Department of Mathematics Exam: Voortgezette biostatistiek / Biomedische wiskunde VU University Amsterdam 2017, Maart 28

Maat: px
Weergave met pagina beginnen:

Download "Department of Mathematics Exam: Voortgezette biostatistiek / Biomedische wiskunde VU University Amsterdam 2017, Maart 28"

Transcriptie

1 Department of Mathematics Exam: Voortgezette biostatistiek / Biomedische wiskunde VU University Amsterdam 07, Maart 8 c Dept. of Mathematics, VU University Amsterdam NB. Geef een duidelijke toelichting bij de antwoorden. Het gebruik van een rekenmachine is toegestaan, maar geen programmeerbare/grafische rekenmachine, mobiele telefoon of laptop. Succes! Normering: a) 3, b) 3, c) 3, d), a) 3, b) 3, 3a) 3, 3b) 3, 3c) 3. Vraag (Markov modellen) Dagelijks wordt de fijnstof-concentratie in Amsterdam gemeten. Deze concentratie, geclassificeerd als laag, gemiddeld of hoog, kan m.b.v. een ste orde Markov keten gemodelleerd worden. Op reguliere dagen staat er een zachte danwel stevige bries, maar af en toe is het windstil danwel stormachtig. Bij een zachte bries daalt de concentratie niet en stijgt (met kans α) één niveau. Staat er daarentegen een stevige bries, dan stijgt de concentratie niet maar daalt (met kans β) één niveau. Eens in de honderd dagen trekt een storm over de stad en veegt de lucht volledig schoon van fijnstof. Evenzo is het eens in de honderd dagen windstil en stijgt de fijnstof-concentratie naar het hoogste niveau. Natuurlijk kan (bijv. bij aanhoudendend stormachtig weer) de fijnstofconcentratie gelijk blijven. Vraag a) Geef de toestandsruimte en transitie-matrix van het boven beschreven Markov proces met daarbij de parameter restricties. Teken ook het state diagram met daarin bijhorende overgangskansen. Ga bij de resterende onderdelen van deze vraag uit van de volgende transitie-matrix : γ P = γ γ δ +δ γ, δ δ waarbij rijen- en kolommen-volgorde correspondeert met fijnstof-concentraties laag, gemiddeld en hoog. Merk op: deze transitie-matrix kent een andere parameterizatie (wat de betekenis van de elementen niet verandert). Vraag b) Heeft dit ste orde Markov proces een stationaire verdeling? Zo ja, geef deze (veronderstel hierbij enkel voor deze deelvraag dat γ = and δ = ). Vraag c) Neem aan dat het antwoord op b een uniforme verdeling is. Is het ste orde Markov proces dan reversibel? Motiveer je antwoord. Belicht tevens of je reversibiliteit noodzakelijk vindt voor een zinvolle beschrijving van het voornoemde fijnstof-verloop. Vraag d) Over een periode van tien dagen is de volgende fijnstof-concentratie gemeten: laag, laag, gemiddeld, laag, gemiddeld, laag, hoog, gemiddeld, gemiddeld, laag. Gebruik de maximum likelihood methode om de parameters α en β op basis van dit verloop te schatten. Veronderstel hierbij de kans om op dag één een lage concentratie aan te treffen gelijk aan.

2 Vraag (Hidden Markov model) Het menselijk DNA van een baarmoederhalskankercel bevat viraal DNA maar kent ook veel mutaties. Het DNA van zo n cel is opgedeeld in opeenvolgende stukken en van elk stuk is de overeenkomst met het humane referentie-genoom bepaald. De mate van overeenkomst duidt op de DNA origine. De geobserveerde overeenkomst-sequentie {Y t } T t= kan worden verklaard vanuit de origine van het corresponderende stuk DNA m.b.v. een hidden Markov model (HMM), waarbij de verschillende origines de toestanden van de onderliggende ste order Markov keten representeren. De parameters (π, P, B) (resp. de startverdeling, de transitie- en emissie-matrix) van het HMM worden gegeven door π = (,0) (de kans op humaan danwel viraal, resp.), P = ( ), en B = ( De rijen van de matrices P en B representeren de origines(humaan/viraal, resp.) en de kolommen van B corresponderen met een lage/gemiddelde/hoge (resp.) overeenkomst. Vraag a Bereken P((Y,Y,Y 3 ) = (hoog,middel,laag)). Vraag b Wat is de meest aannemelijk toestandssequentie die ten grondslag ligt aan de geobserveerde overeenkomst-sequentie (Y,Y,Y 3 ) = (hoog,laag,middel)? ) Vraag 3 Beschouw een pathway van 3 genen. De expressie-niveau s van de drie genen worden gerepresenteerd door de random variabelen Y, Y en Y 3. Vraag 3a) Zij Y = Y + ε, Y 3 = Y Y + ε 3 met Y, ε en ε 3 onderling onafhankelijk en elk standaard normaal verdeeld. Bereken de correlatie tussen Y en Y 3. Vraag 3b) Neem nu aan dat (Y,Y,Y 3 ) N(µ,Σ) met µ = (0,0,0) en: Σ = 4 3 3, 3 3 Reken de partiële correlatie tussen Y en Y gegeven Y 3 uit. Vraag 3c) Neem aan dat de bij 3b gevraagde partiele correlatie gelijk aan nul is. Data van de expressieniveau s zijn beschikbaar. Een regressie-model, dat de expressie-niveaus s van Y in termen van Y 3 verklaart, wordt m.b.v. deze data gefit, nl.: Y = β Y 3 +ε. De R-output voor deze regressie fit is: Estimate Std. Error t value Pr(> t ) Y <e-6 Kan uit bovenstaande R-output geconcludeerd worden dat Y conditioneel afhankelijk is van Y 3?

3 FORMULE BLAD Bij het tentamen kunnen de volgende formules handig zijn. De inverse van een matrix A met elementen a j,j = (A) j,j is: A = ( ) ( ) a a = [det(a)] a a a a a a met det(a) = a a a a. De inverse van een 3 3 matrix A met elementen a j,j = (A) j,j is: A = [det(a)] a 33 a a 3 a 3 (a 33 a a 3 a 3 ) a 3 a a a 3 (a 33 a a 3 a 3 ) a 33 a a 3 a 3 (a 3 a a a 3 ) a 3 a a 3 a (a 3 a a 3 a ) a a a a met det(a) = a (a 33 a a 3 a 3 ) a (a 33 a a 3 a 3 )+a 3 (a 3 a a a 3 ). De dichtsheidsfunctie van de multivariaat normale verdeling van random variable Y is f(y;µ,σ) = (π) p/ Σ / exp[ (Y µ) Σ (Y µ)/], met µ en Σ de verwachting en covariantie parameters, respectievelijk. Indien een p-variate normaal verdeelde random variabele Z als volgt gepartitioneerd kan worden: Z = ( X Y ) N (( µx dan wordt de conditionele verdeling van Y X gegeven door: ) ( )) ΣXX Σ, XY, µ Y Σ YX Σ YY Y X N(µ Y +Σ Y X Σ XX (X µ X),Σ YY Σ YX Σ XX Σ XY). Zij A en B twee gebeurtenissen. De regel van Bayes zegt dan: P(A B) = P(B A) P(A)/P(B). Zij A en B,...,B n gebeurtenissen z.d.d. n i= P(B i) =. De total probability law zegt dan: P(A) = n P(A,B i ). i= Zij W, X, Y en Z random vectoren, A en B non-random matrices van geschikte dimensies, en c een constante. Dan geldt: Cov(c,Y) = 0, Cov(Y,Y) = Var(Y), Cov(Y,Z) = 0 als Y en Z onafhankelijk zijn, Cov(AX,BY) = ACov(X,Y)B, en Cov(W+X,Y +Z) = Cov(W,Y)+Cov(W,Z)+Cov(X,Y)+Cov(X,Z). 3

