HOOFDSTUK I - INLEIDENDE BEGRIPPEN
|
|
|
- Sofie Kuiper
- 9 jaren geleden
- Aantal bezoeken:
Transcriptie
1 HOOFDSTUK I - INLEIDENDE BEGRIPPEN 1.2 Kansveranderlijken en verdelingen 1
2 Veranderlijken Beschouw een toevallig experiment met uitkomstenverzameling V (eindig of oneindig), de verzameling van alle gebeurtenissen Q(V), en de kansfunctie P Beschouw een afbeelding G die aan elke uitkomst w V een reëel getal G(w) toekent Men noemt een dergelijke afbeelding een veranderlijke (of een kansveranderlijke, een toevalsveranderlijke, een stochastiek) 2
3 Bij het definieren van een veranderlijke veronderstelt men dat de kansfunctie op de rechte wordt overgebracht. Beschouw een getal a en alle uitkomsten van het experiment die door G op het getal a worden overgebracht: {w V; G(w)=a} Dit definieert een verzameling A. Men stelt de kans op a gelijk aan de kans van A: P G (a) = P(A) Men noemt deze nieuwe kansfunctie de verdeling van de veranderlijke G 3
4 De kumulatieve frequentiefunctie (of verdelingsfunctie) F(x) van een verdeling wordt gedefinieerd door: F(x) = P({ w V G(w) x }) = P G (]-,x]) = de kans op een waarde kleiner of gelijk aan x 4
5 A. Meetschalen en soorten veranderlijken Eigenschappen van veranderlijken: Klasseren: onderscheiden van een aantal klassen of groepen van objekten x 1 =x 2 of x 1 x 2 Voorbeelden: nationaliteit, geslacht Ordenen: rangschikken van de klassen; Voor 2 verschillende waarden x 1 en x 2 heeft men: x 1 = x 2 of x 1 < x 2 of x 1 > x 2 Voorbeelden: examenuitslag, IQ, geordende beoordeling (slecht, matig, goed) Opmerkingen 1. de ordening mag niet het resultaat zijn van een codering zoals ja = 1 neen = 2 onbekend = 3 geen antwoord = 9 2. er kunnen gelijkheden optreden 5
6 Eenheid: het verschil tussen 2 opeenvolgende waarden heeft altijd dezelfde betekenis: x = k e Voorbeelden: hoogte, temperatuur Celsius Absoluut nulpunt: waarde die de afwezigheid van het kenmerk voorstelt Voorbeelden: gewicht, gewichtstoename tijdens eerste levensjaar, tijd, massa Opmerking: 0 C is geen absoluut nulpunt (geen afwezigheid van energie), maar 0 graden Kelvin wel 6
7 Deze vier eigenschappen geven aanleiding tot vier soorten veranderlijken of vier meetschalen: Nominaal klassen Ordinaal + ordenen Interval + eenheid Ratio + absoluut nulpunt Opmerkingen 1. Een speciaal gevel van de nominale schaal is de binaire schaal (met 2 waarden) 2. De schalen zijn geordend van zwak naar sterk 3. Kwalitatieve kenmerken hebben een nominale of ordinale schaal, kwantitatieve kenmerken hebben een ordinale, interval, of ratio schaal 7
8 Een andere indeling maakt gebruik van het aantal verschillende waarden die kunnen worden aangenomen: Diskreet: een eindig of aftelbaar aantal mogelijke waarden Kontinu: een oneindig niet aftelbaar aantal mogelijke waarden Opmerking Dezelfde grootheid kan soms geëvalueerd worden op verschillende schalen 8
9 Voorbeelden 1. Pijn (van zwak naar sterk) - binair: ja/neen - ordinaal: geen, een beetje, erg, ondraaglijk - ratio: op een visuele analoge schaal (VAS): 0 mm 100 mm geen pijn ondraaglijk 2. Diastolische bloeddruk (van sterk naar zwak) - ratio: eigenlijke meting of verschil van 2 metingen (verandering) - ordinaal: verandering (daling) x ingedeeld in geordende klassen x 20 mmhg x < 20 mmhg en x 10 mmhg x < 10 mmhg en x 0 mmhg x < 0 mm Hg (stijging) - binair: bloeddruk 90 mmhg (genormaliseerd) bloeddruk > 90 mmhg (te hoog) 9
10 B. Verdeling van een diskrete veranderlijke Voorbeeld: De veranderlijke G kent aan elke mogelijke uitkomst een getal toe. Bij een diskrete veranderlijke wordt V geprojekteerd op een eindig of aftelbaar aantal punten: x 1, x 2,..., x n van een rechte 10
11 De kans op een waarde x i wordt gegeven door: p i = P({w V G(w) = x i }) Men heeft de volgende eigenschappen: p i 0 en Σ i p i = 1 De (theoretische) verdeling van G is bepaald door een rij: {(x i, p i ); I = 1, 2, 3,...} die aan de twee voorwaarden hierboven voldoet. 11
12 De algemene grafische voorstelling hiervan is: 12
13 De kumulatieve frequentiefunctie wordt gegeven door: F(a) = P({w V G(w) a}) = p i xi a Eigenschappen: lim x - F(x) = 0 en lim x + F(x) = 1 F(x) is een stijgende functie : als a b dan is F(a) F(b) P G (a < x b) = F(b) - F(a) omdat F(b) - F(a) = - p i = p i = P G (a < x b) xi a a< x i b p i x i b P G (x > a) = 1 - F(a) 13
