Oefeningen statistiek

Maat: px
Weergave met pagina beginnen:

Download "Oefeningen statistiek"

Transcriptie

1 Oefeningen statistiek Hoofdstuk De wereld van de kansmodellen.. Tabel A en tabel B zijn de kansverdelingen van model X en van model Y. In beide tabellen is een getal verloren gegaan. Kan jij dat verloren getal terugvinden? x? P(X = x) 0,5 0, 0, Tabel A x 6 P (X=x) 0, 0,45? Tabel B. Hieronder zie je de dataset van alle 6 passagiers van de Titanic. Er is aangegeven welk soort ticket zij gekocht hadden en of zij verdronken of gered zijn. De som van de getallen is 6. Eerste klas Tweede klas Derde klas Uitkomst Gered Verdronken Maak een kansmodel X voor het soort ticket dat de passagiers hadden gekocht.. Een eerlijke zwarte dobbelsteen heeft de vorm van een octaëder. Het cijfer komt vier maal voor, het cijfer drie maal en komt één maal voor. a. Maak een vaasmodel, staafdiagram, kansverdeling. Vaasmodel Staafdiagram

2 Kansverdeling b. Voer het experiment 400 maal uit met je ZRM. Maak een frequentietabel. We vullen L 5 met de getallen: Frequentietabel: x Absolute frequentie: f i Relatieve frequentie f i/400 Vergelijk deze resultaten met je kansverdeling. Ben je tevreden? c. Je speelt volgend spel tegen Casino Pasasse : (experiment Y) inzet 5 EUR per spel als je gooit krijg je 0 EUR als je gooit krijg je de inzet terug als je gooit verlies je de inzet. d. Bepaal de verdeling van dit kansmodel Y ( = winst) e. Kan je een vaasmodel maken van Y? f.voer het experiment 400 maal uit en bereken je winst en gemiddelde winst.

3 .4 De winkel Lidaldi doet een onderzoek bij de firma Statipas. X is de wachttijd van een klant aan de kassa.de resultaten van dit onderzoek geven volgende dichtheidsfunctie: f ( x) = (0,0x³ + 0,4x²,6x + 8) 50,65 als 0 x 5 f ( x) = 0 als x < 0 x is de tijd in minuten f ( x) = 0 als x > 0 a.toon aan dat f(x) een dichtheidsfunctie is. b. Hoe groot is de kans dat een willekeurige klant minder dan 6 minuten moet wachten aan de kassa? c. Hoe groot is de kans dat een klant langer dan 0 minuten maar minder dan 5 minuten moet wachten?

4 Hoofdstuk Eigenschappen van kansmodellen.. Gegeven een kansmodel X met volgende kansverdeling x 0 4 P(X=x) Bereken E(X) en sd(x). Een dobbelspel. Om volgend spel één keer te mogen spelen moet je 8 euro betalen. Je gooit twee eerlijke dobbelstenen en je krijgt dubbel zoveel euro als het hoogste getal dat je gegooid hebt. Als je bijvoorbeeld een en een gooit dan is het maximum en dan krijg je 6 euro ( euro verlies). Heb je een 5 en 6 dan krijg je euro (4 euro winst). a. Is dit een eerlijk spel? Wat denk je? Gebruik ook volgende tabel: (,) (,) (,) (,) (,) (,4) Oefeningen statistiek de graad (,5) (,6) 4

5 (,) (4,) (5,) (6,) (6,6) b.maak een kansverdeling van X = het maximum van eerlijke dobbelstenen. x P(X=x) c.maak nu een kansverdeling van een nieuw model Y = winst die ik ;:maak bij het spelen van dit spel. y P(Y=y) d. Bereken E(Y) Is dit een eerlijk spel? (bij een eerlijk spel verwacht je een winst = 0) Als je dit spel 00 keer speelt hoeveel euro verwacht je (ongeveer) gewonnen te hebben? Kun je van Y een vaasmodel maken? Speel dan het spel met je GRM 00 keer. Wat is je winst, verlies?. Een (eerlijk) dobbelspel. Je hebt eerlijke dobbelstenen en ik vraag je of je volgend spel wil spelen. Gooi twee dobbelstenen en maak de som. Als de som even is dan moet je dat bedrag in euro aan mij betalen. Is de som oneven dan betaal ik jou zoveel euro als de som vooorbeeld (, 4) som is 7 winst 7 EUR (5, 5) som is 0 verlies 0 EUR a. Maak eerst een kansverdeling van het experiment X = som van de ogen x P(X=x)

6 b. Maak nu een kansverdeling van W = winst w P(W=w) c. Bereken E(W) 6

7 Hoofdstuk Populatie- Steekproef. Voorbereidende oefening. Een gezin telt kinderen. Bestudeer Y = aantal meisjes in het gezin (veronderstel dat de kans op een jongen = 0,5 kans op een meisje = 0,5. We maken de kansverdeling voor een gezin met kind. X : aantal meisjes in het gezin. x 0 P(X = x) Dit noemen we een POPULATIE. Voor een gezin met twee kinderen tekenen we een boomdiagram. We berekenen nu volgende kansen P(X = m, X = m)=. (dit noemen we de productregel uit kansrekening) P(X = m, X = j )=.. P(X = j, X = m)=. P(X = j, X = j)=. Dit noemen we een STEEKPROEF van grootte uit de gegeven POPULATIE. De kansverdeling van deze steekproef ziet er als volgt uit: (x, x ) (j, j) (j, m ) (m, j) (m, m) P(X = x, X =x ) Bepaal de kansverdeling van het experiment Y = aantal meisjes in een gezin van twee kinderen. Hoe groot is de kans dat het gezin twee meisjes telt? 7

8 Antwoord: P(Y = ) = 4 Hoe groot is de kans dat het gezin één meisje telt? Antwoord: P(Y= ) = + = 4 4 Hoe groot is de kans dat het gezin geen meisje telt? Antwoord:.. De kansverdeling van Y = aantal meisjes wordt nu: Y 0 P(Y = y) Bereken E (X) en E (Y ). 8

9 Taak: maak de berekening voor een gezin met kinderen. Populatie X x 0 P(X = x) Steekproef van grootte drie Boomstructuur (verder afwerken) Kansverdeling van de steekproef: (x,x,x ) (j,j,j) P(X =x,x =x,x =x ) 9

10 Bestudeer Y = aantal meisjes in een gezin met drie kinderen y 0 P(Y = y) Bereken: E ( Y) en sd(y). De rode dobbelsteen. We bestuderen nu de rode dobbelsteen als populatie X. X P(X = x) 6 6 We bepalen nu een steekproef van grootte. Maak een kansboom. (opgelet x takken) We maken nu de kansverdeling van de steekproef: (x,x ) (,) (6,6) P(X =x,x =x ). Project (hoofdstuk,, ) 0

11 Een gele dobbelsteen heeft 6 zijkanten met op drie zijvlakken, op twee zijvlakken 4 en op één zijvlak een 6. a. Bepaal de kansverdeling van dit experiment X. ( p) b. Maak een vaasmodel voor dit experiment: (p) c. Bepaal E(X) en sd(x). ( p) d. Voer dit experiment 400 maal uit met je GRM. Geef je frequentietabel. Bepaal je gemiddelde, welk symbool gebruik je hiervoor? (p) e. Bestudeer nu het experiment Y: we gooien tweemaal de gele dobbelsteen. Maak een kansverdeling van dit experiment. Vul in op de boomstructuur. ( p) Dit is dus een steekproef van grootte.

