7.0 Voorkennis , ,
|
|
|
- Dries Michiels
- 9 jaren geleden
- Aantal bezoeken:
Transcriptie
1 7.0 Voorkennis Een gokkast bestaat uit een drietal schijven die ronddraaien. Op schijf 1 staan: 5 bananen, 4 appels, 3 citroenen en 3 kersen; Op schijf 2 staan: 7 bananen, 3 appels, 2 citroenen en 3 kersen; Op schijf 3 staan: 1 banaan, 5 appels, citroenen en 3 kersen. a) Bereken de kans op 3 keer appel: P(3 keer appel) = P(aaa) = 0, b) Bereken de kans op 2 keer citroen: P(2 keer citroen) = P(ccc) + P(ccc) + P(ccc) = , c) Bereken de kans op 0 keer kers: P(0 keer kers) = P(kkk) = ,
2 7.0 Voorkennis Bij samengestelde kansexperimenten maak je gebruik van de productregel. Productregel: Voor de gebeurtenis G 1 bij het ene kansexperiment en de gebeurtenis G 2 bij het andere kansexperiment geldt: P(G 1 en G 2 ) = P(G 1 ) P(G 2 ) Somregel: Voor elkaar uitsluitende gebeurtenissen G 1 en G 2 geldt de somregel: P(G 1 + G 2 ) = P(G 1 ) + P(G 2 ) 2
3 7.0 Voorkennis Op een schijf staan een zestal afbeeldingen in even grote vakjes: 3 keer appel, 2 keer banaan, 1 keer peer. Sandra draait zes keer aan de schijf. a) Bereken de kans dat Sandra zes keer een banaan krijgt: P(zes keer banaan) = P(bbbbbb) = 0,00137 b) Bereken de kans dat Sandra één keer een banaan krijgt: P(een keer banaan) 2 4 P(een keer banaan) = 0,234 1 = P(bbbbbb) + P(bbbbbb) + P(bbbbbb) + P(bbbbbb) + P(bbbbbb) + P(bbbbbb) Elke uitkomst heeft een kans van: Er zijn mogelijkheden voor de ene banaan
4 7.0 Voorkennis Op een schijf staan een zestal afbeeldingen in even grote vakjes: 3 keer appel, 2 keer banaan, 1 keer peer. Sandra draait zes keer aan de schijf. c) Bereken de kans dat Sandra twee keer een banaan krijgt: P(twee keer banaan) = P(bbbbbb) + P(bbbbbb) P(bbbbbb) + P(bbbbbb) Elke uitkomst heeft een kans van: 2 4 Er zijn mogelijkheden voor de twee bananen P(twee keer banaan) = 0,
5 7.0 Voorkennis Peter doet mee aan een loterij. In totaal zijn er 50 loten. Van de 50 loten zijn er 10 loten die recht geven op een prijs. Peter koopt 5 loten. Bereken hoeveel mogelijkheden er zijn dat Peter minstens 4 keer prijs heeft: Aantal = Aantal keer 4 prijs + Aantal keer 5 prijs = Let op: De volgorde van kiezen is niet van belang, dus je mag nu combinaties gebruiken. 5
6 7.1 Het vaasmodel [1] Voorbeeld 1: Gegeven is een vaas met 15 knikkers (10 rood, 3 groen en 2 blauw). 3 knikkers worden uit de vaas gehaald. Bereken de kans op 3 rode knikkers: Stap 1: Aantal mogelijke uitkomsten = 15 3 [Er is sprake van trekken zonder teruglegging waarbij volgorde niet van belang is.] Stap 2: Aantal gunstige uitkomsten = [De 3 knikkers moeten uit de groep van 10 rode getrokken worden. Uit de groep van 5 niet-rode knikkers wordt er geen één getrokken.] Stap 3: P(3 rode knikkers) = ,
7 7.1 Het vaasmodel [1] Voorbeeld 2: Gegeven is een vaas met 15 knikkers (10 rood, 3 groen en 2 blauw). 3 knikkers worden uit de vaas gehaald. Bereken de kans op 2 blauwe knikkers: Stap 1: Aantal mogelijke uitkomsten = 15 3 [Er is sprake van trekken zonder teruglegging waarbij volgorde niet van belang is.] Stap 2: Aantal gunstige uitkomsten = [2 knikkers komen uit de groep van 2 blauwe. 1 knikker komt uit de groep van 13 rode en groene knikkers] Stap 3: P(2 blauwe knikkers) = ,
8 7.1 Het vaasmodel [1] Let op (Voorbeeld 1): P(3 rode knikkers) = 0, = 15 EN = 3 Let op (Voorbeeld 2): P(2 blauwe knikkers) = , = 15 EN = 3 8
9 7.1 Het vaasmodel [2] Een groep van 25 personen bestaat uit 10 mannen en 15 vrouwen. Uit deze groep worden 5 personen gekozen. Dit kun je vergelijken met een vaas met 25 knikkers (10 rood en 15 groen), waaruit je er 5 pakt. P(5 mannen) = P(2 vrouwen) = , , Let op: n is gelijk aan 1 voor elke n. Deze term mag je dus weglaten. 0 9
10 7.2 De complementregel [1] Sandra gooit met 4 dobbelstenen. Elke dobbelsteen heeft ogen. Bereken de kans dat de som van de gegooide ogen 22 of minder is. P(som ogen is 22 of minder) = P(4) + P(5) + P() + + P(20) + P(21) + P(22) Let op: Bij het gooien met vier dobbelstenen kan de som van de ogen nooit 1, 2 of 3 zijn; Om het antwoord te krijgen, moet je 19 kansen berekenen. Bij dit soort opgaven kun je gebruik maken van de complementregel: P(som ogen is 22 of minder) = 1 P(som ogen is 23 of 24) Complementregel algemeen: P(gebeurtenis) = 1 P(complement gebeurtenis) 10
11 7.2 De complementregel [1] Sandra gooit met 4 dobbelstenen. Elke dobbelsteen heeft ogen. Bereken de kans dat de som van de gegooide ogen 22 of minder is. P(som ogen is 22 of minder) = 1 P(som ogen is 23 of 24) Stap 1: Aantal mogelijke oplossingen = = 129 Stap 2: Aantal gunstige oplossingen = 5 [ ] Stap 3: P(som 22) = 1 P(som is 23 of 24) = Let op: Je gebruikt hier de somregel: Voor elkaar uitsluitende gebeurtenissen G 1 en G 2 Geldt: P(G 1 + G 2 ) = P(G 1 ) + P(G 2 ). 11
