1. Mendeliaanse overerving - koppelingsanalyse

Vergelijkbare documenten
Moleculaire Genetica. 2 e Kan Biomedische Wetenschappen K.U.Leuven

Oplossingen herhalingsoefeningen

Let er op dat je voor iedere vraag een uitwerking maakt met kruisingsschema en/of berekening.

Level 1. Vul het juiste woord in

Level 1. Vul het juiste woord in

De volgende vragen testen je kennis van de meest voorkomende vaktermen in de klassieke genetica. Welk woord ontbreekt in de volgende zinnen?

Copyright 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings

3. Eén gen kan vele allelen hebben. Hoeveel allelen van één gen heeft ieder individu?

Van monogeen naar multifactorieel: 2ontwikkelingen in de moleculaire genetica

OPEN VRAGEN. Genetica en Evolutie (5502GEEV9Y) Biologie en Biomedische Wetenschappen. Deeltoets 2

HAVO 5 Begrippenlijst Erfelijkheid allel Allelen zijn verschillende vormen van een gen. Zij liggen in homologe chromosomen op precies dezelfde

NEDERLANDSE SAMENVATTING

Door recombinatie ontstaat een grote vescheidenheid in genotypen binnen een soort. (genetische


Oplossingen Biologie van 2000

Voorbereiding toelatingsexamen arts/tandarts. Biologie: Erfelijkheid 6/29/2013. dr. Brenda Casteleyn

Newsletter April 2013

Inzicht hebben in veel voorkomende patronen van overerving. Professor Martina Cornel and professor Heather Skirton Gen-Equip Project

AAbb of Aabb = normaal zicht aabb of aabb = retinitis pigmentosa AABB of AABb = retinitis pigmentosa

Biologie (jaartal onbekend)

Dialogen voor conceptcartoons. Verband genotype/fenotype, dominant/recessief

6,4. Samenvatting door E woorden 6 december keer beoordeeld. Biologie voor jou

Fenotype nakomelingen. donker kort 29 donker lang 9 wit kort 31 wit- lang 11

Welke van de bovenstaande celorganellen of levensprocessen kunnen zowel in prokaryote, als in eukaryote cellen voorkomen?

8,6. Samenvatting door Jasmijn 2032 woorden 9 januari keer beoordeeld. Biologie voor jou. Biologie samenvatting hoofdstuk 4 Genetica

Welke van de bovenstaande celorganellen of levensprocessen kunnen zowel in prokaryote, als in eukaryote cellen voorkomen?

2 Voortplanten met organen Bouw en werking van geslachtsorganen Werking van geslachtshormonen Afsluiting 31

Herhalingsoefeningen

Samenvatting Biologie Erfelijkheid & Evolutie (Hoofdstuk 7 & 8.1)

HERKANSINGSTENTAMEN Moleculaire Biologie deel 2, 5 Jan 2007

AVL-nascholing NW02. KU Leuven

<A> Thymine is een pyrimidinebase en vormt 3 waterstofbruggen met adenine. <B> Adenine is een purinebase en vormt 2 waterstofbruggen met thymine.

<A> Adenine is een purinebase en vormt 2 waterstofbruggen met thymine. <B> Guanine is een pyrimidinebase en vormt 2 waterstofbruggen met cytosine.

Voorbereiding toelatingsexamen arts/tandarts. Biologie: Erfelijke informatie in de cel 6/29/2013. dr. Brenda Casteleyn

vwo erfelijkheid 2010

Genetische achtergrond van staart- en maneneczeem in pony s en paarden

Copyright 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings

Verslag Biologie Drosophila Melanogaste

Begrippenlijst Biologie DNA

V6 Oefenopgaven oktober 2009

Examen Voorbereiding Erfelijkheid

2. Erfelijkheid en de ziekte van Huntington

Welke van de bovenstaande celorganellen of levensprocessen kunnen zowel in prokaryote, als in eukaryote cellen voorkomen?

