Linear Algebra I. Ronald van Luijk, 2011

Vergelijkbare documenten
FOR DUTCH STUDENTS! ENGLISH VERSION NEXT PAGE

i(i + 1) = xy + y = x + 1, y(1) = 2.

Add the standing fingers to get the tens and multiply the closed fingers to get the units.

SAMPLE 11 = + 11 = + + Exploring Combinations of Ten + + = = + + = + = = + = = 11. Step Up. Step Ahead

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Examination 2DL04 Friday 16 november 2007, hours.

FOR DUTCH STUDENTS! ENGLISH VERSION NEXT PAGE

FOR DUTCH STUDENTS! ENGLISH VERSION NEXT PAGE

FOR DUTCH STUDENTS! ENGLISH VERSION NEXT PAGE. Toets Inleiding Kansrekening 1 8 februari 2010

Alle opgaven tellen even zwaar, 10 punten per opgave.

Opgave 2 Geef een korte uitleg van elk van de volgende concepten: De Yield-to-Maturity of a coupon bond.

The first line of the input contains an integer $t \in \mathbb{n}$. This is followed by $t$ lines of text. This text consists of:

FOR DUTCH STUDENTS! ENGLISH VERSION NEXT PAGE. Toets Inleiding Kansrekening 1 7 februari 2011

ALGORITMIEK: answers exercise class 7

Preschool Kindergarten

Uitwerking Tentamen Calculus B (2WBB1) van 4 november 2013

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamen Calculus B (2WBB1) op maandag 28 januari 2013, 14:00 17:00 uur

Meetkunde en Lineaire Algebra

Classification of triangles

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamen Calculus B (2WBB1) op maandag 4 november 2013, 9:00 12:00 uur

Engels op Niveau A2 Workshops Woordkennis 1

Meetkunde en Lineaire Algebra

ANGSTSTOORNISSEN EN HYPOCHONDRIE: DIAGNOSTIEK EN BEHANDELING (DUTCH EDITION) FROM BOHN STAFLEU VAN LOGHUM

(1) De hoofdfunctie van ons gezelschap is het aanbieden van onderwijs. (2) Ons gezelschap is er om kunsteducatie te verbeteren

After that, the digits are written after each other: first the row numbers, followed by the column numbers.

Ontpopping. ORGACOM Thuis in het Museum

Hertentamen 8D040 - Basis beeldverwerking

Tentamen Objectgeorienteerd Programmeren

L.Net s88sd16-n aansluitingen en programmering.

Ae Table 1: Aircraft data. In horizontal steady flight, the equations of motion are L = W and T = D.

Luister alsjeblieft naar een opname als je de vragen beantwoordt of speel de stukken zelf!

It s all about the money Group work

FOR DUTCH STUDENTS! ENGLISH VERSION NEXT PAGE. Toets Inleiding Kansrekening 1 22 februari 2013

Esther Lee-Varisco Matt Zhang

Calculator spelling. Assignment

Quality requirements concerning the packaging of oak lumber of Houthandel Wijers vof ( )

Four-card problem. Input

Settings for the C100BRS4 MAC Address Spoofing with cable Internet.

L.Net s88sd16-n aansluitingen en programmering.

Academisch schrijven Inleiding

Group work to study a new subject.

Example. Dutch language lesson. Dutch & German Language Education Pieter Wielick

Travel Survey Questionnaires

Concept of Feedback. P.S. Gandhi Mechanical Engineering IIT Bombay

B1 Woordkennis: Spelling

S e v e n P h o t o s f o r O A S E. K r i j n d e K o n i n g

FRAME [UPRIGHT MODEL] / [DEPTH] / [HEIGHT] / [FINISH] TYPE OF BASEPLATE P Base plate BP80 / E alternatives: ZINC finish in all cases

Meetkunde en Lineaire Algebra

MyDHL+ Van Non-Corporate naar Corporate

DALISOFT. 33. Configuring DALI ballasts with the TDS20620V2 DALI Tool. Connect the TDS20620V2. Start DALISOFT

Gravitatie en kosmologie

My Inspiration I got my inspiration from a lamp that I already had made 2 years ago. The lamp is the you can see on the right.