12 7.2 De complementregel [2] Op een schijf staan een zestal afbeeldingen in even grote vakjes: 3 keer appel, 2 keer banaan, 1 keer peer. Sandra draait zes keer aan de schijf. a) Bereken de kans dat Sandra twee keer een banaan krijgt: P(twee keer banaan) = P(bbbbbb) + P(bbbbbb) P(bbbbbb) + P(bbbbbb) Elke uitkomst heeft een kans van: 2 4 Er zijn mogelijkheden voor de twee bananen P(twee keer banaan) = 0,
13 7.2 De complementregel [2] Op een schijf staan een zestal afbeeldingen in even grote vakjes: 3 keer appel, 2 keer banaan, 1 keer peer. Sandra draait zes keer aan de schijf. b) Bereken de kans dat Sandra minstens twee keer een banaan krijgt: P(minstens twee keer banaan) = 1 P(1 banaan) P(0 banaan) = , Let op: In dit voorbeeld wordt gebruik gemaakt van de productregel: Voor de gebeurtenis G 1 bij het ene kansexperiment en de gebeurtenis G 2 bij het andere kansexperiment geldt: P(G 1 en G 2 ) = P(G 1 ) P(G 2 ) 13
14 7.3 Trekken met en zonder terugleggen [1] Voorbeeld 1 (Trekken met teruglegging): Jan gooit vijf keer met een dobbelsteen. Bereken de kans dat hij twee keer minstens vijf ogen gooit. Er is sprake van trekken met teruglegging. Een getal dat gegooid is met de dobbelsteen kan later opnieuw gegooid worden. P(twee keer minstens vijf gooien) = , Let op: Bij trekken met teruglegging wordt gebruik gemaakt van de productregel: Voor de gebeurtenis G 1 bij het ene kansexperiment en de gebeurtenis G 2 bij het andere kansexperiment geldt: P(G 1 en G 2 ) = P(G 1 ) P(G 2 ) 14
15 7.3 Trekken met en zonder terugleggen [1] Voorbeeld 2 (Trekken zonder teruglegging): In een bak zitten knikkers. 2 knikkers zijn rood en 4 knikkers zijn groen. Jan pakt 5 knikkers uit de bak. Bereken de kans dat Jan twee keer een rode knikker pakt. Er is sprake van trekken zonder teruglegging. Een knikker die uit de vaas gehaald is, kan niet nogmaals gepakt worden. 2 4 P(twee rode knikkers) = Let op: Bij trekken zonder teruglegging wordt gebruik gemaakt van combinaties. 15
16 7.3 Trekken met en zonder terugleggen [1] Voorbeeld 2 (Trekken zonder teruglegging Alternatieve oplossing): In een bak zitten knikkers. 2 knikkers zijn rood en 4 knikkers zijn groen. Jan pakt 5 knikkers uit de bak. Bereken de kans dat Jan twee keer een rode knikker pakt. Er is sprake van trekken zonder teruglegging. Een knikker die uit de vaas gehaald is, kan niet nogmaals gepakt worden. P(twee rode knikkers) = Let op: RRRRR is één van de manieren om bij vijf keer trekken, 2 rode knikkers te hebben De kans op deze volgorde is. Je hebt steeds één knikker minder in de bak zitten. In totaal zijn er van dit soort volgordes. 2 1
17 7.3 Trekken met en zonder terugleggen [2] Voorbeeld 1: Uit een vaas met knikkers worden 5 knikkers gehaald. Van de knikkers in de vaas zijn er groen en rood. Bereken de kans dat er 3 groene knikkers uit de vaas gehaald worden. Er is nu sprake van trekken zonder teruglegging. We gebruiken nu dus combinaties: P(3 groene knikkers) = 0, Het berekenen van de oplossing waarbij we doen of er sprake is van trekken met Teruglegging (De inhoud van de vaas verandert immers nauwelijks als we 5 knikkers van de eruit halen) P(3 groene knikkers) = ,
18 7.3 Trekken met en zonder terugleggen [2] Algemeen: Bij een kleine steekproef uit een grote populatie mag je trekken zonder terugleggen opvatten als trekken met terugleggen. Voorbeeld 2: Uit een onderzoek in september 2010 bleek dat 5% van alle huishoudens digitale televisie had. Voor een onderzoek worden 20 personen ondervraagd. a) Bereken de kans dat al deze 20 personen digitale televisie hebben. P(20 digitaal) = b) Bereken de kans dat precies 13 personen digitale televisie hebben. P(13 digitaal) = ,5 0,35 0, ,5 0,35 0,
19 7.4 Toevalsvariabelen [1] Bij een loterij worden 50 loten verkocht. Er zijn 10 loten, die recht op een prijs geven. Eén van deze prijzen is de hoofdprijs. De rest zijn gewone prijzen. Sander koopt 4 loten. X = het aantal hoofdprijzen Y = het aantal gewone prijzen X en Y zijn toevalsvariabelen. P(Sander wint de hoofdprijs) = P(X = 1) = P(Sander wint drie gewone prijzen en geen hoofdprijs) = P(X = 0 en Y = 3) = , ,
20 7.4 Toevalsvariabelen [2] Yvette pakt vier knikkers uit een vaas waar er 20 inzitten. 9 van de knikkers zijn rood en 11 van de knikkers zijn blauw. X = het aantal rode knikkers dat Yvette pakt. Er zijn nu een vijftal mogelijk uitkomsten: 0 rode knikkers pakken (X = 0); 1 rode knikker pakken (X = 1); 2 rode knikkers pakken (X = 2); 3 rode knikkers pakken (X = 3); 4 rode knikkers pakken (X = 4). Het overzicht van alle mogelijke waarden van de toevalsvariabele met bijbehorende kansen is een kansverdeling. 20
