2 hoofdstuk O. Noordhoff Uitgevers bv

Maat: px
Weergave met pagina beginnen:

Download "2 hoofdstuk O. Noordhoff Uitgevers bv"

Transcriptie

1 O 2 hoofdstuk O

2 Optica Lichtstralen zijn rechte lijnen die doen denken aan banen van bewegende deeltjes. Zo lijkt een lichtstraal bij een spiegel op de baan van een biljartbal die bij de band van de biljarttafel weerkaatst. Maar op kleine schaal blijkt licht ook de bocht om te kunnen gaan. Daarmee lijkt licht meer op geluidsgolven. Ook kleuren van licht kun je goed uitleggen met golfeigenschappen. In dit hoofdstuk maak je kennis met de golf- en deeltjeseigenschappen van licht. Wegwijzer Paragraaf Experimenten Site O Optica Voorkennistest O.1 Zien O.1 Spiegelbeeld O.2 Speldenprikcamera O.2 Scherpe beelden O.3 Lenzenwet en vergroting Stralengang O.4 Mobiele fotografie O.3 Het oog O.5 Werking van het oog Stralengang bij oogcorrecties Tussentoets O.4 Lichtgolven O.6 Enkel- en dubbelspleet I O.7 Tralie I Enkel- en dubbelspleet II Tralie II O.5 Kleuren mengen O.8 Kleuren licht mengen Additief mengen O.6 Afsluiting A Verfstoffen mengen B Gezichtsveld Samenvatting Diagnostische toets Extra opdrachten Uitwerkingen oefenopgaven Startopdrachten 1 Op de foto zie je toepassingen van lenzen. a Noem zoveel mogelijk lenzen die op de foto voorkomen. b Geef voor elke lens het doel. c Welke lens zal het sterkst zijn? 2 Doe op de site de voorkennistest. Optica 3

3 O.1 Zien Ramon heeft bij beeldende vorming een schilderij gemaakt. Hij heeft er een negen voor gekregen. Omdat hij er trots op is, lijst hij het in en hangt het in zijn kamer. Zie figuur O.1. Buiten is het bewolkt en er is geen lamp aan in de kamer. Startopdracht 3 Ramon ziet het schilderij, doordat er licht van het schilderij in zijn ogen komt. a Uit welke lichtbron komt dat licht? b Ga na wat er met dat licht gebeurt onderweg van de bron tot de plek waar het wordt waargenomen. Lichtbronnen Als kind heb je de zon misschien getekend zoals in figuur O.2a. Daarin zie je een belangrijke eigenschap van licht. Het breidt zich in rechte lijnen in alle richtingen naar de omgeving uit: rechtlijnige voortplanting. Lichtstralen kun je zelden echt zien: alleen als het nevelig of stoffig is. Figuur O.2a bevat natuurkundig gezien ook fouten. Lichtstralen beginnen bij de bron en lopen veel verder door dan ze zijn getekend. Bovendien lijken alle lichtstralen vanuit het middelpunt te komen: het lijkt dus alsof de zon een puntvormige lichtbron is. Op de foto van figuur O.2b zie je dat dat niet zo is: elk punt van het zonneoppervlak zendt licht uit. De zon is dus een uitgebreide lichtbron. Figuur O.2c is daarom een betere tekening. De zon staat ver weg. De lichtstralen komen op de aarde ongeveer in evenwijdige bundels aan (figuur O.2d). Daardoor lijkt je schaduw in de zon een scherpe schaduw. Als je nauwkeurig naar de randen van je schaduw kijkt, zie je dat dat niet waar is. De lichtstralen die vanaf de ene kant van de zonneschijf op je vallen maken een hoek van ongeveer 0,5 met de lichtstralen die vanaf de andere kant van de zonneschijf komen (figuur O.2e). Licht kan zich door de ruimte vanaf de zon naar de aarde voortplanten. In de ruimte tussen zon en aarde heerst vacuüm. Blijkbaar heeft licht dus geen tussenstof nodig zoals geluid. Licht plant zich in rechte lijnen vanaf elk punt van een lichtbron voort. Het heeft daarbij geen tussenstof nodig. Weerkaatsing, verstrooiing, absorptie en transmissie Het licht van de zon valt in de atmosfeer van de aarde op de wolken. Als je in een vliegtuig boven de wolken vliegt, zien wolken er helder wit uit. Zie figuur O.3a. Ze kaatsen dus flink wat licht terug. Bovendien kun je de bovenkant van de wolk van alle kanten zien. Dat betekent dat alle punten van de bovenkant van de wolk het licht in alle richtingen weerkaatsen. Zie figuur O.3b. Je noemt dat diffuse weerkaatsing. Een deel van het licht dringt tussen de kleine waterdruppeltjes in de wolken door en weerkaatst vele malen. Het licht dat oorspronkelijk als evenwijdige bundel vanaf de zon komt, krijgt daardoor een chaotisch karakter. Je noemt dat verstrooiing. Zie figuur O.3c. Licht bevat energie. De druppeltjes in de wolken nemen een deel van die energie op: absorptie. Ze zetten die energie om in warmte. Ook komt een deel van het licht door de wolk heen: transmissie. Zie nogmaals figuur O.3c. O.1 Ramon is trots op zijn kunstwerk. 4 hoofdstuk O

4 O.2 Licht van de zon a Een vriendelijk zonnetje b De zon in het echt c Een natuurkundig zonnetje Z A d Zonlicht op grote afstand vormt Z 0,5 A e bijna evenwijdige bundels O.3 Diffuse weerkaatsing diffuse weerkaatsing verstrooiing absorbtie transmissie a Wolken weerkaatsen licht diffuus b zodat je ze kunt zien c Ook verstrooien ze licht en laten het door. Optica 5

5 Een voorwerp dat diffuus weerkaatst, kun je vanaf alle kanten zien. Dit in tegenstelling tot een spiegel die licht slechts in één richting reflecteert: spiegelende weerkaatsing. Zie figuur O.4a en b. Je ziet niet de spiegel zelf, maar het spiegelbeeld van wat ervoor staat. Zie figuur O.4c. Veel voorwerpen weerkaatsen licht zowel diffuus als spiegelend, zoals een glad tafeloppervlak. Wolken weerkaatsen, verstrooien en absorberen licht. Ze laten ook een deel door (transmissie). Je kunt wolken zien, doordat ze diffuus weerkaatsen. Spiegels weerkaatsen het licht slechts in één richting. > > Opdrachten 5, 6, 8 en 9 Breking van licht Ook een raam kaatst het licht gedeeltelijk terug. Zie figuur O.4a. Het andere gedeelte van het licht gaat het glas in. Als licht van de ene naar de andere stof gaat, verandert het van richting. Zie figuur O.5. Je noemt dat breking. Het ene materiaal breekt het licht meer dan het andere: water breekt licht minder sterk dan glas en glas weer minder sterk dan diamant. Bij een vlakke ruit knikt de lichtstraal uiteindelijk weer terug in de oorspronkelijke richting. Zie figuur O.5a: de lichtstraal verschuift een klein stukje. Breking bij voorwerpen die niet vlak zijn, geeft andere effecten. Een driehoekig stuk glas, een prisma, maakt alle kleuren in een lichtbundel zichtbaar. Dat verschijnsel komt terug in paragraaf O.5. Bolle lenzen breken lichtstralen naar elkaar toe: convergerende werking. Zie figuur O.5b. Holle lenzen breken lichtstralen uit elkaar: divergerende werking. Zie figuur O.5c. Een lichtstraal die op het midden van een lens valt, breekt niet. Als een lichtstraal overgaat van de ene naar de andere doorzichtige stof, breekt de straal. De hoek waarover de lichtstraal breekt, hangt af van het soort materiaal en van de kleur van het licht. Bolle lenzen breken lichtstralen naar elkaar toe, holle lenzen van elkaar af. > > Opdracht 10 O.4 Spiegelende weerkaatsing normaal Spiegelwet: i = t a Spiegels weerkaatsen b zodat je ze niet kunt zien c maar iets anders ziet. spiegelend O.5 Breking glas + a verschuiven door terugknikken b convergerende werking c divergerende werking 6 hoofdstuk O

6 Selectieve weerkaatsing en absorptie Het zonlicht komt na een lange weg door de ruimte, de wolken en het raam in Ramons studeerkamer op zijn schilderij terecht. Het schilderij weerkaatst het licht diffuus, zodat het vanuit alle richtingen in de kamer zichtbaar is. Zonlicht bevat alle kleuren licht. De onderdelen van het schilderij hebben verschillende kleuren. Het rode gedeelte bovenin het schilderij weerkaatst niet alle zonlicht maar alleen het rode licht: selectieve weerkaatsing. Het rode gedeelte neemt de andere kleuren juist op: selectieve absorptie. Het groene gedeelte in het schilderij weerkaatst groen licht en absorbeert de andere kleuren. In paragraaf O.5 leer je meer over kleuren. Elk voorwerp reflecteert het deel van het licht in zijn eigen kleur en absorbeert het overige deel. Zien en beeldvorming Vanaf een rood punt van het schilderij gaan in alle richtingen rode lichtstralen, ook naar Ramons oog. De lichtstralen die dat rode punt voor hem zichtbaar maken, vormen een divergente bundel. Die bundel is een smal kegeltje met de rode punt als top van de kegel en de pupil van Ramons oog als grondvlak. Zie figuur O.6. Alle punten van het schilderij, het voorwerp, zijn voorwerpspunten die licht diffuus weerkaatsen. Bij elke voorwerpspunt hoort op het netvlies precies één beeldpunt. Op het netvlies ontstaat zo een scherp beeld van het voorwerp. Je noemt dit beeldvorming. Een beeld is alleen scherp als de lichtstralen precies op het netvlies bij elkaar komen. Is dat niet het geval, dan zie je vaag. Het beeld ligt dan niet op het netvlies, maar ervoor of erachter. In figuur O.8 zie je dat het beeld op het netvlies op zijn kop staat. Het rode voorwerpspunt bovenin het schilderij wordt onderaan op het netvlies afgebeeld, het groene juist omgekeerd. Blijkbaar zijn onze hersenen eraan gewend, dat beelden op het netvlies op zijn kop staan. Elk voorwerpspunt zendt een divergerende lichtbundel uit, dat na breking door de ooglens samenkomt in het beeldpunt op het netvlies. Elk beeldpunt correspondeert één op één met een voorwerpspunt. Het beeld is omgekeerd ten opzichte van het voorwerp. > > Opdrachten 4, 7, 11 en 12 Aan de voorkant van het oog bevindt zich de ooglens, die het licht van de divergente bundel breekt tot een convergente bundel. De ooglens kan de brekende werking daarbij zó aanpassen dat de convergente bundel precies samenkomt in één punt van het netvlies (figuur O.7). Eén punt van het schilderij komt dus overeen met één punt op het netvlies. Het punt van het schilderij noem je het voorwerpspunt, het punt op het netvlies het beeldpunt. O.7 Zo ziet het netvlies eruit. top kegel grondvlak divergent convergent O.6 Divergente lichtbundeltjes worden convergent. O.8 Het beeld keert om. Optica 7

7 Experimenten O.1 Spiegelbeeld Een spiegel weerkaatst een lichtstraal slechts in één richting. Daarbij geldt de spiegelwet: de hoek van inval is gelijk aan de hoek van terugkaatsing. De onderzoeksvraag is: 4Hoe kan zich een spiegelbeeld vormen? O.2 Speldenprikcamera Op de binnenwand van een doos vormt zich een beeld van de omgeving, als je in de tegenoverliggende wand een klein gaatje maakt. Deze zogenaamde camera obscura is in feite een ouderwets fototoestel (zie figuur O.9). De onderzoeksvraag is: 4Hoe vormt zich in de camera obscura een beeld en welke voordelen heeft een moderne camera ten opzichte van deze vroege voor ganger? > > Complete instructies op de site Opdrachten A 4 Vul de juiste begrippen in. De zon is een (1), niet (2) maar uitgebreid. De verspreiding van het zonlicht geschiedt via (3) door de ruimte. In de ruimte heerst vacuüm, dus blijkbaar heeft licht geen (4) nodig. Het zonlicht valt op de wolken. Vanuit een vliegtuig is het hele wolkendek zichtbaar. Hierbij treedt dus (5) op. Doordat de wolken een deel van het licht (6), verdampt een deel van de waterdruppeltjes in de wolken. Ook vanaf de aarde is het hele wolkendek zichtbaar. Hieruit blijkt dat (7) van licht heeft plaatsgevonden. In ramen zie je wolken door de (8) van het licht in de ramen. Het licht dat het glas ingaat, vertoont (9) Bij licht dat op een rood voorwerp valt, is voor een deel sprake van (10) en voor de rest van (11) Je kunt een voorwerp zien doordat van elk punt (12) bundels op je oog vallen. Door breking ontstaan (13) bundels die samenkomen op je (14) O.9 Een ouderwets fototoestel: de camera obscura 8 hoofdstuk O

