Kansrekening en Statistiek
|
|
|
- Martina Brouwer
- 10 jaren geleden
- Aantal bezoeken:
Transcriptie
1 Kansrekening en Statistiek College 4 Donderdag 23 September 1 / 22
2 1 Kansrekening Indeling: Permutaties en combinaties 2 / 22
3 Vragen: verjaardag Wat is de kans dat minstens twee van jullie op dezelfde dag jarig zijn? 3 / 22
4 Vragen: loterij Stel dat de loten in een loterij bestaan uit 7 cijfers in {1,, 9} en e25 kosten De loterij bevat 1 prijs van e , die elke maand wordt uitgereikt Als mevrouw A 40 jaar lang elke maand een lot koopt, wat is dan haar verwachte winst? En wat is de kans dat zij precies 1 maal wint? 4 / 22
5 Vragen: zwendel Een beurshandelaar ontvangt zeven weken lang elke Maandag een brief die voorspelt of de koers van de euro die week zal stijgen of dalen, en elke week blijkt die voorspelling correct Op de achtste Maandag wordt hem meegedeeld dat hij een voorspelling van de koers van de euro voor de komende week kan kopen Moet hij hierop ingaan? 5 / 22
6 Vragen: poker Is de kans op full house groter dan op four of a kind? 6 / 22
7 Tellen: permutaties en combinaties 7 / 22
8 Permutaties en combinaties Op hoeveel mogelijke manieren kan een gebeurtenis plaatsvinden? Uit hoeveel elementen bestaat de (eindige) uitkomstenruimte? 8 / 22
9 Permutaties en combinaties Vb Het aantal 5-letterige woorden die alleen letters in {a, b, c, d, e, f, g} bevatten is 7 5 = Het aantal 5-letterige woorden die alleen letters in {a, b, c, d, e, f, g} bevatten en waarin geen letter meerdere keren voorkomt is = 7! 2! = 7! (7 5)! = 2520 Het aantal manieren waarop we 5 letters uit {a, b, c, d, e, f, g} kunnen kiezen is = 7! 5! (7 5)!5! = 21 9 / 22
10 Permutaties en combinaties Vb Beschouw een commissie die uit 20 mensen bestaat Het aantal manieren om alle leden een verschillend nummer 20 toe te kennen is 20! > Het aantal manieren om een voorzitter, secretaris en penningmeester te kiezen is = 20! 17! = 20! (20 3)! = 6840 Het aantal manieren om een subcommissie van 3 mensen te kiezen is = 20! 3! 17!3! = 20! (20 3)!3! = / 22
11 Permutaties en combinaties: geordend versus ongeordend Vb Beschouw 7 mensen Geordend: Het aantal manieren waarop die een rij kunnen vormen is 7! = 5040 Geordend: Het aantal manieren waarop een rij bestaande uit van 4 van de 7 mensen gevormd kan worden is = 7! 3! = 7! (7 4)! = 840 Ongeordend: Het aantal manieren om een verzameling van 4 mensen uit de 7 te kiezen is = 7! 4! 3!4! = 7! (7 4)!4! = / 22
12 Permutaties en combinaties St Het aantal permutaties van n elementen: Het aantal manieren om n elementen te ordenen is n faculteit: n (n 1) (n 2) 2 1 = n! St Het aantal manieren om uit n elementen rijtjes (geordend) van lengte k te vormen is n! n (n 1) (n 2) (n k + 2) (n k + 1) = (n k)! St Het aantal combinaties van k elementen uit n element: Het aantal manieren om verzamelingen (ongeordend) van k elementen uit n elementen te kiezen is n boven k: n (n 1) (n 2) (n k + 2) (n k + 1) k! De getallen `n k heten binomiaalcoëfficiënten (binomial coefficients) = n! n (n k)!k! = k 12 / 22
13 Permutaties en combinaties: binomiaalcoëfficiënten Def Voor elke n N geldt `n 0 = `n n = 1 Vb Binomiaalcoëfficiënten: k n / 22
14 Permutaties en combinaties: faculteit St (Stirlings formule) Voor grote n geldt dat n! ( n e )n 2πn Ofwel: ( n e lim )n 2πn = 1 n n! 14 / 22
15 Permutaties en combinaties: Pascals driehoek en binomiaalcoëfficiënten `0 `1 0 `1 `2 0 `2 1 `2 `3 0 `3 1 `3 2 `3 `4 0 `4 1 `4 2 `4 3 `4 `5 0 `5 1 `5 2 `5 3 `5 4 `5 `6 0 `6 1 `6 2 `6 3 `6 4 `6 5 ` i i + j j 15 / 22