21 7.4 Toevalsvariabelen [2] Yvette pakt vier knikkers uit een vaas waar er 20 inzitten. 9 van de knikkers zijn rood en 11 van de knikkers zijn blauw. X = het aantal rode knikkers dat Yvette pakt. x P(X = x) 0,08 0,307 0,409 0,191 0,02 Let op: Alle kansen van elke kansverdeling tellen steeds op tot één. 21
22 7.4 Toevalsvariabelen [3] In de tabel hieronder staan de gegevens van een groep van 33 jongeren: Zwemmen Hockey Voetbal Jongen Meisje P(leerling doet aan hockey) = ,34 P(een jongen die aan hockey doet) = ,25 P(een meisje die aan hockey doet) = ,54 22
23 7.4 Toevalsvariabelen [3] Uit het voorbeeld is de volgende conclusie te trekken: Er bestaat een verband tussen het geslacht van de jongere en het feit of de jongere hockey speelt. De kans dat een jongen hockey speelt is 0,25. De kans dat een meisje hockey speelt is 0,54. In dit geval zijn de gebeurtenissen geslacht en hockey spelen dus afhankelijk van elkaar. Wanneer de berekende kansen allemaal gelijk aan elkaar zouden zijn, zouden de gebeurtenissen geslacht en hockey spelen onafhankelijk van elkaar zijn. Algemeen: De toevalsvariabelen X en Y zijn onafhankelijk als voor elke mogelijke x en y geldt: P(X = x onder de voorwaarde Y = y) = P(X = x); De toevalsvariabelen X en Y zijn afhankelijk als voor minimaal één paar x en y geldt: P(X = x onder de voorwaarde Y = y) P(X = x). 23
5.0 Voorkennis. Voorbeeld 1: In een vaas zitten 10 rode, 5 witte en 6 blauwe knikkers. Er worden 9 knikkers uit de vaas gepakt.
5.0 Voorkennis Voorbeeld 1: In een vaas zitten 10 rode, 5 witte en 6 blauwe knikkers. Er worden 9 knikkers uit de vaas gepakt. a) Bereken de kans op minstens 7 rode knikkers: P(minstens 7 rood) = P(7 rood)
3.1 Het herhalen van kansexperimenten [1]
3.1 Het herhalen van kansexperimenten [1] Voorbeeld: Op een schijf staan een zestal afbeeldingen in even grote vakjes: 3 keer appel, 2 keer banaan, 1 keer peer. Sandra draait zes keer aan de schijf. a)
2.1 Kansen [1] Er geldt nu dat de kans op som is 6 gelijk is aan: P(som is 6) =
2.1 Kansen [1] Voorbeeld 1: Als je gooit met twee dobbelstenen zijn er in totaal 6 6 = 36 mogelijke uitkomsten. Deze staan in het rooster hiernaast. De gebeurtenis som is 6 komt vijf keer voor. Het aantal
9.0 Voorkennis. Bij samengestelde kansexperimenten maak je gebruik van de productregel.
9.0 Voorkennis Bij samengestelde kansexperimenten maak je gebruik van de productregel. Productregel: Voor de gebeurtenis G 1 bij het ene kansexperiment en de gebeurtenis G 2 bij het andere kansexperiment
3.0 Voorkennis. Het complement van de verzameling V is de verzameling Dit zijn alle elementen van de uitkomstenverzameling U die niet in V zitten.
3.0 Voorkennis De vereniging van de verzamelingen V en is gelijk aan de uitkomstenverzameling U in het plaatje hiernaast. De doorsnede van de verzamelingen V en V is een lege verzameling. Het complement
4.0 Voorkennis. Bereken het aantal manieren om de functies te verdelen:
4.0 Voorkennis Voorbeeld 1: Een bestuur bestaat uit 6 personen. Uit deze 6 personen wordt eerst een voorzitter, dan een secretaris en tot slot een penningmeester gekozen. Bereken het aantal manieren om
11.1 Kansberekeningen [1]
11.1 Kansberekeningen [1] Kansdefinitie van Laplace: P(gebeurtenis) = Aantal gunstige uitkomsten/aantal mogelijke uitkomsten Voorbeeld 1: Wat is de kans om minstens 16 te gooien, als je met 3 dobbelstenen
13.1 Kansberekeningen [1]
13.1 Kansberekeningen [1] Herhaling kansberekeningen: Somregel: Als de gebeurtenissen G 1 en G 2 geen gemeenschappelijke uitkomsten hebben geldt: P(G 1 of G 2 ) = P(G 1 ) + P(G 2 ) B.v. P(3 of 4 gooien
14.1 Kansberekeningen [1]
14.1 Kansberekeningen [1] Herhaling kansberekeningen: Somregel: Als de gebeurtenissen G 1 en G 2 geen gemeenschappelijke uitkomsten hebben geldt: P(G 1 of G 2 ) = P(G 1 ) + P(G 2 ) B.v. P(3 of 4 gooien
Paragraaf 7.1 : Het Vaasmodel
Hoofdstuk 7 Kansrekening (V4 Wis A) Pagina 1 van 8 Paragraaf 7.1 : Het Vaasmodel Les 1 : Kansen Herhalen kansen berekenen Hoe bereken je de kans als je een aantal keren achter elkaar een experiment uitvoert?
Bij het oplossen van een telprobleem zijn de volgende 2 dingen belangrijk: Is de volgorde van de gekozen dingen van belang?
4. tellen & kansen 4.1 Tellen Herkennen Je kunt een vraag over telproblemen herkennen aan signaalwoorden: - hoeveel mogelijkheden, manieren, routes, volgordes etc. zijn er?, - bereken het aantal mogelijkheden/manieren
d. P(2 witte kn. ) = P(2 witte kn. en 1 niet witte kn,) = 0, rode, 12 blauwe en 32 witte knikkers ; 6 knikkers pakken zonder terugleggen.