8 A 5 Leg met een schets uit wat het verschil is tussen diffuse en spiegelende weerkaatsing. B 6 Leg uit waarom het op een bewolkte dag aan het aardoppervlak donkerder is dan op een zonnige dag. Gebruik in je uitleg de begrippen weerkaatsing, verstrooiing en absorptie. B 7 Bij beeldvorming in het oog zijn boven en onder verwisseld. Zijn ook links en rechts verwisseld? B 8 Je zit onder een tl-buis boven een tafel te lezen. Je hoofd werpt schaduw op de tafel. De situatie is schematisch weergegeven in figuur O.10. a Neem de figuur op schaal over en geef op de tafel aan: waar geen licht van de tl-buis op de tafel komt: schrijf erbij kernschaduw ; waar licht van een deel van de tl-buis op de tafel komt: schrijf erbij halfschaduw. C 9 De zogenaamde spiegelwet is schematisch weergegeven in figuur O.4b. In figuur O.11 zijn vanuit de puntvormige lichtbron L twee willekeurige lichtstralen naar de spiegel getekend. a Neem de figuur over en teken het vervolg van de twee lichtstralen. De gereflecteerde lichtstralen lijken vanuit een punt achter de spiegel te komen. b Geef de plaats van dat punt aan en noem het B. c Hoe had je punt B ook kunnen vinden? L O.10 Je zit in je eigen licht. hoofd boek tl-buis tafel Je loopt met je rug naar de zon en kijkt naar de schaduw van je hoofd op de grond voor je. Behalve kernschaduw is er ook nu aan de randen halfschaduw. b Leg uit waardoor die halfschaduw ontstaat. c Leg uit dat de schaduw van je hoofd in de zon scherper is dan die op de tafel bij a. O.11 Bij de beeldvorming door de ooglens komen de lichtstralen die vanaf een voorwerpspunt komen samen in een beeldpunt. d Leg aan de hand van de tekening uit of een spiegel dat ook doet. Toch spreek je ook bij spiegels van een beeldpunt. Zo is B het spiegelbeeldpunt van L. e Wat geldt voor zo n spiegelbeeldpunt B? A De nog niet gereflecteerde lichtstralen komen in B bij elkaar. B De nog niet gereflecteerde lichtstralen lijken vanuit B te zijn uitgezonden. C De gereflecteerde lichtstralen komen in B bij elkaar. D De gereflecteerde lichtstralen lijken vanuit B te zijn uitgezonden. Iemand kijkt via de spiegel naar L. In figuur O.11 is het oog van de waarnemer schematisch getekend. f Teken de lichtbundel die L voor de waarnemer via de spiegel zichtbaar maakt. Optica 9

9 C 10 Je kijkt afwisselend naar je schrift en naar het bord. Leg uit in welke situatie je ooglenzen de divergente bundels het sterkst moeten breken. Maak eventueel gebruik van een schets. C 11 In figuur O.12 zie je hoe een camera obscura werkt. In een doos zit in één van de wanden een klein gaatje. Aan de binnenkant van de tegenoverliggende wand ontstaat een beeld van de omgeving, in dit geval van een dennenboom. a Leg uit hoe de beeldvorming in de camera obscura plaatsvindt. Gebruik in je uitleg de begrippen: voorwerpspunt, beeldpunt en één op één corresponderen. b Is er bij de beeldvorming in een camera obscura sprake van divergerende bundels? En van convergerende bundels? O.12 De camera obscura In het donker wordt de pupil van je oog automatisch groter, zodat er meer licht in je oog valt. Je vindt het beeld van je zelfgemaakte camera obscura wat donker en besluit het principe van de pupil toe te passen: je maakt het gaatje groter. c Leg uit of het beeld nu lichtsterker wordt. d Leg uit of het beeld nu scherper wordt. Je vindt het beeld nog steeds te donker. Je maakt het gat nog groter, zodat de lens precies het hele gat beslaat. f Leg uit of het beeld nu lichtsterker wordt. g Leg uit of het beeld nu scherper wordt. Je wilt ook wel eens bekijken wat er halverwege de doos te zien is. Je pakt een stuk wit papier en houdt dat halverwege tussen de lens en de achterwand. h Leg uit wat er op het papier te zien is. A een kleiner beeld B een groter beeld C een vager beeld D een scherper beeld E geen beeld i Beantwoord vraag h opnieuw maar nu voor je oorspronkelijke camera obscura, waarin je nog geen lens had aangebracht. D 12 Je maakt van dichtbij een foto van een fruitschaal. De appel bevindt zich dichtbij de camera, de banaan verderaf. Zie figuur O.13. De camera staat zo ingesteld dat hij punt A van de appel scherp afbeeldt. a Neem figuur O.13 over en teken de lichtstraal die vanaf de appel: door het midden van de lens op de beeldchip valt; op de bovenkant van de lens valt, daar breekt en op de beeldchip valt; op de onderkant van de lens valt, daar breekt en op de beeldchip valt. B lens diafragma beeldchip Je bent nog niet tevreden en besluit een lens achter het gaatje in de doos te plakken. De lens is van een zodanige sterkte dat er een scherp beeld op de achterwand van de doos ontstaat. e Is er bij de beeldvorming in je verbeterde camera obscura sprake van divergerende bundels? En van convergerende bundels? O.13 A 10 hoofdstuk O

10 b Vul onderstaande zinnen in door steeds te kiezen uit één van de woorden tussen haakjes: De lichtbundel die vanaf punt B op de lens valt is (minder / sterker) (convergent / divergent) dan die vanaf punt A. De bundel vanuit B wordt daardoor achter de lens (minder / sterker) (convergent / divergent) dan die uit punt A. Het beeld van B ontstaat daardoor (voor / achter) de beeldchip. Het beeld van B ontstaat 1 cm vanaf de beeldchip. c Geef de plaats van het beeld van B in je tekening aan en zet erbij: B. d Teken de bundel die ontstaat bij B en via de lens het beeldpunt B vormt. Trek de stralen door tot op de beeldchip. e Verklaar waarom er geen scherp beeld van de banaan ontstaat. Er blijkt te veel licht op de beeldchip te komen. Je stelt daarom het diafragma kleiner in. Het diafragma is een opening met instelbare diameter, die zich achter de lens bevindt. De beelden A en B worden daardoor minder lichtsterk. f Leg uit welke bewering over de scherpte van de beelden A en B juist is. A Ze worden beide scherper. B Alleen A wordt scherper. C Alleen B wordt scherper. D Geen van beide wordt scherper. Na deze paragraaf kun je: beschrijven wat rechtlijnige voortplanting van licht is; uitleggen wat het verschil is tussen diffuse en spiegelende weerkaatsing; beschrijven wat verstrooiing, absorptie, transmissie en breking van licht is; uitleggen wat diffuse weerkaatsing van een voorwerp te maken heeft met het zien ervan; uitleggen wat beeldvorming is en aan de hand van divergente en convergente lichtbundels toelichten hoe beeldvorming in het oog plaatsvindt; uitleggen waar en wanneer een scherp beeld ontstaat. Optica 11

11 O.2 Scherpe beelden Op de foto van figuur O.14 zie je een rij kinderen. Startopdracht 13 De kinderen op de foto zijn niet allemaal scherp afgebeeld. a Hoe komt dat? b Wat had de fotograaf kunnen doen om het kind op de voorgrond scherp af te beelden? c Wat had de fotograaf kunnen doen om alle kinderen scherp op de foto kunnen krijgen? d Hoe komt het dat de kinderen op de achtergrond kleiner op de foto staan? Lenssterkte en brandpuntsafstand Je ooglens is sterker dan de lens van de beamer van een smartboard. De lenssterkte is een maat voor hoe sterk een lens de lichtstralen breekt. In je oog bevindt het netvlies zich ongeveer 2 cm achter de ooglens. Daar moeten de lichtstralen dus al bij elkaar komen. De afstand tussen de lens van een beamer en het bord is enkele decimeters. Deze lens hoeft de lichtstralen dus minder sterk te breken. Het symbool voor lenssterkte is S. De lenssterkte druk je uit in dioptrie, afgekort dpt. Voor een brillenglas met een sterkte van + 2 geldt: S = 2 dpt. Een andere maat voor de sterkte van een lens is de brandpuntsafstand f. Als je een lens in de zon houdt, vallen evenwijdige bundels van de zon op de lens. Het beeld van de zon ontstaat dan op brandpuntsafstand van de lens. Bij een sterke lens is het zonnebeeld zo klein en fel dat je er papier mee in brand kunt steken. De denkbeeldige lijn loodrecht op het midden van de lens heet de optische as of hoofdas. In figuur O.15 zie je dat een bundel die evenwijdig aan de optische as binnenkomt, in het brandpunt F (van focus ) samenkomt. De lenzen A en B zijn positieve lenzen: ze zijn in het midden dikker. Lens A is sterker dan lens B en heeft een kleinere brandpuntsafstand. Lens C is in het midden dunner. Hij is negatief en divergeert. Hoe sterker de lens hoe groter S en hoe kleiner f. De twee grootheden hangen samen volgens: S = 1 f S is de lenssterkte in dioptrie (dpt) f is de brandpuntsafstand in meter (m) Voorbeeld 1 Lenssterkte van je mobieltje Als je met je mobieltje een foto maakt van de maan, ontstaat een scherp beeld op de beeldchip. De chip bevindt zich 8,2 mm achter de lens. Bereken de sterkte van de lens. Lichtbundels van de maan mag je opvatten als even wijdige bundels. Die komen samen op brandpuntsafstand van de lens, dus: f = 8,2 mm = 0,0082 m. 1 S = 0,0082 = 122 dpt = 1,2 102 dpt De denkbeeldige lijn loodrecht op het midden van de lens heet de optische as of hoofdas. De lenssterkte S is een maat voor hoe sterk een lens de lichtstralen breekt. Een andere maat voor de sterkte van een lens is de brandpuntsafstand f. Lenssterkte en brandpuntsafstand zijn elkaars omgekeerde. O.14 Allemaal op een rij 12 hoofdstuk O

12 Beelden construeren Als je de brandpuntsafstand van een lens weet en je weet hoe ver een voorwerp voor de lens staat, kun je met een tekening bepalen waar het beeld ontstaat en hoe groot het is. Van het voorwerpspunt V gaat een divergente bundel naar de lens. In figuur O.16 zie je voor drie stralen (1, 2 en 3) uit de bundel hoe ze verdergaan. Je noemt deze stralen de constructiestralen. Vergroting Bij een smartboard is het beeld op het bord veel groter dan de lichtgevende chip in de beamer. Met een fotocamera maak je juist veel kleinere beelden. Het beeld van je omgeving moet immers op de kleine beeldchip in de camera passen. In figuur O.17a zie je een situatie waarin het beeld kleiner is dan het voorwerp. In figuur O.17b is dat andersom. De drie constructiestralen komen samen in één punt, het beeldpunt B. Omdat bij elk voorwerpspunt één beeldpunt hoort, weet je nu van elke lichtstraal vanuit V hoe hij verdergaat: hij gaat altijd door B. Zie lichtstraal 4 in figuur O.16. V 3 2 De lichtstraal die evenwijdig invalt, valt door F uit. 1 + Met constructiestralen kun je de plaats van een beeldpunt B bij een gegeven voorwerpspunt V bepalen. Alle lichtstralen vanuit V gaan na breking door B. > > Opdrachten 14 en 19 F 4 O F De lichtstraal die door F invalt, valt evenwijdig uit. De lichtstraal door O gaat rechtdoor. B O.16 Met de constructiestralen 1, 2 en 3 bepaal je het beeldpunt B; 4 is een willekeurige straal. lens A + lens B + lens C F A O F A F B O F B F C O F C f A f B f C O.15a sterk positieve lens b positieve lens c negatieve lens V + V + L v V' F O F B' L b L v V' F f O f F B' L b v f f b B v b B O.17a b Optica 13