12 Kansverdeling we gooien maal. Vul de tabel in. (x,x) (,) (,4) (,6) (4,) (4,4) (4,6)) (6,) (6,4) (6,6) P(X = x,x = x) f. Bestudeer nu het experiment Z: de som van de ogen van de twee dobbelstenen. ( p) Bepaal de kansverdeling van Z. (gebruik de kansverdeling van e) g. Bereken E(Z) ( p)

13 g. Kan je een vaasmodel maken van Z? Doen. h. Je speelt volgend spel: als de som van de ogen even is dan krijg je de som in EUR, als de som oneven is dan moet je de som in EUR betalen. Bepaal de kansverdeling van dit experiment T ( p) i. Bepaal E(T). Is dit een eerlijk kansspel? ( p) i. Kan je een vaasmodel van dit spel maken? Speel dit spel 400 keer en bereken je winst- verlies.

14 .4 Project (taak) Een blauwe dobbelsteen heeft de vorm van een tetraëder (zoek een afbeelding). Op de vier vlakken komen de cijfers,,, 4 voor. Schets.. Bepaal een vaasmodel van dit kansexperiment X.. Bepaal de kansverdeling van deze populatie. x 4

15 . Bepaal E(X). Welk symbool mag je gebruiken als je weet dat X een populatie is? Berekening: E(X) =. Symbool:.. 4. Bepaal sd(x). Welk symbool mag je gebruiken? Berekening: Symbool: 5. Voer het experiment 00 keer uit (00 maal de blauwe dobbelsteen gooien met met je GRM )en geef je frequentietabel, bereken ook je gemiddelde (welk symbool gebruik je hiervoor?) 6. We gooien nu twee blauwe dobbelstenen. We noemen Y de som van de ogen. Bepaal een kansverdeling van Y. 5

16 7. Speel volgend kansspel. Inzet 5 EURO. Je gooit twee blauwe dobbelstenen en je krijgt dubbel zoveel euro als het hoogste getal dat je gegooid hebt. a. Bepaal de kansverdeling van het experiment U: het maximum van twee dobbelstenen. b. Bepaal de kansverdeling van de winst W. c. Bepaal E(W). Is dit een eerlijk spel? d.kan je een vaasmodel maken van W? e. Voer het experiment met je GRM 400 keer uit en bereken je winst (of verlies) 6

17 .5 Uitbreiding de zwarte dobbelsteen (zie oefening.) We gooien twee zwarte dobbelstenen. a. Bepaal nu een steekproef van grootte n = Maak een boomstructuur en bepaal de kansverdeling van de steekproef. b. Bestudeer het steekproefgemiddelde (n = ). Populatie wordt gegeven door. E( X ) =... =...( nieuw symbool ) sd ( X ) =... =... Bepaal de kansverdeling van dit gemiddelde. Bepaal verwachtingswaarde en standaardfout. Welke eigenschappen vind je terug? E ( X ) =... =... se( X ) =... =... c. Voer het experiment 00 maal uit met n= Schrijf je frequentietabel op + staafdiagram (enkel op GRM). Bereken het gemiddelde van je resultaten; is dit een goede benadering van E (X )? d. Voer het experiment 00 maal uit met n = 0 Schrijf je frequentietabel op + staafdiagram (enkel op GRM). Bereken nu het gemiddelde en van je resultaten. e. Gooi nu twee dobbelstenen en bepaal het maximum van de som van de ogen: M a. Bepaal een kansverdeling van M b.speel nu volgend spel: Inzet 4 EUR. Je gooit met twee zwarte dobbelstenen en je bepaalt het maximum. Je krijgt het dubbele van dit maximum terug. Bepaal een kansverdeling van dit experiment W. Is dit een eerlijk spel? Waarom? 7

1. De wereld van de kansmodellen.

1. De wereld van de kansmodellen. STATISTIEK 3 DE GRAAD.. De wereld van de kansmodellen... Kansmodellen X kansmodel Discreet model Continu model Kansverdeling Vaas Staafdiagram Dichtheidsfunctie f(x) GraJiek van f Definitie: Een kansmodel

Nadere informatie

VOOR HET SECUNDAIR ONDERWIJS

VOOR HET SECUNDAIR ONDERWIJS VOOR HET SECUNDAIR ONDERWIJS Steekproefmodellen en normaal verdeelde steekproefgrootheden 5. Werktekst voor de leerling Prof. dr. Herman Callaert Hans Bekaert Cecile Goethals Lies Provoost Marc Vancaudenberg

Nadere informatie

VOOR HET SECUNDAIR ONDERWIJS. Kansmodellen. 4. Het steekproefgemiddelde. Werktekst voor de leerling. Prof. dr. Herman Callaert

VOOR HET SECUNDAIR ONDERWIJS. Kansmodellen. 4. Het steekproefgemiddelde. Werktekst voor de leerling. Prof. dr. Herman Callaert VOOR HET SECUNDAIR ONDERWIJS Kansmodellen 4. Werktekst voor de leerling Prof. dr. Herman Callaert Hans Bekaert Cecile Goethals Lies Provoost Marc Vancaudenberg . Een concreet voorbeeld.... Een kansmodel

Nadere informatie

VOOR HET SECUNDAIR ONDERWIJS. Kansmodellen. 3. Populatie en steekproef. Werktekst voor de leerling. Prof. dr. Herman Callaert

VOOR HET SECUNDAIR ONDERWIJS. Kansmodellen. 3. Populatie en steekproef. Werktekst voor de leerling. Prof. dr. Herman Callaert VOOR HET SECUNDAIR ONDERWIJS Kansmodellen. Werktekst voor de leerling Prof. dr. Herman Callaert Hans Bekaert Cecile Goethals Lies Provoost Marc Vancaudenberg . Populatie: een intuïtieve definitie.... Een

Nadere informatie

Kansrekening en Statistiek

Kansrekening en Statistiek Kansrekening en Statistiek College 8 Donderdag 13 Oktober 1 / 23 2 Statistiek Vandaag: Stochast en populatie Experimenten herhalen Wet van de Grote Getallen Centrale Limietstelling 2 / 23 Stochast en populatie