Gravitatie en kosmologie

RECEPTEERKUNDE: PRODUCTZORG EN BEREIDING VAN GENEESMIDDELEN (DUTCH EDITION) FROM BOHN STAFLEU VAN LOGHUM

LDA Topic Modeling. Informa5ekunde als hulpwetenschap. 9 maart 2015

Tentamen T1 Chemische Analysemethoden 6 maart 2014

04/11/2013. Sluitersnelheid: 1/50 sec = 0.02 sec. Frameduur= 2 x sluitersnelheid= 2/50 = 1/25 = 0.04 sec. Framerate= 1/0.

Firewall van de Speedtouch 789wl volledig uitschakelen?

Introductie in flowcharts

Een vrouw, een kind en azijn (Dutch Edition)

TOEGANG VOOR NL / ENTRANCE FOR DUTCH : lator=c&camp=24759

Academisch schrijven Inleiding

Tentamen groepentheorie Antwoorden

De grondbeginselen der Nederlandsche spelling / Regeling der spelling voor het woordenboek der Nederlandsche taal (Dutch Edition)

Main language Dit is de basiswoordenschat. Deze woorden moeten de leerlingen zowel passief als actief kennen.

Puzzle. Fais ft. Afrojack Niveau 3a Song 6 Lesson A Worksheet. a Lees de omschrijvingen. Zet de Engelse woorden in de puzzel.

Ius Commune Training Programme Amsterdam Masterclass 16 June 2016

Uitwerking van opgaven in Sipser

WISB134 Modellen & Simulatie. Lecture 4 - Scalaire recursies

Table 1: Aircraft data. Figure 1: Glider

MyDHL+ ProView activeren in MyDHL+

ONBETWIST ONderwijs verbeteren met WISkunde Toetsen Voorbeeldtoetsen Lineaire Algebra Deliverable 3.10 Henk van der Kooij ONBETWIST Deliverable 3.

Intermax backup exclusion files

OPEN TRAINING. Onderhandelingen met leveranciers voor aankopers. Zeker stellen dat je goed voorbereid aan de onderhandelingstafel komt.

LONDEN MET 21 GEVARIEERDE STADSWANDELINGEN 480 PAGINAS WAARDEVOLE INFORMATIE RUIM 300 FOTOS KAARTEN EN PLATTEGRONDEN

Find Neighbor Polygons in a Layer

Installatie van Windows 10 op laptops. Windows 10 installation on laptops

Relationele Databases 2002/2003

Data Handling Ron van Lammeren - Wageningen UR

Relationele Databases 2002/2003

Understanding and being understood begins with speaking Dutch

Cambridge Assessment International Education Cambridge International General Certificate of Secondary Education. Published

PRIVACYVERKLARING KLANT- EN LEVERANCIERSADMINISTRATIE

AE1103 Statics. 25 January h h. Answer sheets. Last name and initials:

Chapter 4 Understanding Families. In this chapter, you will learn

2019 SUNEXCHANGE USER GUIDE LAST UPDATED

Transcriptie:

Linear Algebra I Ronald van Luijk, 2011 With many parts from Linear Algebra I by Michael Stoll, 2007

Contents 1. Vector spaces 2 1.1. Examples 2 1.2. Fields 2 1.3. The field of complex numbers. 2 1.4. Definition of a vector space 2 1.5. Basic properties 4 2. Subspaces 4 2.1. Definition and examples 4 2.2. Intersections 5 2.3. Linear hulls, linear combinations, and generators 5 2.4. Sums of subspaces 6 2.5. Euclidean space 7 3. Linear Maps 8 3.1. Review of maps 8 3.2. Definition and examples 8 4. Matrices 9 4.1. Definition of matrices 9 4.2. Linear maps associated to matrices 9

