Greedy algorithms. Algoritmiek

Save this PDF as:
 WORD  PNG  TXT  JPG

Maat: px
Weergave met pagina beginnen:

Download "Greedy algorithms. Algoritmiek"

Transcriptie

1 Greedy algorithms

2 Vandaag Greedy algorithms: wat zijn dat? Voorbeelden: gepast betalen met euromunten AB-rijtje Knapsack probleem Twee scheduling problemen Later: meer voorbeelden, algemene structuur, wanneer wel/niet optimaal 2

3 Greedy algorithms Greed = hebzucht Algoritmen voor optimalisatieproblemen Oplossing wordt incrementeel opgebouwd Om van een deeloplossing naar de volgende deeloplossing te gaan wordt een greedy stap gedaan: Best uitziend / meest veelbelovend / grootste directe winst 3

4 Soms optimaal, soms heuristiek Er bestaan toepassingen waarbij greedy het optimale antwoord vindt Er bestaan toepassingen waarbij greedy niet het optimale antwoord vindt: Soms bewijsbare kwaliteit van approximatie Soms (redelijk) goede heuristiek Soms heel slecht en ver weg van optimum 4

5 Kortste A,B-rijtje Nog eens: A,B-rijtje is rij getallen met: 1e getal is A Laatste getal is B Ieder getal is vorige getal +1 (I) of *2 (D) Vraag: gegeven A en B, wat is het kortste A,Brijtje We zagen een DP, maar het kan slimmer 5

6 DP formulering S(A,B) = 0 als A==B S(A,B) = MAXINT als B<A S(A,B) = min {S(A+1,B),S(A*2,B)} +1 anders Of: 6

7 Laatste keuze Als B oneven is, moet het rijtje op I eindigen Als B < 2A, moet het rijtje op I eindigen Je kan laten zien (komt zometeen): Als B>= 2A en B even, dan eindigt een kortste rijtje op een D S(A,B) = S(A,B-1) als B oneven en A < B<2A S(A,B) = S(A,B/2) als A < B, B>=2A en B even 7

8 Algoritme If B<A then return MAXINT (of oneindig, of foutmelding) Maak lege stack S While B!= A do If B oneven or B<2A, then push(s, I ); B=B-1 Else push (S, D ); B = B/2 While stack niet leeg, do Write(Pop(S)); 8

9 Stellinkje en bewijs Als we een D als laatste stap kunnen doen, dan geeft dat altijd een kortere rij dan wanneer we een I als laatste stap doen Bewijs: B is even Kijk naar optimale sequence, stel eindigt op I Geval 1: alleen maar I s: I B-A is langer dan I B/2-A D: tegenspraak Geval 2: rijtje heeft vorm sdi r. r is even, want getal is altijd even na een D. Neem nu rijtje sr i/2 D : dit is korter: tegenspraak Altijd tegenspraak, dus optimale sequence eindigt op D 9

10 Idee Optimale keuze voor laatste element Heeft een bewijs nodig We hoeven niet te kiezen kunnen 1 kant opgaan! Noemen we greedy 10

11 Greedy: wat vraag je je af Wat is de eerste / laatste keuze die gemaakt wordt Is er een mogelijkheid voor die keuze die optimaliteit niet verstoort: er bestaat een optimale oplossing die die mogelijkheid gebruikt (greedy choice property?) Bewijs van greedy choice property: uitwisselargumenten Greedy algoritme (slimme implementatie?) 11

12 Euromunten Muntwisselprobleem met Euro s Munten met waardes 1, 2, 5, 10, 20, 50, 100, 200 En bankbiljetten met waardes 500, 1000, 2000, 5000, 10000, 20000, Hoe betalen we een bedrag van n cent met zo weinig mogelijk munten? Voor euromunten kan dit optimaal met een greedy algoritme! 12

13 Greedy algoritme voor muntwisselprobleem Procedure BetaalGreedy (integer n, verzameling M) rest = n; While (rest > 0) Do Kies de grootste muntwaarde w uit M zodat w rest; Als alle munten in M waarde groter dan rest hebben, return `Niet mogelijk. Geef een munt met waarde w terug; rest = rest w; Dit doet zich niet voor bij Euro s 13

14 Stelling BetaalGreedy geeft altijd het minimum aantal munten als M = { 1, 2, 5, 10, 20, 50, 100, 200}, Ook als M = {1, 5, 10, 25, 100, 250}. Formeel wiskundig bewijs is niet eenvoudig Als M = { 1, 10, 25} dan is dit niet waar: Kijk naar n =

15 Methode anders opgeschreven function make-change(n) {Bereken S bestaande uit zo weinig mogelijk muntjes} const Euro s={200,100,50,20,10,5,2,1}; S= ; {S is de verzameling van geselecteerde muntjes} sum=0; {sum is de totale waarde van de muntjes} while sum n do x = grootste waarde uit Euro s met sum+x n if er is niet zo n waarde return geen oplossing S = S {munt met grootste waarde uit Euro s} sum = sum + x; return S; 15

16 Ingredienten voor greedy algoritme Werkt voor optimaliseringsprobleem. Een doelfunctie (objective function) geeft elke oplossing een waarde; we willen een oplossing met beste (kleinste / grootste) waarde vinden. De oplossingsverzameling wordt incrementeel opgebouwd. Een functie solution test of de oplossingsverzameling een oplossing is. Een functie feasible (doenbaar / mogelijk), die test of een element aan de oplossingsverzameling toegevoegd kan worden. Een functie select selecteert het meest veelbelovende element. 16

17 Schema voor greedy algoritme function Greedy(C:set) {C is de verzameling van beschikbare elementen / keuzes die je kan magen} S= ; {S is de oplossingsverzameling} while C and not solution(s) do x = select(c); C = C\{x}; if feasible(s {x}) then S = S {x}; if solution(s) then return S; else return er is geen oplossing ; Muntwissel past in schema 17

18 18 Greedy algoritmen: optimaal of niet? Soms geven greedy algoritmen optimale antwoorden, bijv.: Muntwisselprobleem met euro-munten Dijkstra s algoritme met niet-negatieve pijllengtes Meer voorbeelden volgen Soms geven greedy algoritmen geen optimale antwoorden, bijv.: Muntwisselprobleem met munten 1, 10, 25 Dijkstra s algoritme met pijllengtes die negatief mogen zijn Dan is greedy een heuristiek. Soms kan je bewijzen dat greedy in de buurt van het beste antwoord komt.

19 Oliepijpen in Rusland Pijplijn Kan lekken Waar plaatsen we kleppen (valves)? DP of greedy? 19

20 Knapsack met fractionele oplossingen n Voorwerpen met Waardes w 1, w n (positief) Gewichten g 1,, g n (positief) Maximum gewicht G. We mogen nu ook een gedeelte van een voorwerp nemen: als we bijvoorbeeld 2/3 van voorwerp j nemen levert dat 2/3*w j waarde en 2/3*g j gewicht op. Hoe kunnen we zoveel mogelijk waarde meenemen als totaalgewicht hooguit G is. (Bij DP mochten we alleen voorwerpen helemaal wel of helemaal niet nemen.) 20

21 Wiskundige formulering Kies reële getallen x 1 x n [0,1] zodat en zodat n i =1 n i = 1 x g G zo groot mogelijk is. i x w i i i 21

22 Simpele observaties Als het totaalgewicht van alle voorwerpen hooguit G is, dan is het nemen van alle voorwerpen optimaal. Stel dus dat totaalgewicht >G is. Nu: Een optimale oplossing heeft totaalgewicht precies G: elke andere oplossing kan verbeterd worden. n i =1 xi gi = G 22

23 Plan voor greedy algoritme function knapsack(g[1..n],w[1..n],g): array x[1..n]; for i=1 to n do x[i]=0; gewicht=0; {greedy loop} while gewicht<g do i = het beste nog niet geselecteerde object ; if gewicht+g[i] G then x[i]=1; gewicht = gewicht+g[i]; else x[i]= (G-gewicht)/g[i]; gewicht=g; return x; Wat kan er nog bij van voorwerp i? 23