14 Grafische voorstelling voor een worp met een dobbelsteen: 14
15 C. Verdeling van een kontinue veranderlijke Voor een kontinue veranderlijke heeft de kumulatieve frequentiefunctie F(x): F(x) = P({ w V G(w) x }) de volgende eigenschappen: Kontinu stijgende functie lim x - F(x) = 0 en lim x + F(x) = 1 Deze ziet er bijvoorbeeld als volgt uit: 15
16 Definitie: De kansdichtheid (of frequentiefunctie) f(x) van een veranderlijke G is de afgeleide van de kumulatieve functie: f(x) = df ( x ) = F (x) dx Opmerking: De afgeleide van een functie is de toename (of afname) van de functie in een klein interval. Zowel bij een diskrete als bij een kontinue veranderlijke bestaat hetzelfde verband tussen frequentiefunctie en kumulatieve frequentiefunctie: 16
17 Voorbeeld: FIGUUR 17
18 Eigenschappen: f(x) 0 (vermits F een stijgende functie is) a fxdx ( ) = F(a) = P G (x a) FIGUUR 18
19 b fxdx ( ) = F(b) - F(a) = P G (a < x b) a FIGUUR + fxdx ( ) = F(+ ) - F(- ) = 1-0 = 1 (voor diskrete veranderlijken is Σ i p i = 1) P G (x = a) = a fxdx ( ) = 0 (men moet rekening houden met de nauwkeurigheid) a 19
20 Een kontinue verdeling wordt volledig bepaald door haar kumulatieve frequentiefunctie F(x) of door haar kansdichtheid f(x). De kansdichtheid komt overeen met de kansen p i bij de diskrete veranderlijke en de kumulatieve veranderlijke met de sommen van kansen p i. De belangrijkste kontinue verdeling is de normale verdeling (zie H2). Opmerking: Men spreekt meestal van een verdeling i.p.v. de verdeling van een veranderlijke 20
21 D. Gemiddelde en variantie van een functie Beschouw een diskrete of een kontinue veranderlijke en een reële functie g(x) Definitie: De gemiddelde waarde van een functie (of de verwachtingswaarde) is gelijk aan: Diskreet: E[g(x)] = Σ i g(x i )p i Kontinu: + + = E[g(x)] = gxfxdx ( ) ( ) gxdfx ( ) ( ) 21
22 Voorbeeld: In een loterij zijn er 1000 loten van 20 BF. Het winnende lot brengt BF op, en er zijn 20 troostprijzen van 100 BF: 1 winnend lot van BF 20 troostprijzen van 100 BF De veranderlijke G is de prijs die men wint bij aankoop van een lot De verdeling is diskreet met 3 mogelijke waarden: 0, 100 en BF 22
23 De kansen zijn: BF : 1/ BF : 20/ BF : 979/
24 Men definieert de netto winst: g(x) = x - 20 Bereken E[g(x)] = E[x - 20] = ( ) (0,001) + (100-20) (0,020) + (0-20) (0,979) = 9, ,600-19,580 = -8 BF De organisator ontvangt BF en betaalt in totaal BF+2.000BF= BF De winst is BF, of 8 BF per lot 24
25 Eigenschappen: E[a] = a E[a g(x)] = a E[g(x)] E[g(x) + h(x)] = E[g(x)] + E[h(x)] Definitie: De variantie van een reële functie g(x) is gelijk aan: Diskreet: Var[g(x)] = Σ i (g(x i ) - E[g(x)]) 2 p i Kontinu: + Var[g(x)] = ( gx ( ) Egx [ ( )]) fxdx ( ) 2 25
Les 2 / 3: Meetschalen en Parameters
Les 2 / 3: Meetschalen en Parameters I Theorie: A. Algemeen : V is de verzameling van alle mogelijke uitkomsten van een toevallig experiment. Een veranderlijke of stochastiek is een afbeelding G die aan
Kansrekening en Statistiek
Kansrekening en Statistiek College 3 Dinsdag 20 September 1 / 29 1 Kansrekening Indeling: Cumulatieve distributiefuncties Permutaties en combinaties 2 / 29 Vragen: verjaardag Wat is de kans dat minstens
Hoofdstuk 2 : Grafische beschrijving van data. Marnix Van Daele. Vakgroep Toegepaste Wiskunde en Informatica Universiteit Gent
Hoofdstuk 2 : Grafische beschrijving van data Marnix Van Daele [email protected] Vakgroep Toegepaste Wiskunde en Informatica Universiteit Gent Grafische beschrijving van data p. 1/35 Soorten meetwaarden
Data analyse Inleiding statistiek
Data analyse Inleiding statistiek 1 Doel Beheersen van elementaire statistische technieken Toepassen van deze technieken op aardwetenschappelijke data 2 1 Leerstof Boek: : Introductory Statistics, door
Statistiek I Samenvatting. Prof. dr. Carette
Statistiek I Samenvatting Prof. dr. Carette Opleiding: bachelor of science in de Handelswetenschappen Academiejaar 2016 2017 Inhoudsopgave Hoofdstuk 1: Statistiek, gegevens en statistisch denken... 3 De