2 1. Vector spaces 1.1. Examples. 1.2. Fields. Exercise 1.2.1. Prove Proposition??. Exercise 1.2.2. Check that F 2 is a field (see Example??). Exercise 1.2.3. Which of the following are fields? (1) The set N together with the usual addition and multiplication. (2) The set Z together with the usual addition and multiplication. (3) The set Q together with the usual addition and multiplication. (4) The set R 0 together with the usual addition and multiplication. (5) The set Q( 3) = {a + b 3 : a, b Q} together with the usual addition and multiplication. (6) The set F 3 = {0, 1, 2} with the usual addition and multiplication, followed by taking the remainder after division by 3. 1.3. The field of complex numbers. Exercise 1.3.1. Prove Remark??. Exercise 1.3.2. For every complex number z we have Re(z) = 1 (z + z) and 2 Im(z) = 1 (z z). 2i 1.4. Definition of a vector space. Exercise 1.4.1. Compute the inner product of the given vectors v and w in R 2 and draw a corresponding picture (cf. Example??). (1) v = ( 2, 5) and w = (7, 1), (2) v = 2( 3, 2) and w = (1, 3) + ( 2, 4), (3) v = ( 3, 4) and w = (4, 3), (4) v = ( 3, 4) and w = (8, 6), (5) v = (2, 7) and w = (x, y), (6) v = w = (a, b). Exercise 1.4.2. Write the following equations for lines in R 2 with coordinates x 1 and x 2 in the form a, x = c, i.e., specify a vector a and a constant c in each case. (1) L 1 : 2x 1 + 3x 2 = 0, (2) L 2 : x 2 = 3x 1 1, (3) L 3 : 2(x 1 + x 2 ) = 3, (4) L 4 : x 1 x 2 = 2x 2 3, (5) L 5 : x 1 = 4 3x 1, (6) L 6 : x 1 x 2 = x 1 + x 2. (7) L 7 : 6x 1 2x 2 = 7 Exercise 1.4.3. True or False? If true, explain why. If false, give a counterexample. (1) If a, b R 2 are nonzero vectors and a b, then the lines in R 2 given by a, x = 0 and b, x = 1 are not parallel. (2) If a, b R 2 are nonzero vectors and the lines in R 2 given by a, x = 0 and b, x = 1 are parallel, then a = b.

(3) Two different hyperplanes in F n may be given by the same equation. (4) The intersection of two lines in F n is either empty or consists of one point. (5) For each vector v R 2 we have 0 v = 0. (What do the zeros in this statement refer to?) Exercise 1.4.4. In Example??, the first distributive law and the existence of negatives were proved for F n. Show that the other six axioms for vector spaces hold for F n as well, so that F n is indeed a vector space over F. Exercise 1.4.5. In Example??, the first distributive law was proved for F X. Show that the other seven axioms for vector spaces hold for F X as well, so that F X is indeed a vector space over F. Exercise 1.4.6. Let (V, 0, +, ) be a real vector space and define x y = x+( y), as usual. Which of the vector space axioms are satisfied and which are not (in general), for (V, 0,, )? Note. You are expected to give proofs for the axioms that hold and to give counterexamples for those that do not hold. Exercise 1.4.7. Prove that the set P (F ) of polynomials over F, together with addition, scalar multiplication, and the zero as defined in Example?? is a vector space. Exercise 1.4.8. Given the field F and the set V in the following cases, together with the described addition and scalar multiplication, as well as the implicit element 0, which cases determine a vector space? If not, then which rule is not satisfied? (1) The field F = R and the set V of all functions [0, 1] R >0, together with the usual addition and scalar multiplication. (2) Example??. (3) The field F = Q and the set V = R with the usual addition and multiplication. (4) The field R and the set V of all functions f : R R with f(3) = 0, together with the usual addition and scalar multiplication. (5) The field R and the set V of all functions f : R R with f(3) = 1, together with the usual addition and scalar multiplication. (6) Any field F together with the subset {(x, y, z) F 3 : x + 2y z = 0}, with coordinatewise addition and scalar multiplication. (7) The field F = R together with the subset {(x, y, z) F 3 : x z = 1}, with coordinatewise addition and scalar multiplication. Exercise 1.4.9. Suppose the set X contains exactly n elements. Then how many elements does the vector space F X 2 of functions X F 2 consist of? Exercise 1.4.10. We can generalize Example?? further. Let F be a field and V a vector space over F. Let X be any set and let V X = Map(X, V ) be the set of all functions f : X V. Define an addition and scalar multiplication on V X that makes it into a vector space. 3