24 Over schema voor greedy algoritme voor knapsack Hooguit 1 voorwerp wordt voor een deel (0<x i <1) genomen. Er zijn verschillende mogelijkheden voor wat het beste nog niet geselecteerde voorwerp is. Het lichtste Niet altijd optimaal: voorwerpen met waarde/gewicht (1,1), (B, 2B) Het waardevolste Niet altijd optimaal: voorwerpen met waarde/gewicht (B,B), (1, 2B) Het voorwerp met de hoogste waarde van w i / g i 24

25 Kies steeds voorwerp met hoogste soortelijke waarde function knapsack(g[1..n],w[1..n],g): array x[1..n]; for i=1 to n do x[i]=0; gewicht=0; i = 1; Sorteer de voorwerpen zodat de `soortelijke waardes w[i]/g[i] niet dalend zijn, d.w.z., w[1]/g[1] w[2]/g[2] w[n]/g[n] while (gewicht < G and i n) do if gewicht+g[i] G then x[i]=1; gewicht = gewicht+g[i]; else x[i]= (G-gewicht)/g[i]; gewicht=g; i++; 25

26 Greedy met waarde/gewicht geeft optimale oplossing Stelling. Als de voorwerpen gekozen worden in volgorde van niet-dalende waarde w[i]/g[i], dan geeft het greedy algoritme een optimale oplossing. Bewijs. Stel voorwerpen genummerd op niet-dalend waarde/gewicht. Stel totaalgewicht alle voorwerpen meer dan G. Bekijk oplossing van greedy algoritme. Laat j het eerste voorwerp zijn met x[j] < 1. Als j < j, dan x[j ] = 1. Als j > j, dan x[j ] = 0. 26

27 Bewijs (vervolg) Schrijf X voor rijtje (x[1],, x[n]). Laat Y = (y[1],, y[n]) een andere oplossing zijn. (Dus, gewicht van Y hooguit G.) Nu: n i = 1 ( x i y i ) g i Schrijf W(X) is totale waarde van X, net zo W(Y). W ( X ) n 0. = = x i w i 1 i 27

28 28 = = n i i i i w y x Y W X W 1 ) ( ) ( ) ( i i n i i i i g w g y x = =1 ) ( In elk van de drie gevallen (i < j, i=j, i>j) geldt j j i i i i i i g w y x g w y x ) ( ) ( Dus 0. ) ( ) ( ) ( 1 = n i i i i j j g y x g w Y W X W Iedere oplossing heeft waarde hooguit die van X; X is dus optimaal. QED

29 Scheduling: minimizing average Een balie met klanten. waiting time Klanten hebben verschillende service-tijden: de totale tijd nodig door de balie voor deze klant. In deze versie komen alle klanten tegelijk binnen. In welke volgorde kunnen we klanten afhandelen zodat de totale tijd dat klanten wachten zo klein mogelijk is? 29

30 Greedy algorithm Minimizing total waiting time Zolang er nog wachtende klanten zijn, kies de wachtende klant met de kleinste service-tijd, en behandel die, d.w.z., behandel klanten in volgorde van stijgende (niet-dalende) service-tijd. Dit algoritme geeft een optimale oplossing, d.w.z., elke oplossing heeft een totale wachttijd minstens die van deze oplossing. 30

31 Bewijs a b b a Een schema dat niet greedy is is niet optimaal. Er zijn dan klanten a en b, met a geholpen voor b, met s(a) > s(b). Wissel a en b in het schema om, en we krijgen een schema met kleinere totale wachttijd. 31

32 Scheduling with deadlines n taken Iedere taak kost evenveel (1) tijd Taken hebben een deadline d i Taken hebben een opbrengst g i Een taak brengt g i op dan en slechts dan als de taak uitgevoerd is op tijd d i of eerder Welke taken voeren we uit, en in welke volgorde, zodat Taken uitgevoerd uiterlijk op deadline Totale opbrengst zo groot mogelijk 32

33 Voorbeeld Taak Opbrengst Deadline Tien mogelijkheden, beste is: Eerst taak 4, dan taak 1: opbrengst

34 Een eenvoudiger probleem: Mogelijke verzameling taken Noem een verzameling taken S mogelijk (feasible), als er een volgorde van de taken in S is, zodat Elke taak in S wordt uitgevoerd Elke taak in S wordt uitgevoerd voor de deadline. Hoe kan je, voor gegeven verzameling taken S, testen of deze mogelijk is? Met een greedy algoritme 34

35 Greedy algoritme om te testen of verzameling taken mogelijk is Doe steeds de taak met de vroegste deadline. D.w.z.: voer taken uit in volgorde van stijgende deadline. Test of zo geen taak te laat wordt uitgevoerd. Dit schema geeft een kloppend schema, d.e.s.d. als een verzameling mogelijk is. => : triviaal <= : Stel schema met taken met deadlines d 1 d 2 d n geeft geen kloppend schema. Stel taak d k is de eerste taak die niet op tijd klaar is. Dan zijn er k taken met een deadline hooguit k 1, en daar is nooit een kloppend schema voor. 35

36 Greedy algoritme voor scheduling met deadlines Begin met verzameling taken S =. N = verzameling van alle taken. While N Do Kies taak t uit N met hoogste opbrengst. If (S {t} is mogelijk) Then S = S {t} Output S Kan getest worden met zojuist behandeld algoritme 36

37 Greedy is optimaal (1) Stel algoritme vindt verzameling taken I, en stel J is optimale verzameling taken, met kloppende schema s. Eerst transformeren we de schema s zodat de taken die zowel in I als in J zitten tegelijk worden uitgevoerd (er mogen gaten komen.) p y q x r Schuif de gemeenschappelijke taak r s t p u v q w naar achteren, en dus de andere naar x y p r q voren. u s t p r v q w 37

38 Greedy is optimaal (2) Kijk naar het eerste moment dat de schema s verschillend zijn. Er zijn drie gevallen: 1. Schema J heeft een gat, en schema I voert een job uit. 2. Schema I heeft een gat, en schema J voert een job uit. 3. Ze voeren een verschillende job uit, zeg job a door t schema van I (greedy) en job b door t schema van J (optimaal). 38

39 Geval 1: Schema J (opt) heeft gat I x y p r q J x t p r v q w Taak y kan worden toegevoegd aan schema J, dus J was niet optimaal. Tegenspraak. 39

40 Geval 2. Schema I (greedy) heeft een gat I x s p r q J x y t p r v q w De verzameling I {y} is mogelijk, dus greedy zou y toevoegd hebben; tegenspraak. 40

41 Geval 3: I en J voeren een andere job uit I x a s p r q J x b t p r v q w Geval 3a: opbrengst (a) > opbrengst (b). J is niet optimaal: J {b} {a} is mogelijk en beter. Geval 3b: opbrengst(b) > opbrengst (a). Kan niet gebeuren: b wordt bekeken voor a en zou door greedy genomen zijn, want I {a} {b} is doenbaar. Geval 3c: opbrengst(a) = opbrengst(b). Enige geval zonder tegenspraak. 41

42 Greedy is optimaal (slot) Zo kunnen we laten zien: Op elk tijdstip hebben I en J dezelfde taak, of een taak met dezelfde opbrengst. Dus hebben I en J dezelfde opbrengst: het greedy algoritme geeft een optimale oplossing. 42

43 Implementatie Sorteer de taken op niet-stijgende opbrengst: g 1 g 2 g n. Array job geeft welke job op welk tijdstip wordt gedaan. Gebruik extra taak 0, met d[0]=0; job[0]=0. (Schildwacht. ) job[1] = 1; k = 1; for i = 2 to n do r=k; Job 1 kan altijd gekozen while d[job[r]] > d[i] and d[job[r]] > r do r = r-1; if r+1 d[i] Job i kan worden ingevoegd then for m=k step 1 to r+1 do job[m+1]=job[m]; job[r+1]=i; k=k+1; return k, job[1..k]; Helpt voor snellere implementatie Zoek de plaats van job i Schuif job i ertussen 43

44 Tijd van algoritme Sorteren kost Θ(n log n). Dubbele loop: Θ(n 2 ) Kan sneller: gebruik efficientere test voor mogelijkheid van verzameling taken. 44