16 Permutaties en combinaties Vb Beschouw een vereniging met 15 leden In de volgende vragen is het zo dat niemand lid is van meer dan één commissie Het aantal manieren om 1 commissie van 3 en 1 commissie van 5 leden te kiezen is `15 ` = `15 ` Het aantal manieren om 2 commissies van 3 leden te kiezen is = 2 2 Het aantal manieren om 2 commissies te kiezen, beide bestaande uit een voorzitter, secretaris en penningmeester, is 15! 12! (15 3)! (12 3)! 2 Het aantal manieren om een feestcommissie en een liefdadigheidscommissie, beide van 3 leden, te kiezen is `15 ` = `15 `6 6 3 Het aantal manieren om een feestcommissie en een liefdadigheidscommissie te kiezen, beide bestaande uit een voorzitter, secretaris en penningmeester, is 15! (15 6)! Het aantal manieren om een feestcommissie en een liefdadigheidscommissie te kiezen, waarbij de feestcommissie bestaat uit een voorzitter, secretaris en penningmeester, en de liefdadighediscommissie uit 3 leden, is 15! `12 (15 3)! 3 = `15 12! 3 (12 3)! 16 / 22
17 Antwoord op een vraag: loterij Vb Stel dat de loten in een loterij bestaan uit 7 cijfers in {1,, 9} en e25 kosten De loterij bevat 1 prijs van e , die elke maand wordt uitgereikt Mevrouw A koopt 40 jaar lang elke maand 1 lot De kans op de prijs is = De kans dat A nooit wint is: De kans dat A precies 1 maal wint is: Haar verwachte winst is: e12 40 ( ) e / 22
18 Permutaties en combinaties Vb Stel dat de loten in een loterij bestaan uit 7 cijfers in {1,, 9} Het aantal loten is 9 7 = Het aantal loten dat precies de cijfers 2,,8 bevat is 7! = 5040 Het aantal loten bestaande uit verschillende cijfers is 9! 2! = 9! (9 7)! = Het aantal loten waarin 1 cijfer precies 2 maal voorkomt en alle andere cijfers verschillend zijn is 9 `7 2 8! 3! = Het aantal loten waarin 1 cijfer precies 3 maal voorkomt en alle andere cijfers verschillend zijn is 9 `7 3 8! 4! = / 22
19 Antwoord op een vraag: zwendel Een beurshandelaar ontvangt zeven weken lang elke Maandag een brief die voorspelt of de koers van de euro die week zal stijgen of dalen, en elke week blijkt die voorspelling correct Op de achtste Maandag wordt hem meegedeeld dat hij een voorspelling van de koers van de euro voor de komende week kan kopen Moet hij hierop ingaan? Wanneer de voorspelling het resultaat is van de worp van een munt, is de kans op zeven correcte voorspellingen = 0008, zeer klein Echter, stel dat het bedrijf in de eerste week aan 2 7 = 128 mensen een brief stuurt, waabij in de helft een stijging en in de andere helft een daling wordt voorspeld De tweede Maandag stuurt het bedrijf aan de 64 mensen voor wie de eerste voorspelling correct was, weer een voorspelling, op dezelfde wijze als op de eerste Maandag, enz Aan het einde van zeven weken is er één persoon voor wie alle zeven voorspellingen correct zijn Niet doen dus 19 / 22
20 Antwoord op een vraag: verjaardag Vb Wat is de kans dat in een groep van 40 mensen tenminste twee mensen op dezelfde dag jarig zijn? Het aantal verschillende mogelijke verdelingen van de verjaardagen is Het aantal mogelijke verdelingen waarbij iedereen op een verschillende dag jarig is, is 365! (365 40)! = 365! 325! De gevraagde kans is 1 365! (365 40)! De kans dat er precies twee mensen op dezelfde dag jarig zijn en de rest op verschillende dagen is: 365 ` ! (364 38)! < De kans dat er precies twee paar mensen op dezelfde dag jarig zijn en de rest op verschillende dagen is: `365 2 `40 2 ` ! (363 36)! < / 22
21 Antwoord op een vraag: poker Bij poker krijgt een speler 5 kaarten uit 52 Is de kans op full house (3 kaarten met dezelfde waarde en 2 andere met dezelfde waarde) groter dan op four of a kind (4 kaarten met dezelfde waarde)? Het aantal mogelijke delingen is `52 5 `13 `4 1 4 ` P(four-of-a-kind) = `52 = `52 = ` `4 2 P(full house) = `52 = / 22
22 Finis 22 / 22
Kansrekening en Statistiek