Erfelijkheidsschema's deel 1.

Dan is de waarde van het recessieve allel q dus 0,87, vanwege het feit dat p + q = 1.

Het genotype van een individu staat in de chromosomen. Daar staat namelijk de erfelijke informatie in van alle eigenschappen die erfelijk zijn.

Samenvatting Biologie H7 erfelijkheid

T G7091. G1-fase en bevat A chromosomen en B DNA. M-fase en bevat 1 2 A chromosomen en 1 2 B DNA. S-fase en bevat A chromosomen en 1 2 B DNA

Samenvattingen. Samenvatting Thema 4: Erfelijkheid. Basisstof 1. Basisstof 2. Erfelijke eigenschappen:

1 Antwoorden Monohybride Kruisingen

Samenvatting Biologie Thema 3

Paragraaf Homologe chromosomen

Medische genetica samenvatting

Beschikbare DNA-testen voor het vaststellen van monogene afwijkingen. Prof. Dr. Nadine Buys, KULeuven 3 de Vlaamse Fokkerijdag, 26 oktober 2011

ERFELIJKHEID. 1 N i e t a l l e m a a l h e t z e l f d e Afbeelding 17-2

Samenvatting door een scholier 1681 woorden 19 juni keer beoordeeld. Genetica

6,1. Samenvatting door een scholier 1949 woorden 7 februari keer beoordeeld. Biologie voor jou

Juli blauw Biologie Vraag 1

Juli geel Biologie Vraag 1

Bij mensen is er gemiddeld één jongen op één meisje. Wellicht is

Welke combinatie van twee celorganellen en hun respectievelijke functies is correct?

4 HAVO thema 4 Erfelijkheid EXAMENTRAINER OEFENVRAGEN

Genetische Selectie. Eindwerk: hondenfokker 2 de jaar. Sabine Spiltijns

Erfelijkheidsleer en populatiegenetica

Dit proefschrift beschrijft de rol van genetische factoren in het ontstaan van de ziekte van

Genetic aspects of Multiple Sclerosis Boon, Maartje

Tentamen Van Mens tot Cel

Genetica van hemochromatose

3 Rundveefokkerij Melkproductiecontrole Selectie Fokwaardeschatting Inseminatieplannnen 69 3.

Inleiding. Achtergrond van het DNA-onderzoek

Populatie- en kwantitatieve genetica. Wieneke van der Heide

X-gebonden Overerving

S e k S u e l e v o o r t p l a n t i n g r e d u c t i e d e l i n g o f m e i o S e e n g e n e t i S c h e v a r i a t i e

Genetische diversiteit. Eric Legius Centrum voor Menselijke Erfelijkheid UZLeuven

Vraag Welk van de onderstaande beweringen over deze F 2 zijn juist?

Basisstof 7 Genetische variatie

Samenvatting Biologie Hoofdstuk 3 + 4

X-gebonden overerving

6.7. Werkstuk door een scholier 1654 woorden 17 april keer beoordeeld. Biologie voor jou. Erfelijkheidsmateriaal

Biologie Vraag 1 <A> <B> <C> <D> Vraag 1. Dit zijn een aantal gegevens over een nucleïnezuur.

Samenvatting Biologie Hoofdstuk 7 en 8

Samenvatting Biologie Hoofdstuk 4 Erfelijkheid

Dominante Overerving. Informatie voor patiënten en hun familie. Illustraties: Rebecca J Kent rebecca@rebeccajkent.

Vraag /144. Vraag 14

Samenvatting Biologie Thema 3 en 4

1... is de bijdrage per individu van een genotype aan het aantal individuen in de volgende generatie. 2. De... heeft de waarde één min...

Mogelijke combinaties van genotypen. Mogelijke combinaties van fenotypen. Deze kruising levert 2 X 2 = 4 fenotypen.