45 Een lemma Ander greedy algoritme Een verzameling taken is mogelijk, dan en slechts dan als een schema als volgt gemaakt kan worden: Begin met een leeg schema. Schedule de taken een voor een, zet taak op het laatste tijdstip voor zijn deadline, en voor tijd n dat nog vrij is. Bewijs: Stel we willen een job met deadline d toevoegen, maar dit kan niet. Dan zijn alle tijdstippen tussen 1 en r=min(n,d) bezet. Stel s is eerste tijdstip zonder taak. s>r. Alle taken gepland op tijdstippen 1 t/m s-1 hebben deadline hooguit s-1. Samen met job op tijdstip d hebben we s jobs met deadline hooguit s-1: verzameling taken is niet mogelijk. 45

46 46 Snellere implementatie met jobs rechts aangeschoven Lemma geeft: taak die gepland is hoeft niet meer een ander tijdstip te krijgen. Mogelijke implementatie Houdt bij een gebalanceerde boom met alle nog vrije tijdstippen in {1,, n}. Voor taak met deadline d, zoek in boom grootste key d. Kan in O(log n) tijd. Zet taak op gevonden tijdstip en haal tijdstip weg uit boom. Als geen vrij tijdstip voor d meer beschikbaar, wordt de taak niet uitgevoerd

47 O(n log n) algoritme Sorteer taken op niet-dalende waarde. Zet in B alle tijdstippen in {1, n} Voor alle taken van meest tot minst waardevolle Doe Zoek grootste key in B deadline taak Als beschikbaar, haal deze key uit B, en plan taak op dat tijdstip 47

48 Als taken al gesorteerd 2e stap kan sneller met behulp van slimme unionfind datastructuur Wordt behandeld in later college 48

49 Huffman codes Stel we hebben een tekst die we willen coderen als bitstring Sommige letters komen veel vaker voor dan andere Besparen in lengte door: Slim codes (in {0,1}*) toewijzen aan letters Niet elke letter hoeft een code die even lang is 49

50 Voorbeeld abcaaaacabaabaaabaaaac a komt vaak voor, b en c weinig dus: a wordt 0 b wordt 10 c wordt

51 Huffman code Beeld elke letter af op een bitstring Geen enkel symbool heeft een code die een prefix (beginstuk) is van de code van een ander symbool (prefix free) Elk symbool heeft frequentie Som over alle symbolen: frequentie * lengte code moet zo klein mogelijk zijn 51

52 Prefix-vrije codes te representeren als boom c d 0 1 b c: 00 d: 01 a: 100 b: 101 c: 11 a e 52

53 Kosten Elk symbool a heeft frequentie f(a) Voor prefix-vrij mapping m: kosten zijn f(a)* m(a) (.. geeft lengte van string) Totale kosten: som van alle a in alphabet van f(a)* m(a) 53

54 Broerbladen Als we 1 of 2 symbolen hebben: triviaal Als we minstens 3 symbolen hebben: er zijn twee broer-bladen : We kunnen zien welke symbolen we het liefst als broerbladen zien 0 1?? nl.: de twee symbolen met de laagste frequentie 54

55 Stelling Stel a en b zijn de twee symbolen met de laagste frequentie. Er is een boom waar a en b bladen zijn die dezelfde ouder hebben (broerbladen zijn). Bewijs. Neem een optimale boom. Kijk naar een blad met grootste diepte. Die heeft een broer (want anders kan je de ouder weglaten, en betere Huffman-code krijgen). Verwissel nu a en b met symbolen in die bladeren: de kosten kunnen gelijk blijven of dalen. QED 55

56 Simplificatie-stap Stel a en b zijn symbolen met de laagste frequentie. Verander alfabet: Laat a en b weg Neem nieuw symbool, zeg c, met frequentie f(a)+f(b) Bewering: de minimale kosten van een Huffmanboom voor het nieuwe alfabet is gelijk aan de minimale kosten van een Huffman-boom voor het oude alfabet 56

57 Bewijs simplificatiestap Bewering: de minimale kosten van een Huffmanboom voor het nieuwe alfabet + f(a)+f(b) is gelijk aan de minimale kosten van een Huffman-boom voor het oude alfabet => Neem een boom voor het nieuwe alfabet. Waar c stond, neem nu een deelboompje als volgt c 0 1 Kosten stijgen precies met f(a)+f(b) a b 57

58 Bewijs vervolg <= We weten: er is een boom waar a en b broederbladen zijn. Vervang het gedeelte van a en b en hun ouder door een knoop voor c 0 1 Kosten dalen c a b precies met f(a)+f(b) 58

59 Algoritme Herhaal tot we 1 symbool over hebben: Zoek de twee symbolen met laagste frequentie, zeg a i en a j. Kies een nieuw symbool a r Haal a i en a j uit alphabet, voeg a r toe met f(a r ) = f(a i )+f(a j ) Zet het triple (i,j,r) op een stack S Maak een boom met 1 knoop van het resulterende symbool Herhaal tot S leeg is: (i,j,r) = Pop(S); Vervang het symbool a r in de boom door een knoop met kinderen a i en a j 59

60 Voorbeeld op bord Letter a b c d e f Freq %

61 Huffman Algoritme is correct: gebruikt greedy / simplificatie Hoeveel tijd: met bijv. een heap kan dit in O(n log n) tijd als we n symbolen hebben in het alfabet 61

62 Het Handelsreizigersprobleem Gegeven: stel steden 1, n. Voor elk paar steden i, j, een afstand d(i,j), getal K. Gevraagd: is er een route die in stad 1 begint, elke stad precies 1 keer bezoekt en weer in stad 1 eindigt, en totale lengte hooguit K heeft?

63 Een greedy heuristiek De dichtstbijzijnde buur (`nearest neighbor ) heuristiek: een heuristiek die geen optimale maar vaak wel redelijke oplossingen geeft. Begin in een willekeurige plaats, zeg 1. Zolang niet alle plaatsen bezocht zijn, ga vanuit de plaats j waar we zijn naar de onbezochte plaats die het dichtst bij j is. Ga weer terug naar 1. 63

64 Geeft optimale oplossing als we bij 2 beginnen, maar geen optimale oplossing als we in 1 beginnen 64

65 Conclusies Greedy geeft soms handige snelle algoritmen Bewijs nodig voor optimaliteit Soms redelijke heuristiek 65

Tiende college algoritmiek. 13/21 april Gretige Algoritmen Algoritme van Dijkstra

Tiende college algoritmiek. 13/21 april Gretige Algoritmen Algoritme van Dijkstra Algoritmiek 017/Gretige Algoritmen Tiende college algoritmiek 13/1 april 017 Gretige Algoritmen Algoritme van Dijkstra 1 Algoritmiek 017/Gretige Algoritmen Muntenprobleem Gegeven onbeperkt veel munten

Nadere informatie

Tiende college algoritmiek. 26 april Gretige algoritmen

Tiende college algoritmiek. 26 april Gretige algoritmen Algoritmiek 01/10 College 10 Tiende college algoritmiek april 01 Gretige algoritmen 1 Algoritmiek 01/10 Muntenprobleem Gegeven onbeperkt veel munten van d 1,d,...d m eurocent, en een te betalen bedrag

Nadere informatie

Tiende college algoritmiek. 14 april Dynamisch Programmeren, Gretige Algoritmen, Kortste Pad met BFS

Tiende college algoritmiek. 14 april Dynamisch Programmeren, Gretige Algoritmen, Kortste Pad met BFS Algoritmiek 2016/Dynamisch Programmeren Tiende college algoritmiek 14 april 2016 Dynamisch Programmeren, Gretige Algoritmen, Kortste Pad met BFS 1 Algoritmiek 2016/Dynamisch Programmeren Houtzaagmolen

Nadere informatie

Dynamisch Programmeren III. Algoritmiek

Dynamisch Programmeren III. Algoritmiek Dynamisch Programmeren III Vandaag Dynamisch programmeren met wat lastiger voorbeelden: Handelsreiziger Longest common subsequence Optimale zoekbomen Knapsack 2 - DP2 Handelsreiziger Een handelsreiziger