Nadere informatie

3.1 Het herhalen van kansexperimenten [1]

3.1 Het herhalen van kansexperimenten [1] 3.1 Het herhalen van kansexperimenten [1] Voorbeeld: Op een schijf staan een zestal afbeeldingen in even grote vakjes: 3 keer appel, 2 keer banaan, 1 keer peer. Sandra draait zes keer aan de schijf. a)

Nadere informatie

13.1 Kansberekeningen [1]

13.1 Kansberekeningen [1] 13.1 Kansberekeningen [1] Herhaling kansberekeningen: Somregel: Als de gebeurtenissen G 1 en G 2 geen gemeenschappelijke uitkomsten hebben geldt: P(G 1 of G 2 ) = P(G 1 ) + P(G 2 ) B.v. P(3 of 4 gooien

Nadere informatie

9.0 Voorkennis. Bij samengestelde kansexperimenten maak je gebruik van de productregel.

9.0 Voorkennis. Bij samengestelde kansexperimenten maak je gebruik van de productregel. 9.0 Voorkennis Bij samengestelde kansexperimenten maak je gebruik van de productregel. Productregel: Voor de gebeurtenis G 1 bij het ene kansexperiment en de gebeurtenis G 2 bij het andere kansexperiment

Nadere informatie

Populaties beschrijven met kansmodellen

Populaties beschrijven met kansmodellen Populaties beschrijven met kansmodellen Prof. dr. Herman Callaert Deze tekst probeert, met voorbeelden, inzicht te geven in de manier waarop je in de statistiek populaties bestudeert. Dat doe je met kansmodellen.

Nadere informatie

11.1 Kansberekeningen [1]

11.1 Kansberekeningen [1] 11.1 Kansberekeningen [1] Kansdefinitie van Laplace: P(gebeurtenis) = Aantal gunstige uitkomsten/aantal mogelijke uitkomsten Voorbeeld 1: Wat is de kans om minstens 16 te gooien, als je met 3 dobbelstenen

Nadere informatie

van de verwachtingswaarde groen is te verkiezen boven blauw en blauw is te verkiezen boven rood is dan groen te verkiezen boven rood?..

van de verwachtingswaarde groen is te verkiezen boven blauw en blauw is te verkiezen boven rood is dan groen te verkiezen boven rood?.. Verwacht winst altijd Prof. dr. Herman Callaert Een verrassende toepassing van de verwachtingswaarde bij kansmodellen. groen is te verkiezen boven blauw en blauw is te verkiezen boven rood is dan groen

Nadere informatie

Statistiek I Samenvatting. Prof. dr. Carette

Statistiek I Samenvatting. Prof. dr. Carette Statistiek I Samenvatting Prof. dr. Carette Opleiding: bachelor of science in de Handelswetenschappen Academiejaar 2016 2017 Inhoudsopgave Hoofdstuk 1: Statistiek, gegevens en statistisch denken... 3 De

Nadere informatie

14.1 Kansberekeningen [1]

14.1 Kansberekeningen [1] 14.1 Kansberekeningen [1] Herhaling kansberekeningen: Somregel: Als de gebeurtenissen G 1 en G 2 geen gemeenschappelijke uitkomsten hebben geldt: P(G 1 of G 2 ) = P(G 1 ) + P(G 2 ) B.v. P(3 of 4 gooien

Nadere informatie

Empirische kansen = op ervaring gegrond; bereken je door relatieve frequenties te gebruiken. Wet van de grote aantallen.

Empirische kansen = op ervaring gegrond; bereken je door relatieve frequenties te gebruiken. Wet van de grote aantallen. Samenvatting Kansen Definitie van Laplace : P(G) = aantal _ gunstige _ uitkomsten aantal _ mogelijke _ uitkomsten Voorbeeld : Vb kans op 4 gooien met dobbelsteen: Aantal gunstige uitkomsten = 1 ( namelijk

Nadere informatie

VOOR HET SECUNDAIR ONDERWIJS. Kansmodellen. 1. De wereld van de kansmodellen. Werktekst voor de leerling. Prof. dr.

VOOR HET SECUNDAIR ONDERWIJS. Kansmodellen. 1. De wereld van de kansmodellen. Werktekst voor de leerling. Prof. dr. VOOR HET SECUNDAIR ONDERWIJS Kansmodellen 1. Werktekst voor de leerling Prof. dr. Herman Callaert Hans Bekaert Cecile Goethals Lies Provoost Marc Vancaudenberg 1. De realiteit en het model...2 2. Kansmodellen...2

Nadere informatie

7.0 Voorkennis , ,

7.0 Voorkennis , , 7.0 Voorkennis Een gokkast bestaat uit een drietal schijven die ronddraaien. Op schijf 1 staan: 5 bananen, 4 appels, 3 citroenen en 3 kersen; Op schijf 2 staan: 7 bananen, 3 appels, 2 citroenen en 3 kersen;

Nadere informatie

Antwoorden Kans en Stat H4 Discrete verdelingen 1 = 7 = Opg. 3a. aantal kans. P(aantal=10) = aantal kans.

Antwoorden Kans en Stat H4 Discrete verdelingen 1 = 7 = Opg. 3a. aantal kans. P(aantal=10) = aantal kans. Antwoorden Kans en Stat H Discrete verdelingen Opg. a c d f b aantal 7 7 P(aantal) e aantal ` P(aantal) 7 0 0 7 0 0 7 7 g 0 (nul) h i aantal 0 7 7 7 0 Opg. a Alle mogelijkheden J of M, J of M, J of M,

Nadere informatie

Antwoorden Kans en Stat H3 Discrete verdelingen

Antwoorden Kans en Stat H3 Discrete verdelingen Antwoorden Kans en Stat H Discrete verdelingen Opg. a b c d e f g h i 9 9 8 7 8 aantal 9 0 kans 8 8 8 P(aantal0) 8 9 8 0 7 7 0 aantal 9 0 kans 7 0 0 0 7 P(aantal0) 0 0 0 0 (nul) 7 7 7 7 aantal 9 0 kans

Nadere informatie

Hoe bereken je een kans? Voorbeeld. aantal gunstige uitkomsten aantal mogelijke uitkomsten P(G) =

Hoe bereken je een kans? Voorbeeld. aantal gunstige uitkomsten aantal mogelijke uitkomsten P(G) = Hoe bereken je een kans? P(G) = aantal gunstige uitkomsten aantal mogelijke uitkomsten Voorbeeld Je gooit met twee dobbelstenen. Hoe groot is de kans dat de som van de ogen 7 is? Regels Een kans is een

Nadere informatie

In de Theorie worden de begrippen toevalsvariabele, kansverdeling en verwachtingswaarde toegelicht.

In de Theorie worden de begrippen toevalsvariabele, kansverdeling en verwachtingswaarde toegelicht. Toevalsvariabelen Verkennen www.mathall.nl MAThADORE-basic HAVO/VWO /5/6 VWO wi-a Kansrekening Toevalsvariabelen Inleiding Verkennen Beantwoord de vragen bij Verkennen. Uitleg www.mathall.nl MAThADORE-basic

Nadere informatie

5.0 Voorkennis. Voorbeeld 1: In een vaas zitten 10 rode, 5 witte en 6 blauwe knikkers. Er worden 9 knikkers uit de vaas gepakt.