4 Antwoorden Antwoord op vraag Vraag a De toestandsruimte S bestaat uit toestanden {laag, middel, hoog}. De kans op storm danwel windstil is, dus de kans op een reguliere dag is. Oftewel: P(stevige bries) + P(zachte bries) =. Als P(stevige bries) = p sb dan P(zachte bries) = p bz. Merk op: de interpretatie P(stevige bries) = 49 = P(zachte bries) wordt goed gerekend. Dan, mbv de total probability law : P(X t+ = laag X t = laag) = P(X t+ = laag,windstil X t = laag) Evenzo, of gelijke wijze: +P(X t+ = laag,zachte bries X t = laag) +P(X t+ = laag,stevige bries X t = laag) +P(X t+ = laag,storm X t = laag) = 0 +( α) ( p sb)+ p sb + = ( α)+αp sb +. P(X t+ = middel X t = laag) = 0 +α ( p sb)+0 p sb +0 P(X t+ = hoog X t = laag) = P(X t+ = laag X t = middel) = 0 P(X t+ = middel X t = middel) = 0 P(X t+ = hoog X t = middel) = P(X t+ = laag X t = hoog) = 0 P(X t+ = middel X t = hoog) = 0 P(X t+ = hoog X t = hoog) =, p sb)+0 p sb +0 = p sb)+β p sb +,, +( α) ( p sb)+( β) p sb +0 +α ( p sb)+0 p sb +0, p sb)+0 p sb +, p sb)+β p sb +0, + ( p sb)+( β) p sb +0, Samengevoegd: P = ( α)+αp sb + α( βp sb + ( α)( p sb)+( β)p sb βp sb, p sb) +α( p sb) +( p sb)+( β)p sb De rijen sommeren inderdaad tot een. Verder, uit het feit dat elk element van P in het interval [0, ] moet liggen, volgen de parameter-restricties. Direct volgt 0 α, β. Specifieker, middels expliciet uitrekenen geeft: α min{, 99 ( p sb) } en β min{, 99 p sb }. Includeer ook het state diagram. Vraag b De transitie matrix wordt dus: P = 3 Ja, heeft stationaire verdeling: irreducibel en aperiodiek. Gebruik dan: ϕ P = ϕ en ϕ L +ϕ M + ϕ H =. Dit geeft het volgende stelsel van vergelijkingen:, 3ϕ L +ϕ M +ϕ H = ϕ L, ϕ L +ϕ M +ϕ H = ϕ M, ϕ L +ϕ M +ϕ H = ϕ H.. 4

5 Laat de laatste formule vervallen en herschrijf de eerste twee: (ϕ M ϕ L )+(ϕ H ϕ L ) = 0 (ϕ L ϕ M )+(ϕ H ϕ M ) = 0, ϕ L +ϕ M +ϕ H =. De laatste vergelijking levert ϕ H = ϕ L ϕ M. Substitueer dit in de eerste twee vergelijkingen: (ϕ M ϕ L )+( ϕ L ϕ M ) = 3ϕ L = 0 (ϕ L ϕ M )+( ϕ L ϕ M ) = ϕ L ϕ M = 0. Dus: (ϕ L,ϕ M,ϕ H ) = (,,)/3. Deze kansen liggen in het interval (0,) en sommeren tot een. Merk op: dit had ook direct uit de symmetrie van P geconcludeerd kunnen worden: een irreducibele, aperiodieke Markov keten met een symmetrische transitie matrix heeft een uniforme stationaire verdeling. Vraag c Reversibiliteit toetst men met behulp van de detailed balance equations: ϕ L (P) L,M = 3 3 γ = ϕ s(p) M,L. Het model is derhalve niet reversibel voor alle keuze vd parameters. Dit is ook nietnoodzakelijk daar de actuele staat van het weer en de fijnstof-concentratie direct geobserveerd kunnen worden. Vraag d De likelihood van deze sequentie wordt gegeven door: P(X = ) 0 t= P(X t X t ). Ofwel: ( γ ) γ γ γ δ ( δ) γ = δγ 4 ( γ)( δ). Neem de logaritme, deze is proportioneel aan: log(δ)+4log(γ)+log( γ)+log( δ). Stel eerste orde afgeleiden (naar γ en δ) gelijk aan nul: /δ /( δ) = 0 en 4/γ /( γ) = 0. Oplossen levert: ˆδ = / en ˆγ = 6/. Antwoord op vraag Vraag a Slechts twee onderliggende toestandssequenties kunnen de geobserveerde data verklaren: {X = Humaan,X = Humaan,X 3 = Viraal} en {X = Humaan,X = Viraal,X 3 = Viraal}. Om de gevraagde kans uit te rekenen gebruik de total probability law: P(Y = H,Y = M,Y 3 = L) = P(Y = H,Y = M,Y 3 = L X = Humaan,X = Humaan,X 3 = Viraal) P(X = Humaan,X = Humaan,X 3 = Viraal) +P(Y = H,Y = M,Y 3 = L X = Humaan,X = Viraal,X 3 = Viraal) P(X = Humaan,X = Viraal,X 3 = Viraal) = P(Y = H X = Humaan)P(Y = M X = Humaan)P(Y 3 = L X 3 = Viraal) P(X = Humaan)P(X = Humaan X = Humaan)P(X 3 = Viraal X = Humaan) +P(Y = H X = Humaan)P(Y = M X = Viraal)P(Y 3 = L X 3 = Viraal) P(X = Humaan)P(X = Viraal X = Humaan)P(X 3 = Viraal X = Viraal) = ( ) ( )+( ) ( ) =

6 In het bovenstaande is de Markov eigenschap van de onderliggende keten gebruikt alsook de conditionele onafhankelijkheid van de observaties gegeven de onderliggende toestanden. Vraag b Gebruik de regel van Bayes danwel definitie van conditionele kans om het gevraagde te herschrijven: arg max X,X,X 3 P(X,X,X 3 Y = H,Y = L,Y 3 = M) X,X,X 3 P(X,X,X 3,Y = H,Y = L,Y 3 = M) P(Y = H,Y = L,Y 3 = M) X,X,X 3 P(X,X,X 3,Y = H,Y = L,Y 3 = M) X,X,X 3 P(Y = H,Y = L,Y 3 = M X,X,X 3 )P(X,X,X 3 ) X,X,X 3 P(Y = H X )P(Y = L X )P(Y 3 = M X 3 )P(X )P(X X )P(X 3 X ). Merk nu op dat wederom slechts twee toestandssequenties de observaties kunnen genereren: {X = Humaan,X = Viraal,X 3 = Humaan} en {X = Humaan,X = Viraal,X 3 = Viraal}. Evalueer voor beide toestandssequenties de bovenstaande kans. De eerst levert: ( ) ( 0. 0.), terwijl de tweede ( ) ( 0. 0.) geeft. De tweede sequentie is dus meer aannemelijk. Antwoord op vraag 3 Vraag 3a De definitie van correlatie geeft: ρ(y,y 3 ) = Cov(Y,Y 3 ) Var(Y ) Var(Y 3 ). Reken de individuele termen uit: Var(Y ) = Var(Y 3 ) = Cov(Y 3,Y 3 ) = Cov(Y Y +ε 3,Y Y +ε 3 ) = Cov(Y Y ε +ε 3,Y Y ε +ε 3 ) = Cov( ε +ε 3, ε +ε 3 ) = Cov(Y Y ε +ε 3,Y Y ε +ε 3 ) = Cov( ε +ε 3, ε +ε 3 ) = Cov( ε, ε )+Cov( ε,ε 3 )+Cov(ε 3, ε )+Cov(ε 3,ε 3 ) = Var(ε )+Var(ε 3 ) = Cov(Y,Y 3 ) = Cov(Y,Y Y +ε 3 ) = Cov(Y +ε 3,Y Y ε +ε 3 ) = Cov(Y +ε 3, ε +ε 3 ) = 0. De gevraagde correlatie is dus 0. Vraag 3b Voor de partiële correlatie matrix, neem eerst de inverse: Σ =