13 De grootte van het voorwerp heet de voorwerpsgrootte L v (= VV ). Zie figuur O.17. De grootte van het beeld heet de beeldgrootte L b (= BB ). In figuur O.17 is ook de afstand van het voorwerp tot de lens gegeven: de voorwerpsafstand v. De afstand van het beeld tot de lens heet de beeldafstand b. Uit de gele vlakken in de figuren O.17a en b kun je nu afleiden: L b : L v = b : v. De verhouding L b /Lv geeft weer hoeveel maal het beeld groter is dan het voorwerp. Je noemt dat de lineaire vergroting N. Bij vergroting geldt L b > L v en dus N > 1. Bij verkleining geldt L b < L v en dus N < 1. Voor de lineaire vergroting geldt: N = L b = b L v v N is de lineaire vergroting L b is de beeldgrootte in meter (m) L v is de voorwerpsgrootte in meter (m) b is de beeldafstand in meter (m) v is de voorwerpsafstand in meter (m) Voorbeeld 2 Vergroting bij een fotocamera De lens van een fotocamera beeldt een zendmast met een hoogte van 165 m af op een beeldchip. De beeldchip bevindt zich 3,6 cm van de lens. Het beeld van de mast op de chip is 2,2 cm hoog. Bereken hoe ver de fotocamera zich van de mast bevindt. De grootte van een voorwerp heet de voorwerpsgrootte. De beeldgrootte is de grootte van het beeld. De afstand van een voorwerp tot een lens noem je de voorwerpsafstand en de afstand van het beeld tot de lens de beeldafstand. De verhouding tussen de beeldgrootte en de voorwerpsgrootte is de lineaire vergroting. De lenzenformule In figuur O.19 zie je hoe een lens een beeld vormt van een ver verwijderd voorwerp, in O.20 van een voorwerp dichtbij de lens. Je ziet dat de lens in de tweede situatie meer moeite heeft de sterk divergente bundel in één punt samen te brengen. Blijkbaar geldt: hoe kleiner v, hoe groter b. Bovendien is de beeldafstand afhankelijk van de sterkte S van de gebruikte lens: hoe sterker de lens, hoe kleiner de beeldafstand. Om het verband tussen v, b en S te leren kennen moet je een experiment doen, waarbij je de v als onafhankelijke variabele steeds instelt en bekijkt waar het beeld ontstaat. Het resultaat heet de lenzenwet of lenzenformule: 1 v + 1 b = S = 1 f v is de voorwerpsafstand in meter (m) b is de beeldafstand in meter (m) S is de lenssterkte in dioptrie (dpt) f is de brandpuntsafstand in meter (m) Zet het juiste symbool bij de gegevens en druk ze uit in meter: L v = 165 m b = 3,6 cm = 0,036 m L b = 2,2 cm = 0,022 m Invullen in het eerste deel van de formule: N = L b = 0,022 = 1, L v 165 Invullen in het tweede deel van de formule: N = b v = 0,036 = 1, v 0,036 = v 1, ,036 v = 1, = 270 m = 2,7 102 m O.18 De zendmast van Lopik is de hoogste van Nederland. 14 hoofdstuk O

14 Voorbeeld 3 Foto van dichtbij Je maakt met de fotocamera van voorbeeld 2 een foto van een postzegel die 3,3 cm hoog is en zich 8,4 cm van de lens bevindt. Bereken hoeveel je de beeldafstand moet aanpassen om een scherpe foto te krijgen vergeleken met de situatie van de zendmast in voorbeeld 2. Bij de nieuwe foto verandert zowel v als b. Het gaat om hetzelfde fototoestel, dus om dezelfde lens met lenssterkte: S = 1 v + 1 b = = 27,8 dpt 0,036 In de nieuwe situatie geldt dus: S = 27,8 dpt en v = 8,4 cm = 0,084 m S = 1 v + 1 b = 1 0, = 27,8 dpt b 11,9 + 1 b = 27,8 1 = 27,8 11,9 = 15,9 b 1 b = = 0,063 = 6,3 cm 15,9 De beeldafstand was 3,6 cm, dus je moet hem 6,3 3,6 = 2,7 cm groter maken. Voorbeeld 4 Beeld op beeldchip De beeldchip van de fotocamera uit de voorbeelden 2 en 3 is 4,0 cm hoog. Ga met een berekening na of de postzegel van voorbeeld 3 helemaal op de chip past. N = b v = 6,3 8,4 = 0,75 N = L b L = b L v 0,33 = 0,75 L b = 0,75 0,033 = 0,025 = 2,5 cm Het beeld past dus op de chip van 4,0 cm. De lenzenwet of lenzenformule geeft het verband tussen de voorwerpsafstand, beeldafstand, lenssterkte en brandpuntsafstand. > > Opdrachten 16, 17 en 20 t/m 22 Een overzicht In het voorbeeld van de zendmast was de vergrotingsfactor veel kleiner dan 1. De postzegel stond dichterbij. De vergrotingsfactor was groter, maar nog steeds kleiner dan 1. Als je het voorwerp nog dichter bij de lens brengt, wordt de vergrotingsfactor gelijk aan 1. Dat gebeurt als de voorwerpsafstand tweemaal de brandpuntsafstand van de lens is. Bij nog kleinere voorwerpsafstanden wordt de vergrotingsfactor groter dan 1, zoals bij projectoren: een beamer of een projector in de bioscoop. grote v, zwak divergerende bundel V + B gemakkelijk om bundel samen te knijpen kleine b O.19 Een voorwerp veraf v b kleine v, sterk divergerende bundel + V B veel moeite om bundel samen te knijpen grote b O.20 Een voorwerp dichtbij v b Optica 15

15 In figuur O.21 zie je een overzicht. Als je de voorwerpsafstand gelijk aan of kleiner maakt dan de brandpuntsafstand, krijgt de lens het niet meer voor elkaar de lichtstralen in één punt samen te brengen. Je zegt: er is geen reëel beeld. In dat geval ontstaat er geen beeld op een scherm. v b N beeld toepassing heel b = f N << 1 sterk verkleind brandglas groot v > 2f b < 2f N < 1 verkleind fotocamera, oog v = 2f b = 2f N = 1 even groot kopieerapparaat f < v < 2f b > 2f N > 1 vergroot projector 0 < v f geen reëel beeld loep O.21 Toepassingen van een positieve lens Opdrachten A 14 Neem figuur O.22a, b en c over in je schrift. a Teken de invallende lichtstraal op de lens uit figuur O.22a. b Teken de uittredende lichtstraal bij de lens uit figuur O.22b. c Teken het verdere verloop van de lichtbundel uit P in figuur O.22c. + O F > > Opdrachten 15, 18 en 23 t/m 26 Experimenten O.3 Lenzenwet en vergroting Door op verschillende afstanden voor een positieve lens een voorwerp te plaatsen kun je meten waar het beeld ontstaat en hoe groot het beeld is. De onderzoeksvraag is: 4Wat is het verband tussen v, b, f, S, L v, L b en N? O.22a F + O O.4 Mobiele fotografie De camera in je mobieltje legt het beeld vast op een chip met veel kleine lichtsensoren: pixels. Door metingen te doen aan het mobieltje kom je erachter hoe klein alles is uitgevoerd in zo n camera. De onderzoeksvraag is: 4Hoe groot is een beeldchip en een pixel? O.22b P + > > Complete instructies op de site F O Site Stralengang Je ziet de stralengangen door een lens. Je kunt daarmee bijvoorbeeld figuur O.21 controleren. O.22c 16 hoofdstuk O

16 A 15 Vergelijk de beeldvorming bij een fototoestel en bij een diaprojector. Betrek in je antwoord welke waarden v en b hebben vergeleken met f en welke waarde N heeft. A 16 a Geef twee formules voor de lineaire vergroting. b Geef twee formules voor de lenssterkte. V V' B' B 17 Een lampje bevindt zich ver voor een lens. Je schuift het naar de lens toe. Wat gebeurt daarbij met v, b, f, S en N? Geef vijfmaal één van de antwoorden: wordt kleiner, blijft gelijk of wordt groter. O.23b B B 18 De sterkte van een lens is 10 dpt. a Op welke afstanden van deze lens kan een voorwerp staan, zodat een vergroot beeld ontstaat? b Voor welke afstanden tussen het voorwerp en de lens ontstaat geen reëel beeld? B 19 De figuren O.23a, b, c en d zijn op ware grootte. a Neem figuur O.23a over en construeer het beeldpunt. b Teken in figuur O.23a de lichtstralen die via de randen van de lens naar B gaan. c Neem figuur O.23b over en bepaal de plaats van de lens. d Bepaal de plaats van de brandpunten van de lens in figuur O.23b. e Bepaal de sterkte van de lens van figuur O.23b. O.23c V' V De lens maakt van het voorwerp in figuur O.23c een 3,0 zo groot beeld. f Neem figuur O.23c over. Houd daarbij rekening met de gegeven vergrotingsfactor. Construeer het beeld en de brandpunten. g Bepaal b en S. + O B 20 + Op 30,0 cm voor een lens met een sterkte van 25 dpt staat een gloeidraadje met een lengte van 1,2 cm. a Bereken de beeldafstand. b Bereken de lengte van het beeld. V' O.23a V F 1 O F 2 Je schuift de lens naar het gloeidraadje toe. Het scherm moet nu op 7,5 cm van de lens staan om weer een scherp beeld te krijgen. c Bereken hoe ver de gloeidraad is verschoven. d Bereken hoeveel maal het beeld groter is geworden door de verschuivingen. Optica 17

17 B 21 Een fototoestel heeft een lens (f = 3,0 cm) met een diafragma. Het diafragma staat 5 mm achter de lens en heeft een opening met een diameter van 20 mm. Op 75 mm voor de lens staat een munt met een diameter van 30 mm, 10 mm onder de optische as en 20 mm erboven. F + F Ron wil met zijn proefje het karton in brand steken. Het karton begint wel te roken maar vat geen vlam. c Leg aan de hand van formules uit of hij een sterkere of minder sterke lens moet gebruiken. s Nachts maakt Ron op dezelfde manier een beeld van de volle maan. d Ga na of het beeld van de maan groter of kleiner is dan dat van de zon overdag. C 23 Bekijk nog eens startopdracht 13d. Geef opnieuw antwoord op deze vraag aan de hand van formules die je hebt geleerd. O.24 5 mm C 24 In een beamer staat de lichtgevende chip 10,5 cm voor de lens met een sterkte van 10,0 dpt. a Bereken op welke afstand het scherm van de lens moet staan om een scherpe afbeelding te krijgen. In figuur O.24 is de situatie schematisch weer gegeven, maar niet op schaal. a Bereken de sterkte van de lens. b Bereken de beeldafstand. c Bereken de beeldgrootte. d Teken de situatie van figuur O.24 na, maar nu op de juiste schaal. e Construeer het beeld. f Bepaal in je tekening de beeldafstand en bereken het procentuele verschil met je uitkomst bij b. g Bepaal in je tekening de beeldgrootte en bereken het procentuele verschil met je uitkomst bij c. h Arceer in de tekening de lichtbundel die van de top van de munt uitgaat en die alle lichtstralen bevat die door de diafragmaopening gaan. scherm dia A O + C 22 Ron maakt met een lens van 5,0 dpt een scherp beeld van de zon op een wit stuk karton. a Leg uit op welke afstand hij het witte karton van de lens moet houden. b Bereken hoe groot de diameter van het zonnebeeld op het karton is. Zoek daartoe de voorwerpsgrootte en de voorwerpsafstand op in Binas. O.25 In figuur O.25 is de situatie getekend waarbij een scherp beeld op het scherm ontstaat. De figuur is niet op schaal. Vanuit punt A van de chip is een lichtstraal getekend. b Neem de figuur over en construeer het verdere verloop van de lichtstraal. Het beeld past niet op het scherm. c Leg uit wat je met het scherm en de lens moet doen om een kleiner, scherp beeld te krijgen. 18 hoofdstuk O

18 D 25 Je maakt een fotokopie, waarbij de kopie even groot is als het origineel. De afstand tussen lens en origineel is 36,0 cm. a Bereken of beredeneer hoe groot de brandpuntsafstand van de lens is. Je wilt een iets grotere kopie. Het origineel ligt op de vaste glasplaat bovenop het apparaat. De lens kan omhoog of omlaag bewegen. b Beredeneer aan de hand van formules of de lens van de glasplaat af of ernaartoe moet bewegen. Stel dat je een 1,25 zo grote kopie wilt hebben. c Bereken hoe ver de lens moet verschuiven. d Ga met een berekening na of de plaat waarop het beeld ontstaat op dezelfde plaats kan blijven. D 26 De fietser in figuur O.26 heeft een werkelijkheid een hoogte van 1,60 m. De foto is een 3,2 vergrote weergave van het beeld op de beeldchip. De foto werd gemaakt met een lens met een brandpuntsafstand van 40 mm. De afstand tussen de fietser is zó groot, dat je lichtbundels die de lens vanaf de fietser bereiken als evenwijdig kunt zien. Bereken de afstand tussen de fietser en de fotograaf toen de foto werd gemaakt. O.26 Na deze paragraaf kun je: uitleggen wat de brandpuntsafstand van een lens is en hoe die samenhangt met de lenssterkte; een beeld construeren bij een positieve lens aan de hand van drie constructiestralen; uitleggen wat lineaire vergroting is en er berekeningen mee maken; berekeningen maken met de lenzenwet; uitleggen bij welke voorwerpsafstanden en bij welke toepassingen van een positieve lens een vergroot, even groot of verkleind beeld ontstaat. Optica 19