Wie is er genetisch normaal? Centrum voor Menselijke Erfelijkheid

Welke van de onderstaande beweringen is correct met betrekking tot het zenuwstelstel?

Welke van de onderstaande beweringen is correct met betrekking tot het zenuwstelstel?

Mitose is een ander woord voor gewone celdeling. Door gewone celdeling blijft het aantal chromosomen in lichaamscellen gelijk (46 chromosomen).

De tabel hieronder geeft de namen (in afkortingen) van een aantal van deze allelen van het MHC.

Recessieve overerving

Handleiding Pawpeds Deel 3

Genetische dragerschapsscreening. BeGECS

Afsluitende les. Leerlingenhandleiding. DNA-onderzoek en gentherapie

Samenvatting. Samenvatting

Keuzeopdracht Biologie Leertaken Hoofdstuk 5 en 7

Genetische variatie en inteelt : basisconcepten. Steven Janssens Nadine Buys

Transcriptie:

1. Mendeliaanse overerving - koppelingsanalyse 1.1 Inleiding Genetische kenmerken die afhangen van één enkel gen (meer precies : locus) noemen wij mendeliaans. Mendeliaanse kenmerken segregeren in families volgens een autosomaal dominant, autosomaal recessief, X-gebonden dominant of X-gebonden recessief patroon. Niet alle kenmerken die in een familie voorkomen zijn mendeliaans, sommige kenmerken zijn multifactorieel (bepaald door een combinatie van genetische en omgevingsfactoren), andere zijn uitsluitend bepaald door omgevingsfactoren (bvb. cultuur). Koppelingsanalyse is een kwantitatieve methode die toelaat aan te tonen dat een kenmerk bepaald wordt door één enkele locus die in de nabijheid ligt van andere gekende loci op een genoom. Koppelingsanalyse bepaalt ook de afstand tussen die loci. Koppelingsanalyse kan dus bewijzen dat een kenmerk mendeliaans is en meteen dat kenmerk op een genetische kaart van het genoom plaatsen. 1.2 Genetische koppelingsanalyse: definities en principes locus: fysische plaats op een chromosoom. Op een locus bevindt zich een bepaalde sequentie of gen. Een locus draagt een specifiek allel van dit gen. allel: een van de alternatieve vormen van een gen op een bepaald locus. genetische merker: elk locus kan gebruikt worden als genetische merker van zodra het mogelijk is genetische variatie ter hoogte van dit locus te detecteren. haplotype: in een strikte betekenis, de specifieke allelen van verschillende loci die zich op dezelfde fysische chromosoom bevinden. In de brede betekenis zeggen we dat een set allelen voor verschillende loci een haplotype vormen. We erven dan een haplotype van onze moeder en een haplotype van onze vader. genotype: genetische constitutie van een organisme. Ons genotype wordt gedefinieerd door twee specifieke allelen voor elke locus. In het algemeen worden allelen van twee verschillende loci onafhankelijk van elkaar overgeërfd (onafhankelijke segregatie van allelen). Voor twee merkers met als allelen respectievelijk A, a en B, b zijn de mogelijke haplotypes (in de brede betekenis) van de gameten: AB, Ab, ab en ab. Deze worden in een ratio 1:1:1:1 doorgegeven aan de nakomelingen. Sommige paren van genen worden niet onafhankelijk overgeërfd, deze genen zijn gekoppeld. Veronderstellen we een individu met als haplotypes AB en ab voor twee loci zoals hierboven beschreven. Erven nakomelingen van dit individu het AB of het ab haplotype, dan noemen we deze niet-recombinant voor deze twee loci. Nakomelingen die een Ab of ab haplotype erven van deze ouder hebben een recombinant haplotype. Segregeren deze twee genen niet onafhankelijk,