9.0 Voorkennis. Bij samengestelde kansexperimenten maak je gebruik van de productregel.
9.0 Voorkennis Bij samengestelde kansexperimenten maak je gebruik van de productregel. Productregel: Voor de gebeurtenis G 1 bij het ene kansexperiment en de gebeurtenis G 2 bij het andere kansexperiment
Kansrekening en stochastische processen 2DE18
Kansrekening en stochastische processen 2DE18 Docent : Jacques Resing E-mail: [email protected] 1/28 The delta functie Zij De eenheids impulsfunctie is: d ε (x) = { 1ε als ε 2 x ε 2 0 anders δ(x) = lim
opgaven formele structuren tellen Opgave 1. Zij A een oneindige verzameling en B een eindige. Dat wil zeggen (zie pagina 6 van het dictaat): 2 a 2.
opgaven formele structuren tellen Opgave 1. Zij A een oneindige verzameling en B een eindige. Dat wil zeggen (zie pagina 6 van het dictaat): ℵ 0 #A, B = {b 0,..., b n 1 } voor een zeker natuurlijk getal
Voorbeeld 1: kansverdeling discrete stochast discrete kansverdeling
12.0 Voorkennis Voorbeeld 1: Yvette pakt vier knikkers uit een vaas waar er 20 inzitten. 9 van de knikkers zijn rood en 11 van de knikkers zijn blauw. X = het aantal rode knikkers dat Yvette pakt. Er zijn
V.4 Eigenschappen van continue functies
V.4 Eigenschappen van continue functies We bestuderen een paar belangrijke stellingen over continue functies. Maxima en minima De stelling over continue functies die we in deze paragraaf bewijzen zegt
Verwachtingswaarde, Variantie en Standaarddeviatie
Verwachtingswaarde, Variantie en Standaarddeviatie Wisnet-hbo Verwachtingswaarde update maart 200 De verwachtingswaarde van een kansvariabele is een soort gemiddelde waarde. Deze wordt aangeduid met E(k)
Cursus Statistiek Hoofdstuk 4. Statistiek voor Informatica Hoofdstuk 4: Verwachtingen. Definitie (Verwachting van discrete stochast) Voorbeeld (1)
Cursus Statistiek Hoofdstuk 4 Statistiek voor Informatica Hoofdstuk 4: Verwachtingen Cursusjaar 29 Peter de Waal Departement Informatica Inhoud Verwachtingen Variantie Momenten en Momentengenererende functie
Hoofdstuk 5. Toevalsveranderlijken en waarschijnlijkheidsdistributies. Marnix Van Daele. Vakgroep Toegepaste Wiskunde en Informatica Universiteit Gent
Hoofdstuk 5 Toevalsveranderlijken en waarschijnlijkheidsdistributies Marnix Van Daele MarnixVanDaele@UGentbe Vakgroep Toegepaste Wiskunde en Informatica Universiteit Gent Toevalsveranderlijken en waarschijnlijkheidsdistributies
I.3 Functies. I.3.2 Voorbeeld. De afbeeldingen f: R R, x x 2 en g: R R, x x 2 zijn dus gelijk, ook al zijn ze gegeven door verschillende formules.