Kansrekening en Statistiek College 3 Dinsdag 20 September 1 / 29 1 Kansrekening Indeling: Cumulatieve distributiefuncties Permutaties en combinaties 2 / 29 Vragen: verjaardag Wat is de kans dat minstens
Statistiek voor A.I. College 6. Donderdag 27 September
Statistiek voor A.I. College 6 Donderdag 27 September 1 / 1 2 Deductieve statistiek Kansrekening 2 / 1 Vraag: Afghanistan In het leger wordt uit een groep van 6 vrouwelijke en 14 mannelijke soldaten een
is, dat de zijde met cijfer boven te liggen komt, evenzo als de kans voor de koningin 1 2
Hoofdstuk III Kansrekening Les 1 Combinatoriek Als we het over de kans hebben dat iets gebeurt, hebben we daar wel intuïtief een idee over, wat we hiermee bedoelen. Bijvoorbeeld zeggen we, dat bij het
Kansrekening en Statistiek
Kansrekening en Statistiek College 1 Dinsdag 14 September 1 / 34 Literatuur http://www.phil.uu.nl/ iemhoff Applied Statistics for the Behavioral Sciences - 5th edition, Dennis E. Hinkle, William Wiersma,
Faculteit, Binomium van Newton en Driehoek van Pascal
Faculteit, Binomium van Newton en Driehoek van Pascal 1 Faculteit Definitie van de faculteit Wisnet-hbo update aug. 2007 (spreek uit k-faculteit) is: k Dit geldt voor elk geheel getal k groter dan 0 en
2.0 Voorkennis (64 36) Haakjes (Stap 1) Volgorde bij berekeningen:
Volgorde bij berekeningen: Voorbeeld : 2.0 Voorkennis 1) Haakjes wegwerken 2) Wortels en kwadraten wegwerken 3) Vermenigvuldigen en delen van links naar rechts 4) Optellen en aftrekken van links naar rechts
Permutaties Combinaties Binomiaalcoëfficiënt Variaties. Combinatoriek. W. Oele. 27 januari 2014. W. Oele Combinatoriek
27 januari 2014 Deze les Inleiding combinatoriek: de faculteit permutaties combinaties variaties de binomiaalcoëfficiënt De faculteit Eenvoudige recursieve definitie: 0! = 1 n! = n(n 1)! Voorbeelden: 5!
Kansrekening en Statistiek
Kansrekening en Statistiek College 5 Dinsdag 28 September 1 / 25 1 Kansrekening Indeling: Bernouilli verdelingen Binomiale verdelingen Voorwaardelijke kansen Voor software R: van http://sourceforge.net
1.0 Voorkennis. Getallenverzameling = Verzameling van getallen met een bepaalde eigenschap
1.0 Voorkennis Getallenverzameling = Verzameling van getallen met een bepaalde eigenschap Natuurlijke getallen: Dit zijn alle positieve gehele getallen en nul. = {0, 1, 2, 3, 4, 5, 6,...} De getallen 0,
Kansrekening en Statistiek
Kansrekening en Statistiek College 2 Donderdag 16 September 1 / 31 1 Kansrekening Indeling: Eigenschappen van kansen Continue uitkomstenruimtes Continue stochasten 2 / 31 Vragen: cirkels Een computer genereert
Kansrekening en Statistiek
Kansrekening en Statistiek College 8 Donderdag 13 Oktober 1 / 23 2 Statistiek Vandaag: Stochast en populatie Experimenten herhalen Wet van de Grote Getallen Centrale Limietstelling 2 / 23 Stochast en populatie
Binomiale verdelingen
Binomiale verdelingen Les 1: Kans en combinatoriek (Deze les sluit aan bij paragraaf 1 van Hoofdstuk 2 Binomiale en normale verdelingen van de Wageningse Methode, http://www.wageningsemethode.nl/methode/het-lesmateriaal/?s=y456v-d)
Kansrekening en Statistiek
Kansrekening en Statistiek College 12 Donderdag 21 Oktober 1 / 38 2 Statistiek Indeling: Stochast en populatie Experimenten herhalen Wet van de Grote Getallen Centrale Limietstelling 2 / 38 Deductieve
Bovenstaand schema kan je helpen bij het bepalen van het soort telprobleem en de berekening van het aantal mogelijkheden 2.
Telproblemen voor 4 HAVO wiskunde A In het schoolexamen 2 van 4 HAVO wiskunde A zijn de opgaven over de telproblemen (hoofdstuk 4) erg slecht gemaakt. Dat moet beter kunnen, zou ik denken Ik bespreek hier
Bij het oplossen van een telprobleem zijn de volgende 2 dingen belangrijk: Is de volgorde van de gekozen dingen van belang?