7 Standardizeer deze matrix tot: 3/ 7/ 3/ / 33 7/ / 33 Rest nog de off-diagonal elementen met te vermenigvuldigen en de gevraagde partiële correlatie af te lezen: ρ(y,y Y 3 ) = 3/. Vraag 3c Gegeven: ρ(y,y Y 3 ) = 0. Daar partiele correlaties- gerelateerdzijn aan regressie-coefficienten weten we dat (bijv.) β = 0 in Y = β Y +β 3 Y 3 +ε, i.e. de variable Y voegt niets toe aan het verklaren van de variatie in Y. Kortom, om nu vast te stellen dat Y en Y 3 gegeven Y onhankelijk zijn volstaat om vast te stellen dat β 3 in Y = β 3 Y 3 +ε. Dit blijkt uit de regressie output.. 7

Department of Mathematics Exam: Voortgezette biostatistiek / Biomedische wiskunde VU University Amsterdam 2017, Juni 7

Department of Mathematics Exam: Voortgezette biostatistiek / Biomedische wiskunde VU University Amsterdam 2017, Juni 7 Department of Mathematics Exam: Voortgezette biostatistiek / Biomedische wiskunde VU University Amsterdam 07, Juni 7 c Dept. of Mathematics, VU University Amsterdam NB. Geef een duidelijke toelichting

Nadere informatie

VU University Amsterdam 2018, juli 11.

VU University Amsterdam 2018, juli 11. Department of Mathematics Herexamen: Voortgezette biostatistiek VU University Amsterdam 018, juli 11. c Dept. of Mathematics, VU University Amsterdam NB. Geef een duidelijke toelichting bij de antwoorden.

Nadere informatie

VU University Amsterdam 2018, Maart 27

VU University Amsterdam 2018, Maart 27 Department of Mathematics Exam: Voortgezette biostatistiek VU University Amsterdam 2018, Maart 27 c Dept. of Mathematics, VU University Amsterdam NB. Geef een duidelijke toelichting bij de antwoorden.

Nadere informatie

Hertentamen Biostatistiek 3 / Biomedische wiskunde

Hertentamen Biostatistiek 3 / Biomedische wiskunde Hertentamen Biostatistiek 3 / Biomedische wiskunde 2 juni 2014; 18:30-20:30 NB. Geef een duidelijke toelichting bij de antwoorden. Na correctie liggen de tentamens ter inzage bij het onderwijsbureau. Het

Nadere informatie

VU University Amsterdam 2019, maart 28.

VU University Amsterdam 2019, maart 28. Department of Mathematics Examen: Voortgezette biostatistiek (MNW) VU University Amsterdam 2019, maart 28. Dept. of Mathematics, VU University Amsterdam NB. Geef een duidelijke toelichting bij de antwoorden.

Nadere informatie

Hertentamen Voortgezette biostatistiek / Biomedische wiskunde

Hertentamen Voortgezette biostatistiek / Biomedische wiskunde Hertentamen Voortgezette biostatistiek / Biomedische wiskunde 1 juni 2016; 18:30-20:30 NB. Geef een duidelijke toelichting bij de antwoorden. Na correctie liggen de tentamens ter inzage bij het onderwijsbureau.

Nadere informatie

Tentamen Voortgezette biostatistiek / Biomedische wiskunde

Tentamen Voortgezette biostatistiek / Biomedische wiskunde Tentamen Voortgezette biostatistiek / Biomedische wiskunde 22 maart 2016; 08:45-10:45 NB. Geef een duidelijke toelichting bij de antwoorden. Na correctie liggen de tentamens ter inzage bij het onderwijsbureau.

Nadere informatie

Hertentamen Voortgezette biostatistiek / Biomedische wiskunde

Hertentamen Voortgezette biostatistiek / Biomedische wiskunde Hertentamen Voortgezette biostatistiek / Biomedische wiskunde 3 juni 5; 8:3-:3 NB. Geef een duidelijke toelichting bij de antwoorden. Na correctie liggen de tentamens ter inzage bij het onderwijsbureau.

Nadere informatie

VU University Amsterdam 2019, maart 28.

VU University Amsterdam 2019, maart 28. Department of Mathematics Examen: Biomedische wiskunde VU University Amsterdam 2019, maart 28. Dept. of Mathematics, VU University Amsterdam NB. Geef een duidelijke toelichting bij de antwoorden. Het gebruik

Nadere informatie

Tentamen Voortgezette biostatistiek / Biomedische wiskunde

Tentamen Voortgezette biostatistiek / Biomedische wiskunde Tentamen Voortgezette biostatistiek / Biomedische wiskunde 27 maart 2015; 15:15-17:15 NB. Geef een duidelijke toelichting bij de antwoorden. Na correctie liggen de tentamens ter inzage bij het onderwijsbureau.

Nadere informatie

Tentamen Biostatistiek 3 / Biomedische wiskunde

Tentamen Biostatistiek 3 / Biomedische wiskunde Tentamen Biostatistiek 3 / Biomedische wiskunde 25 maart 2014; 12:00-14:00 NB. Geef een duidelijke toelichting bij de antwoorden. Na correctie liggen de tentamens ter inzage bij het onderwijsbureau. Het

Nadere informatie

Oude tentamenopgaven

Oude tentamenopgaven Oude tentamenopgaven (met enkele uitwerkingen Vraag De omvang (n van een celpopulatie over de tijd (t, 2, 3,... laat zich beschrijven middels een eerste orde Markov proces. Voor elke tijdstap, is het mogelijk

Nadere informatie

Tentamen Inleiding Kansrekening 9 juni 2016, 10:00 13:00 Docent: Prof. dr. F. den Hollander

Tentamen Inleiding Kansrekening 9 juni 2016, 10:00 13:00 Docent: Prof. dr. F. den Hollander Tentamen Inleiding Kansrekening 9 juni 6, : 3: Docent: Prof. dr. F. den Hollander Bij dit tentamen is het gebruik van boek en aantekeningen niet toegestaan. Er zijn 8 vragen, elk met onderdelen. Elk onderdeel

Nadere informatie

Hertentamen Inleiding Kansrekening 5 juli 2017, 14:00 17:00 Docent: Prof. dr. F. den Hollander

Hertentamen Inleiding Kansrekening 5 juli 2017, 14:00 17:00 Docent: Prof. dr. F. den Hollander Hertentamen Inleiding Kansrekening 5 juli 07, 4:00 7:00 Docent: Prof. dr. F. den Hollander Bij dit tentamen is het gebruik van boek en aantekeningen niet toegestaan, wel het gebruik van rekenmachine. Er

Nadere informatie

b) Uit Bayes volgt, gebruik makend van onderdeel a) P (T V )P (V ) P (T ) = (0.09)(0.07)

b) Uit Bayes volgt, gebruik makend van onderdeel a) P (T V )P (V ) P (T ) = (0.09)(0.07) Uitwerkingen tentamen 6 juli 22. We stellen T de gebeurtenis test geeft positief resultaat, F de gebeurtenis, chauffeur heeft gefraudeerd, V de gebeurtenis, chauffeur heeft vergissing gemaakt C de gebeurtenis,

Nadere informatie

P (X n+1 = j X n = i, X n 1,..., X 0 ) = P (X n+1 = j X n = i). P (X n+1 = j X n = i) MARKOV KETENS. Definitie van Markov keten:

P (X n+1 = j X n = i, X n 1,..., X 0 ) = P (X n+1 = j X n = i). P (X n+1 = j X n = i) MARKOV KETENS. Definitie van Markov keten: Definitie van Markov keten: MARKOV KETENS Een stochastisch proces {X n, n 0} met toestandsruimte S heet een discrete-tijd Markov keten (DTMC) als voor alle i en j in S geldt P (X n+ = j X n = i, X n,...,

Nadere informatie

Tentamen Voortgezette Kansrekening (WB006C)

Tentamen Voortgezette Kansrekening (WB006C) WB6C: Voortgezette Kansrekening Donderdag 26 januari 212 Tentamen Voortgezette Kansrekening (WB6C) Het is een open boek tentamen. Gebruik van een rekenmachine of andere hulpmiddelen is niet toegestaan.