32. P( geen rode knikkers) = 0,007 33. 7 rode,8 witte en 6 groene knikkers a. 0,026 b. P(geen groene kn.) = 0,342 c. P(twee rode en één witte kn.) = 0,126 d. P(2 witte kn. ) = P(2 witte kn. en 1 niet witte
Hoe bereken je een kans? Voorbeeld. aantal gunstige uitkomsten aantal mogelijke uitkomsten P(G) =
Hoe bereken je een kans? P(G) = aantal gunstige uitkomsten aantal mogelijke uitkomsten Voorbeeld Je gooit met twee dobbelstenen. Hoe groot is de kans dat de som van de ogen 7 is? Regels Een kans is een
HOOFDSTUK 6: Kansrekening. 6.1 De productregel. Opgave 1: a. 3 van de 4 knikkers zijn rood. P(rood uit II. Opgave 2: a. P(twee wit
HOOFDSTUK : Kansrekening. De productregel Opgave : van de knikkers zijn rood rood uit II ) d. 0, e. 0, Opgave : 0 twee wit 0, ) 0 0 ) 0 0 ) 0 0 blauw en rood 0, wit en groen 0, d. geen blauw 7 0, ) 0 0
Antwoorden Wiskunde Hoofdstuk 1 Rekenen met kansen
Antwoorden Wiskunde Hoofdstuk 1 Rekenen met kansen Antwoorden door een scholier 4244 woorden 1 juni 2005 4,7 42 keer beoordeeld Vak Wiskunde Hoofdstuk 1 Rekenen met kansen Het is niet toevallig n = 23
Samenvatting Wiskunde A
Bereken: Bereken algebraisch: Bereken exact: De opgave mag berekend worden met de hand of met de GR. Geef bij GR gebruik de ingevoerde formules en gebruikte opties. Kies op een examen in dit geval voor
6 5 x 4 x x 3 x x x 2 x x x x 1 x x x x x x 5 4 x 3 x 2 x opgave a opgave b opgave c
Hoofdstuk : Het kansbegrip.. Kansen Opgave : De kans dat ze gooit is groter, want ze kan op zes manieren gooien: -, 2-, -, -, -2, -. Ze kan op manieren 9 gooien: -, -, -, -. Opgave 2: e. Opgave : 9 0 2
Binomiale verdelingen
Binomiale verdelingen Les 1: Kans en combinatoriek (Deze les sluit aan bij paragraaf 1 van Hoofdstuk 2 Binomiale en normale verdelingen van de Wageningse Methode, http://www.wageningsemethode.nl/methode/het-lesmateriaal/?s=y456v-d)
Uitwerkingen Hst. 10 Kansverdelingen
Uitwerkingen Hst. 0 Kansverdelingen. Uittellen: 663 ; 636 ; 366 ; 654 (6 keer) ; 555 0 mogelijkheden met som 5.. Som geen 5 = 36 som 5 Som 5: 4, 3, 3, 4 4 mogelijkheden dus 3 mogelijkheden voor som geen
Lesbrief Hypergeometrische verdeling
Lesbrief Hypergeometrische verdeling 010 Willem van Ravenstein If I am given a formula, and I am ignorant of its meaning, it cannot teach me anything, but if I already know it what does the formula teach
bijspijkercursus wiskunde voor psychologiestudenten bijeenkomst 8 [PW] appendix D.1: kansrekening extra stof
bijspijkercursus wiskunde voor psychologiestudenten bijeenkomst 8 [PW] appendix D.1: kansrekening extra stof [PW] appendix D.1 kansrekening kansen: 1. Je gooit met een dobbelsteen. Wat is de kans dat je
VB: De hoeveelheid neemt nu met 12% af. Hoeveel was de oorspronkelijke hoeveelheid? = 1655 oud = 1655 nieuw = 0,88 x 1655 = 1456
Formules, grafieken en tabellen Procenten - altijd afronden op 1 decimaal tenzij anders vermeld VB: Een hoeveelheid neemt met 12% toe to 1456. Hoeveel was de oorspronkelijke hoeveelheid? Oud =? Nieuw =
Voorbeeld 1: kansverdeling discrete stochast discrete kansverdeling
12.0 Voorkennis Voorbeeld 1: Yvette pakt vier knikkers uit een vaas waar er 20 inzitten. 9 van de knikkers zijn rood en 11 van de knikkers zijn blauw. X = het aantal rode knikkers dat Yvette pakt. Er zijn
Paper 2 Bijlage 1: Lesplan (volgens MDA); Wil Baars
Paper 2 Bijlage 1: Lesplan (volgens MDA); Wil Baars-10630996. Docent: Wil Baars Les: 1 Klas:4VWO Aantal leerlingen:21 Lesonderwerp Het vaasmodel: introductie Beginsituatie De leerling weet dat het aantal
H9: Rijen & Reeksen..1-2. H10: Kansverdelingen..3-4. H11: Allerlei functies.5-6
Oefenmateriaal V5 wiskunde C Voorbereiding op PTA-toets1 wiskunde INHOUDSOPGAVE H9: Rijen & Reeksen..1-2 H10: Kansverdelingen..3-4 H11: Allerlei functies.5- Hoofdstuk 9: Rijen & Reeksen Recursieve formule
Paragraaf 4.1 : Kansen
Hoofdstuk 4 Het kansbegrip (V4 Wis A) Pagina 1 van 5 Paragraaf 4.1 : Kansen Les 1 Kansen met dobbelstenen Definitie GGGGGGGGGGGGGGGG uuuuuuuuuuuuuuuuuuuu KKKKKKKK = TTTTTTTTTTTT aaaaaaaaaaaa uuuuuuuuuuuuuuuuuuuu
H10: Allerlei functies H11: Kansverdelingen..6-7
Oefenmateriaal V5 wiskunde A Voorbereiding op PTA-toets1 wiskunde INHOUDSOPGAVE H9: Rijen & Reeksen..1-3 H10: Allerlei functies....4-5 H11: Kansverdelingen..6-7 Hoofdstuk 9: Rijen & Reeksen Recursieve
Combinatoriek en rekenregels
Combinatoriek en rekenregels Les 4: Rekenregels (deze les sluit aan bij de paragraaf 8 van Hoofdstuk 1 Combinatoriek en Rekenregels van de Wageningse Methode, http://www.wageningsemethode.nl/methode/het-lesmateriaal/?s=y456v-d)
Keuze onderwerp: Kansrekening 5VWO-wiskunde B
Keuze onderwerp: Kansrekening 5VWO-wiskunde B Blaise Pascal (1623-1662) Pierre-Simon Laplace (1749-1827) INHOUDSOPGAVE 1. Permutaties & Combinaties... 3 Rangschikking zonder herhaling (permutaties)...