4 Exercise 1.4.11. Let S be the set of all sequences (a n ) n 0 of real numbers satisfying the recurrence relation a n+2 = a n+1 + a n for all n 0. Show that the (term-wise) sum of two sequences from S is again in S and that any (term-wise) scalar multiple of a sequence from S is again in S. Finally show that S (with this addition and scalar multiplication) is a real vector space. Exercise 1.4.12. Let U and V be vector spaces over the same field F. Consider the Cartesian product W = U V = { (u, v) : u U, v V }. Define an addition and scalar multiplication on W that makes it into a vector space. *Exercise 1.4.13. For each of the eight axioms in Definition??, try to find a system (V, 0, +, ) that does not satisfy that axiom, while it does satisfy the other seven. 1.5. Basic properties. Exercise 1.5.1. Proof Proposition??. Exercise 1.5.2. Proof Remarks??. Exercise 1.5.3. Is the following statement correct? Axiom (4) of Definition?? is redundant because we already know by Remarks??(2) that for each vector x V the vector x = ( 1) x is also contained in V. 2.1. Definition and examples. 2. Subspaces Exercise 2.1.1. Given an integer d 0, let P d (R) denote the set of polynomials of degree at most d. Show that the addition of two polynomials f, g P d (R) satisfies f + g P d (R). Show also that any scalar multiple of a polynomial f P d (R) is contained in P d (R). Prove that P d (R) is a vector space. Exercise 2.1.2. Let X be a set with elements x 1, x 2 X, and let F be a field. Is the set U = { f F X : f(x 1 ) = 2f(x 2 ) } a subspace of F X? Exercise 2.1.3. Let X be a set with elements x 1, x 2 X. Is the set a subspace of R X? U = { f R X : f(x 1 ) = f(x 2 ) 2 } Exercise 2.1.4. Which of the following are linear subspaces of the vector space R 2? Explain your answers! (1) U 1 = {(x, y) R 2 : y = e π x}, (2) U 2 = {(x, y) R 2 : y = x 2 }, (3) U 3 = {(x, y) R 2 : xy = 0}. Exercise 2.1.5. Which of the following are linear subspaces of the vector space V of all functions from R to R?

(1) U 1 = {f V : f is continuous} (2) U 2 = {f V : f(3) = 0} (3) U 3 = {f V : f is continuous or f(3) = 0} (4) U 4 = {f V : f is continuous and f(3) = 0} (5) U 5 = {f V : f(0) = 3} (6) U 6 = {f V : f(0) 0} Exercise 2.1.6. Prove Proposition??. Exercise 2.1.7. Prove Proposition??. Exercise 2.1.8. Let F be any field. Let a 1,..., a t F n be vectors and b 1,..., b t F constants. Let V F n be the subset V = {x F n : a 1, x = b 1,..., a t, x = b t }. Show that with the same addition and scalar multiplication as F n, the set V is a vector space if and only if b 1 =... = b t = 0. Exercise 2.1.9. (1) Let X be a set and F a field. Show that the set F (X) of all functions f : X F that satisfy f(x) = 0 for all but finitely many x X is a subspace of the vector space F X. (2) More generally, let X be a set, F a field, and V a vector space over F. Show that the set V (X) of all functions f : X V that satisfy f(x) = 0 for all but finitely many x X is a subspace of the vector space V X (cf. Exercise 1.4.10). 2.2. Intersections. Exercise 2.2.1. Suppose that U 1 and U 2 are linear subspaces of a vector space V. Show that U 1 U 2 is a subspace of V if and only if U 1 U 2 or U 2 U 1. Exercise 2.2.2. Let H 1, H 2, H 3 be hyperplanes in R 3 given by the equations respectively. (1, 0, 1), v = 2, ( 1, 2, 1), v = 0, (1, 1, 1), v = 3, (1) Which of these hyperplanes is a subspace of R 3? (2) Show that the intersection H 1 H 2 H 3 contains exactly one element. Exercise 2.2.3. Give an example of a vector space V with two subsets U 1 and U 2, such that U 1 and U 2 are not subspaces of V, but their intersection U 1 U 2 is. 2.3. Linear hulls, linear combinations, and generators. Exercise 2.3.1. Prove Proposition??. Exercise 2.3.2. Do the vectors generate R 3? Exercise 2.3.3. Do the vectors generate R 3? (1, 0, 1), (2, 1, 1), and (1, 0, 1) (1, 2, 3), (4, 5, 6), and (7, 8, 9) 5