I.3 Functies Iedereen is ongetwijfeld in veel situaties het begrip functie tegengekomen; vaak als een voorschrift dat aan elk getal een ander getal toevoegt, bijvoorbeeld de functie fx = x die aan elk
Gezamenlijke kansverdeling van twee stochasten
Gezamenlijke kansverdeling van twee stochasten Voorbeeld: V = de windsnelheid H = hoogte van het waterniveau in een rivier/zee De combinatie (V, H) is van belang voor een overstroming en niet zozeer V
HOOFDSTUK VII REGRESSIE ANALYSE
HOOFDSTUK VII REGRESSIE ANALYSE 1 DOEL VAN REGRESSIE ANALYSE De relatie te bestuderen tussen een response variabele en een verzameling verklarende variabelen 1. LINEAIRE REGRESSIE Veronderstel dat gegevens
Kansrekening en Statistiek
Kansrekening en Statistiek College 2 Donderdag 16 September 1 / 31 1 Kansrekening Indeling: Eigenschappen van kansen Continue uitkomstenruimtes Continue stochasten 2 / 31 Vragen: cirkels Een computer genereert
Meten en experimenteren
Meten en experimenteren Statistische verwerking van gegevens Een korte inleiding 3 oktober 006 Deel I Toevallige veranderlijken Steekproef Beschrijving van gegevens Histogram Gemiddelde en standaarddeviatie
Kansrekening en Statistiek
Kansrekening en Statistiek College 2 Donderdag 15 September 1 / 42 1 Kansrekening Vandaag: Vragen Eigenschappen van kansen Oneindige discrete uitkomstenruimtes Continue uitkomstenruimtes Continue stochasten
3.1 Het herhalen van kansexperimenten [1]
3.1 Het herhalen van kansexperimenten [1] Voorbeeld: Op een schijf staan een zestal afbeeldingen in even grote vakjes: 3 keer appel, 2 keer banaan, 1 keer peer. Sandra draait zes keer aan de schijf. a)
Inleiding tot de meettheorie
Inleiding tot de meettheorie Meten is het toekennen van cijfers aan voorwerpen. Koeien Koeien in een kudde, studenten in een auditorium, mensen met een bepaalde stoornis, leerlingen met meer dan 15 in
Primitieve functie Als f : R --> R continu is op een interval, dan noemt men F : R --> R een primiteive functie of
Enkelvoudige integralen Kernbegrippen Onbepaalde integralen Van onbepaalde naar bepaalde integraal Bepaalde integralen Integratiemethoden Standaardintegralen Integratie door splitsing Integratie door substitutie
3.1 Procenten [1] In 1994 zijn er 3070 groentewinkels in Nederland. In 2004 zijn dit er nog 1625.
3.1 Procenten [1] In 1994 zijn er 3070 groentewinkels in Nederland. In 2004 zijn dit er nog 1625. Absolute verandering = Aantal 2004 Aantal 1994 = 1625 3070 = -1445 Relatieve verandering = Nieuw Oud Aantal
Les 1: Waarschijnlijkheidrekening
Medische statistiek 1 Les 1: Waarschijnlijkheidrekening I Theorie A Inleidende defenities V: de verzameling van alle mogelijke uitkomsten A,B,... : een gebeurtenis is een verzameling uitkomsten in V Q
Algemeen: Ronald Buyl. Gebouw D bureau 133. Tel: 02/
Begrippen van Statistiek en Informatica 1 Algemeen: Ronald Buyl [email protected] Gebouw D bureau 133 Tel: 02/4774438 Activatie e-mail adres van VUB: http://www.vub.ac.be/tools/activatie.html Cursus
Sterrenkunde Praktikum 1 Fouten en fitten
Sterrenkunde Praktikum 1 Fouten en fitten Paul van der Werf 12 februari 2008 1 Inleiding In de sterrenkunde werken we vaak met zwakke signalen, of met grote hoeveelheden metingen van verschillende nauwkeurigheid.