4. tellen & kansen 4.1 Tellen Herkennen Je kunt een vraag over telproblemen herkennen aan signaalwoorden: - hoeveel mogelijkheden, manieren, routes, volgordes etc. zijn er?, - bereken het aantal mogelijkheden/manieren
wiskundeleraar.nl
2015-2016 wiskundeleraar.nl 1. voorkennis Volgorde bij bewerkingen 1. haakjes 2. machtsverheffen. vermenigvuldigen en delen van links naar rechts 4. optellen en aftrekken van links naar rechts Voorbeeld
Opgaven voor Kansrekening - Oplossingen
Wiskunde voor kunstmatige intelligentie Opgaven voor Kansrekening - Opgave. Een oneerlijke dobbelsteen is zo gemaakt dat drie keer zo vaak valt als 4 en twee keer zo vaak als 5. Verder vallen,, en even
Combinatoriek en rekenregels
Combinatoriek en rekenregels Les 3: Het vaasmodel (deze les sluit aan bij de paragrafen 5, 6 en 7 van Hoofdstuk 1 Combinatoriek en Rekenregels van de Wageningse Methode, http://www.wageningsemethode.nl/methode/het-lesmateriaal/?s=y456v-d)
Paragraaf 4.1 : Vermenigvuldig- en Somregel
Hoofdstuk 4 Handig Tellen (H4 Wis A) Pagina 1 van 11 Paragraaf 4.1 : Vermenigvuldig- en Somregel Jan gaat eten bij de Merode. Hij kan kiezen uit 2 voorgerechten : soep of cocktail 3 hoofdgerechten : vis
Kansrekening en Statistiek
Kansrekening en Statistiek College 4 Donderdag 22 September 1 / 31 1 Kansrekening Vandaag : Vragen Bernouilli verdelingen Binomiale verdelingen Voorwaardelijke kansen 2 / 31 Vragen: multiple choice Bij
college 4: Kansrekening
college 4: Kansrekening Deelgebied van de statistiek Doel: Kansen berekenen voor het waarnemen van bepaalde uitkomsten Kansrekening 1. Volgordeproblemen Permutaties Variaties Combinaties 2. Kans 3. Voorwaardelijke
In het vervolg gaan we steeds uit van een verzameling A bestaande uit n verschillende objecten. We geven de elementen van A een naam door ze te
Tellen 1. Telproblemen Tussen sommige objecten maken we onderscheid (die beschouwen we dus allemaal als verschillend), bijvoorbeeld tussen de 26 letters van het alfabet, tussen een peer, een appel en een
Combinatoriek en rekenregels
Combinatoriek en rekenregels Les 3: Het vaasmodel (deze les sluit aan bij de paragrafen 5, 6 en 7 van Hoofdstuk 1 Combinatoriek en Rekenregels van de Wageningse Methode, http://www.wageningsemethode.nl/methode/het-lesmateriaal/?s=y456v-d)
Opgaven voor Kansrekening
Opgaven voor Kansrekening Opgave 1. Je hebt 4 verschillende wiskunde boeken, 6 psychologie boeken en 2 letterkundige boeken. Hoeveel manieren zijn er om deze twaalf boeken op een boord te plaatsen als:
Kansrekening en Statistiek
Kansrekening en Statistiek College 1 Woensdag 9 September 1 / 39 Site: http://www.phil.uu.nl/ iemhoff Literatuur: Applied Statistics for the Behavioral Sciences - 5th edition, Dennis E. Hinkle, William
Hoofdstuk 1. Getallen tellen. 1.1 Gehele getallen. 1.2 Recursieve definities. 1.3 Het induktieprincipe
Hoofdstuk 1 Getallen tellen 1.1 Gehele getallen 1.1.1 Inleiding 1.1.2 De optelling en de vermeningvuldiging 1.1.3 De ordening van de gehele getallen 1.1.4 Het axioma van de goede ordening 1.2 Recursieve
Kansrekening en Statistiek
Kansrekening en Statistiek College 3 Dinsdag 21 September 1 / 21 1 Kansrekening Indeling: Uniforme verdelingen Cumulatieve distributiefuncties 2 / 21 Vragen: lengte Een lineaal wordt op een willekeurig
Kansrekening en Statistiek
Kansrekening en Statistiek College 2 Donderdag 15 September 1 / 42 1 Kansrekening Vandaag: Vragen Eigenschappen van kansen Oneindige discrete uitkomstenruimtes Continue uitkomstenruimtes Continue stochasten
Kansrekening en statistiek WI2105IN deel I 4 november 2011, uur
Kansrekening en statistiek WI05IN deel I 4 november 0, 4.00 7.00 uur Bij dit examen is het gebruik van een (evt. grafische) rekenmachine toegestaan. Een formuleblad wordt uitgereikt. Meerkeuzevragen Toelichting:
Opgaven voor Kansrekening
Wiskunde 1 voor kunstmatige intelligentie Opgaven voor Kansrekening Opgave 1. Een oneerlijke dobbelsteen is zo gemaakt dat 3 drie keer zo vaak valt als 4 en 2 twee keer zo vaak als 5. Verder vallen 1,
Kansrekening en Statistiek
Kansrekening en Statistiek College 8 Vrijdag 2 Oktober 1 / 17 1 Kansrekening Geschiedenis en filosofie 2 / 17 De Kolmogorov Axioma s De kansrekening kan uit deze axioma s worden opgebouwd: 3 / 17 De Kolmogorov
Set 1 Inleveropgaven Kansrekening (2WS20)
1 Technische Universiteit Eindhoven Faculteit Wiskunde en Informatica Set 1 Inleveropgaven Kansrekening (2WS20) 2014-2015 1. (Het sleutelprobleem) In een denkbeeldige wedstrijd kunnen deelnemers auto s
Tellen. K. P. Hart. Delft, Faculty EEMCS TU Delft. K. P. Hart Tellen
Tellen Tá scéiĺın agam K. P. Hart Faculty EEMCS TU Delft Delft, 16-9-2015 Dingen om te tellen afbeeldingen injecties surjecties bijecties deelverzamelingen van diverse pluimage Wat notatie Afkorting: n
Kansrekening en Statistiek
Kansrekening en Statistiek College 6 Donderdag 30 September 1 / 25 1 Kansrekening Indeling: Voorwaardelijke kansen Onafhankelijkheid Stelling van Bayes 2 / 25 Vraag: Afghanistan Vb. In het leger wordt
Tentamen Kansrekening en Statistiek (2WS04), dinsdag 17 juni 2008, van uur.