Nadere informatie

Kortste Paden. Algoritmiek

Kortste Paden. Algoritmiek Kortste Paden Toepassingen Kevin Bacon getal Six degrees of separation Heeft een netwerk de small-world eigenschap? TomTom / Google Maps 2 Kortste paden Gerichte graaf G=(N,A), en een lengte L(v,w) voor

Nadere informatie

Twaalfde college complexiteit. 11 mei 2012. Overzicht, MST

Twaalfde college complexiteit. 11 mei 2012. Overzicht, MST College 12 Twaalfde college complexiteit 11 mei 2012 Overzicht, MST 1 Agenda voor vandaag Minimum Opspannende Boom (minimum spanning tree) als voorbeeld van greedy algoritmen Overzicht: wat voor technieken

Nadere informatie

TW2020 Optimalisering

TW2020 Optimalisering TW2020 Optimalisering Hoorcollege 8 Leo van Iersel Technische Universiteit Delft 2 november 2016 Leo van Iersel (TUD) TW2020 Optimalisering 2 november 2016 1 / 28 Minimum Opspannende Boom (Minimum Spanning

Nadere informatie

Vierde college complexiteit. 14 februari Beslissingsbomen

Vierde college complexiteit. 14 februari Beslissingsbomen College 4 Vierde college complexiteit 14 februari 2017 Restant zoeken Beslissingsbomen 1 Binair zoeken Links := 1; Rechts := n; while Links Rechts do Midden := Links + Rechts 2 ; if X = A[Midden] then

Nadere informatie

Elfde college algoritmiek. 21 april Dijkstra en Branch & Bound

Elfde college algoritmiek. 21 april Dijkstra en Branch & Bound Algoritmiek 011/11 College 11 Elfde college algoritmiek 1 april 011 Dijkstra en Branch & Bound 1 Algoritmiek 011/11 Kortste paden Gegeven een graaf G met gewichten op de takken, en een beginknoop s. We

Nadere informatie

TW2020 Optimalisering

TW2020 Optimalisering TW2020 Optimalisering Hoorcollege 8 Leo van Iersel Technische Universiteit Delft 28 oktober 2015 Leo van Iersel (TUD) TW2020 Optimalisering 28 oktober 2015 1 / 25 Definitie Een boom is een samenhangende

Nadere informatie

Discrete Structuren. Piter Dykstra Sietse Achterop Opleidingsinstituut Informatica en Cognitie

Discrete Structuren. Piter Dykstra Sietse Achterop Opleidingsinstituut Informatica en Cognitie Discrete Structuren Piter Dykstra Sietse Achterop Opleidingsinstituut Informatica en Cognitie www.math.rug.nl/~piter piter@math.rug.nl 3 maart 2008 GRAFEN & BOMEN Paragrafen 6.1-6.4 Discrete Structuren

Nadere informatie

Vijfde college complexiteit. 21 februari Selectie Toernooimethode Adversary argument

Vijfde college complexiteit. 21 februari Selectie Toernooimethode Adversary argument Complexiteit 2017/05 College 5 Vijfde college complexiteit 21 februari 2017 Selectie Toernooimethode Adversary argument 1 Complexiteit 2017/05 Opgave 28 Gegeven twee oplopend gesorteerde even lange rijen

Nadere informatie

Negende college algoritmiek. 15 april Dynamisch Programmeren

Negende college algoritmiek. 15 april Dynamisch Programmeren Negende college algoritmiek 15 april 2016 Dynamisch Programmeren 1 algemeen Uit college 8: DP: - nuttig bij problemen met overlappende deelproblemen - druk een oplossing van het probleem uit in oplossingen

Nadere informatie

Netwerkstroming. Algoritmiek

Netwerkstroming. Algoritmiek Netwerkstroming Vandaag Netwerkstroming: definitie en toepassing Het rest-netwerk Verbeterende paden Ford-Fulkerson algoritme Minimum Snede Maximum Stroming Stelling Variant: Edmonds-Karp Toepassing: koppelingen

Nadere informatie

Discrete Structuren. Piter Dykstra Opleidingsinstituut Informatica en Cognitie

Discrete Structuren. Piter Dykstra Opleidingsinstituut Informatica en Cognitie Discrete Structuren Piter Dykstra Opleidingsinstituut Informatica en Cognitie www.math.rug.nl/~piter piter@math.rug.nl 23 februari 2009 GRAFEN & BOMEN Paragrafen 6.1-6.4 Discrete Structuren Week 3 en 4:

Nadere informatie

Vierde college complexiteit. 16 februari Beslissingsbomen en selectie

Vierde college complexiteit. 16 februari Beslissingsbomen en selectie Complexiteit 2016/04 College 4 Vierde college complexiteit 16 februari 2016 Beslissingsbomen en selectie 1 Complexiteit 2016/04 Zoeken: samengevat Ongeordend lineair zoeken: Θ(n) sleutelvergelijkingen

Nadere informatie

Zevende college complexiteit. 7 maart Mergesort, Ondergrens sorteren (Quicksort)

Zevende college complexiteit. 7 maart Mergesort, Ondergrens sorteren (Quicksort) College 7 Zevende college complexiteit 7 maart 2017 Mergesort, Ondergrens sorteren (Quicksort) 1 Inversies Definitie: een inversie van de permutatie A[1],A[2],...,A[n] is een paar (A[i],A[j]) waarvoor

Nadere informatie

Elfde college algoritmiek. 16 mei Dijkstra, Gretige algoritmen en Branch & Bound

Elfde college algoritmiek. 16 mei Dijkstra, Gretige algoritmen en Branch & Bound Algoritmiek 013/11 College 11 Elfde college algoritmiek 1 mei 013 Dijkstra, Gretige algoritmen en Branch & Bound 1 Algoritmiek 013/11 Voorbeeld -1- A B C D E F G H 9 7 5 A B C D E F G H 0 9 9 7 5 A B C

Nadere informatie

Het minimale aantal sleutels op niveau h is derhalve

Het minimale aantal sleutels op niveau h is derhalve 1 (a) In een B-boom van orde m bevat de wortel minimaal 1 sleutel en maximaal m 1 sleutels De andere knopen bevatten minimaal m 1 sleutels en maximaal m 1 sleutels (b) In een B-boom van orde 5 bevat elke

Nadere informatie

2WO12: Optimalisering in Netwerken

2WO12: Optimalisering in Netwerken 2WO12: Optimalisering in Netwerken Leo van Iersel Technische Universiteit Eindhoven (TU/E) en Centrum Wiskunde & Informatica (CWI) 27 februari 2014 http://homepages.cwi.nl/~iersel/2wo12/ l.j.j.v.iersel@gmail.com

Nadere informatie

Zevende college complexiteit. 17 maart Ondergrens sorteren, Quicksort

Zevende college complexiteit. 17 maart Ondergrens sorteren, Quicksort College 7 Zevende college complexiteit 17 maart 2008 Ondergrens sorteren, Quicksort 1 Sorteren We bekijken sorteeralgoritmen gebaseerd op het doen van vergelijkingen van de vorm A[i] < A[j]. Aannames:

Nadere informatie

Gegevens invullen in HOOFDLETTERS en LEESBAAR, aub. Belgische Olympiades in de Informatica (duur : maximum 1u15 )

Gegevens invullen in HOOFDLETTERS en LEESBAAR, aub. Belgische Olympiades in de Informatica (duur : maximum 1u15 ) OI 2010 Finale 12 Mei 2010 Gegevens invullen in HOOFDLETTERS en LEESBAAR, aub VOORNAAM :....................................................... NAAM :..............................................................

Nadere informatie

Netwerkstroming. Algoritmiek

Netwerkstroming. Algoritmiek Netwerkstroming Netwerkstroming Toepassingen in Logistiek Video-streaming Subroutine in algoritmen 2 Vandaag Netwerkstroming: wat was dat ook alweer? Minimum Snede Maximum Stroming Stelling Variant: Edmonds-Karp

Nadere informatie

Grafen. Indien de uitgraad van ieder punt 1 is, dan bevat de graaf een cykel. Indien de ingraad van ieder punt 1 is, dan bevat de graaf een cykel.