5.0 Voorkennis. Voorbeeld 1: In een vaas zitten 10 rode, 5 witte en 6 blauwe knikkers. Er worden 9 knikkers uit de vaas gepakt. 5.0 Voorkennis Voorbeeld 1: In een vaas zitten 10 rode, 5 witte en 6 blauwe knikkers. Er worden 9 knikkers uit de vaas gepakt. a) Bereken de kans op minstens 7 rode knikkers: P(minstens 7 rood) = P(7 rood)

Nadere informatie

VOOR HET SECUNDAIR ONDERWIJS

VOOR HET SECUNDAIR ONDERWIJS VOOR HET SECUNDAIR ONDERWIJS Populatiemodellen en normaal verdeelde populaties 1. Werktekst voor de leerling Prof. dr. Herman Callaert Hans Bekaert Cecile Goethals Lies Provoost Marc Vancaudenberg 1. De

Nadere informatie

VB: De hoeveelheid neemt nu met 12% af. Hoeveel was de oorspronkelijke hoeveelheid? = 1655 oud = 1655 nieuw = 0,88 x 1655 = 1456

VB: De hoeveelheid neemt nu met 12% af. Hoeveel was de oorspronkelijke hoeveelheid? = 1655 oud = 1655 nieuw = 0,88 x 1655 = 1456 Formules, grafieken en tabellen Procenten - altijd afronden op 1 decimaal tenzij anders vermeld VB: Een hoeveelheid neemt met 12% toe to 1456. Hoeveel was de oorspronkelijke hoeveelheid? Oud =? Nieuw =

Nadere informatie

Paragraaf 7.1 : Het Vaasmodel

Paragraaf 7.1 : Het Vaasmodel Hoofdstuk 7 Kansrekening (V4 Wis A) Pagina 1 van 8 Paragraaf 7.1 : Het Vaasmodel Les 1 : Kansen Herhalen kansen berekenen Hoe bereken je de kans als je een aantal keren achter elkaar een experiment uitvoert?

Nadere informatie

Kansrekening en Statistiek

Kansrekening en Statistiek Kansrekening en Statistiek College 12 Vrijdag 16 Oktober 1 / 38 2 Statistiek Indeling vandaag: Normale verdeling Wet van de Grote Getallen Centrale Limietstelling Deductieve statistiek Hypothese toetsen

Nadere informatie

Kansrekening en Statistiek

Kansrekening en Statistiek Kansrekening en Statistiek College 12 Donderdag 21 Oktober 1 / 38 2 Statistiek Indeling: Stochast en populatie Experimenten herhalen Wet van de Grote Getallen Centrale Limietstelling 2 / 38 Deductieve

Nadere informatie

Kansrekening en statistiek WI2105IN deel I 4 november 2011, uur

Kansrekening en statistiek WI2105IN deel I 4 november 2011, uur Kansrekening en statistiek WI05IN deel I 4 november 0, 4.00 7.00 uur Bij dit examen is het gebruik van een (evt. grafische) rekenmachine toegestaan. Een formuleblad wordt uitgereikt. Meerkeuzevragen Toelichting:

Nadere informatie

Praktische opdracht Wiskunde som van de ogen van drie dobbelstenen

Praktische opdracht Wiskunde som van de ogen van drie dobbelstenen Praktische opdracht Wiskunde som van de ogen van drie dobbelstenen Praktische-opdracht door een scholier 918 woorden 17 maart 2002 4,9 60 keer beoordeeld Vak Wiskunde Inleiding Wij hebben gekozen voor

Nadere informatie

Kansrekening en statistiek wi2105in deel I 29 januari 2010, uur

Kansrekening en statistiek wi2105in deel I 29 januari 2010, uur Kansrekening en statistiek wi20in deel I 29 januari 200, 400 700 uur Bij dit examen is het gebruik van een (evt grafische rekenmachine toegestaan Tevens krijgt u een formuleblad uitgereikt na afloop inleveren

Nadere informatie

Statistiek. Beschrijvend statistiek

Statistiek. Beschrijvend statistiek Statistiek Beschrijvend statistiek Verzameling van gegevens en beschrijvingen Populatie, steekproef Populatie = o de gehele groep ondervragen o parameter is een kerngetal Steekproef = o een onderdeel van

Nadere informatie

Paragraaf 4.1 : Kansen

Paragraaf 4.1 : Kansen Hoofdstuk 4 Het kansbegrip (V4 Wis A) Pagina 1 van 5 Paragraaf 4.1 : Kansen Les 1 Kansen met dobbelstenen Definitie GGGGGGGGGGGGGGGG uuuuuuuuuuuuuuuuuuuu KKKKKKKK = TTTTTTTTTTTT aaaaaaaaaaaa uuuuuuuuuuuuuuuuuuuu

Nadere informatie

Inleiding Applicatie Software - Statgraphics

Inleiding Applicatie Software - Statgraphics Inleiding Applicatie Software - Statgraphics Beschrijvende Statistiek /k 1/35 OPDRACHT OVER BESCHRIJVENDE STATISTIEK Beleggen Door een erfenis heeft een vriend van u onverwacht de beschikking over een

Nadere informatie

Inleiding Applicatie Software - Statgraphics. Beschrijvende Statistiek

Inleiding Applicatie Software - Statgraphics. Beschrijvende Statistiek Inleiding Applicatie Software - Statgraphics Beschrijvende Statistiek OPDRACHT OVER BESCHRIJVENDE STATISTIEK Beleggen Door een erfenis heeft een vriend van u onverwacht de beschikking over een klein kapitaaltje

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN. Faculteit Wiskunde en Informatica

TECHNISCHE UNIVERSITEIT EINDHOVEN. Faculteit Wiskunde en Informatica TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Kansrekening en Statistiek (2S27), dinsdag 14 juni 25, 9. - 12. uur. Dit is een tentamen met gesloten boek. De uitwerkingen

Nadere informatie

Bij het oplossen van een telprobleem zijn de volgende 2 dingen belangrijk: Is de volgorde van de gekozen dingen van belang?

Bij het oplossen van een telprobleem zijn de volgende 2 dingen belangrijk: Is de volgorde van de gekozen dingen van belang? 4. tellen & kansen 4.1 Tellen Herkennen Je kunt een vraag over telproblemen herkennen aan signaalwoorden: - hoeveel mogelijkheden, manieren, routes, volgordes etc. zijn er?, - bereken het aantal mogelijkheden/manieren

Nadere informatie

Tentamen Kansrekening en Statistiek (2WS04), woensdag 30 juni 2010, van 9.00 12.00 uur.