Nadere informatie

Technische Universiteit Delft. ANTWOORDEN van Tentamen Gewone differentiaalvergelijkingen, TW2030 Vrijdag 30 januari 2015,

Technische Universiteit Delft. ANTWOORDEN van Tentamen Gewone differentiaalvergelijkingen, TW2030 Vrijdag 30 januari 2015, Technische Universiteit Delft Faculteit EWI ANTWOORDEN van Tentamen Gewone differentiaalvergelijkingen, TW23 Vrijdag 3 januari 25, 4.-7. Dit tentamen bestaat uit 6 opgaven. Alle antwoorden dienen beargumenteerd

Nadere informatie

Het tentamen heeft 25 onderdelen. Met ieder onderdeel kan maximaal 2 punten verdiend worden.

Het tentamen heeft 25 onderdelen. Met ieder onderdeel kan maximaal 2 punten verdiend worden. Hertentamen Inleiding Kansrekening WI64. 9 augustus, 9:-: Het tentamen heeft 5 onderdelen. Met ieder onderdeel kan maximaal punten verdiend worden. Het tentamen is open boek. Boeken, nota s en een (eventueel

Nadere informatie

Toets deel 2 Data-analyse en retrieval Vrijdag 1 Juli 2016:

Toets deel 2 Data-analyse en retrieval Vrijdag 1 Juli 2016: Toets deel 2 Data-analyse en retrieval Vrijdag 1 Juli 2016: 11.00-13.00 Algemene aanwijzingen 1. Het is toegestaan een aan beide zijden beschreven A4 met aantekeningen te raadplegen. 2. Het is toegestaan

Nadere informatie

P (X n+1 = j X n = i, X n 1,..., X 0 ) = P (X n+1 = j X n = i). P (X n+1 = j X n = i) MARKOV KETENS. Definitie van Markov keten:

P (X n+1 = j X n = i, X n 1,..., X 0 ) = P (X n+1 = j X n = i). P (X n+1 = j X n = i) MARKOV KETENS. Definitie van Markov keten: Definitie van Markov keten: MARKOV KETENS Een stochastisch proces {X n, n 0} met toestandsruimte S heet een discrete-tijd Markov keten (DTMC) als voor alle i en j in S geldt P (X n+1 = j X n = i, X n 1,...,

Nadere informatie

Tentamen Inleiding Intelligente Data Analyse Datum: Tijd: , BBL 420 Dit is geen open boek tentamen.

Tentamen Inleiding Intelligente Data Analyse Datum: Tijd: , BBL 420 Dit is geen open boek tentamen. Tentamen Inleiding Intelligente Data Analyse Datum: 19-12-2002 Tijd: 9.00-12.00, BBL 420 Dit is geen open boek tentamen. Algemene aanwijzingen 1. U mag ten hoogste één A4 met aantekeningen raadplegen.

Nadere informatie

Tentamen Inleiding Kansrekening 25 juni 2009, uur Docent: F. den Hollander

Tentamen Inleiding Kansrekening 25 juni 2009, uur Docent: F. den Hollander Universiteit Leiden Niels Bohrweg Tentamen Inleiding Kansrekening 25 juni 2009, 0.00 3.00 uur Docent: F. den Hollander Mathematisch Instituut 2333 CA Leiden Bij dit tentamen is het gebruik van een (grafische)

Nadere informatie

Uitwerking Tentamen Inleiding Kansrekening 11 juni 2015, uur Docent: Prof. dr. F. den Hollander

Uitwerking Tentamen Inleiding Kansrekening 11 juni 2015, uur Docent: Prof. dr. F. den Hollander Uitwerking Tentamen Inleiding Kansrekening juni 25,. 3. uur Docent: Prof. dr. F. den Hollander () [6] Zij F een gebeurtenissenruimte. Laat zien dat voor elke B F de verzameling G {A B : A F} opnieuw een

Nadere informatie

Tentamen Inleiding Kansrekening 16 juni 2017, 14:00 17:00 Docent: Prof. dr. F. den Hollander

Tentamen Inleiding Kansrekening 16 juni 2017, 14:00 17:00 Docent: Prof. dr. F. den Hollander Tentamen Inleiding Kansrekening 6 juni 7, : 7: Docent: Prof. dr. F. den Hollander Bij dit tentamen is het gebruik van boek en aantekeningen niet toegestaan. Er zijn 8 vragen, elk met twee of drie onderdelen.

Nadere informatie

Tentamen Inleiding Kansrekening wi juni 2010, uur

Tentamen Inleiding Kansrekening wi juni 2010, uur Technische Universiteit Delft Mekelweg Faculteit Electrotechniek, Wiskunde en Informatica 8 CD Delft Tentamen Inleiding Kansrekening wi juni, 9.. uur Bij dit examen is het gebruik van een (evt. grafische

Nadere informatie

Basiskennis lineaire algebra

Basiskennis lineaire algebra Basiskennis lineaire algebra Lineaire algebra is belangrijk als achtergrond voor lineaire programmering, omdat we het probleem kunnen tekenen in de n-dimensionale ruimte, waarbij n gelijk is aan het aantal

Nadere informatie

Examen Statistiek I Feedback

Examen Statistiek I Feedback Examen Statistiek I Feedback Bij elke vraag is alternatief A correct. Bij de trekking van een persoon uit een populatie beschouwt men de gebeurtenissen A (met bril), B (hooggeschoold) en C (mannelijk).

Nadere informatie

Gaap, ja, nog een keer. In één variabele hebben we deze formule nu al een paar keer gezien:

Gaap, ja, nog een keer. In één variabele hebben we deze formule nu al een paar keer gezien: Van de opgaven met een letter en dus zonder nummer staat het antwoord achterin. De vragen met een nummer behoren tot het huiswerk. Spieken achterin helpt je niets in het beter snappen... 1 Stelling van

Nadere informatie

Tentamen Kansrekening (NB004B)

Tentamen Kansrekening (NB004B) NB4B: Kansrekening Dinsdag november 2 Tentamen Kansrekening (NB4B) Het is een open boek tentamen. Gebruik van een rekenmachine of andere hulpmiddelen is niet toegestaan. Vermeld op ieder blad je naam en

Nadere informatie

Voorbehouden voor de correctoren Vraag 1 Vraag 2 Vraag 3 Vraag 4 Vraag 5 Totaal. Toets Kansrekenen I. 28 maart 2014

Voorbehouden voor de correctoren Vraag 1 Vraag 2 Vraag 3 Vraag 4 Vraag 5 Totaal. Toets Kansrekenen I. 28 maart 2014 Voorbehouden voor de correctoren Vraag 1 Vraag 2 Vraag 3 Vraag 4 Vraag 5 Totaal Toets Kansrekenen I 28 maart 2014 Naam : Richting : Lees volgende aanwijzingen alvorens aan het examen te beginnen Wie de