19 O.3 Het oog Op de foto van figuur O.27 zie je hoe een interview wordt afgenomen. Startopdracht 27 De interviewer draagt een bril. a Is de bril van de interviewer een leesbril of niet? Leg je antwoord uit. In de bril kun je de geïnterviewde persoon ook zien. b Heeft de bril van de interviewer positieve of negatieve glazen? Neem voor je uitleg een lichtstraal in gedachten die van het oog van de geïnterviewde persoon via de bril naar de fotocamera ging. Het menselijk oog In figuur O.28 zie je een doorsnede van het menselijk oog. Het oog wordt aan de voorkant beschermd door het hoornvlies, een hard en doorzichtig kapje. Omdat het hoornvlies gekromd is, werkt het als lens met een sterkte van ongeveer 57 dpt. Achter het hoornvlies zit de oogkamer, die voornamelijk gevuld is met water. In de oogkamer zit de iris, die kleur aan het oog geeft: blauw, bruin, groen of grijs. De iris vormt de omgrenzing van de pupil. Doordat de iris als een sluitspier werkt, kun je de pupil groter en kleiner maken. Hiermee regel je de hoeveelheid licht in het oog: adaptatie. Achter de oogkamer zit de kristallens, die je met spieren boller kunt maken. De lens heeft daardoor een variabele sterkte van ongeveer 2 tot meer dan 10 dpt. Het hoornvlies met de kristallens samen noem je de ooglens. Voor lenzen die dichtbij elkaar staan mag je de lenssterkten optellen. De ooglens heeft dus in totaal een sterkte van 59 tot ongeveer 70 dpt. Het grootste deel van de oogbol bestaat uit het glasachtig lichaam, gevuld met een geleiachtige substantie. Aan de achterkant van de oogbol zit het netvlies, waarop de beelden ontstaan. In het netvlies bevinden zich lichtgevoelige cellen die lichtsignalen omzetten in spanningssignalen voor de hersenen. Deze lichtgevoelige cellen zijn vergelijkbaar met de pixels van een beeldchip in een camera. In een camera zijn alle pixels even groot, maar in het oog niet. hoornvlies oogkamer kristallens pupil iris netvlies glasachtig lichaam gele vlek blinde vlek gezichtszenuw O.27 Een interview O.28 Een doorsnede van de oogbol 20 hoofdstuk O

20 In de gele vlek zitten heel kleine gezichtscellen, waarmee je kleine details waarneemt. Omdat de gele vlek op de optische as van de ooglens zit, richt je je ogen nauwkeurig op iets dat je precies wilt bekijken, bijvoorbeeld tekst op het bord. Daarentegen zitten in de blinde vlek geen gezichtscellen, omdat de bundel gezichtszenuwen op die plaats het netvlies verlaat. Je kunt daar dus niets waarnemen. Gelukkig heb je er geen last van, omdat je ogen voortdurend de omgeving afscannen en er zo dus toch een compleet beeld in je hersenen ontstaat Je ooglens maakt scherpe beelden op het netvlies. De sterkte van de ooglens varieert daarbij van 59 tot ongeveer 70 dpt. Accommoderen Net zoals met een fotocamera wil je met je oog scherpe beelden maken van voorwerpen die dichtbij (bijvoorbeeld 15 cm) staan en voorwerpen die veraf (bijvoorbeeld 100 m) staan. Een camera heeft een lens met een vaste lenssterkte S. Om een scherp beeld te krijgen van voorwerpen op verschillende afstanden v stel je bij de camera scherp door de beeldafstand b te variëren. Bij het menselijk oog gaat dat anders. De afstand van ooglens tot netvlies is gelijk aan de oogboldiameter en is niet variabel. Nu heeft de beeldafstand b dus een vaste waarde. Het oog maakt scherpe beelden door de lenssterkte S aan te passen. De lenspieren rond de kristallens zorgen hiervoor. Deze manier van scherpstellen heet accommoderen. Het gebeurt automatisch zo gauw je naar een voorwerp op een andere afstand kijkt. Als je normaalziend bent, kun je de sterkte van je ooglens dus variëren van ongeveer 59 tot minstens 65 dpt. Als je veraf kijkt, is de lens het minst sterk en zijn de oogspieren het minst gespannen. Je ooglens is dan ongeaccommodeerd (zie figuur O.29a). Hoe dichterbij je kijkt hoe sterker je ooglens en hoe meer je oogspieren zich moeten inspannen om te accommoderen (zie figuur O.29b). Van dichtbij kijken raken je ogen dus vermoeider dan van veraf kijken. Je ogen zijn maximaal geaccommodeerd als een voorwerp zich bevindt op de kleinste afstand waarop je nog scherp kunt waarnemen: de nabijheidsafstand (zie figuur O.29c). Bij veraf kijken zijn je lensspieren ontspannen: de ongeaccommodeerde toestand. Bij dichterbij kijken spannen je lensspieren aan en accommodeert je ooglens tot grotere sterkte. Als je naar een voorwerp op nabijheidsafstand kijkt, zijn je ogen maximaal geaccommodeerd. O.29a Ontspannen kijken > > Opdrachten 28 en 29 De oogboldiameter is ongeveer 25 mm. Omdat de lichtstralen in het oog niet in lucht terechtkomen, maar in de geleiachtige vloeistof van het glasachtig lichaam, moet je voor de beeldafstand in het oog een waarde nemen van 17 mm. Op grond hiervan kun je met de lenzenwet berekenen welke sterkte je ooglens moet hebben om ver te kijken en welke sterkte om dichtbij te kijken: 1 Veraf: v = 100 m S = = 59 dpt 0,017 1 Dichtbij: v = 15 cm S = 0, = 65 dpt 0,017 O.29b Ingespannen kijken nabijheidsafstand O.29c Maximaal ingespannen kijken Optica 21

21 Oudziend Je hebt je opa of oma misschien wel eens horen zeggen: Mijn armen worden te kort om te kunnen lezen. Natuurlijk gaat het niet om de lengte van de armen maar is er iets mis met de ogen. Blijkbaar kunnen ze niet meer goed dichtbij zien, terwijl ze nog prima veraf kunnen zien. Dat komt doordat de lensspieren zijn verslapt en niet meer zo sterk kunnen accommoderen. Als ze hun ogen niet accommoderen, hebben de ooglenzen nog de gewenste sterkte van 59 dpt. Bij dichtbij kijken kunnen ze de sterkte van de ooglenzen echter niet meer tot de gewenste 65 dpt vergroten. In figuur O.30 zie je dat de mate waarin de kristallens zich kan aanpassen met de leeftijd afneemt van ongeveer 14 dpt bij jonge mensen tot slechts enkele dioptrieën bij 50-plussers. Deze oogafwijking noem je oudziendheid. Bij oudere mensen wordt de nabijheidsafstand groter. Je spreekt van een oudziende, als die afstand groter is dan de normale leesafstand tot een boek: zo ongeveer 30 cm. Een oudziende heeft alleen een bril nodig om dichtbij te kijken: een leesbril. In figuur O.31 zie je de grotere nabijheidsafstand van een oudziend oog (a). Er ontstaat dus geen scherp beeld van voorwerpen dichterbij (b), behalve met een extra positieve lens (c). 16 Voorbeeld 5 Leesbril Bram kan een voorwerp pas scherp zien, als hij het op een afstand van minstens 75 cm houdt. In de verte ziet hij prima. a Bereken tussen welke waarden de sterkte van zijn ooglens kan variëren. Ga uit van b = 17 mm. b Bereken de sterkte van de leesbril die hij nodig heeft om een boek op 25 cm afstand te kunnen lezen. a Hij ziet veraf prima, dus in ongeaccommodeerde toestand is zijn ooglenssterkte 59 dpt. In de meest geaccommodeerde toestand is v = 75 cm: S = 1 v + 1 b = 1 0, ,017 = 60,2 dpt b Om op 25 cm afstand scherp te kunnen zien heeft hij een lenssterkte nodig van: S = 1 0, = 62,8 dpt 0,017 Hij heeft dus een leesbril nodig met een sterkte van 62,8 60,2 = + 2,6 dpt. Oudzienden zien in de verte goed, maar kunnen hun ooglenzen niet meer sterk genoeg maken om op leesafstand scherp te zien. Om te lezen hebben ze een positieve bril nodig. accomodatiebereik (dpt) leeftijd (jaar) O.30 Accommodatiebereik leesafstand O.31b Op kleinere afstand kan een oudziend oog dus niet scherp zien nabijheidsafstand groter dan leesafstand O.31a Een maximaal geaccommodeerd oudziend oog: de nabijheidsafstand is groot. leesbril O.31c maar wel met een extra positieve lens. 22 hoofdstuk O

22 Bijziendheid Bij jonge mensen komt een andere oogafwijking vaker voor: bijziendheid. Het woord zegt het al: zij kunnen dichtbij goed zien. Het probleem van bijzienden is dat ze in de verte niet scherp zien en bijvoorbeeld problemen hebben met op het bord kijken. Ze kunnen goed dichtbij zien: ze hebben zelfs een kleinere nabijheidsafstand dan normaal. Een bijziende heeft een grootste afstand waarop hij scherp kan zien: de verteafstand. Zie figuur O.32a. Een normaalziende of mensen met andere oogafwijkingen hebben zo n verteafstand niet: ze kunnen in principe tot in het oneindige ver kijken. Om ver te kijken moet een oog (b = 17 mm) een lenssterkte hebben van 59 dpt. Als je bijziend bent, is je lenssterkte in ongeaccommodeerde toestand groter. Je hebt dus te sterke lenzen. In figuur O.32b zie je wat dat betekent voor een lichtbundel die van veraf komt en dus evenwijdig is. De stralen komen al vóór het netvlies bij elkaar en vormen op het netvlies een vaag vlekje. In figuur O.32c zie je hoe een negatieve lens de lichtstralen divergeert, zodat de ooglens ze weer precies op het netvlies samenbrengt. Voorbeeld 6 Bril voor veraf Merel kan scherp zien tot een afstand van 40 cm. Hoe groot moet de lenssterkte van haar bril zijn om goed veraf te kunnen zien? Ga weer uit van b = 17 mm. De oogsterkte van Merel is in ongeaccommodeerde toestand: S = 1 v + 1 b = 1 0, = 61,3 dpt 0,017 Dat moet om ver te kunnen kijken zijn: 1 S = = 58,8 dpt 0,017 Ze heeft dus corrigerende brillenglazen nodig van 58,8 61,3 = 2,5 dpt. Bijzienden kunnen dichtbij goed zien. Hun ooglenzen zijn in ongeaccommodeerde toestand te sterk om veraf goed te kunnen zien. Daarom hebben ze een correctie nodig met negatieve lenzen. > > Opdrachten 34 en 37 verteafstand O.32a Verteafstand: de grootste afstand waarbij met een bijziende oog nog scherp gezien kan worden. O.32b Op grotere afstand kan het bijziende oog dus niet scherp zien hulplens O.32c maar wel met een extra negatieve lens. O.33 Scherp beeld door een bril voor veraf. Optica 23

23 Verziendheid Bij verziendheid is de ooglens in ongeaccommodeerde toestand te zwak om evenwijdige bundels samen te brengen op het netvlies. Zie figuur O.34a. De verziende merkt dat niet zo snel, omdat hij zijn oog een beetje kan accommoderen om toch veraf scherp te zien. Zie figuur O.34b. Het probleem daarbij is echter dat hij zijn lensspieren voortdurend moet aanspannen, zelfs als hij veraf kijkt. Een gevolg daarvan is hoofdpijn. Hij zal eerder door hoofdpijnklachten bij de opticien terechtkomen dan door slecht zicht. De correctie die een verziende nodig heeft voor dichtbij zien, is vergelijkbaar met de correctie voor een oudziende. Zie voorbeeld 5. Voor veraf moet de lenssterkte zo groot zijn dat hij zijn lensspieren niet meer hoeft te spannen om voorwerpen op grote afstand scherp te kunnen waarnemen. Zie figuur O.34c. De correcties voor de verziende en de oudziende zijn dus beide positief. In tegenstelling tot de oudziende moet de verziende zijn bril wel steeds ophouden. Een verziende heeft te zwakke ooglenzen en heeft een grotere nabijheidsafstand dan normaal. Hij heeft een positieve correctie nodig. Deze correctie voorkomt tevens hoofdpijn bij het veraf zien. > > Opdrachten 32 en 33 O.34a Een verziende ziet met een ongeaccommodeerd oog in de verte vaag Oogafwijkingen in overzicht In figuur O.35 staan twee schalen boven elkaar: op de bovenste schaal staan de voorwerpsafstanden, op de onderste de bijbehorende lenssterkten. Met pijlen is daaronder het accommodatiebereik aangegeven. De normaalziende heeft een accommodatiebereik van 59 tot 65 dpt (of meer). Hij kan daardoor scherp zien van heel ver weg tot 15 cm, en heeft dus geen problemen veraf en geen problemen om te lezen. De oudziende heeft een kleiner accommodatiebereik. De nabijheidsafstand is hier ongeveer 70 cm, te ver om te kunnen lezen: er is een positieve leesbril nodig. Bij de bijziende is het accommodatiebereik naar rechts verschoven: te sterke ooglenzen. Het nabijheidspunt van deze bijziende is 7 cm, dus beter dan normaal. Ook bij de linkerpijl kun je nu een afstand aflezen: de verteafstand. Aan die kant zijn negatieve brillenglazen nodig om veraf scherp te kunnen zien. Bij de verziende is het accommodatiebereik naar links verschoven: een te zwakke ooglens. Zowel aan de linkerkant als aan de rechterkant zijn positieve brilcorrecties nodig. + verteafstand bijziende nabijheidsafstand oudziende én verziende nabijheidsafstand normaalziende ver ,3 0,1 58,8 58,9 59,1 59,8 62,1 68,8 normaalziend + oudziend bijziend + verziend + oud- én bijziend nabijheidsafstand bijziende v (m) S (dpt) O.35 Oogafwijkingen O.34b maar kan dat door te accommoderen corrigeren. + hulplens O.34c Om hoofdpijn te voorkomen moet hij echter met een positieve lens corrigeren. O.36 Een lichtpunt gezien door een... a normaal oog b oog met cilindrische afwijking 24 hoofdstuk O