6 Exercise 2.3.4. Let U R 4 be the subspaces generated by the vectors (1, 2, 3, 4), (5, 6, 7, 8), and (9, 10, 11, 12). What is the minimum number of vectors needed to generate U? As always, prove that your answer is correct. Exercise 2.3.5. Let F be a field and X a set. Consider the subspace F (X) of F X consisting of all functions f : X F that satisfy f(x) = 0 for all but finitely many x X (cf. Exercise 2.1.9). For every x X we define the function e x : X F by { 1 if z = x, e x (z) = 0 otherwise. Show that the set {e x : x X} generates F (X). Exercise 2.3.6. Does the equality L(I J) = L(I) L(J) hold for all vector spaces V with subsets I and J of V? Exercise 2.3.7. We say that a function f : R R is even if f( x) = f(x) for all x R, and odd if f( x) = f(x) for all x R. (1) Is the subset of R R consisting of al even functions a linear subspace? (2) Is the subset of R R consisting of al odd functions a linear subspace? Exercise 2.3.8. Given a vector space V over a field F and vectors v 1, v 2,..., v n V. Set W = L(v 1, v 2,..., v n ). Using Remark??, give short proofs of the following equalities of subspaces. (1) W = L(v 1,..., v n) where for some fixed j and k we set v i = v i for i j, k and v j = v k and v k = v j (the elements v j and v k are switched), (2) W = L(v 1,..., v n) where for some fixed j and some nonzero scalar λ F we have v i = v i for i j and v j = λv j (the j-th vector is scaled by a nonzero factor λ). (3) W = L(v 1,..., v n) where for some fixed j, k with j k and some scalar λ F we have v i = v i for i k and v k = v k + λv j (a scalar multiple of v j is added to v k ). 2.4. Sums of subspaces. Exercise 2.4.1. Prove Lemma??. Exercise 2.4.2. Suppose F is a field and U 1, U 2 F n subspaces. Show that we have (U 1 + U 2 ) = U 1 U 2. Exercise 2.4.3. Suppose V is a vector space with a subspace U V. Suppose that U 1, U 2 V subspaces of V that are contained in U. Show that the sum U 1 + U 2 is also contained in U. Exercise 2.4.4. Take u = (1, 0) and u = (α, 1) in R 2, for any α R. Show that U = L(u) and U = L(u ) are complementary subspaces. Exercise 2.4.5. Let U + and U be the subspaces of R R of even and odd functions, respectively (cf. Exercise 2.3.7). (1) Show that for any f R R, the functions f + and f given by f(x) + f( x) f + (x) = and 2 are even and odd, respectively. f (x) = f(x) f( x) 2