dan zullen de niet-recombinante haplotypes voor deze twee genen frequenter voorkomen bij de nakomelingen dan de recombinante haplotypes. De allelen van beide genen overgeërfd van één ouder zijn dan schijnbaar gekoppeld, zij het niet absoluut. Dit fenomeen heet genetische koppeling (genetic linkage). Kwantitatief wordt koppeling gemeten als de recombinatie fractie q, de verhouding recombinanten/niet-recombinanten. Dit is ook de waarschijnlijkheid dat een bepaalde ouder een recombinant haplotype doorgeeft aan een kind. Loci die onafhankelijk overerven zijn niet gekoppeld. De geobserveerde recombinatiefractie is dan q = 1 / 2. Zijn twee loci volledig gekoppeld, dan komen er geen recombinanten voor en q = 0. Deze definitie van koppelingsanalyse heeft drie belangrijke gevolgen: (i) koppelingsanalyse vereist onderzoek van verwante individuen, niet verwante individuen zullen geen informatie opleveren. (ii) recombinante en niet-recombinante haplotypes kunnen niet altijd onderscheiden worden. Stel dat een persoon een Ab/ab genotype bezit (de twee haplotypes zijn dan Ab en ab). Omwille van de homozygositeit van de tweede locus (genotype b/b) kan men de recombinante haplotypes afkomstig van dit individu niet onderscheiden van de niet-recombinante haplotypes. Om dit onderscheid te kunnen maken moet een persoon dus heterozygoot zijn voor beide loci. Dan alleen is een individu informatief voor koppelingsanalyse. (iii) een Ab haplotype is recombinant als het afkomstig is van een AB/ab individu en nietrecombinant als het voortkomt van een individu met Ab/aB genotype. Deze twee mogelijkheden voor een dubbele heterozygoot moeten dus onderscheiden worden (met andere woorden, een persoon met haplotypes Ab en ab moet onderscheiden worden van een persoon met haplotypes AB en ab). De specifieke haplotypes die voorkomen bij een dubbele heterozygoot worden ook fase genoemd. 1.3 Homologe recombinatie: de biologische basis voor koppelingsanalyse. Gameten ontstaan uit diploïde kiemcellen door een specifieke celdeling: de meiose. Gedurende de profase van de eerste meiotische deling kunnen homologe chromosomen genetisch materiaal uitwisselen door homologe recombinatie of crossing-over. Op die wijze worden recombinante haplotypes gegenereerd. Dergelijke crossing-over kan overal op een chromosoom plaatsgrijpen. De kans dat die voorkomt tussen twee loci die op één chromosoom liggen is dus veel kleiner als die kort bijeen liggen dan wanneer die ver van elkaar verwijderd zijn. Er is dus een verband tussen de fysische en de genetische afstand die twee loci scheidt. De recombinatie fractie θ wordt ook uitgedrukt in centimorgan (cm): 1 cm komt overeen met 1% recombinatie. Gemiddeld komt 1% recombinatie overeen met 10 6 bp (1 mb). Hier kunnen lokaal echter grote verschillen optreden: op specifieke plaatsen van het menselijk genoom kan 1% recombinatie overeenstemmen met 5 10 4 bp, op andere met meerdere mbp. In het algemeen komt recombinatie aan de uiteinden van de chromosomen frequenter voor dan rond de centromeer. Recombinatie is ook frequenter in de vrouwelijke meiose dan in de mannelijke meiose. Er zijn dus