Oefeningen statistiek
Oefeningen statistiek Hoofdstuk De wereld van de kansmodellen.. Tabel A en tabel B zijn de kansverdelingen van model X en van model Y. In beide tabellen is een getal verloren gegaan. Kan jij dat verloren
Samenvatting Wiskunde A kansen
Samenvatting Wiskunde A kansen Samenvatting door een scholier 857 woorden 19 juni 2016 1 1 keer beoordeeld Vak Methode Wiskunde A Moderne wiskunde H1 Machtsboom Mogelijkheden tellen Aantal takken is gelijk
6. Op tafel liggen 10 verschillende boeken. Op hoeveel verschillende manieren kunnen 3 jongens daar ieder 1 boek uit kiezen?
1. Iemand heeft thuis 12 CD s in een rekje waar er precies 12 inpassen. a. Op hoeveel manieren kan hij ze in het rekje leggen. b. Hij wil er 2 weggeven aan zijn vriendin, hoeveel mogelijkheden? c. Hij
college 4: Kansrekening
college 4: Kansrekening Deelgebied van de statistiek Doel: Kansen berekenen voor het waarnemen van bepaalde uitkomsten Kansrekening 1. Volgordeproblemen Permutaties Variaties Combinaties 2. Kans 3. Voorwaardelijke
2 Kansen optellen en aftrekken
2 Kansen optellen en aftrekken Verkennen www.mathall.nl MAThADORE-basic HAVO/VWO /5/ VWO wi-a Kansrekening Optellen/aftrekken Inleiding Verkennen Beantwoord de vragen bij Verkennen. Uitleg www.mathall.nl
1 Kansbomen. Verkennen. Uitleg. Theorie en Voorbeelden. Beantwoord de vragen bij Verkennen.
1 Kansbomen Verkennen www.math4all.nl MAThADORE-basic HAVO/VWO 4/5/6 VWO wi-a Kansrekening Kansbomen Inleiding Verkennen Beantwoord de vragen bij Verkennen. Uitleg www.math4all.nl MAThADORE-basic HAVO/VWO
Combinatoriek en rekenregels
Combinatoriek en rekenregels Les 3: Het vaasmodel (deze les sluit aan bij de paragrafen 5, 6 en 7 van Hoofdstuk 1 Combinatoriek en Rekenregels van de Wageningse Methode, http://www.wageningsemethode.nl/methode/het-lesmateriaal/?s=y456v-d)
H8: Regelmaat & verandering H9: Kansverdelingen...4-7
Oefenmateriaal V5 wiskunde C Voorbereiding op SE-toets 1 wiskunde INHOUDSOPGAVE H8: Regelmaat & verandering...1-3 H9: Kansverdelingen....4-7 Hoofdstuk 8: Regelmaat & veranderingen Rekenkundige rij Meetkundige
1.0 Voorkennis. Getallenverzameling = Verzameling van getallen met een bepaalde eigenschap
1.0 Voorkennis Getallenverzameling = Verzameling van getallen met een bepaalde eigenschap Natuurlijke getallen: Dit zijn alle positieve gehele getallen en nul. = {0, 1, 2, 3, 4, 5, 6,...} De getallen 0,
9.1 Gemiddelde, modus en mediaan [1]
9.1 Gemiddelde, modus en mediaan [1] De onderstaande frequentietabel geeft aan hoeveel auto s er in een bepaald uur in een straat geteld zijn. Aantal auto s per uur 15 16 17 18 19 20 21 frequentie 2 7
Praktische opdracht Wiskunde som van de ogen van drie dobbelstenen
Praktische opdracht Wiskunde som van de ogen van drie dobbelstenen Praktische-opdracht door een scholier 918 woorden 17 maart 2002 4,9 60 keer beoordeeld Vak Wiskunde Inleiding Wij hebben gekozen voor
3 Kansen vermenigvuldigen
3 Kansen vermenigvuldigen Verkennen www.math4all.nl MAThADORE-basic HAVO/VWO 4/5/6 VWO wi-a Kansrekening Vermenigvuldigen Inleiding Verkennen Beantwoord de vragen bij Verkennen. Uitleg www.math4all.nl
7,7. Samenvatting door Manon 1834 woorden 3 mei keer beoordeeld. Wiskunde C theorie CE.
Samenvatting door Manon 1834 woorden 3 mei 2016 7,7 13 keer beoordeeld Vak Wiskunde Wiskunde C theorie CE. Permutaties: -Het aantal permutaties van drie dingen die je kiest uit acht dingen is: 8*7*6= 336.
