FOR DUTCH STUDENTS! ENGLISH VERSION NEXT PAGE

Vergelijkbare documenten
FOR DUTCH STUDENTS! ENGLISH VERSION NEXT PAGE

FOR DUTCH STUDENTS! ENGLISH VERSION NEXT PAGE

FOR DUTCH STUDENTS! ENGLISH VERSION NEXT PAGE. Toets Inleiding Kansrekening 1 8 februari 2010

FOR DUTCH STUDENTS! ENGLISH VERSION NEXT PAGE. Toets Inleiding Kansrekening 1 22 februari 2013

FOR DUTCH STUDENTS! ENGLISH VERSION NEXT PAGE. Toets Inleiding Kansrekening 1 7 februari 2011

i(i + 1) = xy + y = x + 1, y(1) = 2.

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Examination 2DL04 Friday 16 november 2007, hours.

Uitwerking Tentamen Calculus B (2WBB1) van 4 november 2013

Alle opgaven tellen even zwaar, 10 punten per opgave.

Add the standing fingers to get the tens and multiply the closed fingers to get the units.

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamen Calculus B (2WBB1) op maandag 28 januari 2013, 14:00 17:00 uur

Hertentamen 8D040 - Basis beeldverwerking

Linear Algebra I. Ronald van Luijk, 2011

ALGORITMIEK: answers exercise class 7

Opgave 2 Geef een korte uitleg van elk van de volgende concepten: De Yield-to-Maturity of a coupon bond.

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamen Calculus B (2WBB1) op maandag 4 november 2013, 9:00 12:00 uur

SAMPLE 11 = + 11 = + + Exploring Combinations of Ten + + = = + + = + = = + = = 11. Step Up. Step Ahead

Four-card problem. Input

L.Net s88sd16-n aansluitingen en programmering.

AE1103 Statics. 25 January h h. Answer sheets. Last name and initials:

8+ 60 MIN Alleen te spelen in combinatie met het RIFUGIO basisspel. Only to be played in combination with the RIFUGIO basicgame.

Meetkunde en Lineaire Algebra

Calculator spelling. Assignment

TECHNISOHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamen Basiswiskunde, 2DL03, woensdag 25 januari 2012, uur.

After that, the digits are written after each other: first the row numbers, followed by the column numbers.

Group work to study a new subject.

TECHNISCHE UNIVERSITEIT EINDHOVEI\ Faculteit Wiskunde en Informatica. Tentamen Basiswiskunde, 2DL03, woensdag 13 april 2011, 9.00

Ae Table 1: Aircraft data. In horizontal steady flight, the equations of motion are L = W and T = D.

(1) De hoofdfunctie van ons gezelschap is het aanbieden van onderwijs. (2) Ons gezelschap is er om kunsteducatie te verbeteren

Meetkunde en Lineaire Algebra

AE1103 Statics. 3 November h h. Answer sheets. Last name and initials:

Exercise P672 Lightweight Structures. A.P.H.W. Habraken. Report

Introductie in flowcharts

Esther Lee-Varisco Matt Zhang

L.Net s88sd16-n aansluitingen en programmering.

Het beheren van mijn Tungsten Network Portal account NL 1 Manage my Tungsten Network Portal account EN 14

Settings for the C100BRS4 MAC Address Spoofing with cable Internet.

Nieuwsbrief NRGD. Editie 11 Newsletter NRGD. Edition 11. pagina 1 van 5.

Luister alsjeblieft naar een opname als je de vragen beantwoordt of speel de stukken zelf!

VOORSTEL TOT STATUTENWIJZIGING UNIQURE NV. Voorgesteld wordt om de artikelen 7.7.1, 8.6.1, en te wijzigen als volgt: Toelichting:

Cambridge Assessment International Education Cambridge International General Certificate of Secondary Education. Published

2019 SUNEXCHANGE USER GUIDE LAST UPDATED

Handleiding Zuludesk Parent

The first line of the input contains an integer $t \in \mathbb{n}$. This is followed by $t$ lines of text. This text consists of:

Classification of triangles

ANGSTSTOORNISSEN EN HYPOCHONDRIE: DIAGNOSTIEK EN BEHANDELING (DUTCH EDITION) FROM BOHN STAFLEU VAN LOGHUM

Daylight saving time. Assignment

MyDHL+ Van Non-Corporate naar Corporate

Preschool Kindergarten

Lists of words from the books, and feedback from the sessions, are on

Bijlage 2: Informatie met betrekking tot goede praktijkvoorbeelden in Londen, het Verenigd Koninkrijk en Queensland

Example. Dutch language lesson. Dutch & German Language Education Pieter Wielick

Onbetwist-Toetsen Calculus

Ius Commune Training Programme Amsterdam Masterclass 16 June 2016

MyDHL+ Tarief berekenen

This appendix lists all the messages that the DRS may send to a registrant's administrative contact.

AE1103 Statics. 5 November h h. Answer sheets. Last name and initials:

Tentamen Objectgeorienteerd Programmeren

Uitwerking van opgaven in Sipser

RECEPTEERKUNDE: PRODUCTZORG EN BEREIDING VAN GENEESMIDDELEN (DUTCH EDITION) FROM BOHN STAFLEU VAN LOGHUM

Hoe met Windows 8 te verbinden met NDI Remote Office (NDIRO) How to connect With Windows 8 to NDI Remote Office (NDIRO

Geachte Bezoeker, Adresgegevens

Ius Commune Training Programme Amsterdam Masterclass 15 June 2018

Quality requirements concerning the packaging of oak lumber of Houthandel Wijers vof ( )

PRIVACYVERKLARING KLANT- EN LEVERANCIERSADMINISTRATIE

How to install and use dictionaries on the ICARUS Illumina HD (E652BK)

CTI SUITE TSP DETAILS

Tentamen T1 Chemische Analysemethoden 6 maart 2014

ICARUS Illumina E653BK on Windows 8 (upgraded) how to install USB drivers

MyDHL+ ProView activeren in MyDHL+

GOVERNMENT NOTICE. STAATSKOERANT, 18 AUGUSTUS 2017 No NATIONAL TREASURY. National Treasury/ Nasionale Tesourie NO AUGUST

FRAME [UPRIGHT MODEL] / [DEPTH] / [HEIGHT] / [FINISH] TYPE OF BASEPLATE P Base plate BP80 / E alternatives: ZINC finish in all cases

It s all about the money Group work

Chapter 4 Understanding Families. In this chapter, you will learn

General info on using shopping carts with Ingenico epayments

Davide's Crown Caps Forum

LDAP Server on Yeastar MyPBX & tiptel 31xx/32xx series

1. In welk deel van de wereld ligt Nederland? 2. Wat betekent Nederland?

Table 1: Aircraft data. Figure 1: Glider

Activant Prophet 21. Prophet 21 Version 12.0 Upgrade Information

Engels op Niveau A2 Workshops Woordkennis 1

04/11/2013. Sluitersnelheid: 1/50 sec = 0.02 sec. Frameduur= 2 x sluitersnelheid= 2/50 = 1/25 = 0.04 sec. Framerate= 1/0.

Ius Commune Training Programme Amsterdam Masterclass 22 June 2017

Eye Feature Detection Towards Automatic Strabismus Screening

Transcriptie:

FOR DUTCH STUDENTS! ENGLISH VERSION NEXT PAGE Tentamen Bewijzen en Technieken 1 7 januari 211, duur 3 uur. Voeg aan het antwoord van een opgave altijd het bewijs, de berekening of de argumentatie toe. De (grafische) rekenmachine mag niet gebruikt worden bij het tentamen. Opgave 1 Bereken alle oplossingen van de volgende ongelijkheid: Opgave 2 x 3 5x 2x 2 6 1. Ga van elk van onderstaande beweringen na of de bewering waar is of niet. Geef een bewijs als de bewering waar is en een tegenvoorbeeld als de bewering niet waar is. a) y IN x Q : xy + x 2 = 1. b) x IN y Q : xy + x 2 = 1. Opgave 3 Toon aan, met behulp van het principe van volledige inductie, dat n (k k!) = (n + 1)! 1 voor elke n IN. Zie ommezijde voor de overige opgaven. 1 Cijferbepaling: Puntentelling tentamen: opgave 1: 5 ptn; opgave 2: 6 ptn; opgave 3: 5 ptn; opgave 4: 5 ptn; opgave 5: 4 ptn; opgave 6: 6 ptn; opgave 7: 4 ptn; opgave 8: 5 ptn. Het cijfer voor het tentamen is de som van de punten gedeeld door 4. De toets telt niet meer mee.