Kansrekening en statistiek WI2105IN deel I 4 november 2011, uur
Kansrekening en statistiek WI05IN deel I 4 november 0, 4.00 7.00 uur Bij dit examen is het gebruik van een (evt. grafische) rekenmachine toegestaan. Een formuleblad wordt uitgereikt. Meerkeuzevragen Toelichting:
Kansrekening en Statistiek
Kansrekening en Statistiek College 4 Donderdag 23 September 1 / 22 1 Kansrekening Indeling: Permutaties en combinaties 2 / 22 Vragen: verjaardag Wat is de kans dat minstens twee van jullie op dezelfde
TECHNISCHE UNIVERSITEIT EINDHOVEN. Faculteit Wiskunde en Informatica
TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Eindtentamen Kansrekening en Statistiek (WS), Tussentoets Kansrekening en Statistiek (WS), Vrijdag 8 april, om 9:-:. Dit is een tentamen
Statistiek voor A.I. College 6. Donderdag 27 September
Statistiek voor A.I. College 6 Donderdag 27 September 1 / 1 2 Deductieve statistiek Kansrekening 2 / 1 Vraag: Afghanistan In het leger wordt uit een groep van 6 vrouwelijke en 14 mannelijke soldaten een
V.2 Limieten van functies
V.2 Limieten van functies Beschouw een deelverzameling D R, een functie f: D R en zij c R. We willen het gedrag van f in de buurt van c bestuderen. De functiewaarde in c is daarvoor niet belangrijk, de
Definitie: Een functie f heeft een absoluut maximum f(x 0 ) in het punt. x 1 Domein(f) als voor alle x Domein(f) geldt:
Definitie: Een functie f heeft een absoluut maximum f(x 0 ) in het punt x 0 Domein(f) als voor alle x Domein(f) geldt: f(x) f(x 0 ). Een functie f heeft een absoluut minimum f(x 1 ) in het punt x 1 Domein(f)
Kansrekening en statistiek wi2105in deel I 29 januari 2010, uur
Kansrekening en statistiek wi20in deel I 29 januari 200, 400 700 uur Bij dit examen is het gebruik van een (evt grafische rekenmachine toegestaan Tevens krijgt u een formuleblad uitgereikt na afloop inleveren
Data analyse Inleiding statistiek
Data analyse Inleiding statistiek Terugblik - Inductieve statistiek Afleiden van eigenschappen van een populatie op basis van een beperkt aantal metingen (steekproef) Kennis gemaakt met kans & kansverdelingen
Meten en experimenteren
Meten en experimenteren Statistische verwerking van gegevens Een korte inleiding 6 oktober 009 Catherine De Clercq Statistische verwerking van gegevens Kursus statistiek voor fysici door Jorgen D Hondt
Vandaag. Onderzoeksmethoden: Statistiek 2. Basisbegrippen. Theoretische kansverdelingen
Vandaag Onderzoeksmethoden: Statistiek 2 Peter de Waal (gebaseerd op slides Peter de Waal, Marjan van den Akker) Departement Informatica Beta-faculteit, Universiteit Utrecht Theoretische kansverdelingen
Meten is weten, dat geldt ook voor het vakgebied natuurkunde. Om te meten gebruik je hulpmiddelen, zoals timers, thermometers, linialen en sensoren.
1 Meten en verwerken 1.1 Meten Meten is weten, dat geldt ook voor het vakgebied natuurkunde. Om te meten gebruik je hulpmiddelen, zoals timers, thermometers, linialen en sensoren. Grootheden/eenheden Een
Tentamen Grondslagen van de Wiskunde A Met beknopte uitwerking
Tentamen Grondslagen van de Wiskunde A Met beknopte uitwerking 10 december 2013, 09:30 12:30 Dit tentamen bevat 5 opgaven; zie ook de ommezijde. Alle opgaven tellen even zwaar (10 punten); je cijfer is
Inleiding tot het opstellen van een elektronische enquête met LimeSurvey
Inleiding tot het opstellen van een elektronische enquête met LimeSurvey Cursus Wetenschappelijk denken en Informatica voor leidinggevenden in het UZ Brussel (voorjaar 2011) 4-3-2011 Herhaling titel van
Overzicht Fourier-theorie
B Overzicht Fourier-theorie In dit hoofdstuk geven we een overzicht van de belangrijkste resultaten van de Fourier-theorie. Dit kan als steun dienen ter voorbereiding op het tentamen. Fourier-reeksen van
5.0 Voorkennis. Er zijn verschillende manieren om gegevens op een grafische wijze weer te geven: 1. Staafdiagram:
5.0 Voorkennis Er zijn verschillende manieren om gegevens op een grafische wijze weer te geven: 1. Staafdiagram: De lengte van de staven komt overeen met de hoeveelheid; De staven staan meestal los van
Combinatoriek en rekenregels
Combinatoriek en rekenregels Les 4: Rekenregels (deze les sluit aan bij de paragraaf 8 van Hoofdstuk 1 Combinatoriek en Rekenregels van de Wageningse Methode, http://www.wageningsemethode.nl/methode/het-lesmateriaal/?s=y456v-d)
Kansrekening en Statistiek
Kansrekening en Statistiek College 3 Dinsdag 21 September 1 / 21 1 Kansrekening Indeling: Uniforme verdelingen Cumulatieve distributiefuncties 2 / 21 Vragen: lengte Een lineaal wordt op een willekeurig
HOOFDSTUK VI NIET-PARAMETRISCHE (VERDELINGSVRIJE) STATISTIEK
HOOFDSTUK VI NIET-PARAMETRISCHE (VERDELINGSVRIJE) STATISTIEK 1 1. INLEIDING Parametrische statistiek: Normale Verdeling Niet-parametrische statistiek: Verdelingsvrij Keuze tussen de twee benaderingen I.