Technische Universiteit Eindhoven Faculteit Wiskunde en Informatica Tentamen Kansrekening en Statistiek (2WS4, dinsdag 17 juni 28, van 9. 12. uur. Dit is een tentamen met gesloten boek. De uitwerkingen
Kansrekening en Statistiek
Kansrekening en Statistiek College 7 Dinsdag 11 Oktober 1 / 33 2 Statistiek Vandaag: Populatie en steekproef Maten Standaardscores Normale verdeling Stochast en populatie Experimenten herhalen 2 / 33 3
Projectieve Vlakken en Codes
Projectieve Vlakken en Codes 1. De Fanocode Foutdetecterende en foutverbeterende codes. Anna en Bart doen mee aan een spelprogramma voor koppels. De ene helft van de deelnemers krijgt elk een kaart waarop
HOOFDSTUK I - INLEIDENDE BEGRIPPEN
HOOFDSTUK I - INLEIDENDE BEGRIPPEN 1.2 Kansveranderlijken en verdelingen 1 Veranderlijken Beschouw een toevallig experiment met uitkomstenverzameling V (eindig of oneindig), de verzameling van alle gebeurtenissen
is, dat de zijde met cijfer boven te liggen komt, evenzo als de kans voor de koningin 1 2
Hoofdstuk III Kansrekening Les Combinatoriek Als we het over de kans hebben dat iets gebeurt, hebben we daar wel intuïtief een idee over, wat we hiermee bedoelen. Bijvoorbeeld zeggen we, dat bij het werpen
Discrete Wiskunde, College 2. Han Hoogeveen, Utrecht University
Discrete Wiskunde, College 2 Han Hoogeveen, Utrecht University Productregel Als gebeurtenis Z bestaat uit de combinatie van delen X en Y, waarbij iedere mogelijkheid voor X kan worden gecombineerd met
Kansrekening en Statistiek
Kansrekening en Statistiek College 10 Donderdag 14 Oktober 1 / 71 1 Kansrekening Indeling: Bayesiaans leren 2 / 71 Bayesiaans leren 3 / 71 Bayesiaans leren: spelletje Vb. Twee enveloppen met kralen, waarvan
Kansrekening en Statistiek
Kansrekening en Statistiek College 1 Dinsdag 13 September 1 / 47 Literatuur http://www.phil.uu.nl/ iemhoff Applied Statistics for the Behavioral Sciences - 5th edition, Dennis E. Hinkle, William Wiersma,
Paragraaf 2.1 : Telproblemen visualiseren
Hoofdstuk 2 Combinatoriek (V4 Wis A) Pagina 1 van 13 Paragraaf 2.1 : Telproblemen visualiseren Les 1 Verschillende diagrammen Jan gaat eten bij de Merode. Hij kan kiezen uit 2 voorgerechten : soep of cocktail
11.1 Kansberekeningen [1]
11.1 Kansberekeningen [1] Kansdefinitie van Laplace: P(gebeurtenis) = Aantal gunstige uitkomsten/aantal mogelijke uitkomsten Voorbeeld 1: Wat is de kans om minstens 16 te gooien, als je met 3 dobbelstenen
Oefeningen Cursus Discrete Wiskunde. 26 mei 2003
Oefeningen Cursus Discrete Wiskunde 26 mei 2003 1 Hoofdstuk 1 Getallen tellen 1.1 Gehele getallen 1.1.1 Inleiding 1.1.2 De optelling en de vermeningvuldiging Oefening 1.1.1 Zoals gebruikelijk noteren wij
Aanbevolen achtergrondliteratuur met veel opgaven (en oplossingen):
Deel B Kansrekening Aanbevolen achtergrondliteratuur met veel opgaven (en oplossingen): Murray R. Spiegel, John J. Schiller, R. A. Srinivasan: (Schaum s Outline of Theory and Problems of) Probability and
Kansrekening en Statistiek
Kansrekening en Statistiek College 16 Donderdag 4 November 1 / 25 2 Statistiek Indeling: Schatten Correlatie 2 / 25 Schatten 3 / 25 Schatters: maximum likelihood schatters Def. Zij Ω de verzameling van
Kansrekening en Statistiek
Kansrekening en Statistiek College 9 Dinsdag 12 Oktober 1 / 21 1 Kansrekening Indeling: Stelling van Bayes Bayesiaans leren 2 / 21 Vraag: test Een test op HIV is 90% betrouwbaar: als een persoon HIV heeft
Kansrekening en Statistiek
Kansrekening en Statistiek College 12 Vrijdag 16 Oktober 1 / 38 2 Statistiek Indeling vandaag: Normale verdeling Wet van de Grote Getallen Centrale Limietstelling Deductieve statistiek Hypothese toetsen
Combinatoriek. Wisnet-hbo. update aug. 2007