Opgave 4 Bepaal alle punten P op de cirkel met middelpunt (1,2) en straal 2 waarvoor geldt dat de raaklijn aan de cirkel in P ook door (5,) gaat. Opgave 5 Laat zien dat voor elk tweetal verzamelingen A en B geldt dat Opgave 6 A B = (A B c ) (A c B) (A B). a) Geef de definitie van de verzamelingen A en B hebben dezelfde cardinaliteit (cardinality). b) Laat zien dat als A en B dezelfde cardinaliteit hebben en B en C hebben ook dezelfde cardinaliteit, dan hebben A en C ook dezelfde cardinaliteit. c) Laat zien dat de intervallen (, ) en (, 1) dezelfde cardinaliteit hebben. Opgave 7 Bepaal de afgeleide van de functie f : IR IR, gedefinieerd door f(x) = eax2 1 + bx 4 voor iedere x IR. Hierbij zijn a en b twee positieve constanten. Opgave 8 Bereken 1 x 3 x 2 + 1 dx.

FOR NON-DUTCH STUDENTS! Exam Proofs and Techniques 2 January 7, 211, duration 3 hours For every exercise you have to provide the full proof, calculation and/or arguments. The (graphical) calculator can not be used during the exam. Exercise 1 Compute all solutions of the following inequality: x 3 5x 2x 2 6 1. Exercise 2 Check for every of the statements below whether the statement is true or not. Provide a proof if the statement is true. Otherwise, provide a counterexample. a) y IN x Q : xy + x 2 = 1. b) x IN y Q : xy + x 2 = 1. Exercise 3 Show, by using the principle of induction, that for every n IN. n (k k!) = (n + 1)! 1 Exercise 4 Determine all points P on the circle with center (1,2) and radius 2 which are such that the tangent line to the circle in P contains the point (5,). Turn this page for the other exercises. 2 Grading: Grading exam: exercise 1: 5 pts; exercise 2: 6 pts; exercise 3: 5 pts; exercise 4: 5 pts; exercise 5: 4 pts; exercise 6: 6 pts; exercise 7: 4 pts; exercise 8: 5 pts. The grade for the exam is the sum of the points scored, divided by 4. The midterm does not longer count.

Exercise 5 Show that for every pair of sets A and B we have A B = (A B c ) (A c B) (A B). Exercise 6 a) Provide the definition of the sets A and B have the same cardinality. b) Show that if A and B have the same cardinality and B and C have the same cardinality as well, then also A and C have the same cardinality. c) Show that the intervals (, ) and (,1) have the same cardinality. Exercise 7 Determine the derivative of the function f : IR IR, defined by f(x) = eax2 1 + bx 4 for every x IR. Here a and b are two positive constants. Exercise 8 Compute 1 x 3 x 2 + 1 dx.

Solutions Exam Proofs and Techniques, January 7, 211 Exercise 1 The inequality is equivalent with x 3 5x 2x 2 6 1. Define the function f : IR\{ 3, 3} IR by f(x) = x3 5x 1 for every 2x 2 6 x IR\{ 3, 3}. Step 1 (find the zeros of f). For every x IR\{ 3, 3} we have f(x) = Step 2 (make a sign scheme of f). x3 5x 2x 2 6 1 = x3 5x 2x 2 6 = 1 x 3 5x = 2x 2 6 x 3 2x 2 5x + 6 = (x 1)(x + 2)(x 3) = x = 2 or x = 1 or x = 3. + + + 2 3 1 3 3 Step 3 (read solution from sign scheme of f): [ 2, 3) [1, 3) [3, ). Exercise 2 a) False. Take y = 2 IN. If the statement were true then the equation 2x + x 2 = 1, or, equivalently, x 2 + 2x 1 = would have a solution in Q. However, the only solutions are x = 1 2 and x = 1 + 2. If one of these solutions solutions belongs to Q, then 2 Q. Contradiction. b) True. Let x IN. Then y = 1 x2 x Q is such that xy + x 2 = 1. Exercise 3 Denote the statement n (k k!) = (n + 1)! 1 by P(n). Step 1: P(1) is the statement 1 1! = 2! 1 and this statement is definitely true. Step 2: Let n N and assume that P(n) is true, i.e. n (k k!) =