11.1 Kansberekeningen [1]
11.1 Kansberekeningen [1] Kansdefinitie van Laplace: P(gebeurtenis) = Aantal gunstige uitkomsten/aantal mogelijke uitkomsten Voorbeeld 1: Wat is de kans om minstens 16 te gooien, als je met 3 dobbelstenen
Tentamen Grondslagen van de Wiskunde A, met uitwerkingen
Tentamen Grondslagen van de Wiskunde A, met uitwerkingen 8 december 2015, 09:30 12:30 Dit tentamen bevat 5 opgaven; zie ook de ommezijde. Alle opgaven tellen even zwaar (10 punten); je cijfer is het totaal
Tentamen Kansrekening en Statistiek (2WS04), dinsdag 17 juni 2008, van uur.
Technische Universiteit Eindhoven Faculteit Wiskunde en Informatica Tentamen Kansrekening en Statistiek (2WS4, dinsdag 17 juni 28, van 9. 12. uur. Dit is een tentamen met gesloten boek. De uitwerkingen
Opgaves Hoofdstuk 3: Toevalsveranderlijken en Distributiefuncties
Opgaves Hoofdstuk 3: Toevalsveranderlijken en Distributiefuncties Discrete Distributiefuncties 3. Er zijn 3 studenten aan het begin van de dag aanwezig bij een symposium. De kans dat een student volhoudt
Vrije Universiteit 28 mei Gebruik van een (niet-grafische) rekenmachine is toegestaan.
Afdeling Wiskunde Volledig tentamen Statistics Deeltentamen 2 Statistics Vrije Universiteit 28 mei 2015 Gebruik van een (niet-grafische) rekenmachine is toegestaan. Geheel tentamen: opgaven 1,2,3,4. Cijfer=
5.0 Voorkennis. Er zijn verschillende manieren om gegevens op een grafische wijze weer te geven: 1. Staafdiagram:
5.0 Voorkennis Er zijn verschillende manieren om gegevens op een grafische wijze weer te geven: 1. Staafdiagram: De lengte van de staven komt overeen met de hoeveelheid; De staven staan meestal los van
Het is niet toegestaan om een formulekaart of rekenmachine te gebruiken. f(x) = 9x(x 1) en g(x) = 9x 5. Figuur 1: De grafieken van de functies f en g.
UNIVERSITEIT VAN AMSTERDAM FNWI Voorbeeld Toets Wiskunde A Het is niet toegestaan om een formulekaart of rekenmachine te gebruiken. 1. De twee functies f en g worden gegeven door f(x) = 9x(x 1) en g(x)
Resultaten IJkingstoets Bio-ingenieur 1 september Nummer vragenreeks: 1
Resultaten IJkingstoets Bio-ingenieur september 8 Nummer vragenreeks: Resultaten IJkingstoets Bio-ingenieur september 8 - p. / Aan de KU Leuven namen in totaal 8 aspirant-studenten deel aan de ijkingstoets
Opgaven Inleiding Analyse
Opgaven Inleiding Analyse E.P. van den Ban Limieten en continuïteit Opgave. (a) Bewijs direct uit de definitie van iet dat y 0 y = 0. (b) Bewijs y 0 y 3 = 0 uit de definitie van iet. (c) Bewijs y 0 y 3
1BA PSYCH Statistiek 1 Oefeningenreeks 3 1
Juno KOEKELKOREN D.1.3. OEFENINGENREEKS 3 OEFENING 1 In onderstaande tabel vind je zes waarnemingen van twee variabelen (ratio meetniveau). Eén van de waarden van y is onbekend. Waarde x y 1 1 2 2 9 2
III.2 De ordening op R en ongelijkheden
III.2 De ordening op R en ongelijkheden In de vorige paragraaf hebben we axioma s gegeven voor de optelling en vermenigvuldiging in R, maar om R vast te leggen moeten we ook ongelijkheden in R beschouwen.
Hoofdstuk 3 : Numerieke beschrijving van data. Marnix Van Daele. Vakgroep Toegepaste Wiskunde en Informatica Universiteit Gent
Hoofdstuk 3 : Numerieke beschrijving van data Marnix Van Daele MarnixVanDaele@UGentbe Vakgroep Toegepaste Wiskunde en Informatica Universiteit Gent Numerieke beschrijving van data p 1/31 Beschrijvende
datavisualisatie Stappen 14-12-12 verzamelen en opschonen analyseren van data interpeteren hoorcollege 4 visualisatie representeren
Stappen datavisualisatie hoorcollege 4 visualisatie HVA CMD V2 12 december 2012 verzamelen en opschonen analyseren van data interpeteren representeren in context plaatsen 1 "Ultimately, the key to a successful
1 Limiet van een rij Het begrip rij Bepaling van een rij Expliciet voorschrift Recursief voorschrift 3
HOOFDSTUK 6: RIJEN 1 Limiet van een rij 2 1.1 Het begrip rij 2 1.2 Bepaling van een rij 2 1.2.1 Expliciet voorschrift 2 1.2.2 Recursief voorschrift 3 1.2.3 Andere gevallen 3 1.2.4 Rijen met de grafische
Vlakke meetkunde. Module 6. 6.1 Geijkte rechte. 6.1.1 Afstand tussen twee punten. 6.1.2 Midden van een lijnstuk
Module 6 Vlakke meetkunde 6. Geijkte rechte Beschouw een rechte L en kies op deze rechte een punt o als oorsprong en een punt e als eenheidspunt. Indien men aan o en e respectievelijk de getallen 0 en
3. Bepaal de convergentie-eigenschappen (absoluut convergent, voorwaardelijk convergent, divergent) van de volgende reeksen: n=1. ( 1) n (n + 1)x 2n.