Nadere informatie

Tentamen Inleiding Kansrekening 11 augustus 2011, uur

Tentamen Inleiding Kansrekening 11 augustus 2011, uur Mathematisch Instituut Niels Bohrweg Universiteit Leiden 2 CA Leiden Delft Tentamen Inleiding Kansrekening augustus 20, 09.00 2.00 uur Bij dit examen is het gebruik van een evt. grafische) rekenmachine

Nadere informatie

TENTAMEN WISKUNDIGE BEELDVERWERKINGSTECHNIEKEN

TENTAMEN WISKUNDIGE BEELDVERWERKINGSTECHNIEKEN TENTAMEN WISKUNDIGE BEELDVERWERKINGSTECHNIEKEN Vakcode: 8D2. Datum: dinsdag 29 april 28. Tijd: 14: 17:. Lees dit vóórdat je begint! Maak iedere opgave op een apart vel. Schrijf je naam en studentnummer

Nadere informatie

34 HOOFDSTUK 1. EERSTE ORDE DIFFERENTIAALVERGELIJKINGEN

34 HOOFDSTUK 1. EERSTE ORDE DIFFERENTIAALVERGELIJKINGEN 34 HOOFDSTUK 1. EERSTE ORDE DIFFERENTIAALVERGELIJKINGEN 1.11 Vraagstukken Vraagstuk 1.11.1 Beschouw het beginwaardeprobleem = 2x (y 1), y(0) = y 0. Los dit beginwaardeprobleem op voor y 0 R en maak een

Nadere informatie

13 Hidden Markov Modellen.

13 Hidden Markov Modellen. 3 Hidden Markov Modellen. 3. Inleiding. In dit Hoofdstuk bekijken we Markov modellen waarvan we de toestanden niet met zekerheid kunnen waarnemen. In plaats daarvan gaan we ervan uit dat toestand i met

Nadere informatie

Uitwerking Hertentamen Inleiding Kansrekening 6 juli 2015, uur Docent: Prof. dr. F. den Hollander

Uitwerking Hertentamen Inleiding Kansrekening 6 juli 2015, uur Docent: Prof. dr. F. den Hollander Uitwerking Hertentamen Inleiding Kansrekening 6 jli 5, 4. 7. r Docent: Prof. dr. F. den Hollander Bij dit tentamen is het gebrik van boek en aantekeningen niet toegestaan. Er zijn vragen. Elke vraag is

Nadere informatie

Herkansing Inleiding Intelligente Data Analyse Datum: Tijd: , BBL 508 Dit is geen open boek tentamen.

Herkansing Inleiding Intelligente Data Analyse Datum: Tijd: , BBL 508 Dit is geen open boek tentamen. Herkansing Inleiding Intelligente Data Analyse Datum: 3-3-2003 Tijd: 14.00-17.00, BBL 508 Dit is geen open boek tentamen. Algemene aanwijzingen 1. U mag ten hoogste één A4 met aantekeningen raadplegen.

Nadere informatie

Kansrekening en statistiek wi2105in deel 2 16 april 2010, uur

Kansrekening en statistiek wi2105in deel 2 16 april 2010, uur Kansrekening en statistiek wi205in deel 2 6 april 200, 4.00 6.00 uur Bij dit examen is het gebruik van een (evt. grafische) rekenmachine toegestaan. Tevens krijgt u een formuleblad uitgereikt na afloop

Nadere informatie

Populatie: De gehele groep elementen waarover informatie wordt gewenst.

Populatie: De gehele groep elementen waarover informatie wordt gewenst. Statistiek I Werkcollege 1 Populatie: De gehele groep elementen waarover informatie wordt gewenst. Steekproef: Gedeelte van de populatie dat feitelijk wordt onderzocht om informatie te vergaren. Eenheden:

Nadere informatie

Tentamen Kansrekening en Statistiek MST 14 januari 2016, uur

Tentamen Kansrekening en Statistiek MST 14 januari 2016, uur Tentamen Kansrekening en Statistiek MST 14 januari 2016, 14.00 17.00 uur Het tentamen bestaat uit 15 meerkeuzevragen 2 open vragen. Een formuleblad wordt uitgedeeld. Normering: 0.4 punt per MC antwoord

Nadere informatie

Bekijk nog een keer het stelsel van twee vergelijkingen met twee onbekenden x en y: { De tweede vergelijking van de eerste aftrekken geeft:

Bekijk nog een keer het stelsel van twee vergelijkingen met twee onbekenden x en y: { De tweede vergelijking van de eerste aftrekken geeft: Determinanten Invoeren van het begrip determinant Bekijk nog een keer het stelsel van twee vergelijkingen met twee onbekenden x en y: { a x + b y = c a 2 a 2 x + b 2 y = c 2 a Dit levert op: { a a 2 x

Nadere informatie

compact weer te geven (ken ook een waarde toe aan n).

compact weer te geven (ken ook een waarde toe aan n). 1 HOVO: Gravitatie en kosmologie OPGAVEN WEEK 2 - Oplossingen Opgave 1: Er geldt n 3 en we hebben de compacte uitdrukking y i a r i x r, waarbij we gebruik maken van de Einsteinsommatieconventie. a Schrijf

Nadere informatie

Toegepaste Statistiek, Dag 7 1

Toegepaste Statistiek, Dag 7 1 Toegepaste Statistiek, Dag 7 1 Statistiek: Afkomstig uit het Duits: De studie van politieke feiten en cijfers. Afgeleid uit het latijn: status, staat, toestand Belangrijkste associatie: beschrijvende statistiek

Nadere informatie

Tentamen Kansrekening en statistiek wi2105in 25 juni 2007, uur

Tentamen Kansrekening en statistiek wi2105in 25 juni 2007, uur Tentamen Kansrekening en statistiek wi205in 25 juni 2007, 4.00 7.00 uur Bij dit examen is het gebruik van een (evt. grafische rekenmachine toegestaan. Tevens krijgt u een formuleblad uitgereikt na afloop

Nadere informatie

MARKOV KETENS, OF: WAT IS DE KANS DAT MEVROUW DE VRIES NAT ZAL WORDEN?

MARKOV KETENS, OF: WAT IS DE KANS DAT MEVROUW DE VRIES NAT ZAL WORDEN? MARKOV KETENS, OF: WAT IS DE KANS DAT MEVROUW DE VRIES NAT ZAL WORDEN? KARMA DAJANI In deze lezing gaan we over een bijzonder model in kansrekening spreken Maar eerst een paar woorden vooraf Wat doen we

Nadere informatie

Data analyse Inleiding statistiek

Data analyse Inleiding statistiek Data analyse Inleiding statistiek Terugblik - Inductieve statistiek Afleiden van eigenschappen van een populatie op basis van een beperkt aantal metingen (steekproef) Kennis gemaakt met kans & kansverdelingen

Nadere informatie

FACULTEIT ECONOMIE EN BEDRIJFSKUNDE Afdeling Kwantitatieve Economie

FACULTEIT ECONOMIE EN BEDRIJFSKUNDE Afdeling Kwantitatieve Economie FACULTEIT ECONOMIE EN BEDRIJFSKUNDE Afdeling Kwantitatieve Economie Lineaire Algebra, tentamen Uitwerkingen vrijdag 4 januari 0, 9 uur Gebruik van een formuleblad of rekenmachine is niet toegestaan. De

Nadere informatie

Zo geldt voor o.o. continue s.v.-en en X en Y dat de kansdichtheid van X + Y gegeven wordt door

Zo geldt voor o.o. continue s.v.-en en X en Y dat de kansdichtheid van X + Y gegeven wordt door APP.1 Appendix A.1 Erlang verdeling verdeling met parameters n en λ Voor o.o. discrete s.v.-en X en Y geldt P (X + Y = z) =P (X = x 1 en Y = z x 1 )+P(X = x en Y = z x )+... = P (X = x 1 )P (Y = z x 1

Nadere informatie

HOOFDSTUK VII REGRESSIE ANALYSE

HOOFDSTUK VII REGRESSIE ANALYSE HOOFDSTUK VII REGRESSIE ANALYSE 1 DOEL VAN REGRESSIE ANALYSE De relatie te bestuderen tussen een response variabele en een verzameling verklarende variabelen 1. LINEAIRE REGRESSIE Veronderstel dat gegevens

Nadere informatie

Technische Universiteit Delft Tentamen Calculus TI1106M - Uitwerkingen. 2. Geef berekeningen en beargumenteer je antwoorden.