Grafen. Indien de uitgraad van ieder punt 1 is, dan bevat de graaf een cykel. Indien de ingraad van ieder punt 1 is, dan bevat de graaf een cykel. Grafen Grafen Een graaf bestaat uit een verzameling punten (ook wel knopen, of in het engels vertices genoemd) en een verzameling kanten (edges) of pijlen (arcs), waarbij de kanten en pijlen tussen twee

Nadere informatie

Algoritmiek 2015 / Algoritmiek 1

Algoritmiek 2015 / Algoritmiek 1 2015 / 2016 1 Waarom dit vak? Omdat Mensen ongeduldig zijn Het belangrijk is dat antwoorden (van berekeningen door computers) snel / op tijd komen (en juist zijn) Dus leren we Algoritmische technieken

Nadere informatie

Algoritmes in ons dagelijks leven. Leve de Wiskunde! 7 April 2017 Jacobien Carstens

Algoritmes in ons dagelijks leven. Leve de Wiskunde! 7 April 2017 Jacobien Carstens Algoritmes in ons dagelijks leven Leve de Wiskunde! 7 April 2017 Jacobien Carstens Wat is een algoritme? Een algoritme is een eindige reeks instructies die vanuit een gegeven begintoestand naar een beoogd

Nadere informatie

Examen Datastructuren en Algoritmen II

Examen Datastructuren en Algoritmen II Tweede kandidatuur Informatica Academiejaar 2004 2005, eerste zittijd Examen Datastructuren en Algoritmen II Naam :.............................................................................. 1. Binomiale

Nadere informatie

Algoritmiek 2016 / Algoritmiek 1

Algoritmiek 2016 / Algoritmiek 1 2016 / 2017 1 Waarom dit vak? Omdat Mensen ongeduldig zijn Het belangrijk is dat antwoorden (van berekeningen door computers) snel / op tijd komen (en juist zijn) Dus leren we Algoritmische technieken

Nadere informatie

Tentamen Discrete Wiskunde 1 10 april 2012, 14:00 17:00 uur

Tentamen Discrete Wiskunde 1 10 april 2012, 14:00 17:00 uur Tentamen Discrete Wiskunde 0 april 0, :00 7:00 uur Schrijf je naam op ieder blad dat je inlevert. Onderbouw je antwoorden, met een goede argumentatie zijn ook punten te verdienen. Veel succes! Opgave.

Nadere informatie

Hoofdstuk 7: Werken met arrays

Hoofdstuk 7: Werken met arrays Programmeren in Microsoft Visual Basic 6.0, lessenserie voor het voortgezet onderwijs HAVO/VWO David Lans, Emmauscollege, Marnix Gymnasium Rotterdam, januari 2004 Hoofdstuk 7: Werken met arrays 7.0 Leerdoel

Nadere informatie

Discrete Structuren. Piter Dykstra Opleidingsinstituut Informatica en Cognitie

Discrete Structuren. Piter Dykstra Opleidingsinstituut Informatica en Cognitie Discrete Structuren Piter Dykstra Opleidingsinstituut Informatica en Cognitie www.math.rug.nl/~piter piter@math.rug.nl 22 februari 2009 INDUCTIE & RECURSIE Paragrafen 4.3-4.6 Discrete Structuren Week 3:

Nadere informatie

In Katern 2 hebben we de volgende rekenregel bewezen, als onderdeel van rekenregel 4:

In Katern 2 hebben we de volgende rekenregel bewezen, als onderdeel van rekenregel 4: Katern 4 Bewijsmethoden Inhoudsopgave 1 Bewijs uit het ongerijmde 1 2 Extremenprincipe 4 3 Ladenprincipe 8 1 Bewijs uit het ongerijmde In Katern 2 hebben we de volgende rekenregel bewezen, als onderdeel

Nadere informatie

Automaten. Informatica, UvA. Yde Venema

Automaten. Informatica, UvA. Yde Venema Automaten Informatica, UvA Yde Venema i Inhoud Inleiding 1 1 Formele talen en reguliere expressies 2 1.1 Formele talen.................................... 2 1.2 Reguliere expressies................................

Nadere informatie

Pascal uitgediept Data structuren

Pascal uitgediept Data structuren Pascal uitgediept Data structuren MSX Computer & Club Magazine nummer 68-juni/juli 1994 Herman Post Scanned, ocr ed and converted to PDF by HansO, 2001 In deze aflevering wordt bekeken hoe zelf een datastructuur

Nadere informatie

Programmeermethoden. Recursie. week 11: november kosterswa/pm/

Programmeermethoden. Recursie. week 11: november kosterswa/pm/ Programmeermethoden Recursie week 11: 21 25 november 2016 www.liacs.leidenuniv.nl/ kosterswa/pm/ 1 Pointers Derde programmeeropgave 1 Het spel Gomoku programmeren we als volgt: week 1: pointerpracticum,

Nadere informatie

Elke groep van 3 leerlingen heeft een 9 setje speelkaarten nodig: 2 t/m 10, bijvoorbeeld alle schoppen, of alle harten kaarten.

Elke groep van 3 leerlingen heeft een 9 setje speelkaarten nodig: 2 t/m 10, bijvoorbeeld alle schoppen, of alle harten kaarten. Versie 16 januari 2017 Sorteren unplugged Sorteren gebeurt heel veel. De namen van alle leerlingen in de klas staan vaak op alfabetische volgorde. De wedstrijden van een volleybal team staan op volgorde

Nadere informatie

Twaalfde college algoritmiek. 12 mei Branch & Bound

Twaalfde college algoritmiek. 12 mei Branch & Bound Twaalfde college algoritmiek 12 mei 2016 Branch & Bound 1 Branch and bound -1- Branch & bound is alleen toepasbaar op optimalisatieproblemen genereert oplossingen stap voor stap en houdt de tot dusver

Nadere informatie

TW2020 Optimalisering

TW2020 Optimalisering TW2020 Optimalisering Hoorcollege 12 Leo van Iersel Technische Universiteit Delft 7 december 2016 Leo van Iersel (TUD) TW2020 Optimalisering 7 december 2016 1 / 25 Volgende week: Study guide Vragenuurtje

Nadere informatie

Netwerkdiagram voor een project. AOA: Activities On Arrows - activiteiten op de pijlen.

Netwerkdiagram voor een project. AOA: Activities On Arrows - activiteiten op de pijlen. Netwerkdiagram voor een project. AOA: Activities On Arrows - activiteiten op de pijlen. Opmerking vooraf. Een netwerk is een structuur die is opgebouwd met pijlen en knooppunten. Bij het opstellen van

Nadere informatie

Local search. Han Hoogeveen. 21 november, 2011

Local search. Han Hoogeveen. 21 november, 2011 1 Local search Han Hoogeveen 21 november, 2011 Inhoud vandaag 2 Inhoud: Uitleg methode Bespreking oude opdrachten: ˆ Bezorgen wenskaarten ˆ Roosteren tentamens Slides staan al op het web www.cs.uu.nl/docs/vakken/opt/colleges.html

Nadere informatie

Examen Datastructuren en Algoritmen II

Examen Datastructuren en Algoritmen II Tweede bachelor Informatica Academiejaar 2008 2009, eerste zittijd Examen Datastructuren en Algoritmen II Naam :.............................................................................. Lees elke

Nadere informatie

Datastructuren en algoritmen voor CKI

Datastructuren en algoritmen voor CKI Datastructuren en algoritmen voor CKI Jeroen Bransen 1 2 oktober 2015 1 met dank aan Hans Bodlaender en Gerard Tel Priority queue Priority queue ADT insert(q, x): voeg element x toe aan de queue maximum(q):

Nadere informatie

Derde college complexiteit. 7 februari Zoeken

Derde college complexiteit. 7 februari Zoeken College 3 Derde college complexiteit 7 februari 2017 Recurrente Betrekkingen Zoeken 1 Recurrente betrekkingen -1- Rij van Fibonacci: 0,1,1,2,3,5,8,13,21,... Vanaf het derde element: som van de voorgaande

Nadere informatie

TW2020 Optimalisering

TW2020 Optimalisering TW2020 Optimalisering Hoorcollege 11 Leo van Iersel Technische Universiteit Delft 25 november 2015 Leo van Iersel (TUD) TW2020 Optimalisering 25 november 2015 1 / 28 Vandaag Vraag Voor welke problemen

Nadere informatie

Discrete modellen in de toegepaste wiskunde (WISB136) Uitwerkingen proeftentamen.