Tentamen Kansrekening en Statistiek (2WS04), woensdag 30 juni 2010, van 9.00 12.00 uur. Technische Universiteit Eindhoven Faculteit Wiskunde en Informatica Tentamen Kansrekening en Statistiek (WS4), woensdag 3 juni, van 9.. uur. Dit is een tentamen met gesloten boek. De uitwerkingen van de

Nadere informatie

Lesbrief hypothesetoetsen

Lesbrief hypothesetoetsen Lesbrief hypothesetoetsen 00 "Je gaat het pas zien als je het door hebt" Johan Cruijff Willem van Ravenstein Inhoudsopgave Inhoudsopgave... Hoofdstuk - voorkennis... Hoofdstuk - mens erger je niet... 3

Nadere informatie

Tentamenset A. 2. Welke van de volgende beweringen is waar? c. N R N d. R Z R

Tentamenset A. 2. Welke van de volgende beweringen is waar? c. N R N d. R Z R Tentamenset A. Gegeven de volgende verzamelingen A en B. A is de verzameling van alle gehele getallen tussen de 0 en 0 die deelbaar zijn door, en B is de verzameling gehele positieve getallen deelbaar

Nadere informatie

bijspijkercursus wiskunde voor psychologiestudenten bijeenkomst 8 [PW] appendix D.1: kansrekening extra stof

bijspijkercursus wiskunde voor psychologiestudenten bijeenkomst 8 [PW] appendix D.1: kansrekening extra stof bijspijkercursus wiskunde voor psychologiestudenten bijeenkomst 8 [PW] appendix D.1: kansrekening extra stof [PW] appendix D.1 kansrekening kansen: 1. Je gooit met een dobbelsteen. Wat is de kans dat je

Nadere informatie

9.1 Gemiddelde, modus en mediaan [1]

9.1 Gemiddelde, modus en mediaan [1] 9.1 Gemiddelde, modus en mediaan [1] De onderstaande frequentietabel geeft aan hoeveel auto s er in een bepaald uur in een straat geteld zijn. Aantal auto s per uur 15 16 17 18 19 20 21 frequentie 2 7

Nadere informatie

Tentamen Kansrekening en Statistiek (2WS04), dinsdag 17 juni 2008, van uur.

Tentamen Kansrekening en Statistiek (2WS04), dinsdag 17 juni 2008, van uur. Technische Universiteit Eindhoven Faculteit Wiskunde en Informatica Tentamen Kansrekening en Statistiek (2WS4, dinsdag 17 juni 28, van 9. 12. uur. Dit is een tentamen met gesloten boek. De uitwerkingen

Nadere informatie

Samenvatting Wiskunde A

Samenvatting Wiskunde A Bereken: Bereken algebraisch: Bereken exact: De opgave mag berekend worden met de hand of met de GR. Geef bij GR gebruik de ingevoerde formules en gebruikte opties. Kies op een examen in dit geval voor

Nadere informatie

Binomiale verdelingen

Binomiale verdelingen Binomiale verdelingen Les 1: Kans en combinatoriek (Deze les sluit aan bij paragraaf 1 van Hoofdstuk 2 Binomiale en normale verdelingen van de Wageningse Methode, http://www.wageningsemethode.nl/methode/het-lesmateriaal/?s=y456v-d)

Nadere informatie

6. Op tafel liggen 10 verschillende boeken. Op hoeveel verschillende manieren kunnen 3 jongens daar ieder 1 boek uit kiezen?

6. Op tafel liggen 10 verschillende boeken. Op hoeveel verschillende manieren kunnen 3 jongens daar ieder 1 boek uit kiezen? 1. Iemand heeft thuis 12 CD s in een rekje waar er precies 12 inpassen. a. Op hoeveel manieren kan hij ze in het rekje leggen. b. Hij wil er 2 weggeven aan zijn vriendin, hoeveel mogelijkheden? c. Hij

Nadere informatie

Medische Statistiek Kansrekening

Medische Statistiek Kansrekening Medische Statistiek Kansrekening Medisch statistiek- kansrekening Hoorcollege 1 Uitkomstenruimte vaststellen Ook wel S of E. Bij dobbelsteen: E= {1,2,3,4,5,6} Een eindige uitkomstenreeks Bij het gooien

Nadere informatie

2.1 Kansen [1] Er geldt nu dat de kans op som is 6 gelijk is aan: P(som is 6) =

2.1 Kansen [1] Er geldt nu dat de kans op som is 6 gelijk is aan: P(som is 6) = 2.1 Kansen [1] Voorbeeld 1: Als je gooit met twee dobbelstenen zijn er in totaal 6 6 = 36 mogelijke uitkomsten. Deze staan in het rooster hiernaast. De gebeurtenis som is 6 komt vijf keer voor. Het aantal

Nadere informatie

6.1 Beschouw de populatie die beschreven wordt door onderstaande kansverdeling.

6.1 Beschouw de populatie die beschreven wordt door onderstaande kansverdeling. Opgaven hoofdstuk 6 I Basistechnieken 6.1 Beschouw de populatie die beschreven wordt door onderstaande kansverdeling. x 0 2 4 6 p(x) ¼ ¼ ¼ ¼ a. Schrijf alle mogelijke verschillende steekproeven van n =

Nadere informatie

5 keer beoordeeld 4 maart Wiskunde H6, H7, H8 Samenvatting

5 keer beoordeeld 4 maart Wiskunde H6, H7, H8 Samenvatting 4,4 Samenvatting door Syb 954 woorden 5 keer beoordeeld 4 maart 2018 Vak Wiskunde Methode Getal en Ruimte Wiskunde H6, H7, H8 Samenvatting HOOFDSTUK 6 Procenten, Diagrammen en Kansrekening (10 en 100 zijn

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN. Faculteit Wiskunde en Informatica

TECHNISCHE UNIVERSITEIT EINDHOVEN. Faculteit Wiskunde en Informatica TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Kansrekening (2WS2), Vrijdag 24 januari 24, om 9:-2:. Dit is een tentamen met gesloten boek. De uitwerkingen van de opgaven

Nadere informatie

extra sommen Statistiek en Kans

extra sommen Statistiek en Kans extra sommen Statistiek en Kans 1. Bepaal bij de volgende rijen de modus, de mediaan en het gemiddelde a. 1, 4, 2, 3, 5, 3, 6, 3 b. 12, 11, 13, 11, 12, 11, 12, 13, 11, 14, 75, 15 c. 1, 43, 12, 32, 43,

Nadere informatie

Zwijsen. jaargroep 4. naam: reken-wiskundemethode voor het basisonderwijs. rekentrainer. jij. Bezoek alle leuke dingen. Teken de weg.