24 Een veelvoorkomend misverstand is dat een bijziende met negatieve brillenglazen weer goed zal zien als hij ouder wordt. Hij heeft immers een negatieve bril en heeft later een positieve bril nodig. Schuift hij dan niet op een gegeven moment door het nulpunt heen? Helaas is dat niet waar. Het gaat om correcties aan de andere kant van het accommodatiebereik. Zie de onderste balk in figuur O.35. De (oudere) persoon heeft zowel een mincorrectie nodig om veraf te kunnen zien als een pluscorrectie om te kunnen lezen. Hij heeft een zogenaamde bifocale bril of lenzen nodig. De opticien zegt ook wel eens: U hebt een cilinder. Mensen met een cilindrische afwijking zien een lichtpunt niet als een rond vlekje (figuur O.36a) zoals bij andere oogafwijkingen, maar als een ellipsje. In de ene richting is de afwijking groter dan in de andere. Zo is bij het vlekje van figuur O.36b een sterkere correctie in verticale richting nodig dan in horizontale richting. Bij oudzienden is het accommodatiebereik kleiner dan bij een normaalziende. Bij bij- en verzienden is het bereik verschoven. Je kunt tegelijkertijd oud- en bijziend zijn. Je hebt dan bifocale glazen nodig. Bij een cilindrische afwijking heb je in de ene richting een andere afwijking dan in de andere. Experiment > > Opdrachten 30, 31, 35, 36 en 38 O.5 Werking van je oog Met eenvoudige experimenten kun je een aantal eigenschappen van je oog bepalen. De onderzoeksvraag is: Welke eigenschappen heeft je oog? > > Complete instructies op de site Site Stralengang bij oogcorrecties Je ziet hoe lichtstralen gaan door ogen met bepaalde oogafwijkingen en hoe dat door brillen of lenzen verbetert. Opdrachten A 28 Beschrijf voor de werking van je oog de functie van: a het hoornvlies; b de pupil; c de kristallens; d het netvlies. A 29 Bij adaptatie en bij accommodatie vindt aanpassing in het oog plaats. Leg voor beide uit wat er in het oog verandert. A 30 Vul onderstaande zinnen in. Kies steeds uit de mogelijkheden die tussen haakjes staan. a Een normaalziend oog is bij veraf kijken (geaccommodeerd / ongeaccommodeerd). De spieren rond de kristallens zijn dan (gespannen / ontspannen) en de kristallens heeft een sterkte van ongeveer (59 dpt / 65 dpt). b Om hele kleine details van een voorwerp te zien, moet je dat voorwerp op (brandpuntsafstand / nabijheidsafstand / verteafstand) voor je oog houden. Zonder oogcorrecties kan een (oudziende / bijziende / verziende) kleine details het beste waarnemen. c Iemand die oudziend en bijziend is, heeft (bifocale / cilindrische) brillenglazen nodig. A 31 Neem de tabel van figuur O.37 over en vul hem in: oog dichtbij zien veraf zien wel/geen probleem correctie + of wel/geen probleem correctie + of normaalziend geen geen geen geen oudziend bijziend O.37 Tussentoets Optica 25

25 B 32 Pim kan voorwerpen die verder staan dan 35 cm niet scherp waarnemen. a Leg uit welke oogafwijking hij heeft en geef aan of zijn ooglenzen te sterk of te zwak zijn. b Leg uit of de gegeven afstand zijn nabijheidsafstand of verteafstand is. De opticien meet Pim lenzen aan. c Bereken de sterkte van de lenzen die de opticien Pim zal voorschrijven. B 33 Een 45-jarige man heeft een hoornvlies met een sterkte van 57 dpt. Zijn kristallens heeft een accommodatiebereik dat normaal is voor zijn leeftijd volgens figuur O.30. Ga uit van b = 17 mm. a Leg uit of deze man verziend is. b Leg uit of deze man oudziend is. B 34 Je bent bijziend en draagt een bril. a Leg uit of je je bril nodig hebt om te kunnen lezen. b Leg uit of het verstandig is je bril te dragen als je lang achter elkaar leest. C 35 Zet de volgende lenzen op volgorde van sterkte. Begin bij de meest negatieve en eindig bij de meest positieve. A De lens van een fototoestel met een brandpuntsafstand van 50 mm. B De contactlens van een sterk bijziende persoon. C De lens van een vuurtoren die van het licht van een lamp op 2 m afstand een evenwijdige bundel maakt. D Het hoornvlies. E De lens van een mobieltje met een dikte van 8 mm. F De kristallens van een jong meisje als ze in een draad in een naald stopt. G Het brillenglas van oudziende met een nabijheidspunt van 75 cm. H Het brillenglas van een verziende met een vertepunt van 1,5 m. C 36 De 17-jarige Henriëtte kan haar ooglens accommoderen tot 71 dpt. De beeldafstand in haar oog is 17,5 mm. a Bereken de kleinste afstand waarop Henriëtte een boek kan lezen. b Leg uit of het verstandig is het boek ook werkelijk op deze afstand te houden. In ongeaccommodeerde toestand heeft haar ooglens een sterkte van 59 dpt. c Leg uit welke oogafwijking Henriëtte heeft. d Bereken de sterkte van de lenzen die Henriëtte nodig heeft. C 37 Peter krijgt door de oogarts contactlenzen voorgeschreven met een sterkte van 1,5 dpt. Zijn nabijheidspunt (zonder de lenzen) bedraagt 12 cm. a Welke oogafwijking heeft Peter? b Leg uit op welke voorwerpsafstanden Peter voorwerpen zonder lenzen duidelijk kan zien. A v < 12 cm B 12 cm < v < 67 cm C 12 cm < v < 1,5 m D v > 67 cm E v > 1,5 m Hij krijgt per ongeluk lenzen met een sterkte van 2,0 dpt. c Leg uit of hij met deze verkeerde lenzen in de verte goed kan zien. d Leg uit of zijn nabijheidsafstand door het dragen van negatieve lenzen groter of kleiner wordt. D 38 (Naar vwo-examen 1998-I) Horlogemakers bekijken onderdeeltjes van een horloge steeds vanaf kleine afstand. Jonge medewerkers hebben daarbij geen optische hulpmiddelen nodig. a Leg uit waarom niet. Oudere medewerkers gebruiken vaak een bril. b Leg uit of dat een positieve of een negatieve bril is. 26 hoofdstuk O

Samenvatting Natuurkunde Hoofdstuk 2 Licht. Wat moet je leren/ kunnen voor het PW H2 Licht?

Samenvatting Natuurkunde Hoofdstuk 2 Licht. Wat moet je leren/ kunnen voor het PW H2 Licht? Wat moet je leren/ kunnen voor het PW H2 Licht? Alles noteren met significantie en in de standaard vorm ( in hoeverre dit lukt). Eerst opschrijven wat de gegevens en formules zijn en wat gevraagd wordt.

Nadere informatie

Repetitie Lenzen 3 Havo Naam: Klas: Leerstof: 1 t/m 7

Repetitie Lenzen 3 Havo Naam: Klas: Leerstof: 1 t/m 7 Repetitie Lenzen 3 Havo Naam: Klas: Leerstof: 1 t/m 7 Opgave 1 Iris krijgt een bril voorgeschreven van 4 dioptrie. Zij houdt de bril in de zon en probeert de stralen te bundelen om zodoende een stukje

Nadere informatie

Opgave 3 De hoofdas is de lijn door het midden van de lens en loodrecht op de lens.

Opgave 3 De hoofdas is de lijn door het midden van de lens en loodrecht op de lens. Uitwerkingen 1 Opgave 1 Bolle en holle. Opgave 2 Opgave 3 De hoofdas is de lijn door het midden van de lens en loodrecht op de lens. Opgave 4 Divergente, convergente en evenwijdige. Opgave 5 Een bolle

Nadere informatie

hoofdstuk 5 Lenzen (inleiding).

hoofdstuk 5 Lenzen (inleiding). hoofdstuk 5 Lenzen (inleiding). 5.1 Drie soorten lichtbundels Als lichtstralen een bundel vormen kan dat op drie manieren. 1. een evenwijdige bundel. 2. een convergerende bundel 3. een divergerende bundel.

Nadere informatie

Samenvatting Hoofdstuk 5. Licht 3VMBO

Samenvatting Hoofdstuk 5. Licht 3VMBO Samenvatting Hoofdstuk 5 Licht 3VMBO Hoofdstuk 5 Licht We hebben zichtbaar licht in de kleuren Rood, Oranje, Geel, Groen, Blauw en Violet (en alles wat er tussen zit) Wit licht bestaat uit een mengsel

Nadere informatie

hoofdstuk 5 Lenzen (inleiding).

hoofdstuk 5 Lenzen (inleiding). hoofdstuk 5 Lenzen (inleiding). 5.1 Drie soorten lichtbundels Als lichtstralen een bundel vormen kan dat op drie manieren. 1. een evenwijdige bundel. 2. een convergerende bundel 3. een divergerende bundel.

Nadere informatie

Uitwerkingen Hoofdstuk 2 Licht

Uitwerkingen Hoofdstuk 2 Licht Uitwerkingen Hoofdstuk 2 Licht Verkennen I a. Teken het gebouw met de zon in de tekening. De stand van de zon bepaalt waar de schaduw terecht komt. b. Een platte tekening. Jij staat voor de spiegel, de

Nadere informatie

Spiegel. Herhaling klas 2: Spiegeling. Spiegel wet: i=t Spiegelen met spiegelbeelden. NOVA 3HV - H2 (Licht) November 15, NOVA 3HV - H2 (Licht)

Spiegel. Herhaling klas 2: Spiegeling. Spiegel wet: i=t Spiegelen met spiegelbeelden. NOVA 3HV - H2 (Licht) November 15, NOVA 3HV - H2 (Licht) Herhaling klas 2: Spiegeling Spiegel wet: i=t Spiegelen met spiegelbeelden Spiegelen van een object (pijl), m.b.v. het spiegelbeeld: Spiegel 1 2 H.2: Licht 1: Camera obscura (2) Eigen experiment: camera

Nadere informatie

Uitwerkingen. Hoofdstuk 2 Licht. Verkennen

Uitwerkingen. Hoofdstuk 2 Licht. Verkennen Uitwerkingen Hoofdstuk 2 Licht Verkennen I a. Teken het gebouw met de zon in de tekening. De stand van de zon bepaalt waar de schaduw terecht komt. b. Maak een tekening in bovenaanzicht. Jij staat voor

Nadere informatie

1 Bolle en holle lenzen

1 Bolle en holle lenzen Lenzen 1 Bolle en holle lenzen 2 Brandpuntsafstand, lenssterkte 3 Beeldpunten bij een bolle lens 4 Naar beeldpunten kijken (bij bolle lens) 5 Voorwerpsafstand, beeldafstand, lenzenformule 6 Voorwerp, beeld,

Nadere informatie

7.1 Beeldvorming en beeldconstructie

7.1 Beeldvorming en beeldconstructie Uitwerkingen opgaven hoofdstuk 7 7.1 Beeldvorming en beeldconstructie Opgave 1 Het beeld van een dia bij een diaprojector wordt gevormd door een bolle lens. De voorwerpsafstand is groter dan de brandpuntsafstand.