Discrete modellen in de toegepaste wiskunde (WISB136) Uitwerkingen proeftentamen. Discrete modellen in de toegepaste wiskunde (WISB6) Uitwerkingen proeftentamen. Docent: Rob H. Bisseling april 202. Begin met een matching M = {x y, x y, x 6 y 6 } aangegeven door de vette lijnen. x De

Nadere informatie

V = {a, b, c, d, e} Computernetwerken: de knopen zijn machines in het netwerk, de kanten zijn communicatiekanalen.

V = {a, b, c, d, e} Computernetwerken: de knopen zijn machines in het netwerk, de kanten zijn communicatiekanalen. WIS14 1 14 Grafen 14.1 Grafen Gerichte grafen Voor een verzameling V is een binaire relatie op V een verzameling geordende paren van elementen van V. Voorbeeld: een binaire relatie op N is de relatie KleinerDan,

Nadere informatie

Programmeermethoden NA. Week 6: Lijsten

Programmeermethoden NA. Week 6: Lijsten Programmeermethoden NA Week 6: Lijsten Kristian Rietveld http://liacs.leidenuniv.nl/~rietveldkfd/courses/prna2016/ Getal opbouwen Stel je leest losse karakters (waaronder cijfers) en je moet daar een getal

Nadere informatie

Oefeningen voor de oefeningenles. Oefening 1

Oefeningen voor de oefeningenles. Oefening 1 Oefeningen voor de oefeningenles Oefening 1 Gegeven een arbitraire binaire zoekboom T met n toppen en een (andere of gelijke) binaire zoekboom T die ook n sleutels bevat. Beschrijf een algoritme dat in

Nadere informatie

Wiskundige beweringen en hun bewijzen

Wiskundige beweringen en hun bewijzen Wiskundige beweringen en hun bewijzen Analyse (en feitelijk de gehele wiskunde) gaat over het bewijzen van beweringen (proposities), d.w.z. uitspraken waaraan de karakterisering waar of onwaar toegekend

Nadere informatie

Small Basic Programmeren Text Console 2

Small Basic Programmeren Text Console 2 Oefening 1: Hoogste getal Je leest een reeks positieve gehele getallen in totdat je het getal 0 (nul) invoert. Daarna stopt de invoer en druk je een regel af met het hoogste getal uit de reeks. Voorbeeld:

Nadere informatie

4EE11 Project Programmeren voor W. College 3, 2008 2009, Blok D Tom Verhoeff, Software Engineering & Technology, TU/e

4EE11 Project Programmeren voor W. College 3, 2008 2009, Blok D Tom Verhoeff, Software Engineering & Technology, TU/e 4EE11 Project Programmeren voor W College 3, 2008 2009, Blok D Tom Verhoeff, Software Engineering & Technology, TU/e 1 Onderwerpen Grotere programma s ontwerpen/maken Datastructuren en algoritmes 2 Evolutie,

Nadere informatie

opgaven formele structuren deterministische eindige automaten

opgaven formele structuren deterministische eindige automaten opgaven formele structuren deterministische eindige automaten Opgave. De taal L over het alfabet {a, b} bestaat uit alle strings die beginnen met aa en eindigen met ab. Geef een reguliere expressie voor

Nadere informatie

Examen Algoritmen en Datastructuren III

Examen Algoritmen en Datastructuren III Derde bachelor Informatica Academiejaar 2006 2007, tweede zittijd Examen Algoritmen en Datastructuren III Naam :.............................................................................. 1. (2 pt)

Nadere informatie

Stacks and queues. Hoofdstuk 6

Stacks and queues. Hoofdstuk 6 Hoofdstuk 6 Stacks and queues I N T R O D U C T I E In dit hoofdstuk worden drie datastructuren stack, queue en deque behandeld. Om deze datastructuren te implementeren, worden onder andere arrays en linked

Nadere informatie

VERZAMELINGEN EN AFBEELDINGEN

VERZAMELINGEN EN AFBEELDINGEN I VERZAMELINGEN EN AFBEELDINGEN Het begrip verzameling kennen we uit het dagelijks leven: een bibliotheek bevat een verzameling van boeken, een museum een verzameling van kunstvoorwerpen. We kennen verzamelingen

Nadere informatie

Netwerkdiagram voor een project. AON: Activities On Nodes - activiteiten op knooppunten

Netwerkdiagram voor een project. AON: Activities On Nodes - activiteiten op knooppunten Netwerkdiagram voor een project. AON: Activities On Nodes - activiteiten op knooppunten Opmerking vooraf. Een netwerk is een structuur die is opgebouwd met pijlen en knooppunten. Bij het opstellen van

Nadere informatie

Tweede Toets Datastructuren 29 juni 2016, , Educ-Γ.

Tweede Toets Datastructuren 29 juni 2016, , Educ-Γ. Tweede Toets Datastructuren 29 juni 2016, 13.30 15.30, Educ-Γ. Motiveer je antwoorden kort! Zet je mobiel uit. Stel geen vragen over deze toets; als je een vraag niet duidelijk vindt, schrijf dan op hoe

Nadere informatie

1 Rekenen in eindige precisie

1 Rekenen in eindige precisie Rekenen in eindige precisie Een computer rekent per definitie met een eindige deelverzameling van getallen. In dit hoofdstuk bekijken we hoe dit binnen een computer is ingericht, en wat daarvan de gevolgen

Nadere informatie

OPDRACHT Opdracht 2.1 Beschrijf in eigen woorden wat het bovenstaande PSD doet.

OPDRACHT Opdracht 2.1 Beschrijf in eigen woorden wat het bovenstaande PSD doet. Les C-02: Werken met Programma Structuur Diagrammen 2.0 Inleiding In deze lesbrief bekijken we een methode om een algoritme zodanig structuur te geven dat er gemakkelijk programmacode bij te schrijven

Nadere informatie

3. Structuren in de taal

3. Structuren in de taal 3. Structuren in de taal In dit hoofdstuk behandelen we de belangrijkst econtrolestructuren die in de algoritmiek gebruikt worden. Dit zijn o.a. de opeenvolging, selectie en lussen (herhaling). Vóór we

Nadere informatie

Tijd is geen goede maatstaf, want is afhankelijk van computer waarop algoritme wordt gedraaid.

Tijd is geen goede maatstaf, want is afhankelijk van computer waarop algoritme wordt gedraaid. Complexiteit of efficiëntie van algoritmen Hoe meet je deze? Tijd is geen goede maatstaf, want is afhankelijk van computer waarop algoritme wordt gedraaid. Een betere maatstaf is het aantal berekeningsstappen

Nadere informatie

De volgende opgave gaat over de B-bomen van het college, waar sleutels zowel in de bladeren als ook in de interne knopen opgeslagen worden.

De volgende opgave gaat over de B-bomen van het college, waar sleutels zowel in de bladeren als ook in de interne knopen opgeslagen worden. . a) Een Fibonacci boom (niet te verwarren met een Fibonacci queue) van hoogte h is een AVL-boom van hoogte h met zo weinig mogelijk knopen. i. Geefvoorh =,,,,eenfibonacciboomvanhoogteh(eenboombestaande

Nadere informatie

Opdracht 1 Topics on Parsing and Formal Languages - fall 2010

Opdracht 1 Topics on Parsing and Formal Languages - fall 2010 Opdracht 1 Topics on Parsing and Formal Languages - fall 2010 Rick van der Zwet 8 december 2010 Samenvatting Dit schrijven zal uitwerkingen van opgaven behandelen uit het boek [JS2009]

Nadere informatie

1 Complexiteit. of benadering en snel

1 Complexiteit. of benadering en snel 1 Complexiteit Het college van vandaag gaat over complexiteit van algoritmes. In het boek hoort hier hoofdstuk 8.1-8.5 bij. Bij complexiteitstheorie is de belangrijkste kernvraag: Hoe goed is een algoritme?