Technische Universiteit Delft Tentamen Calculus TI1106M - Uitwerkingen. 2. Geef berekeningen en beargumenteer je antwoorden. Technische Universiteit elft Tentamen Calculus TI06M - Uitwerkingen Opmerkingen:. Het gebruik van de rekenmachine is NIET toegestaan.. Geef berekeningen en beargumenteer je antwoorden. 3. Bij iedere vraag

Nadere informatie

Examen Statistische Modellen en Data-analyse. Derde Bachelor Wiskunde. 14 januari 2008

Examen Statistische Modellen en Data-analyse. Derde Bachelor Wiskunde. 14 januari 2008 Examen Statistische Modellen en Data-analyse Derde Bachelor Wiskunde 14 januari 2008 Vraag 1 1. Stel dat ɛ N 3 (0, σ 2 I 3 ) en dat Y 0 N(0, σ 2 0) onafhankelijk is van ɛ = (ɛ 1, ɛ 2, ɛ 3 ). Definieer

Nadere informatie

Tentamen Inleiding Kansrekening 12 augustus 2010, 10.00 13.00 uur Docent: F. den Hollander

Tentamen Inleiding Kansrekening 12 augustus 2010, 10.00 13.00 uur Docent: F. den Hollander Universiteit Leiden Niels Bohrweg Mathematisch Instituut 333 CA Leiden Tentamen Inleiding Kansrekening augustus,. 3. uur Docent: F. den Hollander Bij dit tentamen is het gebruik van een (grafische) rekenmachine

Nadere informatie

Hoofdstuk 4 Kansen. 4.1 Randomheid

Hoofdstuk 4 Kansen. 4.1 Randomheid Hoofdstuk 4 Kansen 4.1 Randomheid Herhalingen en kansen Als je een munt opgooit (of zelfs als je een SRS trekt) kunnen de resultaten van tevoren voorspeld worden, omdat de uitkomsten zullen variëren wanneer

Nadere informatie

Hoofdstuk 10: Regressie

Hoofdstuk 10: Regressie Hoofdstuk 10: Regressie Inleiding In dit deel zal uitgelegd worden hoe we statistische berekeningen kunnen maken als sprake is van één kwantitatieve responsvariabele en één kwantitatieve verklarende variabele.

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN. Faculteit Wiskunde en Informatica

TECHNISCHE UNIVERSITEIT EINDHOVEN. Faculteit Wiskunde en Informatica TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Kansrekening (2WS2, Vrijdag 23 januari 25, om 9:-2:. Dit is een tentamen met gesloten boek. De uitwerkingen van de opgaven dienen

Nadere informatie

HOOFDSTUK II BIJZONDERE THEORETISCHE VERDELINGEN

HOOFDSTUK II BIJZONDERE THEORETISCHE VERDELINGEN HOOFDSTUK II BIJZONDERE THEORETISCHE VERDELINGEN. Continue Verdelingen 1 A. De uniforme (of rechthoekige) verdeling Kansdichtheid en cumulatieve frequentiefunctie Voor x < a f(x) = 0 F(x) = 0 Voor a x

Nadere informatie

Het oplossen van stelsels lineaire vergelijkingen Wiskunde 2, 2DM60 College 2b

Het oplossen van stelsels lineaire vergelijkingen Wiskunde 2, 2DM60 College 2b Het oplossen van stelsels lineaire vergelijkingen Wiskunde 2, 2DM60 College 2b Ruud Pellikaan g.r.pellikaan@tue.nl /k 2014-2015 Lineaire vergelijking 2/64 DEFINITIE: Een lineaire vergelijking in de variabelen

Nadere informatie

Het gebruik van een grafische rekenmachine is toegestaan tijdens dit tentamen, alsmede één A4-tje met aantekeningen.

Het gebruik van een grafische rekenmachine is toegestaan tijdens dit tentamen, alsmede één A4-tje met aantekeningen. Het gebruik van een grafische rekenmachine is toegestaan tijdens dit tentamen, alsmede één A4-tje met aantekeningen. 1. (a) In de appendix van deze vraag, is een dataset gegeven met de corresponderende

Nadere informatie

Deze week: Steekproefverdelingen. Statistiek voor Informatica Hoofdstuk 7: Steekproefverdelingen. Kwaliteit van schatter. Overzicht Schatten

Deze week: Steekproefverdelingen. Statistiek voor Informatica Hoofdstuk 7: Steekproefverdelingen. Kwaliteit van schatter. Overzicht Schatten Deze week: Steekproefverdelingen Statistiek voor Informatica Hoofdstuk 7: Steekproefverdelingen Cursusjaar 29 Peter de Waal Zuivere Schatters Betrouwbaarheidsintervallen Departement Informatica Hfdstk

Nadere informatie

(c) Bepaal de kans dat de linker bedelaar van 10 voorbijgangers in totaal exact 420 ct ontvangt.

(c) Bepaal de kans dat de linker bedelaar van 10 voorbijgangers in totaal exact 420 ct ontvangt. Tentamen Statistiek van Proefopzetten wi244st 4 juni 2007, 4.00 7.00 uur Toelichting. Een antwoord alleen is niet voldoende: er dient een motivatie, toelichting of berekening aanwezig te zijn. Gebruik,

Nadere informatie

Stochastiek 2. Inleiding in de Mathematische Statistiek 1 / 17

Stochastiek 2. Inleiding in de Mathematische Statistiek 1 / 17 Stochastiek 2 Inleiding in de Mathematische Statistiek 1 / 17 Statistische toetsen 2 / 17 Toetsen - algemeen - 1 Setting: observatie X in X, model {P θ : θ Θ}. Gegeven partitie Θ = Θ 0 Θ 1, met Θ 0 Θ 1

Nadere informatie

Tentamen Inleiding Statistiek (WI2615) 10 april 2013, 9:00-12:00u

Tentamen Inleiding Statistiek (WI2615) 10 april 2013, 9:00-12:00u Technische Universiteit Delft Mekelweg 4 Faculteit Elektrotechniek, Wiskunde en Informatica 2628 CD Delft Tentamen Inleiding Statistiek (WI2615) 10 april 2013, 9:00-12:00u Formulebladen, rekenmachines,

Nadere informatie

Cursus Statistiek Hoofdstuk 4. Statistiek voor Informatica Hoofdstuk 4: Verwachtingen. Definitie (Verwachting van discrete stochast) Voorbeeld (1)

Cursus Statistiek Hoofdstuk 4. Statistiek voor Informatica Hoofdstuk 4: Verwachtingen. Definitie (Verwachting van discrete stochast) Voorbeeld (1) Cursus Statistiek Hoofdstuk 4 Statistiek voor Informatica Hoofdstuk 4: Verwachtingen Cursusjaar 29 Peter de Waal Departement Informatica Inhoud Verwachtingen Variantie Momenten en Momentengenererende functie

Nadere informatie

Toegepaste Wiskunde 2: Het Kalman-filter

Toegepaste Wiskunde 2: Het Kalman-filter Toegepaste Wiskunde 2: Het Kalman-filter 25 februari, 2008 Hans Maassen 1. Inleiding Het Kalman filter schat de toestand van een systeem op basis van een reeks, door ruis verstoorde waarnemingen. Een meer