(2) Show that U + and U are complementary subspaces. Exercise 2.4.6. Are the subspaces U 0 and U 1 of Example?? complementary subspaces? Exercise 2.4.7. True or false? For every subspaces U, V, W of a common vector space, we have U (V +W ) = (U V )+(U W ). Prove it, or give a counterexample. 2.5. Euclidean space. Exercise 2.5.1. Prove Lemma??. Exercise 2.5.2. Take a = ( 1, 2, 1) R 3 and set V = {a} R 3. Write the element x = (x 1, x 2, x 3 ) R 3 as x = x + x with x L(a) and x V. Exercise 2.5.3. Finish the proof of Proposition??. Exercise 2.5.4. Explain why Proposition?? might be called the triangle inequality, which usually refers to c a + b for the sides a, b, c of a triangle. Prove that for all v, w R n we have v w v + w. Exercise 2.5.5. Prove the cosine rule in R n. Exercise 2.5.6. Show that two vectors v, w R n have the same length if and only v w and v + w are orthogonal. Exercise 2.5.7. Prove that the diagonals of a parallelogram are orthogonal to each other if and only if all sides have the same length. Exercise 2.5.8. Compute the distance from the point (1, 1, 1, 1) R 4 to the line L(a) with a = (1, 2, 3, 4). Exercise 2.5.9. Given the vectors p = (1, 2, 3) and w = (2, 1, 5), let L be the line consisting of all points of the form p + λw for some λ R. Compute the distance d(v, L) for v = (2, 1, 3). Exercise 2.5.10. Let H R 4 be the hyperplane with normal a = (1, 1, 1, 1) going though the point q = (1, 2, 1, 2). Determine the distance from the point (2, 1, 3, 1) to H. Exercise 2.5.11. Determine the angle between the vectors (1, 1, 2) and ( 2, 1, 1) in R 3. Exercise 2.5.12. The angle between two hyperplanes is defined as the angle between their normal vectors. Determine the angle between the hyperplanes in R 4 given by x 1 2x 2 + x 3 x 4 = 2 and 3x 1 x 2 + 2x 3 2x 4 = 1, respectively. 7

8 3. Linear Maps 3.1. Review of maps. 3.2. Definition and examples. Exercises. Exercise 3.2.1. Prove Lemma??. Exercise 3.2.2. Welke van de volgende functies tussen vectorruimtes is een lineaire afbeelding? (1) R 3 R 2, (x, y, z) (x 2y, z + 1), (2) R 3 R 3, (x, y, z) (x 2, y 2, z 2 ), (3) C 3 C 4, (x, y, z) (x + 2y, x 3z, y z, x + 2y + z), (4) R 3 V, (x, y, z) xv 1 + yv 2 + zv 3, voor een vectorruimte V over R met v 1, v 2, v 3 V, (5) P (C) P (C), f f, waarbij P (C) de vectorruimte van polynomen over C is en f de afgeleide van f, (6) P (R) R 2, f (f(2), f (0)). Exercise 3.2.3. Let f : V W be a linear map of vector spaces. Show that the following are equivalent. (1) The map f is surjective. (2) For every subset S V with L(S) = V we have L(f(S)) = W. (3) There is a subset S V with L(f(S)) = W. Exercise 3.2.4. Zij ρ: R 2 R 2 de afbeelding gegeven door rotatie om de oorsprong (0, 0) over de hoek θ. (1) Show that ρ is a linear map. (2) Wat zijn de beelden ρ((1, 0)) en ρ((0, 1))? (3) Laat zien dat er geldt ρ((x, y)) = (x cos θ y sin θ, x sin θ + y cos θ). Exercise 3.2.5. Show that the reflection s: R 2 R 2 in the line given by y = x is a linear map. Give an explicit formule for s. Exercise 3.2.6. Gegeven is de afbeelding T : R 2 R 2, (x, y) x( 3 5, 4 5 ) + y( 4 5, 3 5 ) en de vectoren v 1 = (2, 1) en v 2 = ( 1, 2). (1) Laat zien dat er geldt T (v 1 ) = v 1 en T (v 2 ) = v 2. (2) Laat zien dat de lineaire afbeelding gegeven door spiegeling in de lijn 2y x = 0 gelijk is aan T. Exercise 3.2.7. Geef een expliciete uitdrukking voor de lineaire afbeelding s: R 2 R 2 die gegeven wordt door spiegeling in de lijn y = 3x. Exercise 3.2.8. Let F be a field and n a nonnegative integer. Show that there is an isomorphism F n Hom(F n, F ) that sends a vector a F n to te linear map x a, x.