Nadere informatie

Examen Datastructuren en Algoritmen II

Examen Datastructuren en Algoritmen II Tweede bachelor Informatica Academiejaar 2008 2009, tweede zittijd Examen Datastructuren en Algoritmen II Naam :.............................................................................. Lees elke

Nadere informatie

1. Een kortste pad probleem in een netwerk kan worden gemodelleerd als a. een LP probleem. b. een IP probleem. c. een BIP probleem. d.

1. Een kortste pad probleem in een netwerk kan worden gemodelleerd als a. een LP probleem. b. een IP probleem. c. een BIP probleem. d. 1. Een kortste pad probleem in een netwerk kan worden gemodelleerd als a. een LP probleem. b. een IP probleem. c. een BIP probleem. d. een toewijzingsprobleem. 2. Het aantal toegelaten hoekpunten in een

Nadere informatie

Week 1 20-02-2013. Hier vind je uitwerkingen van enkele opgaven uit het dictaat Grafen: Kleuren en Routeren.

Week 1 20-02-2013. Hier vind je uitwerkingen van enkele opgaven uit het dictaat Grafen: Kleuren en Routeren. Combinatorische Optimalisatie, 2013 Week 1 20-02-2013 Hier vind je uitwerkingen van enkele opgaven uit het dictaat Grafen: Kleuren en Routeren. Opgave 1.16 Bewijs dat elke graaf een even aantal punten

Nadere informatie

Surinaamse Wiskunde Olympiade

Surinaamse Wiskunde Olympiade Surinaamse Wiskunde Olympiade SUCCES! Calculator is niet toegestaan Klad papier is wel toegestaan Je hebt 90 minuten de tijd De uitslag wordt eind juni bekend gemaakt Voor 3 e klas Mulo 1. Gegeven het

Nadere informatie

1 In deze opgave wordt vijftien maal telkens drie beweringen gedaan waarvan er één juist is. Kruis de juiste bewering aan. (2pt. per juist antwoord).

1 In deze opgave wordt vijftien maal telkens drie beweringen gedaan waarvan er één juist is. Kruis de juiste bewering aan. (2pt. per juist antwoord). Tentamen Optimalisering (IN2805-I) Datum: 3 april 2008, 14.00 17.00. Docent: Dr. J.B.M. Melissen Naam: Studienummer: 1 In deze opgave wordt vijftien maal telkens drie beweringen gedaan waarvan er één juist

Nadere informatie

WISKUNDE B -DAG 2002 1+ 1 = 2. maar en hoe nu verder? 29 november 2002

WISKUNDE B -DAG 2002 1+ 1 = 2. maar en hoe nu verder? 29 november 2002 - 0 - WISKUNDE B -DAG 2002 1+ 1 = 2 maar en hoe nu verder? 29 november 2002 De Wiskunde B-dag wordt gesponsord door Texas Instruments - 1 - Inleiding Snel machtverheffen Stel je voor dat je 7 25 moet uitrekenen.

Nadere informatie

(On)Doenlijke problemen

(On)Doenlijke problemen Fundamentele Informatica In3 005 Deel 2 College 1 Cees Witteveen Parallelle en Gedistribueerde Systemen Faculteit Informatie Technologie en Systemen Overzicht Inleiding - Relatie Deel 1 en Deel 2 - Doenlijke

Nadere informatie

HOOFDSTUK 3. Imperatief programmeren. 3.1 Stapsgewijs programmeren. 3.2 If Then Else. Module 4 Programmeren

HOOFDSTUK 3. Imperatief programmeren. 3.1 Stapsgewijs programmeren. 3.2 If Then Else. Module 4 Programmeren HOOFDSTUK 3 3.1 Stapsgewijs programmeren De programmeertalen die tot nu toe genoemd zijn, zijn imperatieve of procedurele programmeertalen. is het stapsgewijs in code omschrijven wat een programma moet

Nadere informatie

Controle structuren. Keuze. Herhaling. Het if statement. even1.c : testen of getal even of oneven is. statement1 statement2

Controle structuren. Keuze. Herhaling. Het if statement. even1.c : testen of getal even of oneven is. statement1 statement2 Controle structuren De algemene vorm: 1 bloks door middel van indentatie Keuze Herhaling if expressie :...... In de volgende vorm is het else gedeelte weggelaten: if expressie :... Het if keuze- of conditioneel

Nadere informatie

Negende college algoritmiek. 6/7 april Dynamisch Programmeren

Negende college algoritmiek. 6/7 april Dynamisch Programmeren Negende college algoritmiek 6/7 april 2017 Dynamisch Programmeren 1 algemeen Uit college 8: DP: - nuttig bij problemen met overlappende deelproblemen - druk een oplossing van het probleem uit in oplossingen

Nadere informatie

Opdracht 1 Topics on Parsing and Formal Languages - fall 2010

Opdracht 1 Topics on Parsing and Formal Languages - fall 2010 Opdracht 1 Topics on Parsing and Formal Languages - fall 2010 Rick van der Zwet 13 november 2010 Samenvatting Dit schrijven zal uitwerkingen van opgaven behandelen uit het boek [JS2009]

Nadere informatie

Eerste deeltoets Algoritmiek 4 maart 2015, , Educ-β.

Eerste deeltoets Algoritmiek 4 maart 2015, , Educ-β. Eerste deeltoets Algoritmiek 4 maart 2015, 8.30 10.30, Educ-β. Motiveer je antwoorden kort! Zet je mobiel uit. Stel geen vragen over deze toets; als je een vraag niet duidelijk vindt, schrijf dan op hoe

Nadere informatie

recursie Hoofdstuk 5 Studeeraanwijzingen De studielast van deze leereenheid bedraagt circa 6 uur. Terminologie

recursie Hoofdstuk 5 Studeeraanwijzingen De studielast van deze leereenheid bedraagt circa 6 uur. Terminologie Hoofdstuk 5 Recursion I N T R O D U C T I E Veel methoden die we op een datastructuur aan kunnen roepen, zullen op een recursieve wijze geïmplementeerd worden. Recursie is een techniek waarbij een vraagstuk

Nadere informatie

Datastructuren: stapels, rijen en binaire bomen

Datastructuren: stapels, rijen en binaire bomen Programmeermethoden Datastructuren: stapels, rijen en binaire bomen week 12: 23 27 november 2015 www.liacs.leidenuniv.nl/ kosterswa/pm/ 1 Inleiding In de informatica worden Abstracte DataTypen (ADT s)

Nadere informatie

9. Strategieën en oplossingsmethoden

9. Strategieën en oplossingsmethoden 9. Strategieën en oplossingsmethoden In dit hoofdstuk wordt nog even terug gekeken naar alle voorgaande hoofdstukken. We herhalen globaal de structuren en geven enkele richtlijnen voor het ontwerpen van

Nadere informatie

Algoritmiek. 2 februari Introductie

Algoritmiek. 2 februari Introductie College 1 Algoritmiek 2 februari 2017 Introductie 1 Introductie -1- docent: Rudy van Vliet rvvliet@liacs.nl assistent werkcollege: Bart van Strien bartbes@gmail.com website: http://www.liacs.leidenuniv.nl/~vlietrvan1/algoritmiek/

Nadere informatie

Divide & Conquer: Verdeel en Heers. Algoritmiek

Divide & Conquer: Verdeel en Heers. Algoritmiek Divide & Conquer: Verdeel en Heers Algoritmiek Algoritmische technieken Trucs; methoden; paradigma s voor het ontwerp van algoritmen Gezien: Dynamisch Programmeren Hierna: Greedy Vandaag: Divide & Conquer

Nadere informatie

Een combinatorische oplossing voor vraag 10 van de LIMO 2010

Een combinatorische oplossing voor vraag 10 van de LIMO 2010 Een combinatorische oplossing voor vraag 10 van de LIMO 2010 Stijn Vermeeren (University of Leeds) 16 juni 2010 Samenvatting Probleem 10 van de Landelijke Interuniversitaire Mathematische Olympiade 2010vraagt

Nadere informatie

Getaltheorie I. c = c 1 = 1 c (1)