Radboud Universiteit Tentamen Calculus A NWI-WP025 25 januari 208, 8.30.30 Het gebruik van een rekenmachine/gr, telefoon, boek, aantekeningen e.d. is niet toegestaan. Geef precieze argumenten en antwoorden.
Feedback proefexamen Statistiek I 2009 2010
Feedback proefexamen Statistiek I 2009 2010 Het correcte antwoord wordt aangeduid door een sterretje. 1 Een steekproef van 400 personen bestaat uit 270 mannen en 130 vrouwen. Een derde van de mannen is
Set 3 Inleveropgaven Kansrekening (2WS20) Opgaven met sterretjes zijn lastiger dan opgaven zonder sterretje.
Technische Universiteit Eindhoven Faculteit Wiskunde en Informatica Set 3 Inleveropgaven Kansrekening (2WS2) 23-24 Opgaven met sterretjes zijn lastiger dan opgaven zonder sterretje.. Voetbalplaatjes. Bij
Voorbeeld 1. Statistiek voor Informatica Hoofdstuk 3: Stochastische Variabelen en Verdelingen. Voorbeeld 2A. Voorbeeld 1 (vervolg)
Voorbeeld Statistiek voor Informatica Hoofdstuk 3: Stochastische Variabelen en Verdelingen Cursusjaar 2009 Peter de Waal Departement Informatica In een eperiment gooien we 4 maal met een zuivere munt.
Samenvatting Statistiek
Samenvatting Statistiek De hoofdstukken 1 t/m 3 gaan over kansrekening: het uitrekenen van kansen in een volledig gespecifeerd model, waarin de parameters bekend zijn en de kans op een gebeurtenis gevraagd
Inleiding Applicatie Software - Statgraphics
Inleiding Applicatie Software - Statgraphics Beschrijvende Statistiek /k 1/35 OPDRACHT OVER BESCHRIJVENDE STATISTIEK Beleggen Door een erfenis heeft een vriend van u onverwacht de beschikking over een
Getallensystemen, verzamelingen en relaties
Hoofdstuk 1 Getallensystemen, verzamelingen en relaties 1.1 Getallensystemen 1.1.1 De natuurlijke getallen N = {0, 1, 2, 3,...} N 0 = {1, 2, 3,...} 1.1.2 De gehele getallen Z = {..., 4, 3, 2, 1, 0, 1,
5.0 Voorkennis. Voorbeeld 1: In een vaas zitten 10 rode, 5 witte en 6 blauwe knikkers. Er worden 9 knikkers uit de vaas gepakt.
5.0 Voorkennis Voorbeeld 1: In een vaas zitten 10 rode, 5 witte en 6 blauwe knikkers. Er worden 9 knikkers uit de vaas gepakt. a) Bereken de kans op minstens 7 rode knikkers: P(minstens 7 rood) = P(7 rood)
Deel 2. Basiskennis wiskunde
Deel 2. Basiskennis wiskunde Vraag 26 Definieer de functie f : R R : 7 cos(2 ). Bepaal de afgeleide van de functie f in het punt 2π/2. (A) f 0 ( 2π/2) = π (B) f 0 ( 2π/2) = 2π (C) f 0 ( 2π/2) = 2π (D)
Statistische variabelen. formuleblad
Statistische variabelen formuleblad 0. voorkennis Soorten variabelen Discreet of continu Bij kwantitatieve gegevens gaat het om meetbare gegeven, zoals temperatuur, snelheid of gewicht. Bij een discrete
VOOR HET SECUNDAIR ONDERWIJS. Kansmodellen. 3. Populatie en steekproef. Werktekst voor de leerling. Prof. dr. Herman Callaert
VOOR HET SECUNDAIR ONDERWIJS Kansmodellen. Werktekst voor de leerling Prof. dr. Herman Callaert Hans Bekaert Cecile Goethals Lies Provoost Marc Vancaudenberg . Populatie: een intuïtieve definitie.... Een
Kansrekening en Statistiek
Kansrekening en Statistiek College 9 Dinsdag 18 Oktober 1 / 1 2 Statistiek Vandaag: Centrale Limietstelling Correlatie Regressie 2 / 1 Centrale Limietstelling 3 / 1 Centrale Limietstelling St. (Centrale
. Dan geldt P(B) = a. 1 4. d. 3 8
Tentamen Statistische methoden 4052STAMEY juli 203, 9:00 2:00 Studienummers: Vult u alstublieft op het meerkeuzevragenformulier uw Delftse studienummer in (tbv automatische verwerking); en op het open
Kansrekening en Statistiek
Kansrekening en Statistiek College 9 Woensdag 7 Oktober 1 / 51 Kansrekening en Statistiek? Bevordert luieren de fantasie? Psychologie 2 / 51 Kansrekening en Statistiek? Bevordert luieren de fantasie? Psychologie
Oefening 2.2. Welke van de volgende beweringen zijn waar?