Nadere informatie

Noorderpoort Beroepsonderwijs Stadskanaal. Reader. Lenzen. J. Kuiper. Transfer Database

Noorderpoort Beroepsonderwijs Stadskanaal. Reader. Lenzen. J. Kuiper. Transfer Database Noorderpoort Beroepsonderwijs Stadskanaal Reader Lenzen J. Kuiper Transfer Database ThiemeMeulenhoff ontwikkelt leermiddelen voor Primair nderwijs, Algemeen Voortgezet nderwijs, Beroepsonderwijs en Volwasseneneducatie

Nadere informatie

Deze toets bestaat uit 4 opgaven (31 punten). Gebruik eigen grafische rekenmachine en BINAS toegestaan. Veel succes! ZET JE NAAM OP DEZE

Deze toets bestaat uit 4 opgaven (31 punten). Gebruik eigen grafische rekenmachine en BINAS toegestaan. Veel succes! ZET JE NAAM OP DEZE NAAM: NATUURKUNDE KLAS 5 INHAALPROEFWERK PROEFWERK H14 11/10/2011 Deze toets bestaat uit 4 opgaven (31 punten). Gebruik eigen grafische rekenmachine en BINAS toegestaan. Veel succes! ZET JE NAAM OP DEZE

Nadere informatie

Thema 7Oog, oogafwijkingen en oogcorrecties

Thema 7Oog, oogafwijkingen en oogcorrecties 07-01-2005 10:27 Pagina 1 Oog, oogafwijkingen en oogcorrecties Inleiding Het oog is een zeer gevoelig en bruikbaar optisch instrument. In figuur 2.56 zie je een aantal doorsnedentekeningen van het menselijk

Nadere informatie

6.1 Voortplanting en weerkaatsing van licht

6.1 Voortplanting en weerkaatsing van licht Uitwerkingen opgaven hoofdstuk 6 6.1 Voortplanting en weerkaatsing van licht Opgave 1 Opgave 2 Bij diffuse terugkaatsing wordt opvallend licht in alle mogelijke richtingen teruggekaatst, zelfs als de opvallende

Nadere informatie

6.1 Voortplanting en weerkaatsing van licht 6.2 Spiegel en spiegelbeeld

6.1 Voortplanting en weerkaatsing van licht 6.2 Spiegel en spiegelbeeld 6.1 Voortplanting en weerkaatsing van licht 6.2 Spiegel en spiegelbeeld Lichtbronnen: Directe lichtbronnen produceren zelf licht Indirecte lichtbronnen reflecteren licht. Je ziet een voorwerp als er licht

Nadere informatie

Hoofdstuk 4: Licht. Natuurkunde Havo 2011/2012.

Hoofdstuk 4: Licht. Natuurkunde Havo 2011/2012. Hoofdstuk 4: Licht Natuurkunde Havo 2011/2012 www.lyceo.nl Hoofdstuk 4: Licht Natuurkunde 1. Kracht en beweging 2. Licht en geluid 3. Elektrische processen 4. Materie en energie Beweging Trillingen en

Nadere informatie

2. Bekijk de voorbeelden bij Ziet u wat er staat? Welke conclusie kun je hier uit trekken?

2. Bekijk de voorbeelden bij Ziet u wat er staat? Welke conclusie kun je hier uit trekken? Hoofdstuk 3 Lichtbeelden 1 Werkboek natuurkunde 3H Inleiding: Zien Op de site van het boek vind je bij Ogentest verschillende links over zien, brillen en lenzen. Je kunt er ook je ogen testen. 1. Doe een

Nadere informatie

Oog. Netvlies: Ooglens: Voor de stralengang in het oog van lichtstralen zijn de volgende drie onderdelen belangrijk.

Oog. Netvlies: Ooglens: Voor de stralengang in het oog van lichtstralen zijn de volgende drie onderdelen belangrijk. Oog Voor de stralengang in het oog van lichtstralen zijn de volgende drie onderdelen belangrijk. Netvlies: Ooglens: Op het netvlies bevinden zich lichtgevoelige zintuigcellen; staafjes en kegeltjes (voor

Nadere informatie

Suggesties voor demo s lenzen

Suggesties voor demo s lenzen Suggesties voor demo s lenzen Paragraaf 1 Toon een bolle en een holle lens. Demo convergerende werking van een bolle lens Laat een klein lampje (6 V) steeds dichter bij een bolle lens komen. Geef de verschillende

Nadere informatie

Hoofdstuk 3: Licht. Natuurkunde VWO 2011/2012. www.lyceo.nl

Hoofdstuk 3: Licht. Natuurkunde VWO 2011/2012. www.lyceo.nl Hoofdstuk 3: Licht Natuurkunde VWO 2011/2012 www.lyceo.nl Hoofdstuk 3: Licht Natuurkunde 1. Mechanica 2. Golven en straling 3. Elektriciteit en magnetisme 4. Warmteleer Rechtlijnige beweging Trilling en

Nadere informatie

6.1 Voortplanting en weerkaatsing van licht 6.2 Spiegel en spiegelbeeld

6.1 Voortplanting en weerkaatsing van licht 6.2 Spiegel en spiegelbeeld 6.1 Voortplanting en weerkaatsing van licht 6.2 Spiegel en spiegelbeeld Lichtbronnen: Directe lichtbronnen produceren zelf licht Indirecte lichtbronnen reflecteren licht. Je ziet een voorwerp als er licht

Nadere informatie

a) Bepaal door middel van een constructie de plaats van het beeld van de scherf en bepaal daaruit hoe groot Arno de scherf door de loep ziet.

a) Bepaal door middel van een constructie de plaats van het beeld van de scherf en bepaal daaruit hoe groot Arno de scherf door de loep ziet. NATUURKUNDE KLAS 5 ROEWERK H14-05/10/2011 PROEWERK Deze toets bestaat uit 3 opgaven (totaal 31 punten). Gebruik van eigen grafische rekenmachine en BINAS is toegestaan. Veel succes! ZET EERST JE NAAM OP

Nadere informatie

3HV H2 breking.notebook October 28, 2015 H2 Licht

3HV H2 breking.notebook October 28, 2015 H2 Licht 3HV H2 breking.notebook October 28, 2015 H2 Licht 3HV H2 breking.notebook October 28, 2015 L1 L2 Wanneer een lichtstraal van het ene materiaal het andere ingaat kan de richting van de lichtstraal veranderen.

Nadere informatie

Oefen-vt vwo4 B h6/7 licht 2007/2008. Opgaven en uitwerkingen vind je op www.agtijmensen.nl

Oefen-vt vwo4 B h6/7 licht 2007/2008. Opgaven en uitwerkingen vind je op www.agtijmensen.nl Opgaven en uitwerkingen vind je op www.agtijmensen.nl Oefen-vt vwo4 h6/7 licht 007/008. Lichtbreking (hoofdstuk 6). Een glasvezel bestaat uit één soort materiaal met een brekingsindex van,08. Laserstraal

Nadere informatie

Deze toets bestaat uit 4 opgaven (33 punten). Gebruik eigen grafische rekenmachine en BINAS toegestaan. Veel succes! ZET JE NAAM OP DEZE

Deze toets bestaat uit 4 opgaven (33 punten). Gebruik eigen grafische rekenmachine en BINAS toegestaan. Veel succes! ZET JE NAAM OP DEZE NAAM: NATUURKUNDE KAS 5 ROEFWERK H14 13/05/2009 PROEFWERK Deze toets bestaat uit 4 opgaven (33 punten). Gebruik eigen grafische rekenmachine en BINAS toegestaan. Veel succes! ZET JE NAAM OP DEZE Opgave

Nadere informatie

Licht; Elektromagnetische straling een golf Licht; een deeltje (foto-elektrisch effect). Licht; als een lichtstraal Licht beweegt met de

Licht; Elektromagnetische straling een golf Licht; een deeltje (foto-elektrisch effect). Licht; als een lichtstraal Licht beweegt met de Licht; Elektromagnetische straling een golf Licht; een deeltje (foto-elektrisch effect). Licht; als een lichtstraal Licht beweegt met de lichtsnelheid ~300.000 km/s! Rechte lijn Pijl er in voor de richting

Nadere informatie

6.1 Voortplanting en weerkaatsing van licht 6.2 Spiegel en spiegelbeeld

6.1 Voortplanting en weerkaatsing van licht 6.2 Spiegel en spiegelbeeld 6.1 Voortplanting en weerkaatsing van licht 6.2 Spiegel en spiegelbeeld Lichtbronnen: Directe lichtbronnen produceren zelf licht Indirecte lichtbronnen reflecteren licht. Je ziet een voorwerp als er licht

Nadere informatie

Handleiding bij geometrische optiekset 112114

Handleiding bij geometrische optiekset 112114 Handleiding bij geometrische optiekset 112114 INHOUDSOPGAVE / OPDRACHTEN Algemene opmerkingen Spiegels 1. Vlakke spiegel 2. Bolle en holle spiegel Lichtbreking en kleurenspectrum 3. Planparallel blok 4.

Nadere informatie

Extra oefenopgaven licht (1) uitwerkingen

Extra oefenopgaven licht (1) uitwerkingen Uitwerking van de extra opgaven bij het onderwerp licht. Als je de uitwerking bij een opgave niet begrijpt kun je je docent altijd vragen dit in de les nog eens uit te leggen! Extra oefenopgaven licht

Nadere informatie

0 50 100 150 200 250 300 v (in cm)

0 50 100 150 200 250 300 v (in cm) Lenzen 1 Van een lens is de beeldafstand b als functie van de voorwerpsafstand v bepaald en weergegeven in onderstaande grafiek. 300 250 200 b (in cm) 150 100 50 0 0 50 100 150 200 250 300 v (in cm) a.

Nadere informatie

Opgave 1: Constructies (6p) In figuur 1 op de bijlage staat een voorwerp (doorgetrokken pijl) links van de lens.

Opgave 1: Constructies (6p) In figuur 1 op de bijlage staat een voorwerp (doorgetrokken pijl) links van de lens. NATUURKUNDE KAS 5 ROEWERK H4-06/0/00 PROEWERK Deze toets bestaat uit 4 opgaven (totaal 3 punten). Gebruik van eigen grafische rekenmachine en BINAS is toegestaan. Veel succes! ZET EERST JE NAAM OP DE Opgave

Nadere informatie

Handleiding Optiekset met bank

Handleiding Optiekset met bank Handleiding Optiekset met bank 112110 112110 112114 Optieksets voor practicum De bovenstaande Eurofysica optieksets zijn geschikt voor alle nodige optiekproeven in het practicum. De basisset (112110) behandelt

Nadere informatie

Het tekenen van lichtstralen door lenzen (constructies)

Het tekenen van lichtstralen door lenzen (constructies) Het tekenen van lichtstralen door lenzen (constructies) Zie: http://webphysics.davidson.edu/applets/optics/intro.html Bolle (positieve) lens Een bolle lens heeft twee brandpunten F. Evenwijdige (loodrechte)

Nadere informatie

5.1 Voortplanting en weerkaatsing van licht

5.1 Voortplanting en weerkaatsing van licht Uitwerkingen opgaven hoofdstuk 5 5.1 Voortplanting en weerkaatsing van licht Opgave 10 16 x 4,03 10 a afstand = lichtsnelheid tijd; s = c t t = = = 8 c 2,9979 10 b Eerste manier 1 lichtjaar = 9,461 10

Nadere informatie

jaar: 1994 nummer: 12

jaar: 1994 nummer: 12 jaar: 1994 nummer: 12 Een vrouw staat vóór een spiegel en kijkt met behulp van een handspiegel naar de bloem achter op haar hoofd.de afstanden van de bloem tot de spiegels zijn op de figuur aangegeven.

Nadere informatie

Newton 4vwo Natuurkunde Hoofdstuk 3 Lichtbeelden

Newton 4vwo Natuurkunde Hoofdstuk 3 Lichtbeelden Newton 4vwo Natuurkunde Hoofdstuk 3 Lichtbeelden Hoofdstukvragen: Het hoofdstuk gaat over de lichtbeelden die je met spiegels, lenzen en prisma s kunt maken. Hoe ontstaat bij een spiegel een beeld? En

Nadere informatie

Basic Creative Engineering Skills

Basic Creative Engineering Skills Spiegels en Lenzen September 2015 Theaterschool OTT-2 1 September 2015 Theaterschool OTT-2 2 Schaduw Bij puntvormige lichtbron ontstaat een scherpe schaduw. Vraag Hoe groot is de schaduw van een voorwerp

Nadere informatie

T1 Wat is licht? FIG. 3 Zo teken je een lichtstraal. De pijl geeft de richting van het licht aan.

T1 Wat is licht? FIG. 3 Zo teken je een lichtstraal. De pijl geeft de richting van het licht aan. T1 Wat is licht? Lichtbron, lichtstraal en lichtsnelheid Licht ontstaat in een lichtbron. Een aantal bekende lichtbronnen zijn: de zon en de sterren; verschillende soorten lampen (figuur 1); vuur, maar

Nadere informatie

Handleiding Oogfunctiemodel

Handleiding Oogfunctiemodel Handleiding Oogfunctiemodel 300132 De mogelijkheden van het oog functiemodel zijn: - beeldvorming, met een positieve lens - gekleurde voorwerpen zien - accommoderen; werking van de ooglens - oogafwijkingen

Nadere informatie

1 Lichtbreking. BASISSTOF Hoofdstuk 2 Licht. afbeelding 1 Dit effect ontstaat door lichtbreking. normaal

1 Lichtbreking. BASISSTOF Hoofdstuk 2 Licht. afbeelding 1 Dit effect ontstaat door lichtbreking. normaal BASISSTOF Hoofdstuk 2 Licht - 1 Lichtbreking Reigers jagen vaak op vis. Als ze er een zien zwemmen, grijpen ze hem razendsnel. Dat is bijzonder knap, want de vis zwemt niet waar ze hem zien. Hoe zit dat?

