: Verwachtingen. Definitie (Verwachting van discrete stochast) Voorbeeld (1)
Cursus Statistiek Hoofdstuk 4 Statistiek voor Informatica Hoofdstuk 4: Verwachtingen Cursusjaar 29 Peter de Waal Departement Informatica Inhoud Verwachtingen Variantie Momenten en Momentengenererende functie
. Dan geldt P(B) = a. 1 4. d. 3 8
Tentamen Statistische methoden 4052STAMEY juli 203, 9:00 2:00 Studienummers: Vult u alstublieft op het meerkeuzevragenformulier uw Delftse studienummer in (tbv automatische verwerking); en op het open
begin van document Eindtermen havo wiskunde A (CE) gekoppeld aan delen en hoofdstukken uit Moderne wiskunde 9e editie
begin van document Eindtermen havo wiskunde A (CE) gekoppeld aan delen en hoofdstukken uit Moderne wiskunde 9e editie Domein Subdomein in CE moet in SE A A1: Informatievaardigheden X X Vaardigheden A2:
Y = ax + b, hiervan is a de richtingscoëfficiënt (1 naar rechts en a omhoog), en b is het snijpunt met de y-as (0,b)
Samenvatting door E. 1419 woorden 11 november 2013 6,1 14 keer beoordeeld Vak Methode Wiskunde A Getal en ruimte Lineaire formule A = 0.8t + 34 Er bestaat dan een lineair verband tussen A en t, de grafiek
4.0 Voorkennis. Bereken het aantal manieren om de functies te verdelen:
4.0 Voorkennis Voorbeeld 1: Een bestuur bestaat uit 6 personen. Uit deze 6 personen wordt eerst een voorzitter, dan een secretaris en tot slot een penningmeester gekozen. Bereken het aantal manieren om
Statistiek voor A.I. College 7. Dinsdag 2 Oktober
Statistiek voor A.I. College 7 Dinsdag 2 Oktober 1 / 30 2 Deductieve statistiek Kansrekening 2 / 30 Vraag: test Een test op HIV is 90% betrouwbaar: als een persoon HIV heeft is de kans op een positieve
LANDSEXAMEN VWO Het examenprogramma Het examenprogramma voor het commissie-examen Wiskunde D bestaat uit de volgende (sub)domeinen:
LANDSEXAMEN VWO 2019-2020 Examenprogramma WISKUNDE D (V.W.O. ) 1 Het eindexamen Wiskunde D kent slechts het commissie-examen. Er is voor wiskunde D dus geen centraal schriftelijk examen. Het commissie-examen
Examen Statistiek I Feedback
Examen Statistiek I Feedback Bij elke vraag is alternatief A correct. Bij de trekking van een persoon uit een populatie beschouwt men de gebeurtenissen A (met bril), B (hooggeschoold) en C (mannelijk).
Samenvatting Wiskunde A kansen
Samenvatting Wiskunde A kansen Samenvatting door een scholier 857 woorden 19 juni 2016 1 1 keer beoordeeld Vak Methode Wiskunde A Moderne wiskunde H1 Machtsboom Mogelijkheden tellen Aantal takken is gelijk
4.1 Eigenschappen van de normale verdeling [1]
4.1 Eigenschappen van de normale verdeling [1] Relatief frequentiepolygoon van de lengte van mannen in 1968 1 4.1 Eigenschappen van de normale verdeling [1] In dit plaatje is een frequentiepolygoon getekend.
Praktische opdracht Wiskunde A Randomized Response
Praktische opdracht Wiskunde A Randomized Re Praktische-opdracht door een scholier 2550 woorden 10 juni 2003 5,8 26 keer beoordeeld Vak Wiskunde A Inleiding We hebben de opdracht gekregen een Praktische
Kansrekening en Statistiek
Kansrekening en Statistiek College 1 Dinsdag 14 September 1 / 34 Literatuur http://www.phil.uu.nl/ iemhoff Applied Statistics for the Behavioral Sciences - 5th edition, Dennis E. Hinkle, William Wiersma,
HOOFDSTUK 6: Kansrekening. 6.1 De productregel. Opgave 1: a. 3 van de 4 knikkers zijn rood. P(rood uit II. Opgave 2: a. P(twee wit
HOOFDSTUK : Kansrekening. De productregel Opgave : van de knikkers zijn rood rood uit II ) d. 0, e. 0, Opgave : 0 twee wit 0, ) 0 0 ) 0 0 ) 0 0 blauw en rood 0, wit en groen 0, d. geen blauw 7 0, ) 0 0
Opgaven voor Kansrekening
Opgaven voor Kansrekening Opgave 1. Je hebt 4 verschillende wiskunde boeken, 6 psychologie boeken en 2 letterkundige boeken. Hoeveel manieren zijn er om deze twaalf boeken op een boord te plaatsen als:
Statistiek. Beschrijvende Statistiek Hoofdstuk 1 1.1, 1.2, 1.5, 1.6 lezen 1.3, 1.4 Les 1 Hoofdstuk 2 2.1, 2.3, 2.5 Les 2
INHOUDSOPGAVE Leswijzer...3 Beschrijvende Statistiek...3 Kansberekening...3 Inductieve statistiek, inferentiele statistiek...3 Hoofdstuk...3. Drie deelgebieden...3. Frequentieverdeling....3. Frequentieverdeling....4.5
VOOR HET SECUNDAIR ONDERWIJS. Kansrekening voor de tweede graad. Werktekst voor de leerling. Prof. dr. Herman Callaert
VOOR HET SECUNDAIR ONDERWIJS Werktekst voor de leerling Prof. dr. Herman Callaert Hans Bekaert Cecile Goethals Lies Provoost Marc Vancaudenberg 1. Kans als relatieve frequentie...1 1.1. Van realiteit naar
De 'echte' toets lijkt hierop, alleen is de vormgeving anders. De uitwerkingen vind je voor de toetsweek terug op
De 'echte' toets lijkt hierop, alleen is de vormgeving anders. De uitwerkingen vind je voor de toetsweek terug op www.molenaarnet.org. Geef je niet exacte antwoorden in 4 decimalen nauwkeurig Opgave 1
Paragraaf 9.1 : De Verwachtingswaarde
Hoofdstuk 9 Kansverdelingen (V5 Wis A) Pagina 1 van 8 Paragraaf 9.1 : De Verwachtingswaarde Les 1 Verwachtingswaarde Definities : Verwachtingswaarde Verwachtingswaarde = { wat je verwacht } { gemiddelde
Hoe groot is de kans?