Combinatoriek 1 Permutaties Wisnet-hbo update aug. 2007 Op hoeveel manieren kun je de volgorde van de vier verschillende letters van het woord BOEK op een rijtje zetten? De verschillende volgorden (permutaties)
Kansrekening en Statistiek
Kansrekening en Statistiek College 13 Dinsdag 26 Oktober 1 / 24 2 Statistiek Indeling: Hypothese toetsen Filosofie 2 / 24 Hypothese toetsen 3 / 24 Hypothese toetsen: toepassingen Vb. Een medicijn wordt
1 Junior Wiskunde Olympiade : tweede ronde
Junior Wiskunde Olympiade 008-009: tweede ronde ( 7) = (A) 7 (B) 7 (C) 7 of + 7 (D) 7 (E) onbepaald Beschouw de rij opeenvolgende natuurlijke getallen beginnend met en eindigend met Wat is het middelste
Hoofdstuk 1. Inleiding. Het binomiaalgetal ( n
Hoofdstuk 1 Inleiding Het binomiaalgetal ( n berekent het aantal -combinaties van n elementen; dit is het aantal mogelijkheden om elementen te nemen uit n beschikbare elementen Hierbij is herhaling niet
Kansrekening en Statistiek
Kansrekening en Statistiek College 13 Dinsdag 1 November 1 / 26 2 Statistiek Vandaag: Power Grootte steekproef Filosofie 2 / 26 Power 3 / 26 Power Def. De power (kracht) van een hypothese toets is (1 β),
6. Op tafel liggen 10 verschillende boeken. Op hoeveel verschillende manieren kunnen 3 jongens daar ieder 1 boek uit kiezen?
1. Iemand heeft thuis 12 CD s in een rekje waar er precies 12 inpassen. a. Op hoeveel manieren kan hij ze in het rekje leggen. b. Hij wil er 2 weggeven aan zijn vriendin, hoeveel mogelijkheden? c. Hij
Combinatoriek en rekenregels
Combinatoriek en rekenregels Les 1: Wegendiagrammen, bomen en geordende grepen (deze les sluit aan bij de paragrafen 1 en 2 van Hoofdstuk 1 Combinatoriek en Rekenregels van de Wageningse Methode, http://www.wageningsemethode.nl/methode/het-lesmateriaal/?s=y456v-d)
OPGAVE 2: Kleiduivenschieten
OPGAVE 1: Bingo! Twee spelers spelen een spelletje bingo. Ieder van hen heeft een kaart waarop twintig verschillende getallen staan uit de verzameling {1,..., 75}, willekeurig geplaatst in vier rijen en
Kansrekening en Statistiek
Kansrekening en Statistiek College 10 Donderdag 20 Oktober 1 / 1 2 Statistiek Vandaag: Hypothese toetsen 2 / 1 3 / 1 Terzijde NU.nl 19 oktober 2011: Veel Facebookvrienden wijst op grotere hersenen. (http://www.nu.nl/wetenschap/2645008/veel-facebookvrienden-wijst-groterehersenen-.html)
Inhoud leereenheid 13. Combinatoriek. Introductie 23. Leerkern 24. Samenvatting 45. Zelftoets 46
Inhoud leereenheid 13 Combinatoriek Introductie 23 Leerkern 24 13.1 Tellen, maar wat? 24 13.2 De ene verzameling is de andere niet, of toch wel? 27 13.3 Waar alle tellen mee begint 28 13.4 Herhalingsrangschikkingen
Kansrekening en Statistiek
Kansrekening en Statistiek College 15 Dinsdag 2 November 1 / 16 2 Statistiek Indeling: Filosofie Schatten Centraal Bureau voor Statistiek 2 / 16 Schatten Vb. Het aantal tenen plus vingers in jullie huishoudens:
Kansrekening en Statistiek
Kansrekening en Statistiek College 9 Dinsdag 18 Oktober 1 / 1 2 Statistiek Vandaag: Centrale Limietstelling Correlatie Regressie 2 / 1 Centrale Limietstelling 3 / 1 Centrale Limietstelling St. (Centrale
VB: De hoeveelheid neemt nu met 12% af. Hoeveel was de oorspronkelijke hoeveelheid? = 1655 oud = 1655 nieuw = 0,88 x 1655 = 1456
Formules, grafieken en tabellen Procenten - altijd afronden op 1 decimaal tenzij anders vermeld VB: Een hoeveelheid neemt met 12% toe to 1456. Hoeveel was de oorspronkelijke hoeveelheid? Oud =? Nieuw =
Paragraaf 7.1 : Het Vaasmodel
Hoofdstuk 7 Kansrekening (V4 Wis A) Pagina 1 van 8 Paragraaf 7.1 : Het Vaasmodel Les 1 : Kansen Herhalen kansen berekenen Hoe bereken je de kans als je een aantal keren achter elkaar een experiment uitvoert?