Zwijsen. jaargroep 4. naam: reken-wiskundemethode voor het basisonderwijs. rekentrainer. jij. Bezoek alle leuke dingen. Teken de weg. Zwijsen jaargroep naam: reken-wiskundemethode voor het basisonderwijs! jij rekentrainer Bezoek alle leuke dingen. Teken de weg. Groep blad 1 Hoe komt de hond bij het bot? Teken. Kleur de tegels. Kleur

Nadere informatie

KANSREKENEN EN VERDELINGEN REEKS 1

KANSREKENEN EN VERDELINGEN REEKS 1 KANSREKENEN EN VERDELINGEN REEKS 1 Moeilijkere oefeningen zijn aangegeven met een gevarendriehoek Niet elke regel met R-code zal je kunnen/moeten gebruiken Versie 18/07/2019 1. Verdelingsfunctie Het aantal

Nadere informatie

extra sommen Statistiek en Kans

extra sommen Statistiek en Kans extra sommen Statistiek en Kans 1. Bepaal bij de volgende rijen de modus, de mediaan en het gemiddelde a. 1, 4, 2, 3, 5, 3, 6, 3 b. 12, 11, 13, 11, 12, 11, 12, 13, 11, 14, 75, 15 c. 1, 43, 12, 32, 43,

Nadere informatie

1BA PSYCH Statistiek 1 Oefeningenreeks 3 1

1BA PSYCH Statistiek 1 Oefeningenreeks 3 1 Juno KOEKELKOREN D.1.3. OEFENINGENREEKS 3 OEFENING 1 In onderstaande tabel vind je zes waarnemingen van twee variabelen (ratio meetniveau). Eén van de waarden van y is onbekend. Waarde x y 1 1 2 2 9 2

Nadere informatie

LANDSEXAMEN VWO Het examenprogramma Het examenprogramma voor het commissie-examen Wiskunde D bestaat uit de volgende (sub)domeinen:

LANDSEXAMEN VWO Het examenprogramma Het examenprogramma voor het commissie-examen Wiskunde D bestaat uit de volgende (sub)domeinen: LANDSEXAMEN VWO 2017-2018 Examenprogramma WISKUNDE D (V.W.O. ) (nieuw programma) 1 Het eindexamen Wiskunde D kent slechts het commissie-examen. Er is voor wiskunde D dus geen centraal schriftelijk examen.

Nadere informatie

Kansrekenen. Lesbrief kansexperimenten Havo 4 wiskunde A Maart 2012 Versie 3: Dobbelstenen

Kansrekenen. Lesbrief kansexperimenten Havo 4 wiskunde A Maart 2012 Versie 3: Dobbelstenen Kansrekenen Lesbrief kansexperimenten Havo 4 wiskunde A Maart 2012 Versie 3: Dobbelstenen Inhoud Inleiding...3 Doel van het experiment...3 Organisatie van het experiment...3 Voorkennis...4 Uitvoeren van

Nadere informatie

Bugs Bunny heeft een dobbelsteen bij zich. Hij zal zijn aanvalspunten bepalen door wat er op de kaart staat.

Bugs Bunny heeft een dobbelsteen bij zich. Hij zal zijn aanvalspunten bepalen door wat er op de kaart staat. Looney Tunes Verdeel de kinderen in twee groepen van 10 tot 15 kinderen. Iedere groep krijgt zijn eigen stad in het bos. Iedere stad is 75 punten waard. Maar omdat er maar 1 echte looneytunescity is zullen

Nadere informatie

Voorbeeld 1: kansverdeling discrete stochast discrete kansverdeling

Voorbeeld 1: kansverdeling discrete stochast discrete kansverdeling 12.0 Voorkennis Voorbeeld 1: Yvette pakt vier knikkers uit een vaas waar er 20 inzitten. 9 van de knikkers zijn rood en 11 van de knikkers zijn blauw. X = het aantal rode knikkers dat Yvette pakt. Er zijn

Nadere informatie

5 Totaalbeeld. Samenvatten. Achtergronden. Testen

5 Totaalbeeld. Samenvatten. Achtergronden. Testen 5 Totaalbeeld Samenvatten Je hebt nu het onderwerp Kansrekening doorgewerkt. Er moet een totaalbeeld van deze leerstof ontstaan... Ga na, of je al de bij dit onderwerp horende begrippen kent en weet wat

Nadere informatie

3.0 Voorkennis. Het complement van de verzameling V is de verzameling Dit zijn alle elementen van de uitkomstenverzameling U die niet in V zitten.

3.0 Voorkennis. Het complement van de verzameling V is de verzameling Dit zijn alle elementen van de uitkomstenverzameling U die niet in V zitten. 3.0 Voorkennis De vereniging van de verzamelingen V en is gelijk aan de uitkomstenverzameling U in het plaatje hiernaast. De doorsnede van de verzamelingen V en V is een lege verzameling. Het complement

Nadere informatie

o Geef bij de beantwoording van de vragen ALTIJD JE BEREKENINGEN. Als je alleen een antwoord geeft worden er GEEN PUNTEN toegekend!

o Geef bij de beantwoording van de vragen ALTIJD JE BEREKENINGEN. Als je alleen een antwoord geeft worden er GEEN PUNTEN toegekend! Examentoets 2 6VWO-A Statistiek woensdag 20 januari 2010 o Geef bij de beantwoording van de vragen ALTIJD JE BEREKENINGEN. Als je alleen een antwoord geeft worden er GEEN PUNTEN toegekend! o Geef bij gebruik

Nadere informatie

Uitwerkingen Hst. 10 Kansverdelingen

Uitwerkingen Hst. 10 Kansverdelingen Uitwerkingen Hst. 0 Kansverdelingen. Uittellen: 663 ; 636 ; 366 ; 654 (6 keer) ; 555 0 mogelijkheden met som 5.. Som geen 5 = 36 som 5 Som 5: 4, 3, 3, 4 4 mogelijkheden dus 3 mogelijkheden voor som geen

Nadere informatie

Docenten: Het viel me op dat in boek 2 vmbo alle ontbrekende theorie staat.( bijvoorbeeld beelddiagrammen)

Docenten: Het viel me op dat in boek 2 vmbo alle ontbrekende theorie staat.( bijvoorbeeld beelddiagrammen) Docenten: Voor mij is dit ook de eerste keer dat deze p.o. gebruikt wordt. Mijn bedoeling is een tussenstap van 2 vmbo statistiek naar PO statistiek PTA 3 vmbo. In het grote PO moeten de leerlingen zelf

Nadere informatie

Cursus Statistiek Hoofdstuk 4. Statistiek voor Informatica Hoofdstuk 4: Verwachtingen. Definitie (Verwachting van discrete stochast) Voorbeeld (1)

Cursus Statistiek Hoofdstuk 4. Statistiek voor Informatica Hoofdstuk 4: Verwachtingen. Definitie (Verwachting van discrete stochast) Voorbeeld (1) Cursus Statistiek Hoofdstuk 4 Statistiek voor Informatica Hoofdstuk 4: Verwachtingen Cursusjaar 29 Peter de Waal Departement Informatica Inhoud Verwachtingen Variantie Momenten en Momentengenererende functie