vrouwelijke en mannelijke genetische kaarten. Voor de meeste toepassingen wordt hiervan een gemiddelde genomen. 1.4 Koppelingsanalyse: kwantitatieve methodes Het hoofdprobleem bij de constructie van een genetische kaart van de mens is de bepaling van de meest waarschijnlijke reële recombinatiefractie uitgaande van een beperkt aantal observaties in families. Stel dat we binnen één familie de overerving van twee merkers analyseren en een aantal recombinaties waarnemen. De vraag is nu wat deze waarneming ons leert over de reële recombinatiefrequentie tussen de twee merkers, en met welke statistische zekerheid. Het is immers mogelijk dat de gemeten recombinatie frequentie in de familie afwijkt van gemiddelde recombinatie frequentie tussen de twee merkers in de populatie. Beschouwen we de overerving van twee merkers de 3-generatie familie van fig. 2.1 A a a a A a A a B B b B b b b b A a a a B b b b A a a a a a A a B b b b B b B b * *! * Fig. 1.1 Segregatie van twee merkers in een nucleaire familie * : niet recombinant,! : recombinant De vader is dubbel heterozygoot voor beide merkers en dus informatief. De haplotypes van de vader (of de fase) kunnen bepaald worden door de genotypes van zijn ouders te analyseren. De moeder is homozygoot voor beide merkers en dus niet informatief. Er zijn dus vier informatieve

chromosomen (preciezer: meioses), drie niet-recombinanten (*) en één recombinant (!). De geobserveerde recombinatie frequentie tussen de merkers A en B binnen deze familie is dus 0.25. Het is echter duidelijk dat als wij de hele populatie zouden onderzoeken de gemiddelde recombinatiefrequentie tussen de twee merkers dan merkelijk zou kunnen verschillen van de waarde in die familie, omdat recombinatie een toevallig proces is. Wij hebben dus een statistische methode nodig om, uitgaande van deze experimentele waarnemingen, de gemiddelde of reële recombinatiefractie te bepalen tussen merkers, en een idee te krijgen over de statistische zekerheid waarmee wij die uitspraak kunnen doen. De meest gebruikte statistische methode voor koppelingsanalyse is de lod score (logarithm of odds) methode. L(θ) definiëren we als de probabiliteit dat we een waarneming doen in een experiment (familie) als de reële gemiddelde recombinatiefractie θ is (gekoppelde merkers). De wijze waarop wij L(θ) berekenen hangt dus af van de structuur van de familie die we analyseren. De waarschijnlijkheid dat er bij één meiose recombinatie optreed is θ. De waarschijnlijkheid dat erbij één meiose geen recombinatie optreed is dus (1-θ). In deze familie is zijn vier informatieve meioses. Bij één van deze vier meioses trad er recombinatie tussen de merkers op. Voor deze waarneming is L(θ) = (1-θ) 3 θ Vervangen wij in die formule θ door 0.5 (recombinatiefractie 0,5 of 50% recombinatie zoals wij verwachten voor twee merkers die onafhankelijk segregeren), dan verkrijgen we L( 1 / 2 ). Dat is dan de probabiliteit dat we die waarneming doen als de twee merkers volledig onafhankelijk overgeërfd worden. Voor die waarneming binnen die familie is L(0.5) = 1/16. Dit betekent dat zelfs als de twee merkers volledig onafhankelijk zijn er 1 kans op 16 is dat er in een familie zoals hierboven beschreven slechts 1 recombinatie wordt waargenomen. Beide probabiliteiten (L(θ) en L(1/2)) hebben een waarde tussen 0 en 1. Absoluut betekenen deze getallen echter niet veel omdat ze sterk afhangen van het aantal geobserveerde haplotypes in de familie. Daarom definiëren we de lod score Z(θ) als: Z(θ)=log [ L(θ)/L(0.5)] Die formule geeft dan een absolute maat voor hoeveel waarschijnlijker het is dat wij een bepaalde waarneming doen in een familie (experiment) als de recombinatie fractie θ zou zijn, dan als die 0.5 zou zijn