9 4. Matrices 4.1. Definition of matrices. 4.2. Linear maps associated to matrices. Exercises. Exercise 4.2.1. Prove Lemma?? using the column vectors of A. Exercise 4.2.2. Prove Remark??. Exercise 4.2.3. Voor de gegeven matrix A en vector x, bereken Ax. (1) (2) (3) A = A = 2 3 1 1 1 2 0 1 1 ( 1 3 2 2 4 2 en x = 3 4, 2 ) en x = 1 2 1 4 3 ( A = 3 2 2 3 1 en x = 3 1 1 Exercise 4.2.4. Geef voor elk van de lineaire afbeeldingen f : F n F m van de opgaven van het vorige hoofdstuk een matrix M zodat f gegeven wordt door x Mx. Exercise 4.2.5. Gegeven de matrix 4 3 0 3 M = 2 2 3 1 0 3 1 1 en de lineaire afbeelding f : R n R m, x Mx for de bijbehorende m en n. Wat zijn m en n en wat zijn vectoren v 1,..., v n zodanig dat f ook gegeven wordt door f ( (x 1, x 2,..., x n ) ) = x 1 v 1 +... + x n v n? Exercise 4.2.6. Voor welke i, j {1,..., 5} bestaat het product A i A j en in welke volgorde? ( ) ( ) 1 1 1 2 1 1 4 A 1 =, A 1 2 1 2 = 3 1 2 4 A 3 = 2 3 4 1 0 2, A 4 = 1 3 ( ) 2 2 1 2, A 5 =. 3 2 3 2 1 1 1 Bereken (een aantal van) deze producten. Exercise 4.2.7. Voor elke i {1,,..., 5} definiëren we de lineaire afbeelding f i door x A i x met A i als in de vorige opgave., ). (1) Wat zijn de domeinen en codomeinen van deze functies?

10 (2) Welke van deze functies kun je samenstellen en welke matrices horen dan bij de samenstelling (geef alleen aan welke twee matrices je moet vermenigvuldigen en in welke volgorde)? (3) Is er een volgorde waarop je alle functies kunt samenstellen, en zo ja, welk product van matrices hoort bij deze samenstelling, en wat is het domein en codomein? Exercise 4.2.8. Vind twee matrices A en B zodanig dat AB een nulmatrix is (die dus alleen maar nullen bevat), terwijl het product BA ook bestaat, maar geen nulmatrix is. Exercise 4.2.9. Gegeven de volgende lineaire afbeeldingen R n R m, bepaal een matrix A zodanig dat de afbeelding ook geschreven kan worden als x Ax. (1) f : R 3 R 4, (x, y, z) (3x + 2y z, x y + z, x z, y + z), (2) g : R 3 R 3, (x, y, z) (x + 2y 3z, 2x y + z, x + y + z), (3) h: R 3 R 2, (x, y, z) x (1, 2) + y (2, 1) + z ( 1, 3), (4) j : R 2 R 3, v ( v, w 1, v, w 2, v, w 3 ), met w 1 = (1, 1), w 2 = (2, 3) en w 3 = ( 2, 4). Exercise 4.2.10. Neem de lineaire afbeeldingen f en g uit de vorige opgave en noem de bijbehorende matrices A en B. In welke volgorde kun je f en g samenstellen? Stel ze met de hand ook daadwerkelijk samen en schrijf die samenstelling op dezelfde manier op als f en g ook gegeven zijn. Bereken het product van de matrices A en B (in de juiste volgorde) en verifieer dat dit product inderdaad overeen komt met de samenstelling van de lineaire afbeeldingen. Exercise 4.2.11. Let F be a field and m, n nonnegative integers. Show that there exists an isomorphism Mat m,n (F ) Hom(F n, F m ) that sends A to f A. (This is in fact almost true by definition, as we defined the addition and scalar product of matrices in terms of the addition and scalar product of the functions that are associated to them.)