Nadere informatie

Wiskunde B - Tentamen 2

Wiskunde B - Tentamen 2 Wiskunde B - Tentamen Tentamen van Wiskunde B voor CiT (57) Donderdag 4 april 005 van 900 tot 00 uur Dit tentamen bestaat uit 8 opgaven, 3 tabellen en formulebladen Vermeld ook je studentnummer op je werk

Nadere informatie

Opgaves Hoofdstuk 3: Toevalsveranderlijken en Distributiefuncties

Opgaves Hoofdstuk 3: Toevalsveranderlijken en Distributiefuncties Opgaves Hoofdstuk 3: Toevalsveranderlijken en Distributiefuncties Discrete Distributiefuncties 3. Er zijn 3 studenten aan het begin van de dag aanwezig bij een symposium. De kans dat een student volhoudt

Nadere informatie

Modellen en Simulatie Lesliematrices Markovketens

Modellen en Simulatie Lesliematrices Markovketens Utrecht, 6 april 3 Modellen en Simulatie Lesliematrices Markovketens Program Meerdere leeftijdsklassen Leslie matrices Eigenwaarden en eigenvectoren Dominante eigenvector Irreducibele, a-periodieke matrices

Nadere informatie

Opgaven Functies en Reeksen. E.P. van den Ban

Opgaven Functies en Reeksen. E.P. van den Ban Opgaven Functies en Reeksen E.P. van den Ban c Mathematisch Instituut Universiteit Utrecht Augustus 2014 1 Opgaven bij Hoofdstuk 1 Opgave 1.1 Zij f : R n R partieel differentieerbaar naar iedere variabele

Nadere informatie

Examen Kansrekening en Wiskundige Statistiek: oplossingen

Examen Kansrekening en Wiskundige Statistiek: oplossingen Examen Kansrekening en Wiskundige Statistiek: oplossingen S. Vansteelandt Academiejaar 006-007 1. Een team van onderzoekers wil nagaan of een bepaald geneesmiddel Triptan meer effectief is dan aspirine

Nadere informatie

Stelsels Vergelijkingen

Stelsels Vergelijkingen Hoofdstuk 5 Stelsels Vergelijkingen Eén van de motiverende toepassingen van de lineaire algebra is het bepalen van oplossingen van stelsels lineaire vergelijkingen. De belangrijkste techniek bestaat uit

Nadere informatie

9. Lineaire Regressie en Correlatie

9. Lineaire Regressie en Correlatie 9. Lineaire Regressie en Correlatie Lineaire verbanden In dit hoofdstuk worden methoden gepresenteerd waarmee je kwantitatieve respons variabelen (afhankelijk) en verklarende variabelen (onafhankelijk)

Nadere informatie

Set 3 Inleveropgaven Kansrekening (2WS20) Opgaven met sterretjes zijn lastiger dan opgaven zonder sterretje.

Set 3 Inleveropgaven Kansrekening (2WS20) Opgaven met sterretjes zijn lastiger dan opgaven zonder sterretje. Technische Universiteit Eindhoven Faculteit Wiskunde en Informatica Set 3 Inleveropgaven Kansrekening (2WS2) 23-24 Opgaven met sterretjes zijn lastiger dan opgaven zonder sterretje.. Voetbalplaatjes. Bij

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN. Faculteit Wiskunde en Informatica

TECHNISCHE UNIVERSITEIT EINDHOVEN. Faculteit Wiskunde en Informatica TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Kansrekening (2WS2), Vrijdag 24 januari 24, om 9:-2:. Dit is een tentamen met gesloten boek. De uitwerkingen van de opgaven

Nadere informatie

Examen G0N34 Statistiek

Examen G0N34 Statistiek Naam: Richting: Examen G0N34 Statistiek 7 juni 2010 Enkele richtlijnen : Wie de vragen aanneemt en bekijkt, moet minstens 1 uur blijven zitten. Je mag gebruik maken van een rekenmachine, het formularium

Nadere informatie

3 De duale vectorruimte

3 De duale vectorruimte 3 De duale vectorruimte We brengen de volgende definitie in de herinnering. Definitie 3.1 (hom K (V, W )) Gegeven twee vectorruimtes (V, K) en (W, K) over K noteren we de verzameling van alle lineaire

Nadere informatie

Tentamen Kunstmatige Intelligentie (INFOB2KI)

Tentamen Kunstmatige Intelligentie (INFOB2KI) Tentamen Kunstmatige Intelligentie (INFOB2KI) 30 januari 2014 10:30-12:30 Vooraf Mobiele telefoons dienen uitgeschakeld te zijn. Het tentamen bestaat uit 7 opgaven; in totaal kunnen er 100 punten behaald

Nadere informatie

ONBETWIST ONderwijs verbeteren met WISkunde Toetsen Voorbeeldtoetsen Lineaire Algebra Deliverable 3.10 Henk van der Kooij ONBETWIST Deliverable 3.

ONBETWIST ONderwijs verbeteren met WISkunde Toetsen Voorbeeldtoetsen Lineaire Algebra Deliverable 3.10 Henk van der Kooij ONBETWIST Deliverable 3. ONBETWIST ONderwijs verbeteren met WISkunde Toetsen Voorbeeldtoetsen Lineaire Algebra Deliverable 3.10 Henk van der Kooij ONBETWIST Deliverable 3.8 ONBETWIST ONderwijs verbeteren met WISkunde Toetsen Inleiding

Nadere informatie

PE Bijeenkomst Prognosetafel AG2016

PE Bijeenkomst Prognosetafel AG2016 PE Bijeenkomst Prognosetafel AG2016 1 Inhoud 1. Datasets en Databewerking 2. Modelstructuur en eigenschappen 3. Correlaties 4. Vergelijking met AG2014 5. Gebruik: als (best estimate) statische prognosetafel

Nadere informatie

Stochastiek 2. Inleiding in de Mathematische Statistiek 1 / 18

Stochastiek 2. Inleiding in de Mathematische Statistiek 1 / 18 Stochastiek 2 Inleiding in de Mathematische Statistiek 1 / 18 t-toetsen 2 / 18 Steekproefgemiddelde en -variantie van normale observaties Stelling. Laat X 1,..., X n o.o. zijn en N(µ, σ 2 )-verdeeld. Dan:

Nadere informatie

Uitwerkingen Lineaire Algebra I (wiskundigen) 22 januari, 2015

Uitwerkingen Lineaire Algebra I (wiskundigen) 22 januari, 2015 Uitwerkingen Lineaire Algebra I (wiskundigen) januari, 5 In deze uitwerkingen is hier en daar een berekening weggelaten (bijvoorbeeld het bepalen van de kern van een matrix) die uiteraard op het tentamen

Nadere informatie

Tentamen Kunstmatige Intelligentie (INFOB2KI)

Tentamen Kunstmatige Intelligentie (INFOB2KI) Tentamen Kunstmatige Intelligentie (INFOB2KI) 12 december 2014 8:30-10:30 Vooraf Mobiele telefoons en dergelijke dienen uitgeschakeld te zijn. Het eerste deel van het tentamen bestaat uit 8 multiple-choice

Nadere informatie

Uitwerkingen Mei Eindexamen VWO Wiskunde A. Nederlands Mathematisch Instituut Voor Onderwijs en Onderzoek

Uitwerkingen Mei Eindexamen VWO Wiskunde A. Nederlands Mathematisch Instituut Voor Onderwijs en Onderzoek Uitwerkingen Mei 2012 Eindexamen VWO Wiskunde A Nederlands Mathematisch Instituut Voor Onderwijs en Onderzoek Schroefas Opgave 1. In de figuur trekken we een lijn tussen 2600 tpm op de linkerschaal en