Tentamenset A. 2. Welke van de volgende beweringen is waar? c. N R N d. R Z R
Tentamenset A. Gegeven de volgende verzamelingen A en B. A is de verzameling van alle gehele getallen tussen de 0 en 0 die deelbaar zijn door, en B is de verzameling gehele positieve getallen deelbaar
Combinatoriek en rekenregels
Combinatoriek en rekenregels Les 3: Het vaasmodel (deze les sluit aan bij de paragrafen 5, 6 en 7 van Hoofdstuk 1 Combinatoriek en Rekenregels van de Wageningse Methode, http://www.wageningsemethode.nl/methode/het-lesmateriaal/?s=y456v-d)
1BA PSYCH Statistiek 1 Oefeningenreeks 3 1
Juno KOEKELKOREN D.1.3. OEFENINGENREEKS 3 OEFENING 1 In onderstaande tabel vind je zes waarnemingen van twee variabelen (ratio meetniveau). Eén van de waarden van y is onbekend. Waarde x y 1 1 2 2 9 2
Opgaven voor Kansrekening
Opgaven voor Kansrekening Opgave 1. Je hebt 4 verschillende wiskunde boeken, 6 psychologie boeken en 2 letterkundige boeken. Hoeveel manieren zijn er om deze twaalf boeken op een boord te plaatsen als:
Racen maar!
Racen maar! Pak de dobbelsteen en gooi om de beurt voor de rode en de paarse racewagen. Tel het aantal gegooide ogen en kleur dit aantal cirkels behorend bij de racewagen die aan de beurt is. Wie komt
Wiskunde D Online uitwerking oefenopgaven 4 VWO blok 3 les 1
Paragraaf De kansdefinitie Opgave a) Als de kikker verspringt, gaat hij van zwart naar wit, of andersom Hij zit dus afwisselend op een zwart en een wit veld Op een willekeurig moment is de kans even groot
2.0 Voorkennis (64 36) Haakjes (Stap 1) Volgorde bij berekeningen:
Volgorde bij berekeningen: Voorbeeld : 2.0 Voorkennis 1) Haakjes wegwerken 2) Wortels en kwadraten wegwerken 3) Vermenigvuldigen en delen van links naar rechts 4) Optellen en aftrekken van links naar rechts
Oefentoets Tentamen 1 Wiskunde A HAVO
Oefentoets Tentamen 1 Wiskunde A HAVO Opgave 1 In een kist perssinaasappelen zitten standaard 50 sinaasappelen. Voor het persen van één glas sap zijn vijf sinaasappelen nodig. Verder wordt aangenomen dat
5 Totaalbeeld. Samenvatten. Achtergronden. Testen
5 Totaalbeeld Samenvatten Je hebt nu het onderwerp Kansrekening doorgewerkt. Er moet een totaalbeeld van deze leerstof ontstaan... Ga na, of je al de bij dit onderwerp horende begrippen kent en weet wat
Kansrekenen. Lesbrief kansexperimenten Havo 4 wiskunde A Maart 2012 Versie 3: Dobbelstenen
Kansrekenen Lesbrief kansexperimenten Havo 4 wiskunde A Maart 2012 Versie 3: Dobbelstenen Inhoud Inleiding...3 Doel van het experiment...3 Organisatie van het experiment...3 Voorkennis...4 Uitvoeren van
In de Theorie worden de begrippen toevalsvariabele, kansverdeling en verwachtingswaarde toegelicht.
Toevalsvariabelen Verkennen www.mathall.nl MAThADORE-basic HAVO/VWO /5/6 VWO wi-a Kansrekening Toevalsvariabelen Inleiding Verkennen Beantwoord de vragen bij Verkennen. Uitleg www.mathall.nl MAThADORE-basic
VOOR HET SECUNDAIR ONDERWIJS. Kansmodellen. 3. Populatie en steekproef. Werktekst voor de leerling. Prof. dr. Herman Callaert
VOOR HET SECUNDAIR ONDERWIJS Kansmodellen. Werktekst voor de leerling Prof. dr. Herman Callaert Hans Bekaert Cecile Goethals Lies Provoost Marc Vancaudenberg . Populatie: een intuïtieve definitie.... Een
Opgaven voor Kansrekening
Wiskunde 1 voor kunstmatige intelligentie Opgaven voor Kansrekening Opgave 1. Een oneerlijke dobbelsteen is zo gemaakt dat 3 drie keer zo vaak valt als 4 en 2 twee keer zo vaak als 5. Verder vallen 1,
Y = ax + b, hiervan is a de richtingscoëfficiënt (1 naar rechts en a omhoog), en b is het snijpunt met de y-as (0,b)
Samenvatting door E. 1419 woorden 11 november 2013 6,1 14 keer beoordeeld Vak Methode Wiskunde A Getal en ruimte Lineaire formule A = 0.8t + 34 Er bestaat dan een lineair verband tussen A en t, de grafiek
Faculteit, Binomium van Newton en Driehoek van Pascal
Faculteit, Binomium van Newton en Driehoek van Pascal 1 Faculteit Definitie van de faculteit Wisnet-hbo update aug. 2007 (spreek uit k-faculteit) is: k Dit geldt voor elk geheel getal k groter dan 0 en
Kansrekening en statistiek wi2105in deel I 29 januari 2010, uur
Kansrekening en statistiek wi20in deel I 29 januari 200, 400 700 uur Bij dit examen is het gebruik van een (evt grafische rekenmachine toegestaan Tevens krijgt u een formuleblad uitgereikt na afloop inleveren
Lesbrief hypothesetoetsen
Lesbrief hypothesetoetsen 00 "Je gaat het pas zien als je het door hebt" Johan Cruijff Willem van Ravenstein Inhoudsopgave Inhoudsopgave... Hoofdstuk - voorkennis... Hoofdstuk - mens erger je niet... 3
Checklist Wiskunde A HAVO 4 2014-2015 HML
Checklist Wiskunde A HAVO 4 2014-2015 HML 1 Hoofdstuk 1 Ik weet hoe je met procenten moet rekenen: procenten en breuken, percentage berekenen, toename en afname in procenten, rekenen met groeifactoren.