Nadere informatie

. Dan geldt P(B) = a. 1 4. d. 3 8

. Dan geldt P(B) = a. 1 4. d. 3 8 Tentamen Statistische methoden 4052STAMEY juli 203, 9:00 2:00 Studienummers: Vult u alstublieft op het meerkeuzevragenformulier uw Delftse studienummer in (tbv automatische verwerking); en op het open

Nadere informatie

begin van document Eindtermen havo wiskunde A (CE) gekoppeld aan delen en hoofdstukken uit Moderne wiskunde 9e editie

begin van document Eindtermen havo wiskunde A (CE) gekoppeld aan delen en hoofdstukken uit Moderne wiskunde 9e editie begin van document Eindtermen havo wiskunde A (CE) gekoppeld aan delen en hoofdstukken uit Moderne wiskunde 9e editie Domein Subdomein in CE moet in SE A A1: Informatievaardigheden X X Vaardigheden A2:

Nadere informatie

Y = ax + b, hiervan is a de richtingscoëfficiënt (1 naar rechts en a omhoog), en b is het snijpunt met de y-as (0,b)

Y = ax + b, hiervan is a de richtingscoëfficiënt (1 naar rechts en a omhoog), en b is het snijpunt met de y-as (0,b) Samenvatting door E. 1419 woorden 11 november 2013 6,1 14 keer beoordeeld Vak Methode Wiskunde A Getal en ruimte Lineaire formule A = 0.8t + 34 Er bestaat dan een lineair verband tussen A en t, de grafiek

Nadere informatie

4.0 Voorkennis. Bereken het aantal manieren om de functies te verdelen:

4.0 Voorkennis. Bereken het aantal manieren om de functies te verdelen: 4.0 Voorkennis Voorbeeld 1: Een bestuur bestaat uit 6 personen. Uit deze 6 personen wordt eerst een voorzitter, dan een secretaris en tot slot een penningmeester gekozen. Bereken het aantal manieren om

Nadere informatie

Statistiek voor A.I. College 7. Dinsdag 2 Oktober

Statistiek voor A.I. College 7. Dinsdag 2 Oktober Statistiek voor A.I. College 7 Dinsdag 2 Oktober 1 / 30 2 Deductieve statistiek Kansrekening 2 / 30 Vraag: test Een test op HIV is 90% betrouwbaar: als een persoon HIV heeft is de kans op een positieve

Nadere informatie

LANDSEXAMEN VWO Het examenprogramma Het examenprogramma voor het commissie-examen Wiskunde D bestaat uit de volgende (sub)domeinen:

LANDSEXAMEN VWO Het examenprogramma Het examenprogramma voor het commissie-examen Wiskunde D bestaat uit de volgende (sub)domeinen: LANDSEXAMEN VWO 2019-2020 Examenprogramma WISKUNDE D (V.W.O. ) 1 Het eindexamen Wiskunde D kent slechts het commissie-examen. Er is voor wiskunde D dus geen centraal schriftelijk examen. Het commissie-examen

Nadere informatie

Examen Statistiek I Feedback

Examen Statistiek I Feedback Examen Statistiek I Feedback Bij elke vraag is alternatief A correct. Bij de trekking van een persoon uit een populatie beschouwt men de gebeurtenissen A (met bril), B (hooggeschoold) en C (mannelijk).

Nadere informatie

Samenvatting Wiskunde A kansen

Samenvatting Wiskunde A kansen Samenvatting Wiskunde A kansen Samenvatting door een scholier 857 woorden 19 juni 2016 1 1 keer beoordeeld Vak Methode Wiskunde A Moderne wiskunde H1 Machtsboom Mogelijkheden tellen Aantal takken is gelijk

Nadere informatie

4.1 Eigenschappen van de normale verdeling [1]

4.1 Eigenschappen van de normale verdeling [1] 4.1 Eigenschappen van de normale verdeling [1] Relatief frequentiepolygoon van de lengte van mannen in 1968 1 4.1 Eigenschappen van de normale verdeling [1] In dit plaatje is een frequentiepolygoon getekend.

Nadere informatie

Praktische opdracht Wiskunde A Randomized Response

Praktische opdracht Wiskunde A Randomized Response Praktische opdracht Wiskunde A Randomized Re Praktische-opdracht door een scholier 2550 woorden 10 juni 2003 5,8 26 keer beoordeeld Vak Wiskunde A Inleiding We hebben de opdracht gekregen een Praktische

Nadere informatie

Kansrekening en Statistiek

Kansrekening en Statistiek Kansrekening en Statistiek College 1 Dinsdag 14 September 1 / 34 Literatuur http://www.phil.uu.nl/ iemhoff Applied Statistics for the Behavioral Sciences - 5th edition, Dennis E. Hinkle, William Wiersma,

Nadere informatie

HOOFDSTUK 6: Kansrekening. 6.1 De productregel. Opgave 1: a. 3 van de 4 knikkers zijn rood. P(rood uit II. Opgave 2: a. P(twee wit

HOOFDSTUK 6: Kansrekening. 6.1 De productregel. Opgave 1: a. 3 van de 4 knikkers zijn rood. P(rood uit II. Opgave 2: a. P(twee wit HOOFDSTUK : Kansrekening. De productregel Opgave : van de knikkers zijn rood rood uit II ) d. 0, e. 0, Opgave : 0 twee wit 0, ) 0 0 ) 0 0 ) 0 0 blauw en rood 0, wit en groen 0, d. geen blauw 7 0, ) 0 0

Nadere informatie

Opgaven voor Kansrekening

Opgaven voor Kansrekening Opgaven voor Kansrekening Opgave 1. Je hebt 4 verschillende wiskunde boeken, 6 psychologie boeken en 2 letterkundige boeken. Hoeveel manieren zijn er om deze twaalf boeken op een boord te plaatsen als:

Nadere informatie

Statistiek. Beschrijvende Statistiek Hoofdstuk 1 1.1, 1.2, 1.5, 1.6 lezen 1.3, 1.4 Les 1 Hoofdstuk 2 2.1, 2.3, 2.5 Les 2

Statistiek. Beschrijvende Statistiek Hoofdstuk 1 1.1, 1.2, 1.5, 1.6 lezen 1.3, 1.4 Les 1 Hoofdstuk 2 2.1, 2.3, 2.5 Les 2 INHOUDSOPGAVE Leswijzer...3 Beschrijvende Statistiek...3 Kansberekening...3 Inductieve statistiek, inferentiele statistiek...3 Hoofdstuk...3. Drie deelgebieden...3. Frequentieverdeling....3. Frequentieverdeling....4.5

Nadere informatie

VOOR HET SECUNDAIR ONDERWIJS. Kansrekening voor de tweede graad. Werktekst voor de leerling. Prof. dr. Herman Callaert