Nadere informatie

3 Licht en lenzen. 1 Lichtbreking. Nova. Leerstof. Toepassing

3 Licht en lenzen. 1 Lichtbreking. Nova. Leerstof. Toepassing 3 Licht en lenzen Lichtreking Leerstof a De normaal is de gestippelde lijn die loodrecht op het grensvlak staat. De lichtstraal wordt naar de normaal toe geroken. c De lichtstraal wordt van de normaal

Nadere informatie

1 Lichtbreking. Hoofdstuk 2. Licht

1 Lichtbreking. Hoofdstuk 2. Licht BASISSTOF Hoofdstuk 2 Licht Hoofdstuk 2 Licht Lichtreking a Zie figuur. Zie figuur c Zie figuur. d Ja, de richting is precies dezelfde. 2.t. figuur 2 a Als je recht tegenover het voorwerp staat, dus loodrecht

Nadere informatie

1 Lichtbreking. afbeelding schematische tekening van Lichtbreking door een perspex blokje

1 Lichtbreking. afbeelding schematische tekening van Lichtbreking door een perspex blokje -28 1 Lichtbreking Reigers jagen vaak op vis. Als ze er een zien zwemmen, grijpen ze hem razendsnel. Dat is bijzonder knap, want de vis zwemt niet waar ze hem zien. Hoe zit dat? Breking Je weet dat licht

Nadere informatie

Basic Creative Engineering Skills

Basic Creative Engineering Skills Visuele Perceptie Oktober 2015 Theaterschool OTT-1 1 Visuele Perceptie Op tica (Gr.) Zien leer (der wetten) v.h. zien en het licht. waarnemen met het oog. Visueel (Fr.) het zien betreffende. Perceptie

Nadere informatie

1.1 Het oog. 1.1.1 Beschermende delen van het oog. Deel 1 Hoe verkrijgen organismen informatie over hun omgeving?

1.1 Het oog. 1.1.1 Beschermende delen van het oog. Deel 1 Hoe verkrijgen organismen informatie over hun omgeving? 1.1 Het oog 1.1.1 Beschermende delen van het oog Door welke delen worden je ogen beschermd? Vul de juiste benaming in. Geef telkens de functie van de delen. Delen Functie 1 2 3 4 5 6 1.1 Het oog 1 1.1.2

Nadere informatie

Docentenhandleiding Oogfunctiemodel

Docentenhandleiding Oogfunctiemodel Docentenhandleiding Oogfunctiemodel 300132 De mogelijkheden van het oogfunctiemodel zijn: - beeldvorming, met een positieve lens - gekleurde voorwerpen zien - accommoderen; werking van de ooglens - oogafwijkingen

Nadere informatie

Tekstboek. VMBO-T Leerjaar 1 en 2

Tekstboek. VMBO-T Leerjaar 1 en 2 Tekstboek VMBO-T Leerjaar 1 en 2 JHB Pastoor 2015 Arnhem 1 Inhoudsopgave i-nask Tekstboek VMBO-T Leerjaar 1 en 2 Hoofdstuk 1 Licht 1.1 Licht Zien 3 1.2 Licht en Kleur 5 1.3 Schaduw 10 1.4 Spiegels 15 Hoofdstuk

Nadere informatie

Aan de slag met de nieuwe leerplannen fysica 2 de graad ASO GO!

Aan de slag met de nieuwe leerplannen fysica 2 de graad ASO GO! Aan de slag met de nieuwe leerplannen fysica 2 de graad ASO GO! M. Beddegenoodts, M. De Cock, G. Janssens, J. Vanhaecht woensdag 17 oktober 2012 Specifieke Lerarenopleiding Natuurwetenschappen: Fysica

Nadere informatie

Optica Optica onderzoeken met de TI-nspire

Optica Optica onderzoeken met de TI-nspire Optica onderzoeken met de TI-nspire Cathy Baars, Natuurkunde, Optica 1. Inhoud Optica... 1 1. Inhoud... 2 2. Spiegeling... 3 2.1 Algemene introductie en gebruik TI-nspire... 3 2.2 Spiegeling... 4 2.3 Definiëren

Nadere informatie

Tussen een lichtbron en een scherm staat een voorwerp. Daardoor ontstaat een schaduw van het voorwerp op het scherm. lichtbron

Tussen een lichtbron en een scherm staat een voorwerp. Daardoor ontstaat een schaduw van het voorwerp op het scherm. lichtbron Licht: Inleiding Opdracht 1. Schaduw van een lichtbrn Tussen een lichtbrn en een scherm staat een vrwerp. Daardr ntstaat een schaduw van het vrwerp p het scherm. a) Laat zien waar licht p het scherm valt

Nadere informatie

Basic Creative Engineering Skills

Basic Creative Engineering Skills Visuele Perceptie November 2016 OTT-1 1 Visuele Perceptie Op tica (Gr.) Zien leer (der wetten) v.h. zien en het licht. waarnemen met het oog. Visueel (Fr.) het zien betreffende. Perceptie 1 waarneming

Nadere informatie

hoofdstuk B Noordhoff Uitgevers bv

hoofdstuk B Noordhoff Uitgevers bv B 2 hoofdstuk B 244020_Physics 4E Bio.indd 2 Noordhoff Uitgevers bv 26/06/14 10:19 AM Biofysica Aan je lichaam is veel natuurkunde te beleven. Je oog maakt beelden op het netvlies en kan zo kleine details

Nadere informatie

Wet van Snellius. 1 Lichtbreking 2 Wet van Snellius 3 Terugkaatsing van licht tegen een grensvlak

Wet van Snellius. 1 Lichtbreking 2 Wet van Snellius 3 Terugkaatsing van licht tegen een grensvlak Wet van Snellius 1 Lichtbreking 2 Wet van Snellius 3 Terugkaatsing van licht tegen een grensvlak 1 Lichtbreking Lichtbreking Als een lichtstraal het grensvlak tussen lucht en water passeert, zal de lichtstraal

Nadere informatie

Lenzen. Leerplandoel. Introductie. Voorwerps brandpunts - en beeldafstand

Lenzen. Leerplandoel. Introductie. Voorwerps brandpunts - en beeldafstand Lenzen Leerplandoel FYSICA TWEEDE GRAAD ASO WETENSCHAPPEN LEERPLAN SECUNDAIR ONDERWIJS VVKSO BRUSSEL D/2012/7841/009 5.1.2 Licht B21 De beelden bij een dunne bolle lens construeren en deze aanduiden als

Nadere informatie

2 Terugkaatsing en breking

2 Terugkaatsing en breking 2 Terugkaatsing en breking Instapvragen bij 2 Hoeveel weet je al van de onderstaande vragen? Noteer je voorlopig antwoord. - Voorwerpen die geen licht geven kunnen we toch zien. Hoe komt dat? - Hoe komt

Nadere informatie

Theorie beeldvorming - gevorderd

Theorie beeldvorming - gevorderd Theorie beeldvorming - gevorderd Al heel lang geleden ontdekten onderzoekers dat als licht op een materiaal valt, de lichtstraal dan van richting verandert. Een voorbeeld hiervan is ook te zien in het

Nadere informatie

Om sommen met reflectie op te lossen zijn er twee mogelijkheden: 1. Met de terugkaatsingswet: hoek van inval = hoek van terugkaatsing

Om sommen met reflectie op te lossen zijn er twee mogelijkheden: 1. Met de terugkaatsingswet: hoek van inval = hoek van terugkaatsing Inhoud Reflectie...2 Opgave: bundel op cilinder...3 Opgave: Atomic Force Microscope (AFM)...3 straal treft op grensvlak...5 Opgave: door een dikke lens...8 Opgave: Stralengang door een vloeistoflens...9

Nadere informatie

Kernvraag: Hoe verplaatst licht zich en hoe zien we dat?

Kernvraag: Hoe verplaatst licht zich en hoe zien we dat? Kernvraag: Hoe verplaatst licht zich en hoe zien we dat? Naam: Groep: http://www.cma-science.nl Activiteit 1 Hoe verplaatst licht zich? 1. Als je wel eens de lichtstraal van een zaklamp hebt gezien, weet

Nadere informatie

Proefbeschrijving optiekset met bank 112110

Proefbeschrijving optiekset met bank 112110 112114 Optieksets voor practicum De bovenstaande optieksets zijn geschikt voor alle nodige optiekproeven in het practicum. De basisset () behandelt de ruimtelijke optiek en de uitbreidingset (112114) de

Nadere informatie

Lenzen. Leerplandoel. Introductie. Voorwerps brandpunts - en beeldafstand

Lenzen. Leerplandoel. Introductie. Voorwerps brandpunts - en beeldafstand Lenzen Leerplandoel FYSICA TWEEDE GRAAD ASO WETENSCHAPPEN LEERPLAN SECUNDAIR ONDERWIJS VVKSO BRUSSEL D/2012/7841/009 5.1.2 Licht B21 De beelden bij een dunne bolle lens construeren en deze aanduiden als

Nadere informatie

Examentraining (KeCo) SET-B HAVO5-Na

Examentraining (KeCo) SET-B HAVO5-Na KeCo-Examentraining SET-C HAVO5-Na 1 Examentraining (KeCo) SET-B HAVO5-Na EX.O.1. 1. Op een wateroppervlak vallen drie rode lichtstralen op de manier zoals weergegeven in onderstaande figuur. Teken het

Nadere informatie

het oog > bijziendheid > verziendheid > leeftijdverziendheid > astigmatisme

het oog > bijziendheid > verziendheid > leeftijdverziendheid > astigmatisme Algemeen (emmetroop oog) Een bril of een contactlens wordt in de meeste gevallen toegepast om een brekingsfout van het oog te corrigeren. Er zijn verschillende brekingsfouten. verziendheid en de bijziendheid.

Nadere informatie

Waarneming zintuig adequate prikkel fysiek of chemisch zien oog licht fysiek ruiken neus gasvormige

Waarneming zintuig adequate prikkel fysiek of chemisch zien oog licht fysiek ruiken neus gasvormige Paragraaf 7.1 prikkel Signalen die een zintuigcel uit de omgeving opvangt actiepotentiaal Verschil in elektrische lading over de membraan van een zenuwcel op het moment van een impuls adequate prikkel

Nadere informatie

N A T U U R W E T E N S C H A P P E N V O O R H A N D E L 1 Copyright

N A T U U R W E T E N S C H A P P E N V O O R H A N D E L 1 Copyright N AT U U R W E T E N S C H A P P E N V O O R H A N D E L 1 2 LICHT EN ZIEN 2.1 Donkere lichamen en lichtbronnen 2.1.1 Donkere lichamen Donkere lichamen zijn lichamen die zichtbaar worden als er licht

Nadere informatie

Geometrische optica. Hoofdstuk 1. 1.1 Principe van Huygens. 1.2 Weerkaatsing van lichtgolven.

Geometrische optica. Hoofdstuk 1. 1.1 Principe van Huygens. 1.2 Weerkaatsing van lichtgolven. Inhoudsopgave Geometrische optica Principe van Huygens Weerkaatsing van lichtgolven 3 Breking van lichtgolven 4 4 Totale weerkaatsing en lichtgeleiders 6 5 Breking van lichtstralen door een sferisch diopter

Nadere informatie

Stevin vwo deel 1 Uitwerkingen hoofdstuk 5 Spiegels en lenzen (22-03-2013) Pagina 1 van 23

Stevin vwo deel 1 Uitwerkingen hoofdstuk 5 Spiegels en lenzen (22-03-2013) Pagina 1 van 23 Stevin vwo deel 1 Uitwerkingen hoofdstuk 5 Spiegels en lenzen (22-03-2013) Pagina 1 van 23 Opgaven 5.1 Spiegeleelden 1 B en C 2 De ander staat 2 + 5 = 7 m voor de spiegel. Haar spiegeleeld staat 7 m achter

Nadere informatie

3.0 Licht 2 www.natuurkundecompact.nl. 3.2 Breking 3.3 a Vergroting b Lenzenformule c Lenzenformule (simulatie) 3.5 Oog en bril (Crocodile)

3.0 Licht 2 www.natuurkundecompact.nl. 3.2 Breking 3.3 a Vergroting b Lenzenformule c Lenzenformule (simulatie) 3.5 Oog en bril (Crocodile) 3.0 Licht 2 www.natuurkundecompact.nl 3.2 Breking 3.3 a Vergroting Lenzenformule c Lenzenformule (simulatie) 3.5 Oog en ril (Crocodile) 1 3.2 Breking www.natuurkundecompact.nl Doel Je onderzoekt hoe lichtstralen

Nadere informatie

Examen Fysica: Inleiding: Wat is fysica?

Examen Fysica: Inleiding: Wat is fysica? Fysica: Chemie: Bewegen Een kracht uitoefenen Verdampen Een elektrische stroom opwekken Optica Terugkaatsing van het licht Smelten en stollen Examen Fysica: Inleiding: Wat is fysica? Roesten Omzetting

Nadere informatie

refractie-afwijking patiënteninformatie

refractie-afwijking patiënteninformatie patiënteninformatie refractie-afwijking Uw oogarts of orthoptist heeft een refractie-afwijking vastgesteld bij u of uw kind. Dit kan worden gecorrigeerd met een bril of contactlenzen. Wat is een refractie-afwijking?