Kansrekening en Statistiek
Kansrekening en Statistiek College 1 Dinsdag 14 September 1 / 34 Literatuur http://www.phil.uu.nl/ iemhoff Applied Statistics for the Behavioral Sciences - 5th edition, Dennis E. Hinkle, William Wiersma,
Laplace Experimenteel Intuïtie Axiomatisch. Het kansbegrip. W. Oele. 27 januari 2014. W. Oele Het kansbegrip
27 januari 2014 Deze les Kanstheorie volgens Laplace Experimentele kanstheorie Axiomatische kanstheorie Intuïtie Kanstheorie volgens Laplace (1749-1827) De kans op een gebeurtenis wordt verkregen door
Kansrekening en statistiek WI2105IN deel I 4 november 2011, uur
Kansrekening en statistiek WI05IN deel I 4 november 0, 4.00 7.00 uur Bij dit examen is het gebruik van een (evt. grafische) rekenmachine toegestaan. Een formuleblad wordt uitgereikt. Meerkeuzevragen Toelichting:
Gokautomaten (voor iedereen)
Gokautomaten (voor iedereen) In een fruitautomaat draaien de schijven I, II en III onafhankelijk van elkaar. Door een hendel kan elke schijf tot stilstand worden gebracht. In de tabel zie je wat op elke
Hoofdstuk 11: Kansverdelingen 11.1 Kansberekeningen Opgave 1: Opgave 2: Opgave 3: Opgave 4: Opgave 5:
Hoofdstuk : Kansverdelingen. Kansberekeningen Opgave : kan op manieren 5 kan op! manieren 555 kan op manier 0 0 som 5) Opgave : som 5) som 5) som ) som ) c. som 0) d. som 0) som ) Opgave : som ) som )
Opgaven voor Kansrekening - Oplossingen
Wiskunde voor kunstmatige intelligentie Opgaven voor Kansrekening - Opgave. Een oneerlijke dobbelsteen is zo gemaakt dat drie keer zo vaak valt als 4 en twee keer zo vaak als 5. Verder vallen,, en even
Kern 1 Rekenen met binomiale kansen
Netwerk e editie havo A Hoofdstuk De binomiale verdeling uitwerkingen Hoofdstuk De binomiale verdeling uitwerkingen Kern Rekenen met binomiale kansen a Omdat er steeds twee mogelijkheden zijn: zwart óf
Bovenstaand schema kan je helpen bij het bepalen van het soort telprobleem en de berekening van het aantal mogelijkheden 2.
Telproblemen voor 4 HAVO wiskunde A In het schoolexamen 2 van 4 HAVO wiskunde A zijn de opgaven over de telproblemen (hoofdstuk 4) erg slecht gemaakt. Dat moet beter kunnen, zou ik denken Ik bespreek hier
wiskundeleraar.nl
2015-2016 wiskundeleraar.nl 1. voorkennis Volgorde bij bewerkingen 1. haakjes 2. machtsverheffen. vermenigvuldigen en delen van links naar rechts 4. optellen en aftrekken van links naar rechts Voorbeeld
Examenprogramma wiskunde A vwo
Examenprogramma wiskunde A vwo Het eindexamen Het eindexamen bestaat uit het centraal examen en het schoolexamen. Het examenprogramma bestaat uit de volgende domeinen: Domein A Vaardigheden Domein Bg Functies
1. De wereld van de kansmodellen.
STATISTIEK 3 DE GRAAD.. De wereld van de kansmodellen... Kansmodellen X kansmodel Discreet model Continu model Kansverdeling Vaas Staafdiagram Dichtheidsfunctie f(x) GraJiek van f Definitie: Een kansmodel
Medische Statistiek Kansrekening
Medische Statistiek Kansrekening Medisch statistiek- kansrekening Hoorcollege 1 Uitkomstenruimte vaststellen Ook wel S of E. Bij dobbelsteen: E= {1,2,3,4,5,6} Een eindige uitkomstenreeks Bij het gooien
Differentiëren naar leerlingniveau met behulp van ICT als oefenomgeving. Interfacultaire Lerarenopleidingen, Universiteit van Amsterdam
Ontwerponderzoek Naam auteur(s) Vakgebied Titel Onderwerp Opleiding Doelgroep Sleuteltermen Wil Baars Wiskunde Differentiëren naar niveau met behulp van ICT als oefenomgeving Differentiëren naar leerlingniveau
Paragraaf 9.1 : De Verwachtingswaarde
Hoofdstuk 9 Kansverdelingen (V5 Wis A) Pagina 1 van 8 Paragraaf 9.1 : De Verwachtingswaarde Les 1 Verwachtingswaarde Definities : Verwachtingswaarde Verwachtingswaarde = { wat je verwacht } { gemiddelde
Uitwerkingen Mei 2012. Eindexamen HAVO Wiskunde A. Nederlands Mathematisch Instituut Voor Onderwijs en Onderzoek
Uitwerkingen Mei 2012 Eindexamen HAVO Wiskunde A Nederlands Mathematisch Instituut Voor Onderwijs en Onderzoek Supersize me Opgave 1. De formule voor de dagelijkse energiebehoefte is E b = 33,6 G. Als
Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: kansrekening. 22 juli 2015. dr. Brenda Casteleyn
Voorbereiding toelatingsexamen arts/tandarts Wiskunde: kansrekening 22 juli 2015 dr. Brenda Casteleyn Met dank aan: Atheneum van Veurne (http://www.natuurdigitaal.be/geneeskunde/fysica/wiskunde/wiskunde.htm),
COMBINATORIEK. Vb2. Hoeveel verschillende natuurlijke getallen van drie cijfers kan je vormen? Gebruik een boomdiagram.
1. Eenvoudige telproblemen COMBINATORIEK In het 4 de jaar hebben we kennis gemaakt met eenvoudige telproblemen. Om deze telproblemen op te lossen leerden we het aantal tellen met behulp van o.a. boomdiagrammen.
5 keer beoordeeld 4 maart Wiskunde H6, H7, H8 Samenvatting
4,4 Samenvatting door Syb 954 woorden 5 keer beoordeeld 4 maart 2018 Vak Wiskunde Methode Getal en Ruimte Wiskunde H6, H7, H8 Samenvatting HOOFDSTUK 6 Procenten, Diagrammen en Kansrekening (10 en 100 zijn
Hieronder zie je hoe dat gaat. Opgave 3. Tel het aantal routes in de volgende onvolledige roosters van linksboven naar rechtsonder.