Getaltheorie I. c = c 1 = 1 c (1) Lesbrief 1 Getaltheorie I De getaltheorie houdt zich bezig met het onderzoek van eigenschappen van gehele getallen, en meer in het bijzonder, van natuurlijke getallen. In de getaltheorie is het gebruikelijk

Nadere informatie

1 Kettingbreuken van rationale getallen

1 Kettingbreuken van rationale getallen Kettingbreuken van rationale getallen Laten we eens starten met een breuk bijvoorbeeld 37/3 Laten we hier ons kettingbreuk algoritme op los, We concluderen hieruit dat 37 3 3 + 3 + + 37 3 + + + hetgeen

Nadere informatie

7 Omzetten van Recursieve naar Iteratieve Algoritmen

7 Omzetten van Recursieve naar Iteratieve Algoritmen 7 Omzetten van Recursieve naar Iteratieve Algoritmen Het lijkt mogelijk om elke oplossings-algoritme, die vaak in eerste instantie recursief geformuleerd werd, om te zetten in een iteratieve algoritme

Nadere informatie

Om te kijken of x, y, z samen een driehoek specificeren hoeven we alleen nog maar de driehoeksongelijkheid te controleren: x, y, z moeten voldoen

Om te kijken of x, y, z samen een driehoek specificeren hoeven we alleen nog maar de driehoeksongelijkheid te controleren: x, y, z moeten voldoen Feedback Software Testing, Opdrachten Week 1 Driehoek-test Deze opdracht is in het algemeen zeer goed uitgevoerd. Algemeen valt in vergelijking met vorig jaar op dat de ingeleverde oplossingen veel minder

Nadere informatie

Kosten. Zoekalgoritmen ( ) College 5: Zoeken met kosten. Een zoekprobleem met stapkosten. Een voorbeeld: het vinden van een route

Kosten. Zoekalgoritmen ( ) College 5: Zoeken met kosten. Een zoekprobleem met stapkosten. Een voorbeeld: het vinden van een route Kosten Zoekalgoritmen (00 00) ollege 5: Zoeken met kosten Peter de Waal, Tekst: Linda van der aag Veel zoekproblemen omvatten kosten: een afstand in kilometers; een geldbedrag; een hoeveelheid tijd; ongemak;...

Nadere informatie

Opmerking. TI1300 Redeneren en Logica. Met voorbeelden kun je niks bewijzen. Directe en indirecte bewijzen

Opmerking. TI1300 Redeneren en Logica. Met voorbeelden kun je niks bewijzen. Directe en indirecte bewijzen Opmerking TI1300 Redeneren en Logica College 2: Bewijstechnieken Tomas Klos Algoritmiek Groep Voor alle duidelijkheid: Het is verre van triviaal om definities te leren hanteren, beweringen op te lossen,

Nadere informatie

Transport-, Routing- en Schedulingproblemen. Wi4062TU / Wi487TU / a86g. Uitwerkingen 08-04-2005

Transport-, Routing- en Schedulingproblemen. Wi4062TU / Wi487TU / a86g. Uitwerkingen 08-04-2005 Transport-, Routing- en Schedulingproblemen Wi4062TU / Wi487TU / a86g Uitwerkingen 08-04-2005 1 Transportprobleem Onderdeel a Fabriek 1 kan 120 ton staal fabriceren in 40 uur. Voor fabriek 2 is dit 150

Nadere informatie

Bouwplaat. Datastructuren Opgave 6, Voorjaar

Bouwplaat. Datastructuren Opgave 6, Voorjaar 1 Achtergrond Bouwplaat Datastructuren Opgave 6, Voorjaar 2016 1 Het bedrijf Mijn Bouwplaat BV levert gepersonaliseerde bouwplaten Klaar terwijl u wacht. Nadat klanten thuis een ontwerp hebben gemaakt

Nadere informatie

V.4 Eigenschappen van continue functies

V.4 Eigenschappen van continue functies V.4 Eigenschappen van continue functies We bestuderen een paar belangrijke stellingen over continue functies. Maxima en minima De stelling over continue functies die we in deze paragraaf bewijzen zegt

Nadere informatie

Begrenzing van het aantal iteraties in het max-flow algoritme

Begrenzing van het aantal iteraties in het max-flow algoritme Begrenzing van het aantal iteraties in het max-flow algoritme Het oplossen van het maximum stroom probleem met behulp van stroomvermeerderende paden werkt, maar het aantal iteraties kan aardig de spuigaten

Nadere informatie

1.2 Bomen Algemeen 1.2. BOMEN 7

1.2 Bomen Algemeen 1.2. BOMEN 7 1.2. BOMEN 7 1.2 Bomen 1.2.1 Algemeen Beschouw eerst een niet-gerichte graaf. Een boom is een samenhangende graaf die geen kringen bevat. Een boom wordt meestal genoteerd met de letter T (tree). Een bos

Nadere informatie

Optimalisering en Complexiteit, College 2. Han Hoogeveen, Utrecht University

Optimalisering en Complexiteit, College 2. Han Hoogeveen, Utrecht University Optimalisering en Complexiteit, College 2 Han Hoogeveen, Utrecht University Inhoud vandaag Inhoud: Uitleg methode Bespreking oude opdracht: Bezorgen wenskaarten Slides staan al op het web www.cs.uu.nl/docs/vakken/opt/colleges.html

Nadere informatie

Programmeren. a. 0, 0, 0 b. 0, 0, 27 c. 15, 12, 0 d. 15, 12, 27

Programmeren. a. 0, 0, 0 b. 0, 0, 27 c. 15, 12, 0 d. 15, 12, 27 Programmeren 0. (1 punt.) Stel, een "afhankelijk kind" is een persoon is die jonger is dan 18 jaar, en hooguit 8.000 euro verdient. Welke van de onderstaande expressies definieert een afhankelijk kind?

Nadere informatie

TENTAMEN Basismodellen in de Informatica VOORBEELDUITWERKING

TENTAMEN Basismodellen in de Informatica VOORBEELDUITWERKING TENTAMEN Basismodellen in de Informatica vakcode: 211180 datum: 2 juli 2009 tijd: 9:00 12:30 uur VOORBEELDUITWERKING Algemeen Bij dit tentamen mag gebruik worden gemaakt van het boek van Sudkamp, van de

Nadere informatie

Bomen. 8.8 ongerichte bomen 9.4 gerichte bomen ch 10. binaire bomen

Bomen. 8.8 ongerichte bomen 9.4 gerichte bomen ch 10. binaire bomen 10 Bomen 8.8 ongerichte bomen 9.4 gerichte bomen ch 10. binaire bomen 1 Baarn Hilversum Soestdijk Den Dolder voorbeelden route boom beslisboom Amersfoort Soestduinen + 5 * + 5.1 5.2 5.3 5.4 2 3 * * 2 5.3.1

Nadere informatie

Overzicht. Inleiding. Toepassingen. Verwante problemen. Modellering. Exacte oplosmethode: B&B. Insertie heuristieken. Local Search

Overzicht. Inleiding. Toepassingen. Verwante problemen. Modellering. Exacte oplosmethode: B&B. Insertie heuristieken. Local Search Overzicht Inleiding Toepassingen Verwante problemen Modellering Exacte oplosmethode: B&B Insertie heuristieken Local Search Handelsreizigersprobleem 1 Cyclische permutatie van steden b 3 77 a 93 21 42

Nadere informatie

Faculteit Economie en Bedrijfskunde

Faculteit Economie en Bedrijfskunde Faculteit Economie en Bedrijfskunde Op dit voorblad vindt u belangrijke informatie omtrent het tentamen. Voordat u met het tentamen t: lees dit voorblad! Tentamen: V&O IV: Programmeren Tentamendatum &

Nadere informatie

Uitwerking Puzzel 93-1, Doelloos

Uitwerking Puzzel 93-1, Doelloos Uitwerking Puzzel 93-1, Doelloos Wobien Doyer Lieke de Rooij Volgens de titel is deze puzzel zonder doel, dus zonder bekende toepassing. Het doel is echter nul en dat is zeker in de wiskunde niet niks.

Nadere informatie