Hoe groot is de kans? 1 Met een witte en een grijze dobbelsteen gooien en het product maken Wat denk jij spontaan? Noteer je antwoord in de denkballon Welke producten zijn er allemaal mogelijk als je met
Vandaag. Onderzoeksmethoden: Statistiek 2. Basisbegrippen. Theoretische kansverdelingen
Vandaag Onderzoeksmethoden: Statistiek 2 Peter de Waal (gebaseerd op slides Peter de Waal, Marjan van den Akker) Departement Informatica Beta-faculteit, Universiteit Utrecht Theoretische kansverdelingen
Paragraaf 9.1 : De Verwachtingswaarde
Hoofdstuk 9 Kansverdelingen (V5 Wis A) Pagina 1 van 8 Paragraaf 9.1 : De Verwachtingswaarde Les 1 Verwachtingswaarde Definities : Verwachtingswaarde Verwachtingswaarde = { wat je verwacht } { gemiddelde
Overzicht voor deze voormiddag. Inleiding Kansrekening en Statistiek: een eigen discipline. Lesmateriaal en ICT ondersteuning: korte info
Kansrekening Nascholing voor leerkrachten Prof. dr. Herman Callaert Hans Bekaert Cecile Goethals Lies Provoost Marc Vancaudenberg http://www.uhasselt.be/lesmateriaal-statistiek Overzicht voor deze voormiddag
Eindexamen wiskunde A 1-2 havo 2000 - II
Opgave 1 ypotheken Als je een huis koopt, moet je meer betalen dan alleen de koopsom. Je moet bijvoorbeeld belasting betalen en de kosten van de notaris. Deze bijkomende kosten zijn voor een nieuwbouwhuis
Kansrekening en Statistiek
Kansrekening en Statistiek College 6 Donderdag 30 September 1 / 25 1 Kansrekening Indeling: Voorwaardelijke kansen Onafhankelijkheid Stelling van Bayes 2 / 25 Vraag: Afghanistan Vb. In het leger wordt
Kern 1 Rekenen met binomiale kansen
Netwerk e editie havo A Hoofdstuk De binomiale verdeling uitwerkingen Hoofdstuk De binomiale verdeling uitwerkingen Kern Rekenen met binomiale kansen a Omdat er steeds twee mogelijkheden zijn: zwart óf
Samenvatting Wiskunde B Leerboek 1 examenstof
Samenvatting Wiskunde B Leerboek 1 examenst Samenvatting door een scholier 1925 woorden 2 mei 2003 5,4 123 keer beoordeeld Vak Methode Wiskunde B Getal en ruimte Wiskunde boek 1. Hodstuk 1. Procenten.
Opdrachten Toeval Opdrachten Toeval Opdracht 1.1 (Bestaat toeval) Opdracht 1.2(toeval in de natuur)
Opdrachten Toeval 1 1 Opdrachten Toeval Opdracht 1.1 (Bestaat toeval) a) Bestaat toeval volgens jou? b) Wat is toeval volgens jou? c) Vraag aan je ouders of zij in hun leven ooit iets heel onwaarschijnlijks
Kansrekening en Statistiek
Kansrekening en Statistiek College 3 Dinsdag 21 September 1 / 21 1 Kansrekening Indeling: Uniforme verdelingen Cumulatieve distributiefuncties 2 / 21 Vragen: lengte Een lineaal wordt op een willekeurig
begin van document Eindtermen vwo wiskunde A (CE) gekoppeld aan delen en hoofdstukken uit Moderne wiskunde 9e editie
begin van document Eindtermen vwo wiskunde A (CE) gekoppeld aan delen en hoofdstukken uit Moderne wiskunde 9e editie Domein Subdomein in CE moet in SE mag in SE A Vaardigheden A1: Informatievaardigheden
Statistiek voor A.I. College 6. Donderdag 27 September
Statistiek voor A.I. College 6 Donderdag 27 September 1 / 1 2 Deductieve statistiek Kansrekening 2 / 1 Vraag: Afghanistan In het leger wordt uit een groep van 6 vrouwelijke en 14 mannelijke soldaten een
Toets Combinatoriek en kansrekening
Deze toets bestaat uit 20 opgaven. Voor elk onderdeel is aangegeven hoeveel punten kunnen worden behaald. Er zijn maximaal 76 punten te behalen. Antwoorden moeten altijd zijn voorzien van een berekening,