Nadere informatie

0 2λ µ 0

0 2λ µ 0 Example 6.7 Machine werkplaats met vier onafhankelijke machines 1, 2, 3 en 4. Bedrijfsduur machine i (i = 1, 2, 3, 4) is B i Exp(µ), reparatieduur wegens defect machine i is R i Exp(λ). Er zijn twee reparateurs

Nadere informatie

Deze week: Schatten. Statistiek voor Informatica Hoofdstuk 6: Schatten. Voorbeeld Medicijnentest. Statistische inferentie

Deze week: Schatten. Statistiek voor Informatica Hoofdstuk 6: Schatten. Voorbeeld Medicijnentest. Statistische inferentie Deze week: Schatten Statistiek voor Informatica Hoofdstuk 6: Schatten Cursusjaar 2009 Peter de Waal Departement Informatica Statistische inferentie A Priori en posteriori verdelingen Geconjugeerde a priori

Nadere informatie

Inleiding Applicatie Software - Statgraphics

Inleiding Applicatie Software - Statgraphics Inleiding Applicatie Software - Statgraphics Beschrijvende Statistiek /k 1/35 OPDRACHT OVER BESCHRIJVENDE STATISTIEK Beleggen Door een erfenis heeft een vriend van u onverwacht de beschikking over een

Nadere informatie

S n = tijdstip van de n-de gebeurtenis, T n = S n S n 1 = tijd tussen n-de en (n 1)-de gebeurtenis.

S n = tijdstip van de n-de gebeurtenis, T n = S n S n 1 = tijd tussen n-de en (n 1)-de gebeurtenis. HET POISSON PROCES In veel praktische toepassingen kan het aaankomstproces van personen, orders,..., gemodelleerd worden door een zogenaamd Poisson proces. Definitie van een Poisson proces: Een Poisson

Nadere informatie

De dimensie van een deelruimte

De dimensie van een deelruimte De dimensie van een deelruimte Een deelruimte van R n is een deelverzameling die op zichzelf ook een vectorruimte is. Ter herinnering : Definitie. Een deelverzameling H van R n heet een deelruimte van

Nadere informatie

Tentamen lineaire algebra voor BWI maandag 15 december 2008, uur.

Tentamen lineaire algebra voor BWI maandag 15 december 2008, uur. Vrije Universiteit Amsterdam Faculteit der Exacte Wetenschappen Afdeling Wiskunde Tentamen lineaire algebra voor BWI maandag 5 december 8, 5.5-8. uur. ELK ANTWOORD DIENT TE WORDEN BEARGUMENTEERD. Er mogen

Nadere informatie

11. Multipele Regressie en Correlatie

11. Multipele Regressie en Correlatie 11. Multipele Regressie en Correlatie Meervoudig regressie model Nu gaan we kijken naar een relatie tussen een responsvariabele en meerdere verklarende variabelen. Een bivariate regressielijn ziet er in

Nadere informatie

Statistiek voor Natuurkunde Opgavenserie 1: Kansrekening

Statistiek voor Natuurkunde Opgavenserie 1: Kansrekening Statistiek voor Natuurkunde Opgavenserie 1: Kansrekening Inleveren: 12 januari 2011, VOOR het college Afspraken Serie 1 mag gemaakt en ingeleverd worden in tweetallen. Schrijf duidelijk je naam, e-mail

Nadere informatie

Hoofdstuk 8: Multipele regressie Vragen

Hoofdstuk 8: Multipele regressie Vragen Hoofdstuk 8: Multipele regressie Vragen 1. Wat is het verschil tussen de pearson correlatie en de multipele correlatie R? 2. Voor twee modellen berekenen we de adjusted R2 : Model 1 heeft een adjusted

Nadere informatie

EXAMEN INFORMATIETHEORIE I (5JJ40 / 5K020) 25 maart 2004, 9u00 12u00-1 -

EXAMEN INFORMATIETHEORIE I (5JJ40 / 5K020) 25 maart 2004, 9u00 12u00-1 - EXAMEN INFORMATIETHEORIE I (5JJ40 / 5K020) 25 maart 2004, 9u00 12u00-1 - Zet de antwoorden in de daarvoor bestemde vakjes en lever alleen deze bladen in! LET OP: Dit werk bevat zowel de opgaven voor het

Nadere informatie

Kies voor i een willekeurige index tussen 1 en r. Neem het inproduct van v i met de relatie. We krijgen

Kies voor i een willekeurige index tussen 1 en r. Neem het inproduct van v i met de relatie. We krijgen Hoofdstuk 95 Orthogonaliteit 95. Orthonormale basis Definitie 95.. Een r-tal niet-triviale vectoren v,..., v r R n heet een orthogonaal stelsel als v i v j = 0 voor elk paar i, j met i j. Het stelsel heet

Nadere informatie

Inleiding Applicatie Software - Statgraphics. Beschrijvende Statistiek

Inleiding Applicatie Software - Statgraphics. Beschrijvende Statistiek Inleiding Applicatie Software - Statgraphics Beschrijvende Statistiek OPDRACHT OVER BESCHRIJVENDE STATISTIEK Beleggen Door een erfenis heeft een vriend van u onverwacht de beschikking over een klein kapitaaltje

Nadere informatie

Tentamen Kansrekening en Statistiek (2WS04), woensdag 30 juni 2010, van 9.00 12.00 uur.

Tentamen Kansrekening en Statistiek (2WS04), woensdag 30 juni 2010, van 9.00 12.00 uur. Technische Universiteit Eindhoven Faculteit Wiskunde en Informatica Tentamen Kansrekening en Statistiek (WS4), woensdag 3 juni, van 9.. uur. Dit is een tentamen met gesloten boek. De uitwerkingen van de

Nadere informatie

Uitwerking Tweede Quiz Speltheorie,

Uitwerking Tweede Quiz Speltheorie, Uitwerking Tweede Quiz Speltheorie, 28-11-2012 Attentie! Maak van de onderstaande drie opgaven er slechts twee naar eigen keuze! Opgave 1 [50 pt]. Van het tweepersoons nulsomspel met de 2 4-uitbetalingsmatrix

Nadere informatie

Kansrekening en statistiek wi2105in deel I 29 januari 2010, uur

Kansrekening en statistiek wi2105in deel I 29 januari 2010, uur Kansrekening en statistiek wi20in deel I 29 januari 200, 400 700 uur Bij dit examen is het gebruik van een (evt grafische rekenmachine toegestaan Tevens krijgt u een formuleblad uitgereikt na afloop inleveren

Nadere informatie

= P(B) = 2P(C), P(A B) = 1 2 en P(A C) = 2 5. d. 31

= P(B) = 2P(C), P(A B) = 1 2 en P(A C) = 2 5. d. 31 Tentamen Statistische methoden 45STAMEY april, 9: : Studienummers: Vult u alstublieft op het MC formulier uw Delftse studienummer in; en op het open vragen formulier graag beide, naar volgend voorbeeld:

Nadere informatie

INLEIDING. Definitie Stochastisch Proces:

INLEIDING. Definitie Stochastisch Proces: Definitie Stochastisch Proces: INLEIDING Verzameling van stochastische variabelen die het gedrag in de tijd beschrijven van een systeem dat onderhevig is aan toeval. Tijdparameter: discreet: {X n, n 0};

Nadere informatie

mlw stroom 2.1: Statistisch modelleren

mlw stroom 2.1: Statistisch modelleren mlw stroom 2.1: Statistisch modelleren College 5: Regressie en correlatie (2) Rosner 11.5-11.8 Arnold Kester Capaciteitsgroep Methodologie en Statistiek Universiteit Maastricht Postbus 616, 6200 MD Maastricht

Nadere informatie