Groepsopdracht 1: Volledige en onvolledige roosters Voor een volledig rooster kun je de driehoek van Pascal gebruiken om te weten te komen hoeveel routes er van A naar B zijn. Bij onvolledige roosters
begin van document Eindtermen havo wiskunde A (CE) gekoppeld aan delen en hoofdstukken uit Moderne wiskunde 9e editie
begin van document Eindtermen havo wiskunde A (CE) gekoppeld aan delen en hoofdstukken uit Moderne wiskunde 9e editie Domein Subdomein in CE moet in SE A A1: Informatievaardigheden X X Vaardigheden A2:
extra sommen Statistiek en Kans
extra sommen Statistiek en Kans 1. Bepaal bij de volgende rijen de modus, de mediaan en het gemiddelde a. 1, 4, 2, 3, 5, 3, 6, 3 b. 12, 11, 13, 11, 12, 11, 12, 13, 11, 14, 75, 15 c. 1, 43, 12, 32, 43,
extra sommen Statistiek en Kans
extra sommen Statistiek en Kans 1. Bepaal bij de volgende rijen de modus, de mediaan en het gemiddelde a. 1, 4, 2, 3, 5, 3, 6, 3 b. 12, 11, 13, 11, 12, 11, 12, 13, 11, 14, 75, 15 c. 1, 43, 12, 32, 43,
Hoofdstuk 1 Tellen en kans uitwerkingen
Kern Permutaties en combinaties a R W B G W B G R B G R W G R W B B G W G B W B G R G B R W G R G W R B W B R R W b Het aantal verschillende kleuringen is gelijk aan 4 4 a 5 4 5 npr 70 b 5 4... 6 5 4 4
Uitwerkingen Wiskunde A HAVO
Uitwerkingen Wiskunde A HAVO Nederlands Mathematisch Instituut December 28, 2012 Supersize me Opgave 1. De formule voor de dagelijkse energiebehoefte is E b = 33,6 G. Als we dit invullen dan krijgen we
Hoofdstuk 5 Rekenen met kansen uitwerkingen
Kern Rekenen met kansen a 0 29 870 eindknopen. b De teller van de breuk geeft aan hoeveel mogelijkheden er zijn voor de betreffende kleur. De noemer van de breuk geeft weer hoeveel mogelijkheden er in
Notatieafspraken Grafische Rekenmachine, wiskunde A
Notatieafspraken Grafische Rekenmachine, wiskunde A Bij deze verstrek ik jullie de afspraken voor de correcte notatie bij het gebruik van de grafische rekenmachine. Verder krijg je een woordenlijst met
wizprof 2016 Veel succes en vooral veel plezier.!! je hebt 75 minuten de tijd rekenmachine is niet toegestaan
www.zwijsen.nl www.e-nemo.nl www.education.ti.com Veel succes en vooral veel plezier.!! Stichting Wiskunde Kangoeroe Stichting Wiskunde Kangoeroe rekenmachine is niet toegestaan je hebt 75 minuten de tijd
combinaties te berekenen.
Een roosterdiagram is een handig model voor telproblemen waarbij je steeds uit twee mogelijkheden (uit-thuis, wel-niet) moet kiezen. Een kortste route bestaatuit een aantal stappen : n. Daarvan worden
Gezamenlijke kansverdeling van twee stochasten
Gezamenlijke kansverdeling van twee stochasten Voorbeeld: V = de windsnelheid H = hoogte van het waterniveau in een rivier/zee De combinatie (V, H) is van belang voor een overstroming en niet zozeer V
Kansrekening en Statistiek
Kansrekening en Statistiek College 1 Woensdag 9 September 1 / 39 Site: http://www.phil.uu.nl/ iemhoff Literatuur: Applied Statistics for the Behavioral Sciences - 5th edition, Dennis E. Hinkle, William
Combinatoriek. Wisnet-hbo. update aug. 2007
Combinatoriek 1 Permutaties Wisnet-hbo update aug. 2007 Op hoeveel manieren kun je de volgorde van de vier verschillende letters van het woord BOEK op een rijtje zetten? De verschillende volgorden (permutaties)
Leerstof voortentamen wiskunde A. 1. Het voortentamen wiskunde A
Leerstof voortentamen wiskunde A In dit document wordt de leerstof beschreven van het programma van het voortentamen wiskunde A op havo niveau te beginnen met het voortentamen van juli 2016. Deze specificatie
Paragraaf 9.1 : De Verwachtingswaarde
Hoofdstuk 9 Kansverdelingen (V5 Wis A) Pagina 1 van 8 Paragraaf 9.1 : De Verwachtingswaarde Les 1 Verwachtingswaarde Definities : Verwachtingswaarde Verwachtingswaarde = { wat je verwacht } { gemiddelde
Examen Discrete Wiskunde donderdag 8 maart, 2018
Examen Discrete Wiskunde 2017-2018 donderdag 8 maart, 2018 De opgaven dienen duidelijk uitgewerkt te zijn en netjes ingeleverd te worden. Gebruik hiervoor de ruimte onder de vraag; er is in principe genoeg
10.0 Voorkennis. Herhaling van rekenregels voor machten: a als a a 1 0[5] [6] Voorbeeld 1: Schrijf als macht van a:
10.0 Voorkennis Herhaling van rekenregels voor machten: p p q pq a pq a a a [1] a [2] q a q p pq p p p a a [3] ( ab) a b [4] Voorbeeld 1: Schrijf als macht van a: 1 8 : a a : a a a a 3 8 3 83 5 Voorbeeld
WELKE WISKUNDE MOET IK KIEZEN VOOR HET EXAMEN- PROGRAMMA 2015? Folder voor leerlingen in klas 3 havo
WELKE WISKUNDE MOET IK KIEZEN VOOR HET EXAMEN- PROGRAMMA 015? Folder voor leerlingen in klas havo WELKE WISKUNDE MOET IK KIEZEN? Dit jaar moet je kiezen welke wiskunde je wilt gaan volgen in de bovenbouw.