Een combinatorische oplossing voor vraag 10 van de LIMO 2010
Een combinatorische oplossing voor vraag 10 van de LIMO 2010 Stijn Vermeeren (University of Leeds) 16 juni 2010 Samenvatting Probleem 10 van de Landelijke Interuniversitaire Mathematische Olympiade 2010vraagt
In Katern 2 hebben we de volgende rekenregel bewezen, als onderdeel van rekenregel 4:
Katern 4 Bewijsmethoden Inhoudsopgave 1 Bewijs uit het ongerijmde 1 2 Extremenprincipe 4 3 Ladenprincipe 8 1 Bewijs uit het ongerijmde In Katern 2 hebben we de volgende rekenregel bewezen, als onderdeel
Toets combinatoriek en kansrekening
Deze toets bestaat uit 16 opgaven. Voor elk onderdeel is aangegeven hoeveel punten kunnen worden behaald. Er zijn maximaal 31 punten te behalen. Antwoorden moeten altijd zijn voorzien van een berekening,
Differentiequotiënten en Getallenrijen
Lesbrief 4 Binomiaalcoëfficiënten, Differentiequotiënten en Getallenrijen Binomiaalcoëfficiënten Het is beend dat (a + b 2 = a 2 + 2ab + b 2 en dat (a + b 3 = a 3 + 3a 2 b + 3ab 2 + b 3. In het algemeen
H9: Rijen & Reeksen..1-2. H10: Kansverdelingen..3-4. H11: Allerlei functies.5-6
Oefenmateriaal V5 wiskunde C Voorbereiding op PTA-toets1 wiskunde INHOUDSOPGAVE H9: Rijen & Reeksen..1-2 H10: Kansverdelingen..3-4 H11: Allerlei functies.5- Hoofdstuk 9: Rijen & Reeksen Recursieve formule
DRIEHOEKSGETALLEN GETALLENRIJEN AFLEVERING 3. som
GETALLENRIJEN AFLEVERING In deze jaargang van Pythagoras staan getallenrijen centraal. Deze aflevering gaat over de rij,, 6, 0,, 2,... Dit zijn de zogeheten driehoeksgetallen. Ze vormen een interessante
Kansrekening en Statistiek
Kansrekening en Statistiek College 5 Dinsdag 27 September 1 / 30 1 Kansrekening Vandaag: Voorwaardelijke kansen Onafhankelijkheid Stelling van Bayes 2 / 30 Vraag: test Een test op HIV is 90% betrouwbaar:
Hieronder zie je hoe dat gaat. Opgave 3. Tel het aantal routes in de volgende onvolledige roosters van linksboven naar rechtsonder.
Groepsopdracht 1: Volledige en onvolledige roosters Voor een volledig rooster kun je de driehoek van Pascal gebruiken om te weten te komen hoeveel routes er van A naar B zijn. Bij onvolledige roosters
2.0 Voorkennis. Rekenregels machten: 5) a 0 = 1. p p q p q a p q q. p q pq p p p. Willem-Jan van der Zanden
2.0 Voorkennis Voorbeeld: (a + b) 2 = a 2 + 2ab + b 2 (a + b) 3 = (a +b)(a2 + 2ab + b2) = a 3 + 2a 2 b + ab 2 + a 2 b +2ab 2 + b 3 = a 3 + 3a 2 b + 3ab 2 + b 3 Rekenregels machten: p p q pq a pq 1) a a
Havo 4, Handig tellen en Kansrekenen.