(n + 1)! 1. Then: n+1 (k k!) = n (k k!) + (n + 1) (n + 1)! = (n + 1)! 1 + (n + 1) (n + 1)! = (n + 2)(n + 1)! 1 = (n + 2)! 1 = ((n + 1) + 1)! 1. So P(n + 1) is true. So, for every n N we have: if P(n) is true, then P(n + 1) is true. Exercise 4 Let P = (a,b) denote such a point. The line through P and center M = (1,2) has direction vector (a 1,b 2). The tangent line (through P and (5,)) has direction vector (a 5, b). As these two direction vectors must be perpendicular we have < (a 1,b 2),(a 5,b) >=, i.e. (a 1)(a 5)+(b 2)b =. So a 2 6a + b 2 2b + 5 =. Since P is an element of the circle we have (a 1) 2 + (b 2) 2 = 4 as well. So a 2 2a + b 2 4b + 1 =. So we have to solve the following system of equations: { a 2 6a + b 2 2b + 5 = a 2 2a + b 2 4b + 1 = { a 2 6a + b 2 2b + 5 = 4a + 2b + 4 = { a 2 6a + b 2 2b + 5 = { a 2 6a + (2a 2) 2 2(2a 2) + 5 = { 5a 2 18a + 13 = { (a 1)(5a 13) = So the only solutions are (1,) and ( 13 5, 16 5 ). Exercise 5 : Let a A B. If a / A then a B and hence a A c B, so definitely a (A B c ) (A c B) (A B). If a A then either a B or a / B. In the first case we have that a A B and in the second case that a A B c. In both cases we conclude that a (A B c ) (A c B) (A B). : Let a (A B c ) (A c B) (A B). If a A B c then a A and hence a A B. If a A c B then a B and hence a A B. If a A B then a A and hence a A B.

Exercise 6 a) There is a bijection f : A B. b) Let f : A B and g : B C be two bijections. Then g f : A C is a bijection as well (injectivity: if g(f(a)) = g(f(a )) then f(a) = f(a ) due to injectivity of g and hence a = a due to injectivity of f; surjectivity: if c C then there is a b B such that g(b) = c due to surjectivity of g, and then there is also an a A such that f(a) = b due to surjectivity of f, so g f(a) = g(f(a)) = g(b) = c.) So A and C have the same cardinality. c) Define the function f on (, ) by f(x) = 1 x+1 for every x (, ). For every x (, ) we have that x+1 > 1 and hence that f(x) = 1 x+1 (,1). So f is indeed a function from (, ) to (,1). If x 1,x 2 (, ) are such 1 that f(x 1 ) = f(x 2 ) then x 1 +1 = 1 x 2 +1, hence x 1 + 1 = x 2 + 1 and therefore x 1 = x 2. So f is injective. In order to prove surjectivity of f let y (,1). Take x = 1 1 y 1. Then x (, ) and f(x) = x+1 = 1 1 = y. So f is a 1+1 y bijection from (, ) to (,1). Exercise 7 Using quotient and chain rule we get f (x) = (1 + bx4 ) e ax2 2ax e ax2 4bx 3 (1 + bx 4 ) 2 = 2xeax2 (a + abx 4 2bx 2 ) (1 + bx 4 ) 2 for every x IR. Exercise 8 Using integration by substitution (y = x 2 + 1,dy = 2xdx), we get 1 x 3 1 x 2 + 1 dx =.5x 2 x 2 + 1 2xdx = = 2 1 2 1.5(y 1) dy y (.5 y.5 1 y )dy = [ 1 3 y y y] y=2 y=1 = 1 2 2 + 3 3 = 1 3 (2 2).