Door θ te laten variëren tussen 0 en 0.5 kunnen we de maximale lod score en de waarschijnlijkste recombinatie fractie bepalen. Een maximale lod score >3 bij een recombinatie fractie θ wordt als significante evidentie voor koppeling met de recombinatie fractie θ beschouwd. Dit betekent dat een bepaalde waarneming in een familie 1000x waarschijnlijker is bij koppeling van twee merkers met een recombinatiefractie θ dan bij onafhankelijke segregatie van deze merkers. Een lod score van -2 wordt als significantie grens voor niet-koppeling genomen. In het voorbeeld dat wij hier hebben uitgewerkt is Z(θ) = log[16(1-θ) 3 θ] of voor θ = 0 is Z(θ) = - θ = 0.05 is Z(θ) = - 0.164 θ = 0.1 is Z(θ) = 0.067 θ = 0.25 is Z(θ) = 0.227 θ = 0.35 is Z(θ) = 0.187 De probabiliteit dat twee of meer onafhankelijke waarnemingen samen voorkomen is het product van de probabiliteiten voor elke waarneming afzonderlijk. Lod scores zijn logaritmes, lod scores voor twee merkers bekomen in verschillende families kunnen dus opgeteld worden. Bekomen we zo een score > +3 dan zijn beide merkers gekoppeld met een bepaalde maximale recombinatie fractie θ. Bekomen we een score < -2 dan is koppeling bij die θ uitgesloten. Merk op dat van het ogenblik dat er één recombinant haplotype wordt opgemerkt, de lod score bij θ=0 noodzakelijk - is of de probabiliteit voor θ = 0 is 0. In de praktijk zullen wij dus nieuwe waarnemingen blijven doen tot Z(θ) groter is dan 3. Is Z(θ) > 3 dan zeggen dat de twee merkers gekoppeld zijn en de θ waarbij Z(θ) maximaal is, geeft de afstand tussen de twee merkers. Is Z(θ) < -2, dan zeggen wij dan dat de koppeling van de twee merkers met een deze θ uitgesloten is. Genetische kaarten Een genetische kaart is een verzameling geordende, gekoppelde merkers die verspreid zijn over het volledige genoom. De afstand tussen de merkers wordt gemeten als % recombinatie en uitgedrukt in cm. De genetische kaart van de mens omvat ongeveer 3000 cm. Genetische heterogeniteit Als er verschillende genen zijn die onafhankelijk van elkaar éénzelfde fenotype veroorzaken, dan spreken we van genetische heterogeniteit. Een voorbeeld daarvan is de mendeliaanse vorm van borstkanker. Die zeldzame vorm van borstkanker kan veroorzaakt worden door mutaties in het BRCA1 gen of in het BRCA2 gen. BRCA1 ligt op chromosoom 17, BRCA2 ligt op chromosoom 13. Die vorm van borstkanker is dus wel mendeliaans, want veroorzaakt door mutaties in één enkel

gen, maar dat gen is ofwel BRCA1, ofwel BRCA2. Heterogeniteit bemoeilijkt koppelingsanalyse: het is duidelijk dat lod scores bekomen voor verschillende families niet zomaar opgeteld kunnen worden. Dat is enkel toegelaten respectievelijk binnen de groep van alle families met een mutatie in BRCA1, en binnen de groep van alle families met een mutatie on BRCA2. Penetrantie Soms leidt de aanwezigheid van een allel niet altijd tot het fenotype dat hiermee samenhangt. We spereken dan van onvolledige penetrantie. Als een individu het allel bezit, vertoont het het fenotype, of niet. Als we spreken van 80% penetrantie, betekent dit dat 80 % van de individuen die het allel bezitten ook het fenotype vertonen Variabele expressie Variabele expressie betekent dat de aanwezigheid van een allel bij verschillende individuen tot een verschillende ernst van het fenotype kan leiden. Meestal is dit het gevolg van het effect van andere (modifier) genen. Pleiotrope effecten allelism Soms kunnen de verschillende allele van een gen tot verschillende fenotypes leiden. Zo kan bijvoorbeeld een null allel tot een ernstig complex klinisch syndroom leiden en een missense puntmutatie in hetzelfde gen enkel tot mentale retardatie. Dit noemen we pleiotropisme of allelisme.