VOOR HET SECUNDAIR ONDERWIJS. Kansrekening voor de tweede graad. Werktekst voor de leerling. Prof. dr. Herman Callaert VOOR HET SECUNDAIR ONDERWIJS Werktekst voor de leerling Prof. dr. Herman Callaert Hans Bekaert Cecile Goethals Lies Provoost Marc Vancaudenberg 1. Kans als relatieve frequentie...1 1.1. Van realiteit naar

Nadere informatie

De 'echte' toets lijkt hierop, alleen is de vormgeving anders. De uitwerkingen vind je voor de toetsweek terug op

De 'echte' toets lijkt hierop, alleen is de vormgeving anders. De uitwerkingen vind je voor de toetsweek terug op De 'echte' toets lijkt hierop, alleen is de vormgeving anders. De uitwerkingen vind je voor de toetsweek terug op www.molenaarnet.org. Geef je niet exacte antwoorden in 4 decimalen nauwkeurig Opgave 1

Nadere informatie

Paragraaf 9.1 : De Verwachtingswaarde

Paragraaf 9.1 : De Verwachtingswaarde Hoofdstuk 9 Kansverdelingen (V5 Wis A) Pagina 1 van 8 Paragraaf 9.1 : De Verwachtingswaarde Les 1 Verwachtingswaarde Definities : Verwachtingswaarde Verwachtingswaarde = { wat je verwacht } { gemiddelde

Nadere informatie

Hoe groot is de kans?

Hoe groot is de kans? Hoe groot is de kans? 1 Met een witte en een grijze dobbelsteen gooien en het product maken Wat denk jij spontaan? Noteer je antwoord in de denkballon Welke producten zijn er allemaal mogelijk als je met

Nadere informatie

Vandaag. Onderzoeksmethoden: Statistiek 2. Basisbegrippen. Theoretische kansverdelingen

Vandaag. Onderzoeksmethoden: Statistiek 2. Basisbegrippen. Theoretische kansverdelingen Vandaag Onderzoeksmethoden: Statistiek 2 Peter de Waal (gebaseerd op slides Peter de Waal, Marjan van den Akker) Departement Informatica Beta-faculteit, Universiteit Utrecht Theoretische kansverdelingen

Nadere informatie

Paragraaf 9.1 : De Verwachtingswaarde

Paragraaf 9.1 : De Verwachtingswaarde Hoofdstuk 9 Kansverdelingen (V5 Wis A) Pagina 1 van 8 Paragraaf 9.1 : De Verwachtingswaarde Les 1 Verwachtingswaarde Definities : Verwachtingswaarde Verwachtingswaarde = { wat je verwacht } { gemiddelde

Nadere informatie

Overzicht voor deze voormiddag. Inleiding Kansrekening en Statistiek: een eigen discipline. Lesmateriaal en ICT ondersteuning: korte info

Overzicht voor deze voormiddag. Inleiding Kansrekening en Statistiek: een eigen discipline. Lesmateriaal en ICT ondersteuning: korte info Kansrekening Nascholing voor leerkrachten Prof. dr. Herman Callaert Hans Bekaert Cecile Goethals Lies Provoost Marc Vancaudenberg http://www.uhasselt.be/lesmateriaal-statistiek Overzicht voor deze voormiddag

Nadere informatie

Eindexamen wiskunde A 1-2 havo 2000 - II

Eindexamen wiskunde A 1-2 havo 2000 - II Opgave 1 ypotheken Als je een huis koopt, moet je meer betalen dan alleen de koopsom. Je moet bijvoorbeeld belasting betalen en de kosten van de notaris. Deze bijkomende kosten zijn voor een nieuwbouwhuis

Nadere informatie

Kansrekening en Statistiek

Kansrekening en Statistiek Kansrekening en Statistiek College 6 Donderdag 30 September 1 / 25 1 Kansrekening Indeling: Voorwaardelijke kansen Onafhankelijkheid Stelling van Bayes 2 / 25 Vraag: Afghanistan Vb. In het leger wordt

Nadere informatie

Kern 1 Rekenen met binomiale kansen

Kern 1 Rekenen met binomiale kansen Netwerk e editie havo A Hoofdstuk De binomiale verdeling uitwerkingen Hoofdstuk De binomiale verdeling uitwerkingen Kern Rekenen met binomiale kansen a Omdat er steeds twee mogelijkheden zijn: zwart óf

Nadere informatie

Samenvatting Wiskunde B Leerboek 1 examenstof

Samenvatting Wiskunde B Leerboek 1 examenstof Samenvatting Wiskunde B Leerboek 1 examenst Samenvatting door een scholier 1925 woorden 2 mei 2003 5,4 123 keer beoordeeld Vak Methode Wiskunde B Getal en ruimte Wiskunde boek 1. Hodstuk 1. Procenten.

Nadere informatie

Opdrachten Toeval Opdrachten Toeval Opdracht 1.1 (Bestaat toeval) Opdracht 1.2(toeval in de natuur)

Opdrachten Toeval Opdrachten Toeval Opdracht 1.1 (Bestaat toeval) Opdracht 1.2(toeval in de natuur) Opdrachten Toeval 1 1 Opdrachten Toeval Opdracht 1.1 (Bestaat toeval) a) Bestaat toeval volgens jou? b) Wat is toeval volgens jou? c) Vraag aan je ouders of zij in hun leven ooit iets heel onwaarschijnlijks

Nadere informatie

Kansrekening en Statistiek

Kansrekening en Statistiek Kansrekening en Statistiek College 3 Dinsdag 21 September 1 / 21 1 Kansrekening Indeling: Uniforme verdelingen Cumulatieve distributiefuncties 2 / 21 Vragen: lengte Een lineaal wordt op een willekeurig

Nadere informatie

begin van document Eindtermen vwo wiskunde A (CE) gekoppeld aan delen en hoofdstukken uit Moderne wiskunde 9e editie

begin van document Eindtermen vwo wiskunde A (CE) gekoppeld aan delen en hoofdstukken uit Moderne wiskunde 9e editie begin van document Eindtermen vwo wiskunde A (CE) gekoppeld aan delen en hoofdstukken uit Moderne wiskunde 9e editie Domein Subdomein in CE moet in SE mag in SE A Vaardigheden A1: Informatievaardigheden

Nadere informatie

Statistiek voor A.I. College 6. Donderdag 27 September

Statistiek voor A.I. College 6. Donderdag 27 September Statistiek voor A.I. College 6 Donderdag 27 September 1 / 1 2 Deductieve statistiek Kansrekening 2 / 1 Vraag: Afghanistan In het leger wordt uit een groep van 6 vrouwelijke en 14 mannelijke soldaten een

Nadere informatie

Toets Combinatoriek en kansrekening

Toets Combinatoriek en kansrekening Deze toets bestaat uit 20 opgaven. Voor elk onderdeel is aangegeven hoeveel punten kunnen worden behaald. Er zijn maximaal 76 punten te behalen. Antwoorden moeten altijd zijn voorzien van een berekening,

Nadere informatie