Oefeningen op hoofdstuk 2 Verzamelingenleer 2.1 Verzamelingen Oefening 2.1. Beschouw A = {1, {1}, {2}}. Welke van de volgende beweringen zijn waar? Beschouw nu A = {1, 2, {2}}, zelfde vraag. a. 1 A c.
Inleiding Applicatie Software - Statgraphics. Beschrijvende Statistiek
Inleiding Applicatie Software - Statgraphics Beschrijvende Statistiek OPDRACHT OVER BESCHRIJVENDE STATISTIEK Beleggen Door een erfenis heeft een vriend van u onverwacht de beschikking over een klein kapitaaltje
Inleiding Analyse 2009
Inleiding Analyse 2009 Inleveropgaven A). Stel f(, y) = In (0, 0) is f niet gedefinieerd. We bestuderen y2 2 + y 4. lim f(, y). (,y) (0,0) 1. Bepaal de waarde van f(, y) op een willekeurige rechte lijn
1.0 Voorkennis. Getallenverzameling = Verzameling van getallen met een bepaalde eigenschap
1.0 Voorkennis Getallenverzameling = Verzameling van getallen met een bepaalde eigenschap Natuurlijke getallen: Dit zijn alle positieve gehele getallen en nul. = {0, 1, 2, 3, 4, 5, 6,...} De getallen 0,
Tentamen Mathematische Statistiek (2WS05), vrijdag 29 oktober 2010, van 14.00 17.00 uur.
Technische Universiteit Eindhoven Faculteit Wiskunde en Informatica Tentamen Mathematische Statistiek (WS05), vrijdag 9 oktober 010, van 14.00 17.00 uur. Dit is een tentamen met gesloten boek. De uitwerkingen
Kansrekening en Statistiek
Kansrekening en Statistiek College 7 Dinsdag 11 Oktober 1 / 33 2 Statistiek Vandaag: Populatie en steekproef Maten Standaardscores Normale verdeling Stochast en populatie Experimenten herhalen 2 / 33 3
Niet-standaard analyse (Engelse titel: Non-standard analysis)
Technische Universiteit Delft Faculteit Elektrotechniek, Wiskunde en Informatica Delft Institute of Applied Mathematics Niet-standaard analyse (Engelse titel: Non-standard analysis) Verslag ten behoeve
1 Rekenen in eindige precisie
Rekenen in eindige precisie Een computer rekent per definitie met een eindige deelverzameling van getallen. In dit hoofdstuk bekijken we hoe dit binnen een computer is ingericht, en wat daarvan de gevolgen
(x x 1 ) + y 1. x x k+1 x k x k+1
Les Talor reeksen We hebben in Wiskunde een aantal belangrijke reële functies gezien, bijvoorbeeld de exponentiële functie exp(x) of de trigonometrische functies sin(x) en cos(x) Toen hebben we wel eigenschappen
10.0 Voorkennis. Herhaling van rekenregels voor machten: a als a a 1 0[5] [6] Voorbeeld 1: Schrijf als macht van a:
10.0 Voorkennis Herhaling van rekenregels voor machten: p p q pq a pq a a a [1] a [2] q a q p pq p p p a a [3] ( ab) a b [4] Voorbeeld 1: Schrijf als macht van a: 1 8 : a a : a a a a 3 8 3 83 5 Voorbeeld
6.0 Differentiëren Met het differentiequotiënt bereken je de gemiddelde verandering per tijdseenheid.
6.0 Differentiëren Met het differentiequotiënt bereken je de gemiddelde verandering per tijdseenheid. f(x) = x x Differentiequotiënt van f(x) op [0, 3] = y f (3) f (0) 60 x 30 30 y x 1 Algemeen: Het differentiequotiënt