Nadere informatie

Opgave 1 Geef van de volgende zinnen aan of ze waar (W) of niet waar (NW) zijn. Omcirkel je keuze.

Opgave 1 Geef van de volgende zinnen aan of ze waar (W) of niet waar (NW) zijn. Omcirkel je keuze. Naam: Klas: Repetitie licht 2-de klas HAVO Opgave 1 Geef van de volgende zinnen aan of ze waar () of niet waar () zijn. Omcirkel je keuze. Een zéér kleine lichtbron (een zogenaamde puntbron) verlicht een

Nadere informatie

4.1.1 Lichtbronnen Benoem de onderstaande lichtbronnen. Opgelet, één van de figuren stelt geen lichtbron voor, welke?

4.1.1 Lichtbronnen Benoem de onderstaande lichtbronnen. Opgelet, één van de figuren stelt geen lichtbron voor, welke? Hoofdstuk 4: Licht 4.1 Voortplanting van licht 4.1.1 Lichtbronnen Benoem de onderstaande lichtbronnen. Opgelet, één van de figuren stelt geen lichtbron voor, welke? We zien allerlei dingen om ons heen,

Nadere informatie

Refractie-afwijking. Deze folder biedt in informatie over niet-scherp zien ten gevolge van een refractie-afwijking en de mogelijke correctiemiddelen.

Refractie-afwijking. Deze folder biedt in informatie over niet-scherp zien ten gevolge van een refractie-afwijking en de mogelijke correctiemiddelen. Refractie-afwijking Deze folder biedt in informatie over niet-scherp zien ten gevolge van een refractie-afwijking en de mogelijke correctiemiddelen. Hoe vormt een oog een scherp beeld en wat is refractie?

Nadere informatie

Refractie afwijkingen. Niet scherp zien ten gevolge van refractie afwijkingen

Refractie afwijkingen. Niet scherp zien ten gevolge van refractie afwijkingen Refractie afwijkingen Niet scherp zien ten gevolge van refractie afwijkingen Inhoudsopgave 1 Hoe vormt een oog een scherp beeld en wat is refractie... 1 2 Wat verstaat men onder refractieafwijkingen en

Nadere informatie

> Lees Niels heeft een bril.

> Lees Niels heeft een bril. LB 8-70. Ik zie een oog > Kijk naar de afbeeldingen op bladzijde 8 in je boek en lees Beschermen. Vul in. Je vooral tegen zweet. beschermen je ogen Kijk naar de doorsnede van het oog. Kleur de volgende

Nadere informatie

Spreekbeurten.info Spreekbeurten en Werkstukken http://spreekbeurten.info

Spreekbeurten.info Spreekbeurten en Werkstukken http://spreekbeurten.info Oog Inleiding De meeste mensen hebben 5 zintuigen. Het gezichtsvermogen om te zien, het gehoor om te horen, de reuk om te ruiken, de smaak om te proeven en het gevoel om te voelen. Met zintuigen maak je

Nadere informatie

Waarom zien veel mensen onscherp?

Waarom zien veel mensen onscherp? Refractie afwijking Waarom zien veel mensen onscherp? Om scherp te zien moeten lichtstralen uit de buitenwereld precies op het netvlies van het oog samenvallen. Het hoornvlies en de lens in het oog zorgen

Nadere informatie

Nadelen multifocale kunstlens 8 Voordelen van een multifocale kunstlens 9 Verzekering, eigen bijdrage 9

Nadelen multifocale kunstlens 8 Voordelen van een multifocale kunstlens 9 Verzekering, eigen bijdrage 9 Een korte uitleg over de werking van het oog: De ooglens zit direct achter de pupil (de zwarte opening) en het regenboogvlies (het gekleurde deel van het oog, de iris). De ooglens en het hoornvlies zorgen

Nadere informatie

Zintuigelijke waarneming

Zintuigelijke waarneming Zintuigelijke waarneming Biologie Havo klasse 5 HENRY N. HASSENKHAN SCHOLENGEMEENSCHAP LELYDORP [HHS-SGL] Docent: A. Sewsahai Doelstellingen De student moet de verschillende typen zintuigen kunnen opnoemen

Nadere informatie

Niet scherp zien Als gevolg van een refractieafwijking. Poli Oogheelkunde

Niet scherp zien Als gevolg van een refractieafwijking. Poli Oogheelkunde 00 Niet scherp zien Als gevolg van een refractieafwijking Poli Oogheelkunde Hoe vormt een oog een scherp beeld, wat is refractie? Om scherp te kunnen zien is het nodig dat lichtstralen die van een voorwerp

Nadere informatie

Natuur-/scheikunde Klas men

Natuur-/scheikunde Klas men Natuur-/scheikunde Klas 1 2015-2016 men 1 Wat zie ik? Over fotonen. Je ziet pas iets (voorwerp, plant of dier) wanneer er lichtdeeltjes afkomstig van dat voorwerp je oog bereiken. Die lichtdeeltjes noemen

Nadere informatie

Niet scherp zien door een refractieafwijking.

Niet scherp zien door een refractieafwijking. Oogheelkunde Niet scherp zien door een refractieafwijking. Het Antonius Ziekenhuis vormt samen met Thuiszorg Zuidwest Friesland de Antonius Zorggroep Hoe vormt een oog een scherp beeld en wat is refractie?

Nadere informatie

Maatschap Oogheelkunde/orthoptie. Verschillende brilsterktes (kinderen)

Maatschap Oogheelkunde/orthoptie. Verschillende brilsterktes (kinderen) Maatschap Oogheelkunde/orthoptie Verschillende brilsterktes (kinderen) Algemeen Om scherp te kunnen zien moeten de lichtstralen uit de buitenwereld precies op hetzelfde punt samenvallen op het netvlies.

Nadere informatie

jaar: 1990 nummer: 08

jaar: 1990 nummer: 08 jaar: 1990 nummer: 08 De figuur toont een blok op een helling. Door de wrijving glijdt het blok niet naar beneden zolang de hellingshoek kleiner is dan een bepaalde waarde Vervang nu het blok door een

Nadere informatie

Golflengte: licht is een (elektromagnetische) golf met een golflengte en een frequentie

Golflengte: licht is een (elektromagnetische) golf met een golflengte en een frequentie Golflengte: licht is een (elektromagnetische) golf met een golflengte en een frequentie Spectrum elektromagnetisch: licht met een kortere golflengte dan 400nm en licht met een langere golflengte dan 700

Nadere informatie

Lenzen. N.G. Schultheiss

Lenzen. N.G. Schultheiss Lenzen N.G. Schultheiss Inleiding Deze module volgt op de module Spiegels. Deze module wordt vervolgd met de module Telescopen of de module Lenzen maken. Uiteindelijk kun je met de opgedane kennis een

Nadere informatie

Docent: A. Sewsahai Thema: Zintuigelijke waarneming

Docent: A. Sewsahai Thema: Zintuigelijke waarneming HENRY N. HASSENKHAN SCHOLENGEMEENSCHAP LELYDORP [HHS-SGL] ARTHUR A. HOOGENDOORN ATHENEUM - VRIJE ATHENEUM - AAHA Docent: A. Sewsahai Thema: Zintuigelijke waarneming De student moet de verschillende typen

Nadere informatie

Reflectie. Om sommen met reflectie op te lossen zijn er twee mogelijkheden: 1. Met de terugkaatsingswet: hoek van inval = hoek van terugkaatsing

Reflectie. Om sommen met reflectie op te lossen zijn er twee mogelijkheden: 1. Met de terugkaatsingswet: hoek van inval = hoek van terugkaatsing Inhoud Reflectie... 2 Opgave: Lichtbundel op cilinder... 3 Lichtstraal treft op grensvlak... 4 Opgave: Breking en interne reflectie I... 6 Opgave: Breking en interne reflectie II... 7 Opgave: Multi-Touch

Nadere informatie

Tentamen Optica. 19 februari 2008, 14:00 uur tot 17:00 uur

Tentamen Optica. 19 februari 2008, 14:00 uur tot 17:00 uur Tentamen Optica 19 februari 2008, 14:00 uur tot 17:00 uur Zet je naam en studierichting bovenaan elk vel dat je gebruikt. Lees de 8 opgaven eerst eens door. De opgaven kunnen in willekeurige volgorde gemaakt

Nadere informatie

Oogheelkunde. Patiënteninformatie. Brilsterkte bij kinderen. Slingeland Ziekenhuis

Oogheelkunde. Patiënteninformatie. Brilsterkte bij kinderen. Slingeland Ziekenhuis Oogheelkunde Brilsterkte bij kinderen i Patiënteninformatie Slingeland Ziekenhuis Algemeen Uw kind heeft zojuist een druppeltest (skiascopie) gehad. Uit de test is gebleken dat uw kind een bril nodig heeft

Nadere informatie

Thema 3 Verrekijkers. astronomische kijker

Thema 3 Verrekijkers. astronomische kijker 07-0-005 0: Pagina Verrekijkers Inleiding Om verre voorwerpen beter te kunnen zien, kun je gebruikmaken van verrekijkers. Die zijn er in vele soorten. De astronomische kijker wordt gebruikt voor het bekijken

Nadere informatie

Contactlenzen (Algemeen)

Contactlenzen (Algemeen) Contactlenzen (Algemeen) Zien Een contactlens corrigeert voor refractiefouten. Indien er geen refractiefouten optreden, ligt het brandpunt van het licht exact op het netvlies. In figuur 1 is de perfecte

Nadere informatie

Noorderpoort Beroepsonderwijs Stadskanaal. Reader. Reflectie en breking. J. Kuiper. Transfer Database

Noorderpoort Beroepsonderwijs Stadskanaal. Reader. Reflectie en breking. J. Kuiper. Transfer Database Noorderpoort Beroepsonderwijs Stadskanaal Reader Reflectie en breking J. Kuiper Transfer Database ThiemeMeulenhoff ontwikkelt leermiddelen voor Primair Onderwijs, Algemeen Voortgezet Onderwijs, Beroepsonderwijs

Nadere informatie

Labo Fysica. Michael De Nil

Labo Fysica. Michael De Nil Labo Fysica Michael De Nil 4 februari 2004 Inhoudsopgave 1 Foutentheorie 2 1.1 Soorten fouten............................ 2 1.2 Absolute & relatieve fouten..................... 2 2 Geometrische Optica

Nadere informatie

Speurtocht Wandelen met Licht. Naam leerling:...

Speurtocht Wandelen met Licht. Naam leerling:... Zaal 3 Speurtocht Wandelen met Licht Naam leerling:... Zaal 3 Brillen Loop de trap op achter het anatomisch theater (het grote houten bouwwerk) en ga door de glazen deuren zaal 2 in. Ga in zaal 2 de trap

Nadere informatie

De werking van het oog

De werking van het oog Een brilafwijking komt door een afwijkende vorm van het oog waardoor het beeld dat het oog binnenkomt niet precies op het netvlies valt. Hierdoor ontstaat een onscherp beeld. In deze folder kunt u meer

Nadere informatie

Voorbereiding toelatingsexamen arts/tandarts. Fysica: Licht als golf en als deeltje. 24 juli 2015. dr. Brenda Casteleyn

Voorbereiding toelatingsexamen arts/tandarts. Fysica: Licht als golf en als deeltje. 24 juli 2015. dr. Brenda Casteleyn Voorbereiding toelatingsexamen arts/tandarts Fysica: Licht als golf en als deeltje 24 juli 2015 dr. Brenda Casteleyn Met dank aan: Atheneum van Veurne (http://www.natuurdigitaal.be/geneeskunde/fysica/wiskunde/wiskunde.htm),

Nadere informatie

Een bril. Oogheelkunde. alle aandacht

Een bril. Oogheelkunde. alle aandacht Een bril Oogheelkunde alle aandacht De orthoptist heeft de ogen van uw kind onderzocht en geconstateerd dat uw kind een brekingsafwijking aan de ogen heeft. Een bril corrigeert de brekingsafwijking. In

Nadere informatie

FACULTEIT TECHNISCHE NATUURWETENSCHAPPEN Opleiding Technische Natuurkunde TENTAMEN

FACULTEIT TECHNISCHE NATUURWETENSCHAPPEN Opleiding Technische Natuurkunde TENTAMEN FACULTEIT TECHNISCHE NATUURWETENSCHAPPEN Opleiding Technische Natuurkunde Vak : Inleiding Optica (146012) Datum : 5 november 2010 Tijd : 8:45 uur 12.15 uur TENTAMEN Indien U een onderdeel van een vraagstuk

Nadere informatie

5.0 Licht 1 www.natuurkundecompact.nl

5.0 Licht 1 www.natuurkundecompact.nl 5.0 Licht 1 www.natuurkundecompact.nl 5.1 Zien 5.2 Schaduw 5.3 Spiegel 5.4 Kleur Ik zie, ik zie, wat jij niet ziet: - schaduwen; - beelden; - kleuren. 1 5.1 Zien www.natuurkundecompact.nl Oog Bij het waarnemen

Nadere informatie