Havo, Handig tellen en Kansrekenen. Getal en ruimte boek, hoofdstuk. Handig tellen. Paragraaf, de vermenigvuldig regel: Als je EN hoort, doe je en de plusregel: Als je OF hoort, doe je + a. Er zijn mogelijkheden,
Tentamen Inleiding Kansrekening wi juni 2010, uur
Technische Universiteit Delft Mekelweg Faculteit Electrotechniek, Wiskunde en Informatica 8 CD Delft Tentamen Inleiding Kansrekening wi juni, 9.. uur Bij dit examen is het gebruik van een (evt. grafische
WISKUNDE-ESTAFETTE 2011 Uitwerkingen
WISKUNDE-ESTAFETTE 2011 Uitwerkingen 1 C D O A O B Omdat driehoek ACD gelijkbenig is, is CAD = ACD en daarmee zien we dat 2 CAD+ ADC = 180. Maar we weten ook dat 180 = ADC + ADB. Dus ADB = 2 CAD. Driehoek
3.1 Het herhalen van kansexperimenten [1]
3.1 Het herhalen van kansexperimenten [1] Voorbeeld: Op een schijf staan een zestal afbeeldingen in even grote vakjes: 3 keer appel, 2 keer banaan, 1 keer peer. Sandra draait zes keer aan de schijf. a)
Hoofdstuk 11: Kansverdelingen 11.1 Kansberekeningen Opgave 1: Opgave 2: Opgave 3: Opgave 4: Opgave 5:
Hoofdstuk : Kansverdelingen. Kansberekeningen Opgave : kan op manieren 5 kan op! manieren 555 kan op manier 0 0 som 5) Opgave : som 5) som 5) som ) som ) c. som 0) d. som 0) som ) Opgave : som ) som )
Hoofdstuk 4 Kansrekening
Hoofdstuk 4 Kansrekening Marnix Van Daele MarnixVanDaele@UGentbe Vakgroep Toegepaste Wiskunde en Informatica Universiteit Gent Kansrekening p 1/29 Gebeurtenissen experiment : gooien met een dobbelsteen
Uitwerkingen Sum of Us
Instant Insanity Uitwerkingen Sum of Us Opgave A: - Opgave B: Voor elk van de vier kubussen kun je een graaf maken die correspondeert met de desbetreffende kubus. Elk van deze grafen bevat drie lijnen.
Deel III. Kansrekening
Deel III Kansrekening Les Kansverdelingen Als we het over de kans hebben dat iets gebeurt, hebben we daar wel intuïtief een idee over, wat we hiermee bedoelen. Bijvoorbeeld zeggen we, dat bij het werpen
Combinatoriek groep 1
Combinatoriek groep 1 Recursie Trainingsweek, juni 009 Stappenplan homogene lineaire recurrente betrekkingen Even herhalen: het stappenplan om een recurrente betrekking van orde op te lossen: Stap 1. Bepaal
Uitwerkingen eerste serie inleveropgaven
Uitwerkingen eerste serie inleveropgaven (1) Gegeven het 4 4 grid bestaande uit de 16 punten (i, j) met i, j = 0,..., 3. Bepaal het aantal driehoeken dat je kunt vinden zodanig dat ieder hoekpunt samenvalt
Lesbrief Hypergeometrische verdeling
Lesbrief Hypergeometrische verdeling 010 Willem van Ravenstein If I am given a formula, and I am ignorant of its meaning, it cannot teach me anything, but if I already know it what does the formula teach
1 Vlaamse Wiskunde Olympiade 2008-2009: tweede ronde
Vlaamse Wiskunde Olmpiade 008-009: tweede ronde Wat is het voorschrift van deze tweedegraadsfunctie? (0, ) (, ) 0 (A) f() = ( + ) (B) f() = ( + ) + (C) f() = ( ) + (D) f() = ( ) (E) f() = ( ) + In volgend
Samenvatting Wiskunde B Leerboek 1 examenstof
Samenvatting Wiskunde B Leerboek 1 examenst Samenvatting door een scholier 1925 woorden 2 mei 2003 5,4 123 keer beoordeeld Vak Methode Wiskunde B Getal en ruimte Wiskunde boek 1. Hodstuk 1. Procenten.
Universiteit Gent. Academiejaar Discrete Wiskunde. 1ste kandidatuur Informatica. Collegenota s. Prof. Dr.
Universiteit Gent Academiejaar 2001 2002 Discrete Wiskunde 1ste kandidatuur Informatica Collegenota s Prof. Dr. Frank De Clerck Herhalingsoefeningen 1. Bepaal het quotiënt en de rest van de deling van
H10: Allerlei functies H11: Kansverdelingen..6-7
Oefenmateriaal V5 wiskunde A Voorbereiding op PTA-toets1 wiskunde INHOUDSOPGAVE H9: Rijen & Reeksen..1-3 H10: Allerlei functies....4-5 H11: Kansverdelingen..6-7 Hoofdstuk 9: Rijen & Reeksen Recursieve
begin van document Eindtermen havo wiskunde A (CE) gekoppeld aan delen en hoofdstukken uit Moderne wiskunde 9e editie
begin van document Eindtermen havo wiskunde A (CE) gekoppeld aan delen en hoofdstukken uit Moderne wiskunde 9e editie Domein Subdomein in CE moet in SE A A1: Informatievaardigheden X X Vaardigheden A2:
