2010-I. A heeft de coördinaten (4 a, 4a a 2 ). Vraag 1. Toon dit aan. Gelijkstellen: y= 4x x 2 A. y= ax



Vergelijkbare documenten
Eindexamen wiskunde B vwo I

Examen VWO. wiskunde B. tijdvak 1 dinsdag 25 mei uur. Bij dit examen hoort een uitwerkbijlage.

Eindexamen wiskunde B vwo I

2 1 e x. Vraag 1. Bereken exact voor welke x geldt: f (x) < 0,01. De vergelijking oplossen:

Examen VWO. wiskunde B. tijdvak 2 woensdag 22 juni uur. Bij dit examen hoort een uitwerkbijlage.

wiskunde B vwo 2017-I

Tentamen Wiskunde B CENTRALE COMMISSIE VOORTENTAMEN WISKUNDE. Datum: 16 januari uur Aantal opgaven: 5

Examen VWO. wiskunde B. tijdvak 1 maandag 15 mei 13:30-16:30 uur. Bij dit examen hoort een uitwerkbijlage.

Eindexamen wiskunde B vwo II

Tentamen Wiskunde B. Het gebruik van een mobiele telefoon of andere telecommunicatieapparatuur tijdens het tentamen

Uitwerkingen Mei Eindexamen VWO Wiskunde B. Nederlands Mathematisch Instituut Voor Onderwijs en Onderzoek

wiskunde B vwo 2016-I

wiskunde B vwo 2017-II

Examen VWO. wiskunde B. tijdvak 1 woensdag 18 mei uur. Bij dit examen hoort een uitwerkbijlage.

Eindexamen vwo wiskunde B 2014-I

wiskunde B Achter het correctievoorschrift is een aanvulling op het correctievoorschrift opgenomen.

Examen VWO. wiskunde B. tijdvak 1 woensdag 18 mei 13:30-16:30 uur. Bij dit examen hoort een uitwerkbijlage.

Eindexamen vwo wiskunde B 2013-I

Examen VWO. wiskunde B. tijdvak 1 woensdag 18 mei 13:30-16:30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO wiskunde B. tijdvak 2 woensdag 19 juni uur. Bij dit examen hoort een uitwerkbijlage.

Tentamen Wiskunde B. Het gebruik van een mobiele telefoon of andere telecommunicatieapparatuur tijdens het tentamen

2012 I Onafhankelijk van a

Examen VWO. wiskunde B. tijdvak 1 woensdag 13 mei uur. Bij dit examen hoort een uitwerkbijlage.

wiskunde B vwo 2015-II

4.0 Voorkennis. 1) A B AB met A 0 en B 0 B B. Rekenregels voor wortels: Voorbeeld 1: Voorbeeld 2: Willem-Jan van der Zanden

4.0 Voorkennis. 1) A B AB met A 0 en B 0 B B. Rekenregels voor wortels: Voorbeeld 1: Voorbeeld 2: Willem-Jan van der Zanden

Examen VWO. wiskunde B. tijdvak 2 woensdag 21 juni uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO. wiskunde B. tijdvak 2 woensdag 18 juni uur. Bij dit examen hoort een uitwerkbijlage.

Tentamen Wiskunde B. Het gebruik van een mobiele telefoon of andere telecommunicatieapparatuur tijdens het tentamen

14.0 Voorkennis. sin sin sin. Sinusregel: In elke ABC geldt de sinusregel:

Tentamen Wiskunde B. Het gebruik van een mobiele telefoon of andere telecommunicatieapparatuur tijdens het tentamen

Lijst van formules en verwijzingen naar definities/stellingen die in het examen vwo wiskunde B wordt opgenomen

wiskunde B bezem vwo 2018-I

Eindexamen vwo wiskunde B 2014-II

wiskunde B bezem vwo 2018-II

Tentamen Wiskunde B. Het gebruik van een mobiele telefoon of andere telecommunicatieapparatuur tijdens het tentamen

Achter het correctievoorschrift is een aanvulling op het correctievoorschrift opgenomen.

Centrale Commissie Voortentamen Wiskunde Uitwerkingen Voortentamen Wiskunde B 11 juni 2012

Verwijzingen naar definities en stellingen die bij een bewijs mogen worden gebruikt zonder nadere toelichting.

15.0 Voorkennis. Herhaling rekenregels voor differentiëren: (somregel) (productregel) (quotiëntregel) n( x) ( n( x))

Examen VWO. tijdvak 2 woensdag 20 juni uur. Bij dit examen hoort een uitwerkbijlage.

P is nu het punt waarvan de x-coördinaat gelijk is aan die van het punt X en waarvan de y-coördinaat gelijk is aan AB (inclusief het teken).

Eindexamen wiskunde B1-2 vwo 2007-II

Examen VWO wiskunde B. tijdvak 1 woensdag 22 mei uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO. wiskunde B1,2. tijdvak 2 woensdag 20 juni uur. Bij dit examen hoort een uitwerkbijlage.

2010-II bij vraag 1. Vooraf: De stelling van de constante (omtreks)hoek.

Eindexamen wiskunde B 1-2 vwo I

Een symmetrische gebroken functie

Eindexamen vwo wiskunde B pilot 2014-I

Voorbereidend Wetenschappelijk Onderwijs Tijdvak 2 Woensdag 20 juni uur

Examen VWO. wiskunde B1,2. tijdvak 1 dinsdag 2 juni uur. Bij dit examen hoort een uitwerkbijlage.

wiskunde B vwo 2016-II

Examen VWO. wiskunde B. tijdvak 2 donderdag 23 juni uur. Bij dit examen hoort een uitwerkbijlage.

De twee schepen komen niet precies op hetzelfde moment in S aan.

Achter het correctievoorschrift is een aanvulling op het correctievoorschrift opgenomen.

Eindexamen wiskunde B1-2 vwo I

Vlakke meetkunde. Verwijzingen naar definities en stellingen die bij een bewijs mogen worden gebruikt zonder nadere toelichting.

Achter het correctievoorschrift is een aanvulling op het correctievoorschrift opgenomen.

Achter het correctievoorschrift is een aanvulling op het correctievoorschrift opgenomen.

Examen HAVO. Wiskunde B1,2 (nieuwe stijl)

Examen VWO. wiskunde B (pilot) tijdvak 2 woensdag 18 juni uur. Achter dit examen is een erratum opgenomen.

Examen VWO. wiskunde B (pilot) tijdvak 2 woensdag 18 juni uur

16.0 Voorkennis. Voorbeeld 1: Los op in 2x + 3i = 5x + 6i -3x = 3i x = -i

Overzicht eigenschappen en formules meetkunde

IJkingstoets september 2015: statistisch rapport

Eerste en derdegraadsfunctie

IJkingstoets september 2015: statistisch rapport

IJkingstoets september 2015: statistisch rapport

Paragraaf 11.0 : Voorkennis

Tentamen Wiskunde B CENTRALE COMMISSIE VOORTENTAMEN WISKUNDE. Datum: 19 december Aantal opgaven: 5

Hoofdstuk 4: Meetkunde

Examen HAVO. wiskunde B. tijdvak 2 woensdag 18 juni uur. Bij dit examen hoort een uitwerkbijlage.

wiskunde B vwo 2017-I

d. Met de dy/dx knop vind je dat op tijdstip t =2π 6,28 het water daalt met snelheid van 0,55 m/uur. Dat is hetzelfde als 0,917 cm per minuut.

Bal in de sloot. Hierbij zijn x en f ( x ) in centimeters. Zie figuur 2.

12.1 Omtrekshoeken en middelpuntshoeken [1]

15.1 Oppervlakten en afstanden bij grafieken [1]

Oefenexamen 2 H1 t/m H13.2 uitwerkingen. A. Smit BSc

Eindexamen wiskunde b 1-2 havo II

Examen HAVO. wiskunde B (pilot) tijdvak 2 woensdag 22 juni uur

wiskunde B pilot vwo 2017-I

Vlaamse Wiskunde Olympiade : tweede ronde

Ook de volledige spiraal van de stroken van lengte 1, 3, 5,, 99 past precies in een rechthoek.

Eindexamen vwo wiskunde B pilot 2013-I

8.0 Voorkennis. Voorbeeld 1: Bereken het snijpunt van 3x + 2y = 6 en -2x + y = 3

wiskunde B pilot vwo 2017-II

OEFENPROEFWERK VWO B DEEL 3

Antwoordmodel - Vlakke figuren

Correctievoorschrift VWO

sin( α + π) = sin( α) O (sin( x ) cos( x )) = sin ( x ) 2sin( x )cos( x ) + cos ( x ) = sin ( x ) + cos ( x ) 2sin( x )cos( x ) = 1 2sin( x )cos( x )

De vergelijking van Antoine

Examen VWO. wiskunde B. tijdvak 2 woensdag 19 juni uur. Bij dit examen hoort een uitwerkbijlage.

Uitwerkingen tentamen Wiskunde B 16 januari 2015

Voorbeeldtentamen Wiskunde B

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: goniometrie en meetkunde. 22 juli dr. Brenda Casteleyn

Eindexamen vwo wiskunde B pilot II

Examen VWO. wiskunde B (pilot) tijdvak 2 woensdag 20 juni uur. Bij dit examen hoort een uitwerkbijlage.

Eindexamen wiskunde B1-2 havo 2002-II

Examen VWO. wiskunde B (pilot) tijdvak 2 woensdag 21 juni uur

Samenvatting VWO wiskunde B H04 Meetkunde

Transcriptie:

00-I De parabool met vergelijking y = 4x x en de x-as sluiten een vlakdeel V in. De lijn y = ax (met 0 a < 4) snijdt de parabool in de oorsprong en in punt. Zie de figuur. y= 4x x y= ax heeft de coördinaten (4 a, 4a a ). Vraag. Toon dit aan. Gelijkstellen:

00-I De parabool met vergelijking y = 4x x en de x-as sluiten een vlakdeel V in. De lijn y = ax (met 0 a < 4) snijdt de parabool in de oorsprong en in punt. Zie de figuur. y= 4x x y= ax heeft de coördinaten (4 a, 4a a ). Vraag. Toon dit aan. Gelijkstellen: 4x x = a x op 0 herleiden:

00-I De parabool met vergelijking y = 4x x en de x-as sluiten een vlakdeel V in. De lijn y = ax (met 0 a < 4) snijdt de parabool in de oorsprong en in punt. Zie de figuur. y= 4x x y= ax heeft de coördinaten (4 a, 4a a ). Vraag. Toon dit aan. Gelijkstellen: 4x x = a x op 0 herleiden: x + a x 4x = 0 dus:

00-I De parabool met vergelijking y = 4x x en de x-as sluiten een vlakdeel V in. De lijn y = ax (met 0 a < 4) snijdt de parabool in de oorsprong en in punt. Zie de figuur. y= 4x x y= ax heeft de coördinaten (4 a, 4a a ). Vraag. Toon dit aan. Gelijkstellen: 4x x = a x op 0 herleiden: x + a x 4x = 0 dus: x ( ) = 0

00-I De parabool met vergelijking y = 4x x en de x-as sluiten een vlakdeel V in. De lijn y = ax (met 0 a < 4) snijdt de parabool in de oorsprong en in punt. Zie de figuur. y= 4x x y= ax heeft de coördinaten (4 a, 4a a ). Vraag. Toon dit aan. Gelijkstellen: 4x x = a x op 0 herleiden: x + a x 4x = 0 dus: x (x + a 4) = 0 x = 0 weten we al, de andere oplossing is:

00-I De parabool met vergelijking y = 4x x en de x-as sluiten een vlakdeel V in. De lijn y = ax (met 0 a < 4) snijdt de parabool in de oorsprong en in punt. Zie de figuur. y= 4x x y= ax heeft de coördinaten (4 a, 4a a ). Vraag. Toon dit aan. Gelijkstellen: 4x x = a x op 0 herleiden: x + a x 4x = 0 dus: x (x + a 4) = 0 x = 0 weten we al, de andere oplossing is x =

00-I De parabool met vergelijking y = 4x x en de x-as sluiten een vlakdeel V in. De lijn y = ax (met 0 a < 4) snijdt de parabool in de oorsprong en in punt. Zie de figuur. y= 4x x y= ax heeft de coördinaten (4 a, 4a a ). Vraag. Toon dit aan. Gelijkstellen: 4x x = a x op 0 herleiden: x + a x 4x = 0 dus: x (x + a 4) = 0 x = 0 weten we al, de andere oplossing is x = 4 a ; de y coördinaat volgt uit y = a x

00-I De parabool met vergelijking y = 4x x en de x-as sluiten een vlakdeel V in. De lijn y = ax (met 0 a < 4) snijdt de parabool in de oorsprong en in punt. Zie de figuur. y= 4x x y= ax heeft de coördinaten (4 a, 4a a ). Vraag. Toon dit aan. Gelijkstellen: 4x x = a x op 0 herleiden: x + a x 4x = 0 dus: x (x + a 4) = 0 x = 0 weten we al, de andere oplossing is x = 4 a ; de y coördinaat volgt uit y = a x dus: y = a (4 a) = 4a a.

00-I De parabool met vergelijking y = 4x x en de x-as sluiten een vlakdeel V in. De lijn y = ax (met 0 a < 4) snijdt de parabool in de oorsprong en in punt. Zie de figuur. y= 4x x y= ax heeft de coördinaten (4 a, 4a a ). Vraag. Toon dit aan. Gelijkstellen: 4x x = a x op 0 herleiden: x + a x 4x = 0 dus: x (x + a 4) = 0 x = 0 weten we al, de andere oplossing is x = 4 a ; de y coördinaat volgt uit y = a x dus: y = a (4 a) = 4a a. Het deel van V boven heeft oppervlakte: 6 (4 a) 3 Vraag. Toon dit aan. Integraal:

00-I De parabool met vergelijking y = 4x x en de x-as sluiten een vlakdeel V in. De lijn y = ax (met 0 a < 4) snijdt de parabool in de oorsprong en in punt. Zie de figuur. y= 4x x y= ax heeft de coördinaten (4 a, 4a a ). Vraag. Toon dit aan. Gelijkstellen: 4x x = a x op 0 herleiden: x + a x 4x = 0 dus: x (x + a 4) = 0 x = 0 weten we al, de andere oplossing is x = 4 a ; de y coördinaat volgt uit y = a x dus: y = a (4 a) = 4a a. Het deel van V boven heeft oppervlakte: 6 (4 a) 3 Vraag. Toon dit aan. Integraal: 4a pp. ( 4 x x a x) dx 0

00-I De parabool met vergelijking y = 4x x en de x-as sluiten een vlakdeel V in. De lijn y = ax (met 0 a < 4) snijdt de parabool in de oorsprong en in punt. Zie de figuur. y= 4x x y= ax heeft de coördinaten (4 a, 4a a ). Vraag. Toon dit aan. Gelijkstellen: 4x x = a x op 0 herleiden: x + a x 4x = 0 dus: x (x + a 4) = 0 x = 0 weten we al, de andere oplossing is x = 4 a ; de y coördinaat volgt uit y = a x dus: y = a (4 a) = 4a a. Het deel van V boven heeft oppervlakte: 6 (4 a) 3 Vraag. Toon dit aan. Integraal: 4a 4a d 0 0 pp. (4 x x a x) x ( x (4 a) x) dx

00-I De parabool met vergelijking y = 4x x en de x-as sluiten een vlakdeel V in. De lijn y = ax (met 0 a < 4) snijdt de parabool in de oorsprong en in punt. Zie de figuur. y= 4x x y= ax heeft de coördinaten (4 a, 4a a ). Vraag. Toon dit aan. Gelijkstellen: 4x x = a x op 0 herleiden: x + a x 4x = 0 dus: x (x + a 4) = 0 x = 0 weten we al, de andere oplossing is x = 4 a ; de y coördinaat volgt uit y = a x dus: y = a (4 a) = 4a a. Het deel van V boven heeft oppervlakte: 6 (4 a) 3 Vraag. Toon dit aan. Integraal: 4a 4a 3 ( 0 x 0 3 pp. (4 x x a x) dx ( x (4 a) x) d x 4 a) x (4 a) 0

00-I De parabool met vergelijking y = 4x x en de x-as sluiten een vlakdeel V in. De lijn y = ax (met 0 a < 4) snijdt de parabool in de oorsprong en in punt. Zie de figuur. y= 4x x y= ax heeft de coördinaten (4 a, 4a a ). Vraag. Toon dit aan. Gelijkstellen: 4x x = a x op 0 herleiden: x + a x 4x = 0 dus: x (x + a 4) = 0 x = 0 weten we al, de andere oplossing is x = 4 a ; de y coördinaat volgt uit y = a x dus: y = a (4 a) = 4a a. Het deel van V boven heeft oppervlakte: 6 (4 a) 3 Vraag. Toon dit aan. Integraal: 4a 4 (4 ) a a 3 0 0 3 0 pp. (4 x x a x ) dx ( x (4 a ) x ) dx x (4 a ) x 3 3 (4 a) (4 a) (4 a) 0

00-I De parabool met vergelijking y = 4x x en de x-as sluiten een vlakdeel V in. De lijn y = ax (met 0 a < 4) snijdt de parabool in de oorsprong en in punt. Zie de figuur. y= 4x x y= ax heeft de coördinaten (4 a, 4a a ). Vraag. Toon dit aan. Gelijkstellen: 4x x = a x op 0 herleiden: x + a x 4x = 0 dus: x (x + a 4) = 0 x = 0 weten we al, de andere oplossing is x = 4 a ; de y coördinaat volgt uit y = a x dus: y = a (4 a) = 4a a. Het deel van V boven heeft oppervlakte: 6 (4 a) 3 Vraag. Toon dit aan. Integraal: 4a 4 (4 ) a a 3 0 0 3 0 pp. (4 x x a x ) dx ( x (4 a ) x ) dx x (4 a ) x 3 3 3 3 a )(4 ) 3 3 6 6 6 (4 a ) (4 a ) (4 ) 0 ( )(4 a) ( a (4 a) 3

00-I De parabool met vergelijking y = 4x x en de x-as sluiten een vlakdeel V in. De lijn y = ax (met 0 a < 4) snijdt de parabool in de oorsprong en in punt. Zie de figuur. y= 4x x y= ax heeft de coördinaten (4 a, 4a a ). Vraag 3. Bereken exact voor welke waarde van a de lijn y = ax het gebied V verdeelt in twee delen met gelijke oppervlakte. Eerst de oppervlakte van V berekenen: 4

00-I De parabool met vergelijking y = 4x x en de x-as sluiten een vlakdeel V in. De lijn y = ax (met 0 a < 4) snijdt de parabool in de oorsprong en in punt. Zie de figuur. y= 4x x y= ax heeft de coördinaten (4 a, 4a a ). Vraag 3. Bereken exact voor welke waarde van a de lijn y = ax het gebied V verdeelt in twee delen met gelijke oppervlakte. 4 Eerst de oppervlakte van V berekenen: 4 0 (4 x x ) dx

00-I De parabool met vergelijking y = 4x x en de x-as sluiten een vlakdeel V in. De lijn y = ax (met 0 a < 4) snijdt de parabool in de oorsprong en in punt. Zie de figuur. y= 4x x y= ax heeft de coördinaten (4 a, 4a a ). Vraag 3. Bereken exact voor welke waarde van a de lijn y = ax het gebied V verdeelt in twee delen met gelijke oppervlakte. 4 Eerst de oppervlakte van V berekenen: 4 4 3 (4 x x ) dx x x 0 3 0 3 6 64 3 3

00-I De parabool met vergelijking y = 4x x en de x-as sluiten een vlakdeel V in. De lijn y = ax (met 0 a < 4) snijdt de parabool in de oorsprong en in punt. Zie de figuur. y= 4x x y= ax heeft de coördinaten (4 a, 4a a ). Vraag 3. Bereken exact voor welke waarde van a de lijn y = ax het gebied V verdeelt in twee delen met gelijke oppervlakte. Eerst de oppervlakte van V berekenen: De oppervlakte boven, in de vorige vraag berekend: 4 4 3 (4 x x ) dx x x 0 3 0 3 6 64 6 (4 a) 3 3 3 is de helft hiervan, dus:

00-I De parabool met vergelijking y = 4x x en de x-as sluiten een vlakdeel V in. De lijn y = ax (met 0 a < 4) snijdt de parabool in de oorsprong en in punt. Zie de figuur. y= 4x x y= ax heeft de coördinaten (4 a, 4a a ). Vraag 3. Bereken exact voor welke waarde van a de lijn y = ax het gebied V verdeelt in twee delen met gelijke oppervlakte. Eerst de oppervlakte van V berekenen: De oppervlakte boven, in de vorige vraag berekend: 4 4 3 x x dx x x 0 3 0 3 (4 ) 6 64 6 (4 a) 3 3 3 is de helft hiervan, dus: 3 (4 a) 3 3 6 3 6 Hieruit volgt:

00-I De parabool met vergelijking y = 4x x en de x-as sluiten een vlakdeel V in. De lijn y = ax (met 0 a < 4) snijdt de parabool in de oorsprong en in punt. Zie de figuur. y= 4x x y= ax heeft de coördinaten (4 a, 4a a ). Vraag 3. Bereken exact voor welke waarde van a de lijn y = ax het gebied V verdeelt in twee delen met gelijke oppervlakte. Eerst de oppervlakte van V berekenen: De oppervlakte boven, in de vorige vraag berekend: 4 4 3 x x dx x x 0 3 0 3 (4 ) 6 64 6 (4 a) 3 3 3 is de helft hiervan, dus: 3 (4 a) 3 3 6 3 6 Hieruit volgt: 3 (4a) 3 dus

00-I De parabool met vergelijking y = 4x x en de x-as sluiten een vlakdeel V in. De lijn y = ax (met 0 a < 4) snijdt de parabool in de oorsprong en in punt. Zie de figuur. y= 4x x y= ax heeft de coördinaten (4 a, 4a a ). Vraag 3. Bereken exact voor welke waarde van a de lijn y = ax het gebied V verdeelt in twee delen met gelijke oppervlakte. Eerst de oppervlakte van V berekenen: De oppervlakte boven, in de vorige vraag berekend: 4 4 3 x x dx x x 0 3 0 3 (4 ) 6 64 6 (4 a) 3 3 3 is de helft hiervan, dus: 3 (4 a) 3 3 6 3 6 Hieruit volgt: 3 3 3 (4 a) 3 dus 4 a 3 en a 4 3

00-I vraag 4 t/m 8 Goniometrie. Vooraf drie definities en twee stellingen, in een rechthoekige driehoek: sin α o s overstaande zijde schuine cosα a s aanliggende zijde schuine s o o overstaande tan α zijde a aanliggende De stelling van Pythagoras: α a (sin α) (cos α) korter genoteerd als: sin α cos α = Formule voor de tangens: sin α cosα tan α

00-I vraag 4 t/m 8 Een bepaalde onderzetter bestaat uit staven die onderling kunnen scharnieren. Deze onderzetter heeft 9 gelijke ruiten. In een wiskundig model van deze onderzetter worden de breedte en de dikte van de staven verwaarloosd. Het meest linkse scharnierpunt van het model noemen we P, het scharnierpunt linksboven noemen we Q en het midden van de middelste ruit noemen we. P Q De grootte van de binnenhoek bij P in radialen noemen we α. We kiezen lengte voor de zijde van een ruit. De lengte l en de breedte b van het model zijn functies van α, met 0 α π. Vraag 4. Toon aan dat er geldt: l 0cos( α) en b6sin( α)

00-I vraag 4 t/m 8 Een bepaalde onderzetter bestaat uit staven die onderling kunnen scharnieren. Deze onderzetter heeft 9 gelijke ruiten. In een wiskundig model van deze onderzetter worden de breedte en de dikte van de staven verwaarloosd. Het meest linkse scharnierpunt van het model noemen we P, het scharnierpunt linksboven noemen we Q en het midden van de middelste ruit noemen we. P Q De grootte van de binnenhoek bij P in radialen noemen we α. We kiezen lengte voor de zijde van een ruit. De lengte l en de breedte b van het model zijn functies van α, met 0 α π. Vraag 4. Toon aan dat er geldt: b l 0cos( α) en 6sin( α) Hiernaast is een driehoekje getekend met zijden x en y. Er staan 5=0 van zulke driehoekjes in de x-richting en 3=6 in de y-richting. Er geldt dus: y ½a x

00-I vraag 4 t/m 8 Een bepaalde onderzetter bestaat uit staven die onderling kunnen scharnieren. Deze onderzetter heeft 9 gelijke ruiten. In een wiskundig model van deze onderzetter worden de breedte en de dikte van de staven verwaarloosd. Het meest linkse scharnierpunt van het model noemen we P, het scharnierpunt linksboven noemen we Q en het midden van de middelste ruit noemen we. P Q De grootte van de binnenhoek bij P in radialen noemen we α. We kiezen lengte voor de zijde van een ruit. De lengte l en de breedte b van het model zijn functies van α, met 0 α π. Vraag 4. Toon aan dat er geldt: b l 0cos( α) en 6sin( α) Hiernaast is een driehoekje getekend met zijden x en y. Er staan 5=0 van zulke driehoekjes in de x-richting en 3=6 in de y-richting. Er geldt dus:... cos( α).. dus x...... sin( α).. dus y... ½a x y

00-I vraag 4 t/m 8 Een bepaalde onderzetter bestaat uit staven die onderling kunnen scharnieren. Deze onderzetter heeft 9 gelijke ruiten. In een wiskundig model van deze onderzetter worden de breedte en de dikte van de staven verwaarloosd. Het meest linkse scharnierpunt van het model noemen we P, het scharnierpunt linksboven noemen we Q en het midden van de middelste ruit noemen we. P Q De grootte van de binnenhoek bij P in radialen noemen we α. We kiezen lengte voor de zijde van een ruit. De lengte l en de breedte b van het model zijn functies van α, met 0 α π. Vraag 4. Toon aan dat er geldt: b l 0cos( α) en 6sin( α) Hiernaast is een driehoekje getekend met zijden x en y. Er staan 5=0 van zulke driehoekjes in de x-richting en 3=6 in de y-richting. Er geldt dus: x cos( α) x dus x cos( α) en y sin( α) y dus y sin( α) en l b ½a x y

00-I vraag 4 t/m 8 Een bepaalde onderzetter bestaat uit staven die onderling kunnen scharnieren. Deze onderzetter heeft 9 gelijke ruiten. In een wiskundig model van deze onderzetter worden de breedte en de dikte van de staven verwaarloosd. Het meest linkse scharnierpunt van het model noemen we P, het scharnierpunt linksboven noemen we Q en het midden van de middelste ruit noemen we. P Q De grootte van de binnenhoek bij P in radialen noemen we α. We kiezen lengte voor de zijde van een ruit. De lengte l en de breedte b van het model zijn functies van α, met 0 α π. Vraag 4. Toon aan dat er geldt: b l 0cos( α) en 6sin( α) Hiernaast is een driehoekje getekend met zijden x en y. Er staan 5=0 van zulke driehoekjes in de x-richting en 3=6 in de y-richting. Er geldt dus: x cos( α) x dus x cos( α) en l 0cos( α) y sin( α) y dus y sin( α) en b 6sin( α) ½a x y

00-I vraag 4 t/m 8 Er geldt: l 0cos( α) en b6sin( α) Q Vraag 5. Gegeven is: l = 8. Bereken b exact. P Dus: 0cos( α) 8 en

00-I vraag 4 t/m 8 Er geldt: l 0cos( α) en b6sin( α) Q Vraag 5. Gegeven is: l = 8. Bereken b exact. 8 4 Dus: 0cos( α) 8 en cos( α) 0 5 m sin( α) uit te rekenen gebruiken we de stelling van Pythagoras, in dit geval dus: P

00-I vraag 4 t/m 8 Er geldt: l 0cos( α) en b6sin( α) Q Vraag 5. Gegeven is: l = 8. Bereken b exact. 8 4 Dus: 0cos( α) 8 en cos( α) 0 5 m sin( α) uit te rekenen gebruiken we de stelling van Pythagoras, in dit geval dus: sin ( α)+cos ( α)= sin ( α) P

00-I vraag 4 t/m 8 Er geldt: l 0cos( α) en b6sin( α) Q Vraag 5. Gegeven is: l = 8. Bereken b exact. 8 4 Dus: 0cos( α) 8 en cos( α) 0 5 m sin( α) uit te rekenen gebruiken we de stelling van Pythagoras, in dit geval dus: P 4 9 sin ( α)+ cos ( α)= sin ( α) cos ( α)= ( ) dus 5 5

00-I vraag 4 t/m 8 Er geldt: l 0cos( α) en b6sin( α) Q Vraag 5. Gegeven is: l = 8. Bereken b exact. 8 4 Dus: 0cos( α) 8 en cos( α) 0 5 m sin( α) uit te rekenen gebruiken we de stelling van Pythagoras, in dit geval dus: P 4 9 sin ( α)+ cos ( α)= sin ( α) cos ( α)= ( ) dus sin( α) 5 5 3 5

00-I vraag 4 t/m 8 Er geldt: l 0cos( α) en b6sin( α) Q Vraag 5. Gegeven is: l = 8. Bereken b exact. 8 4 Dus: 0cos( α) 8 en cos( α) 0 5 m sin( α) uit te rekenen gebruiken we de stelling van Pythagoras, in dit geval dus: P sin ( α)+ cos ( α)= sin ( α) cos ( α)= ( 4 ) 9 dus sin( α) 3 5 5 5 Vraag 6. Bereken met behulp van differentiëren voor welke waarde van α de breedte b even snel toeneemt als de lengte l afneemt. Rond je antwoord af op twee decimalen. de afgeleide van bis: b de afgeleide van lis: l

00-I vraag 4 t/m 8 Er geldt: l 0cos( α) en b6sin( α) Q Vraag 5. Gegeven is: l = 8. Bereken b exact. 8 4 Dus: 0cos( α) 8 en cos( α) 0 5 m sin( α) uit te rekenen gebruiken we de stelling van Pythagoras, in dit geval dus: P sin ( α)+ cos ( α)= sin ( α) cos ( α)= ( 4 ) 9 dus sin( α) 3 5 5 5 Vraag 6. Bereken met behulp van differentiëren voor welke waarde van α de breedte b even snel toeneemt als de lengte l afneemt. Rond je antwoord af op twee decimalen. de afgeleide van bis: b de afgeleide van lis: l Vergeet hier het minteken

00-I vraag 4 t/m 8 Er geldt: l 0cos( α) en b6sin( α) Q Vraag 5. Gegeven is: l = 8. Bereken b exact. 8 4 Dus: 0cos( α) 8 en cos( α) 0 5 m sin( α) uit te rekenen gebruiken we de stelling van Pythagoras, in dit geval dus: P sin ( α)+ cos ( α)= sin ( α) cos ( α)= ( 4 ) 9 dus sin( α) 3 5 5 5 Vraag 6. Bereken met behulp van differentiëren voor welke waarde van α de breedte b even snel toeneemt als de lengte l afneemt. Rond je antwoord af op twee decimalen. de afgeleide van bis: b 3cos( α) de afgeleide van l is : l 5sin( α) gelijkstellen: kettingregel : 6 cos( α) kettingregel : 0 sin( α)

00-I vraag 4 t/m 8 Er geldt: l 0cos( α) en b6sin( α) Q Vraag 5. Gegeven is: l = 8. Bereken b exact. 8 4 Dus: 0cos( α) 8 en cos( α) 0 5 m sin( α) uit te rekenen gebruiken we de stelling van Pythagoras, in dit geval dus: P sin ( α)+ cos ( α)= sin ( α) cos ( α)= ( 4 ) 9 dus sin( α) 3 5 5 5 Vraag 6. Bereken met behulp van differentiëren voor welke waarde van α de breedte b even snel toeneemt als de lengte l afneemt. Rond je antwoord af op twee decimalen. plossen met intersect 3cos(X)=5sin(X) of via de tangens de afgeleide van bis: b 3cos( α) de afgeleide van l is: l5sin( α) sin gelijkstellen : 3cos( α) 5 ( α)

00-I vraag 4 t/m 8 Er geldt: l 0cos( α) en b6sin( α) Q Vraag 5. Gegeven is: l = 8. Bereken b exact. 8 4 Dus: 0cos( α) 8 en cos( α) 0 5 m sin( α) uit te rekenen gebruiken we de stelling van Pythagoras, in dit geval dus: P sin ( α)+ cos ( α)= sin ( α) cos ( α)= ( 4 ) 9 dus sin( α) 3 5 5 5 Vraag 6. Bereken met behulp van differentiëren voor welke waarde van α de breedte b even snel toeneemt als de lengte l afneemt. Rond je antwoord af op twee decimalen. plossen met intersect 3cos(X)=5sin(X) of via de tangens ( delen door cos( α) ) geeft de afgeleide van bis: b 3cos( α) de afgeleide van l is: l5sin( α) gelijkstellen: 3cos( α) 5sin( α) sin( α) 3 tan( α) 0, 6 met de oplossing: α,08 radialen! cos( α) 5

00-I vraag 4 t/m 8 Q Vraag 7. Toon aan: Q 4 5sin ( α) P plossing: stapjes in de x-richting = 3 stapjes in de y-richting = 3sin( α) cos( α)

00-I vraag 4 t/m 8 Q Vraag 7. Toon aan: Q 4 5sin ( α) P plossing: stapjes in de x-richting = 3 stapjes in de y-richting = cos( α) 3sin( α) Gebruik Pythagoras in de rode rechthoek: 3sin( α) cos( α)

00-I vraag 4 t/m 8 Q Vraag 7. Toon aan: Q 4 5sin ( α) P plossing: stapjes in de x-richting = 3 stapjes in de y-richting = cos( α) 3sin( α) Gebruik Pythagoras in de rode rechthoek: Q (3sin( α)) ( cos( α)) 9sin ( α) 4 cos ( α) 3sin( α) cos( α)

00-I vraag 4 t/m 8 Q Vraag 7. Toon aan: Q 4 5sin ( α) P plossing: stapjes in de x-richting = 3 stapjes in de y-richting = cos( α) 3sin( α) Gebruik Pythagoras in de rode rechthoek: Q (3sin( α)) (cos( α)) 9sin ( α) 4cos ( α) 3sin( α) dus: Q 9sin ( α) 4( sin ( α)) 9sin ( α) 4 4sin ( α) sin + cos = cos( α)

00-I vraag 4 t/m 8 Q Vraag 7. Toon aan: Q 4 5sin ( α) P plossing: stapjes in de x-richting = 3 stapjes in de y-richting = cos( α) 3sin( α) Gebruik Pythagoras in de rode rechthoek: Q (3sin( α)) (cos( α)) 9sin ( α) 4cos ( α) 3sin( α) dus: Q 9sin ( α) 4( sin ( α)) 9sin ( α) 4 4sin ( α) dus: Q 4 5sin ( α) cos( α)

00-I vraag 4 t/m 8 Q Uit de vorige vraag: x Q 4 5sin ( α) en cos( α) Het model van de onderzetter kan zodanig gescharnierd worden dat zes van de acht buitenste scharnierpunten op één cirkel met middelpunt liggen. Vraag 8. Bereken voor welke waarde van α dit het geval is. (afronden op decimalen) P

00-I vraag 4 t/m 8 Q Uit de vorige vraag: x Q 4 5sin ( α) en cos( α) Het model van de onderzetter kan zodanig gescharnierd worden dat zes van de acht buitenste scharnierpunten op één cirkel met middelpunt liggen. Vraag 8. Bereken voor welke waarde van α dit het geval is. P en Q liggen op een cirkel dus moet gelden: P = Q P

00-I vraag 4 t/m 8 Q Uit de vorige vraag: x Q 4 5sin ( α) en cos( α) Het model van de onderzetter kan zodanig gescharnierd worden dat zes van de acht buitenste scharnierpunten op één cirkel met middelpunt liggen. Vraag 8. Bereken voor welke waarde van α dit het geval is. P en Q liggen op een cirkel dus moet gelden: P = Q P ftewel : 5cos( α) 4 5sin ( α)

00-I vraag 4 t/m 8 Q Uit de vorige vraag: x Q 4 5sin ( α) en cos( α) Het model van de onderzetter kan zodanig gescharnierd worden dat zes van de acht buitenste scharnierpunten op één cirkel met middelpunt liggen. Vraag 8. Bereken voor welke waarde van α dit het geval is. P en Q liggen op een cirkel dus moet gelden: P = Q P ftewel: 5cos( α) 4 5sin ( α) Kwadrateren:

00-I vraag 4 t/m 8 Q Uit de vorige vraag: x Q 4 5sin ( α) en cos( α) Het model van de onderzetter kan zodanig gescharnierd worden dat zes van de acht buitenste scharnierpunten op één cirkel met middelpunt liggen. Vraag 8. Bereken voor welke waarde van α dit het geval is. P en Q liggen op een cirkel dus moet gelden: P = Q P ftewel: 5cos( α) 4 5sin ( α) Kwadrateren: 5cos ( α) 4 5sin ( α) Pythagoras:

00-I vraag 4 t/m 8 Q Uit de vorige vraag: x Q 4 5sin ( α) en cos( α) Het model van de onderzetter kan zodanig gescharnierd worden dat zes van de acht buitenste scharnierpunten op één cirkel met middelpunt liggen. Vraag 8. Bereken voor welke waarde van α dit het geval is. P en Q liggen op een cirkel dus moet gelden: P = Q P ftewel: 5cos( α) 4 5sin ( α) Kwadrateren: 5cos ( α) 4 5sin ( α) Pythagoras: 5 ( sin ( α) ) 4 5sin ( α)

00-I vraag 4 t/m 8 Q Uit de vorige vraag: x Q 4 5sin ( α) en cos( α) Het model van de onderzetter kan zodanig gescharnierd worden dat zes van de acht buitenste scharnierpunten op één cirkel met middelpunt liggen. Vraag 8. Bereken voor welke waarde van α dit het geval is. P en Q liggen op een cirkel dus moet gelden: P = Q P ftewel: 5cos( α) 4 5sin ( α) Kwadrateren: 5cos ( α) 4 5sin ( α) Pythagoras: 5 ( sin ( α)) 4 5sin ( α) 30sin ( α) sin( α) 0,7

00-I vraag 4 t/m 8 Q Uit de vorige vraag: x Q 4 5sin ( α) en cos( α) Het model van de onderzetter kan zodanig gescharnierd worden dat zes van de acht buitenste scharnierpunten op één cirkel met middelpunt liggen. Vraag 8. Bereken voor welke waarde van α dit het geval is. P en Q liggen op een cirkel dus moet gelden: P = Q P ftewel: 5cos( α) 4 5sin ( α) Kwadrateren: 5cos ( α) 4 5sin ( α) Pythagoras: 5 ( sin ( α)) 4 5sin ( α) 30sin ( α) sin( α) 0,7 0,5α sin ( 0,7) antwoord: α,99 ( rad) [ mag ook met GR, bijvoorbeeld via intersect ]

00-I Cirkel en rechthoek C Gegeven is een cirkel c met middelpunt M en straal 3 cm. p c ligt een vast punt. We bekijken rechthoeken met hoekpunten, B, C en D waarvan en D op c liggen en waarvan zijde BC cirkel c raakt. Het raakpunt van de rechthoek met de cirkel is het midden E van BC. Er zijn vier van dergelijke rechthoeken waarvan de zijden BC en D 4 cm lang zijn. D M E B Vraag 9. Teken alle mogelijke punten E waarbij aan deze eisen is voldaan. Licht je werkwijze toe.

00-I Cirkel en rechthoek C Gegeven is een cirkel c met middelpunt M en straal 3 cm. p c ligt een vast punt. We bekijken rechthoeken met hoekpunten, B, C en D waarvan en D op c liggen en waarvan zijde BC cirkel c raakt. Het raakpunt van de rechthoek met de cirkel is het midden E van BC. Er zijn vier van dergelijke rechthoeken waarvan de zijden BC en D 4 cm lang zijn. D M E B Vraag 9. Teken alle mogelijke punten E waarbij aan deze eisen is voldaan. Licht je werkwijze toe. E ligt op de middelloodlijn van D middelloodlijn

00-I Cirkel en rechthoek E C Gegeven is een cirkel c met middelpunt M en straal 3 cm. p c ligt een vast punt. We bekijken rechthoeken met hoekpunten, B, C en D waarvan en D op c liggen en waarvan zijde BC cirkel c raakt. Het raakpunt van de rechthoek met de cirkel is het midden E van BC. Er zijn vier van dergelijke rechthoeken waarvan de zijden BC en D 4 cm lang zijn. D M E B Vraag 9. Teken alle mogelijke punten E waarbij aan deze eisen is voldaan. Licht je werkwijze toe. E ligt op de middelloodlijn van D Cirkel D om het punt Middelloodlijn van nieuwe zijde D Geeft tweede punt E en roodgestippelde rechthoek middelloodlijnen

00-I Cirkel en rechthoek E C Gegeven is een cirkel c met middelpunt M en straal 3 cm. p c ligt een vast punt. We bekijken rechthoeken met hoekpunten, B, C en D waarvan en D op c liggen en waarvan zijde BC cirkel c raakt. Het raakpunt van de rechthoek met de cirkel is het midden E van BC. Er zijn vier van dergelijke rechthoeken waarvan de zijden BC en D 4 cm lang zijn. Vraag 9. Teken alle mogelijke punten E waarbij aan deze eisen is voldaan. Licht je werkwijze toe. D E E M E B E ligt op de middelloodlijn van D Cirkel D om het punt Middelloodlijn van nieuwe zijde D Geeft tweede punt E en roodgestippelde rechthoek an de andere kant van de twee rechthoeken snijden de middelloodlijnen de cirkel ook

00-I Cirkel en rechthoek C Gegeven is een cirkel c met middelpunt M en straal 3 cm. p c ligt een vast punt. We bekijken rechthoeken met hoekpunten, B, C en D waarvan en D op c liggen en waarvan zijde BC cirkel c raakt. Het raakpunt van de rechthoek met de cirkel is het midden E van BC. Er zijn vier van dergelijke rechthoeken waarvan de zijden BC en D 4 cm lang zijn. D E M B Vraag 9. Teken alle mogelijke punten E waarbij aan deze eisen is voldaan. Licht je werkwijze toe. E E ligt op de middelloodlijn van D Cirkel D om het punt Middelloodlijn van nieuwe zijde D Geeft tweede punt E en roodgestippelde rechthoek an de andere kant van de twee rechthoeken snijden de middelloodlijnen de cirkel ook Dat geeft nog eens twee rechthoeken (groen en blauw)

00-I Cirkel en rechthoek E C Gegeven is een cirkel c met middelpunt M en straal 3 cm. p c ligt een vast punt. We bekijken rechthoeken met hoekpunten, B, C en D waarvan en D op c liggen en waarvan zijde BC cirkel c raakt. Het raakpunt van de rechthoek met de cirkel is het midden E van BC. Er zijn vier van dergelijke rechthoeken waarvan de zijden BC en D 4 cm lang zijn. D E M E B Vraag 9. Teken alle mogelijke punten E waarbij aan deze eisen is voldaan. Licht je werkwijze toe. E E ligt op de middelloodlijn van D Cirkel D om het punt Middelloodlijn van nieuwe zijde D Geeft tweede punt E en roodgestippelde rechthoek an de andere kant van de twee rechthoeken snijden de middelloodlijnen de cirkel ook Dat geeft nog eens twee rechthoeken (groen en blauw) Er zijn dus 4 punten E. En vier verschillende oplossingen (4 rechthoeken die de cirkel raken).

00-I Cirkel en rechthoek C Vooraf de definitie van een parabool. De parabool p met brandpunt M en richtlijn BC is de verzameling van de punten P die gelijke afstand hebben tot M en lijn BC. M P Q p B

00-I Cirkel en rechthoek Vooraf de definitie van een parabool. D N C De parabool p met brandpunt M en richtlijn BC is de verzameling van de punten P die gelijke afstand hebben tot M en lijn BC. Bij een willekeurige rechthoek met hoekpunten, B, C en D waarvan en D op c liggen en waarvan zijde BC raakt aan c, wordt de parabool p getekend met brandpunt M en richtlijn de lijn BC. Het midden van CD noemen we N. Zie de figuur. M p E B Wanneer we D over de cirkel c bewegen, komt er een situatie waarbij N op p ligt. Vraag 0. Bewijs dat CMD = 90 o.

00-I Cirkel en rechthoek Vooraf de definitie van een parabool. D N C De parabool p met brandpunt M en richtlijn BC is de verzameling van de punten P die gelijke afstand hebben tot M en lijn BC. Bij een willekeurige rechthoek met hoekpunten, B, C en D waarvan en D op c liggen en waarvan zijde BC raakt aan c, wordt de parabool p getekend met brandpunt M en richtlijn de lijn BC. Het midden van CD noemen we N. Zie de figuur. M p E B Wanneer we D over de cirkel c bewegen, komt er een situatie waarbij N op p ligt. Vraag 0. Bewijs dat CMD = 90 o. Bewijs: N ligt op p dus NM = NC.

00-I Cirkel en rechthoek Vooraf de definitie van een parabool. D N C De parabool p met brandpunt M en richtlijn BC is de verzameling van de punten P die gelijke afstand hebben tot M en lijn BC. Bij een willekeurige rechthoek met hoekpunten, B, C en D waarvan en D op c liggen en waarvan zijde BC raakt aan c, wordt de parabool p getekend met brandpunt M en richtlijn de lijn BC. Het midden van CD noemen we N. Zie de figuur. M p E B Wanneer we D over de cirkel c bewegen, komt er een situatie waarbij N op p ligt. Vraag 0. Bewijs dat CMD = 90 o. Bewijs: N ligt op p dus NM = NC. Gegeven is verder dat ND = NC.

00-I Cirkel en rechthoek Vooraf de definitie van een parabool. D N C De parabool p met brandpunt M en richtlijn BC is de verzameling van de punten P die gelijke afstand hebben tot M en lijn BC. Bij een willekeurige rechthoek met hoekpunten, B, C en D waarvan en D op c liggen en waarvan zijde BC raakt aan c, wordt de parabool p getekend met brandpunt M en richtlijn de lijn BC. Het midden van CD noemen we N. Zie de figuur. M p E B Wanneer we D over de cirkel c bewegen, komt er een situatie waarbij N op p ligt. Vraag 0. Bewijs dat CMD = 90 o. Bewijs: N ligt op p dus NM = NC. Gegeven is verder dat ND = NC. Dus NM = ND = NC wat betekent, dat de cirkel door D, M en C, punt N als middelpunt heeft. DC is middellijn van deze cirkel.

00-I Cirkel en rechthoek Vooraf de definitie van een parabool. D N C De parabool p met brandpunt M en richtlijn BC is de verzameling van de punten P die gelijke afstand hebben tot M en lijn BC. Bij een willekeurige rechthoek met hoekpunten, B, C en D waarvan en D op c liggen en waarvan zijde BC raakt aan c, wordt de parabool p getekend met brandpunt M en richtlijn de lijn BC. Het midden van CD noemen we N. Zie de figuur. M p E B Wanneer we D over de cirkel c bewegen, komt er een situatie waarbij N op p ligt. Vraag 0. Bewijs dat CMD = 90 o. Bewijs: N ligt op p dus NM = NC. Gegeven is verder dat ND = NC. Dus NM = ND = NC wat betekent, dat de cirkel door D, M en C, punt N als middelpunt heeft. DC is middellijn van deze cirkel. En volgens de stelling van Thales is dus CMD = 90 o.

Voorbeeld van een vraagstuk met heel veel tekst: 00-I vraag -3 Lees eerst de tekst globaal door en pik er de getallen, variabelen en formules uit: hier met [ rood ] aangegeven. [ De uitwerking staat verderop ] ------------------------------------------------------------------------------------------ Een condensator is een elektrische component waarin je elektrische lading kunt opslaan. Iemand heeft een elektrisch circuit met één condensator gemaakt waarin geldt: als de lege condensator wordt opgeladen, neemt de condensatorspanning toe van 0 tot een limietspanning [horizontale asymptoot] volgens de formule t 000C U ( e ) Hierin is: U de condensatorspanning in volt, t de oplaadtijd in seconden en C de capaciteit van de condensator in farad. Een condensator met een capaciteit van 0,0 farad [C = 0,0] wordt in dit circuit opgeladen. Voor deze condensator in dit circuit geldt dus: [want 000 0,0 = 0] t 0C U ( e )

U 0 50 t t 0C U ( e ) Bereken met behulp van differentiëren met welke snelheid (in volt per seconde) de spanning van een condensator met een capaciteit van 0,0 farad toeneemt op tijdstip t = 0. Bereken algebraïsch hoe lang het duurt voordat bij een condensator met een capaciteit van 0,0 farad de condensatorspanning 90% van de limietspanning is.

U 0 50 t t 0C U ( e ) [ ls t heel groot wordt, gaat de e-macht naar nul, dus de H.. is U = ] Bereken met behulp van differentiëren met welke snelheid (in volt per seconde) de spanning van een condensator met een capaciteit van 0,0 farad toeneemt op tijdstip t = 0. Bereken algebraïsch hoe lang het duurt voordat bij een condensator met een capaciteit van 0,0 farad de condensatorspanning 90% van de limietspanning is.

U 0 50 t t 0C U ( e ) [ ls t heel groot wordt, gaat de e-macht naar nul, dus de H.. is U = ] Bereken met behulp van differentiëren met welke snelheid (in volt per seconde) [ dus du/dt ] de spanning van een condensator met een capaciteit van 0,0 farad [ C = 0,0 ] toeneemt op tijdstip t = 0. Bereken algebraïsch hoe lang het duurt voordat bij een condensator met een capaciteit van 0,0 farad de condensatorspanning 90% van de limietspanning is.

U 0 50 t t 0C U ( e ) [ ls t heel groot wordt, gaat de e-macht naar nul, dus de H.. is U = ] Bereken met behulp van differentiëren met welke snelheid (in volt per seconde) [ dus du/dt ] de spanning van een condensator met een capaciteit van 0,0 farad [ C = 0,0 ] toeneemt op tijdstip t = 0. Bereken algebraïsch hoe lang het duurt voordat bij een condensator met een capaciteit van 0,0 farad de condensatorspanning 90% van de limietspanning is. [ U is 90% van is 0,8 ]

Soms heb je niet direct de beschikking over een condensator met de juiste capaciteit. m een kleinere capaciteit te krijgen, kun je meerdere condensatoren in serie schakelen. Een serieschakeling van n condensatoren met capaciteiten C,, C n heeft dezelfde werking als één condensator met capaciteit C s, waarbij... C C C s n Zo hebben bijvoorbeeld twee in serie geschakelde condensatoren met een capaciteit van 0,0 farad dezelfde werking als één condensator met een capaciteit van 0,005 farad. We willen in het bovengenoemde circuit binnen een tijd van 0 seconden een condensatorspanning van minstens 0 volt verkrijgen. We beschikken over een groot aantal lege condensatoren, elk met een capaciteit van 0,0 farad. 3 nderzoek hoeveel van deze condensatoren ten minste in serie geschakeld moeten worden om het gestelde doel te bereiken.

Soms heb je niet direct de beschikking over een condensator met de juiste capaciteit. m een kleinere capaciteit te krijgen, kun je meerdere condensatoren in serie schakelen. Een serieschakeling van n condensatoren met capaciteiten C,, C n heeft dezelfde werking als één condensator met capaciteit C s, waarbij... C C C s n Zo hebben bijvoorbeeld twee in serie geschakelde condensatoren met een capaciteit van 0,0 farad dezelfde werking als één condensator met een capaciteit van 0,005 farad. [ controle: 00 00 ] 0,0 0,0 0,0 0,005 We willen in het bovengenoemde circuit binnen een tijd van 0 seconden [t = 0] een condensatorspanning van minstens 0 volt [ U = 0 ] verkrijgen. We beschikken over een groot aantal [ stel n stuks ] lege condensatoren, elk met een capaciteit van 0,0 farad. [... n n 00 00n ] C 0,0 0,0 0,0 3 nderzoek hoeveel van deze condensatoren ten minste in serie geschakeld moeten worden om het gestelde doel te bereiken. [ t = 0 en U = 0 ]

Uitgewerkte antwoorden Bereken met behulp van differentiëren met welke snelheid (in volt per seconde) [ dus du/dt ] de spanning van een condensator met een capaciteit van 0,0 farad [ C = 0,0 ] toeneemt op tijdstip t = 0. plossing: Je moet de spanning, dus U, differentiëren. U t t 0 0 ( e ) e differentiëren :

Uitgewerkte antwoorden Bereken met behulp van differentiëren met welke snelheid (in volt per seconde) [ dus du/dt ] de spanning van een condensator met een capaciteit van 0,0 farad [ C = 0,0 ] toeneemt op tijdstip t = 0. plossing: Je moet de spanning, dus U, differentiëren. U t t 0 0 ( e ) e differentiëren met de kettingregel: du dt t t 0 0 e 0,6 e 0

op t = 0: 0 Uitgewerkte antwoorden Bereken met behulp van differentiëren met welke snelheid (in volt per seconde) [ dus du/dt ] de spanning van een condensator met een capaciteit van 0,0 farad [ C = 0,0 ] toeneemt op tijdstip t = 0. plossing: Je moet de spanning, dus U, differentiëren. U t t 0 0 ( e ) e differentiëren met de kettingregel: du dt t t 0 0 e 0,6 e 0 dt e 0,6 0,6 du

Bereken algebraïsch hoe lang het duurt voordat bij een condensator met een capaciteit van 0,0 farad de condensatorspanning 90% van de limietspanning is. [ U is 90% van is 0,8 ] plossing: t 0 U ( e ) 0,9 U e 0 0,9 t

Bereken algebraïsch hoe lang het duurt voordat bij een condensator met een capaciteit van 0,0 farad de condensatorspanning 90% van de limietspanning is. [ U is 90% van is 0,8 ] plossing: t 0 U ( e ) 0,9 U e 0 0,9 t U t 0 t e 0, ln 0, 0

Bereken algebraïsch hoe lang het duurt voordat bij een condensator met een capaciteit van 0,0 farad de condensatorspanning 90% van de limietspanning is. [ U is 90% van is 0,8 ] plossing: t 0 U ( e ) 0,9 U e 0 0,9 t U t 0 t e 0, ln 0, 0 t ln 0, ln0 dus t 0ln0 46 0

3 nderzoek hoeveel van deze condensatoren ten minste in serie geschakeld moeten worden om het gestelde doel te bereiken. [ t = 0 en U = 0 ]... n n 00 00n C 0,0 0,0 0,0 plossing: Doe WINDW 0<X<3 en 0<Y< en dan intersect: ( e^-x) 0

3 nderzoek hoeveel van deze condensatoren ten minste in serie geschakeld moeten worden om het gestelde doel te bereiken. [ t = 0 en U = 0 ]... n n 00 00n C 0,0 0,0 0,0 plossing: Doe WINDW 0<X<3 en 0<Y< en dan intersect: ( e^-x) 0 geeft X =.79 daarna: 0 000C.79

3 nderzoek hoeveel van deze condensatoren ten minste in serie geschakeld moeten worden om het gestelde doel te bereiken. [ t = 0 en U = 0 ]... n n 00 00n C 0,0 0,0 0,0 plossing: Doe WINDW 0<X<3 en 0<Y< en dan intersect: ( e^-x) 0 geeft X =,79 daarna: met C = 0,0079 geeft: 0 000C.79 00 n [ 3.58] 0, 0079 dus minstens 4 condensatoren nodig

00-I De punten (, ) en B(3, /3) liggen op de grafiek van y = /x. We bekijken de rechthoek waarvan en B hoekpunten zijn en waarvan twee zijden evenwijdig zijn aan de x-as (en de andere twee zijden dus evenwijdig zijn aan de y-as). Een punt P( p, /p) ligt op de grafiek, tussen en B. De horizontale en de verticale lijn door P verdelen de rechthoek in vier rechthoekige stukken. In de figuur zijn de stukken rechtsboven en linksonder grijs aangegeven. /p /3 y = / x P p 3 B Vraag 4. Bereken langs algebraïsche weg voor welke waarden van p de oppervlakte van het grijze stuk rechtsboven gelijk is aan ½. plossing:

00-I De punten (, ) en B(3, /3) liggen op de grafiek van y = /x. We bekijken de rechthoek waarvan en B hoekpunten zijn en waarvan twee zijden evenwijdig zijn aan de x-as (en de andere twee zijden dus evenwijdig zijn aan de y-as). Een punt P( p, /p) ligt op de grafiek, tussen en B. De horizontale en de verticale lijn door P verdelen de rechthoek in vier rechthoekige stukken. In de figuur zijn de stukken rechtsboven en linksonder grijs aangegeven. /p /3 y = / x P p 3 B Vraag 4. Bereken langs algebraïsche weg voor welke waarden van p de oppervlakte van het grijze stuk rechtsboven gelijk is aan ½. plossing: pp. (3 p)( ) p Haakjes wegwerken

00-I De punten (, ) en B(3, /3) liggen op de grafiek van y = /x. We bekijken de rechthoek waarvan en B hoekpunten zijn en waarvan twee zijden evenwijdig zijn aan de x-as (en de andere twee zijden dus evenwijdig zijn aan de y-as). Een punt P( p, /p) ligt op de grafiek, tussen en B. De horizontale en de verticale lijn door P verdelen de rechthoek in vier rechthoekige stukken. In de figuur zijn de stukken rechtsboven en linksonder grijs aangegeven. /p /3 y = / x P p 3 B Vraag 4. Bereken langs algebraïsche weg voor welke waarden van p de oppervlakte van het grijze stuk rechtsboven gelijk is aan ½. plossing: pp. (3 p)( ) p 3 3 p p

00-I De punten (, ) en B(3, /3) liggen op de grafiek van y = /x. We bekijken de rechthoek waarvan en B hoekpunten zijn en waarvan twee zijden evenwijdig zijn aan de x-as (en de andere twee zijden dus evenwijdig zijn aan de y-as). Een punt P( p, /p) ligt op de grafiek, tussen en B. De horizontale en de verticale lijn door P verdelen de rechthoek in vier rechthoekige stukken. In de figuur zijn de stukken rechtsboven en linksonder grijs aangegeven. /p /3 y = / x P p 3 B Vraag 4. Bereken langs algebraïsche weg voor welke waarden van p de oppervlakte van het grijze stuk rechtsboven gelijk is aan ½. plossing: 3 p pp. (3 p)( ) 3 p p p

00-I De punten (, ) en B(3, /3) liggen op de grafiek van y = /x. We bekijken de rechthoek waarvan en B hoekpunten zijn en waarvan twee zijden evenwijdig zijn aan de x-as (en de andere twee zijden dus evenwijdig zijn aan de y-as). Een punt P( p, /p) ligt op de grafiek, tussen en B. De horizontale en de verticale lijn door P verdelen de rechthoek in vier rechthoekige stukken. In de figuur zijn de stukken rechtsboven en linksonder grijs aangegeven. /p /3 y = / x P p 3 B Vraag 4. Bereken langs algebraïsche weg voor welke waarden van p de oppervlakte van het grijze stuk rechtsboven gelijk is aan ½. plossing: 3 p pp. (3 p)( ) 3 p 6 p 6 p p 0 p 7 p6 0 p p

00-I De punten (, ) en B(3, /3) liggen op de grafiek van y = /x. We bekijken de rechthoek waarvan en B hoekpunten zijn en waarvan twee zijden evenwijdig zijn aan de x-as (en de andere twee zijden dus evenwijdig zijn aan de y-as). Een punt P( p, /p) ligt op de grafiek, tussen en B. De horizontale en de verticale lijn door P verdelen de rechthoek in vier rechthoekige stukken. In de figuur zijn de stukken rechtsboven en linksonder grijs aangegeven. /p /3 y = / x P p 3 B Vraag 4. Bereken langs algebraïsche weg voor welke waarden van p de oppervlakte van het grijze stuk rechtsboven gelijk is aan ½. plossing: 3 p pp. (3 p)( ) 3 p 6 p 6 p p 0 p 7 p 6 0 p p De abc-formule geeft twee oplossingen:

00-I De punten (, ) en B(3, /3) liggen op de grafiek van y = /x. We bekijken de rechthoek waarvan en B hoekpunten zijn en waarvan twee zijden evenwijdig zijn aan de x-as (en de andere twee zijden dus evenwijdig zijn aan de y-as). Een punt P( p, /p) ligt op de grafiek, tussen en B. De horizontale en de verticale lijn door P verdelen de rechthoek in vier rechthoekige stukken. In de figuur zijn de stukken rechtsboven en linksonder grijs aangegeven. /p /3 y = / x P p 3 B Vraag 4. Bereken langs algebraïsche weg voor welke waarden van p de oppervlakte van het grijze stuk rechtsboven gelijk is aan ½. plossing: 3 p pp. (3 p)( ) 3 p 6 p 6 p p 0 p 7 p 6 0 p p De abc-formule geeft twee oplossingen: p = ½ en p =.

00-I De punten (, ) en B(3, /3) liggen op de grafiek van y = /x. We bekijken de rechthoek waarvan en B hoekpunten zijn en waarvan twee zijden evenwijdig zijn aan de x-as (en de andere twee zijden dus evenwijdig zijn aan de y-as). Een punt P( p, /p) ligt op de grafiek, tussen en B. De horizontale en de verticale lijn door P verdelen de rechthoek in vier rechthoekige stukken. De som van de grijze oppervlakten is: 4 3 som ( p 4 ) 3 p /p /3 y = / x P p 3 B Vraag 5. Bereken exact voor welke waarde van p deze som maximaal is. plossing. De afgeleide nul stellen:

00-I De punten (, ) en B(3, /3) liggen op de grafiek van y = /x. We bekijken de rechthoek waarvan en B hoekpunten zijn en waarvan twee zijden evenwijdig zijn aan de x-as (en de andere twee zijden dus evenwijdig zijn aan de y-as). Een punt P( p, /p) ligt op de grafiek, tussen en B. De horizontale en de verticale lijn door P verdelen de rechthoek in vier rechthoekige stukken. De som van de grijze oppervlakten is: 4 3 som ( p 4 ) 3 p /p /3 y = / x P p 3 B Vraag 5. Bereken exact voor welke waarde van p deze som maximaal is. plossing. De afgeleide nul stellen: 4 ( 3 ) 0 3 p

00-I De punten (, ) en B(3, /3) liggen op de grafiek van y = /x. We bekijken de rechthoek waarvan en B hoekpunten zijn en waarvan twee zijden evenwijdig zijn aan de x-as (en de andere twee zijden dus evenwijdig zijn aan de y-as). Een punt P( p, /p) ligt op de grafiek, tussen en B. De horizontale en de verticale lijn door P verdelen de rechthoek in vier rechthoekige stukken. De som van de grijze oppervlakten is: 4 3 som ( p 4 ) 3 p /p /3 y = / x P p 3 B Vraag 5. Bereken exact voor welke waarde van p deze som maximaal is. plossing. De afgeleide nul stellen: 4 3 3 ( ) 0 3 p

00-I De punten (, ) en B(3, /3) liggen op de grafiek van y = /x. We bekijken de rechthoek waarvan en B hoekpunten zijn en waarvan twee zijden evenwijdig zijn aan de x-as (en de andere twee zijden dus evenwijdig zijn aan de y-as). Een punt P( p, /p) ligt op de grafiek, tussen en B. De horizontale en de verticale lijn door P verdelen de rechthoek in vier rechthoekige stukken. De som van de grijze oppervlakten is: 4 3 som ( p 4 ) 3 p /p /3 y = / x P p 3 B Vraag 5. Bereken exact voor welke waarde van p deze som maximaal is. plossing. De afgeleide nul stellen: 4 3 3 ( ) 0 4 0 3 p p p

00-I De punten (, ) en B(3, /3) liggen op de grafiek van y = /x. We bekijken de rechthoek waarvan en B hoekpunten zijn en waarvan twee zijden evenwijdig zijn aan de x-as (en de andere twee zijden dus evenwijdig zijn aan de y-as). Een punt P( p, /p) ligt op de grafiek, tussen en B. De horizontale en de verticale lijn door P verdelen de rechthoek in vier rechthoekige stukken. De som van de grijze oppervlakten is: 4 3 som ( p 4 ) 3 p /p /3 y = / x P p 3 B Vraag 5. Bereken exact voor welke waarde van p deze som maximaal is. plossing. De afgeleide nul stellen: 4 3 3 p ( ) 0 4 0 4 p 0 p 3 p p 3

00-I vraag 6 T De functies f en g zijn gegeven door f (x)=4 ln x en g(x) =(ln x) 4 met x > 0. De grafieken van f en g snijden elkaar in S en T. f g Een lijn x = p snijdt tussen S en T de grafiek van f in en de grafiek van g in B. Vraag 6. Bereken exact de maximale lengte van B. Schrijf je antwoord zo eenvoudig mogelijk. S B x = p

00-I vraag 6 T De functies f en g zijn gegeven door f (x)=4 ln x en g(x) =(ln x) 4 met x > 0. De grafieken van f en g snijden elkaar in S en T. f g Een lijn x = p snijdt tussen S en T de grafiek van f in en de grafiek van g in B. Vraag 6. Bereken exact de maximale lengte van B. Schrijf je antwoord zo eenvoudig mogelijk. S B x = p plossing: B =

00-I vraag 6 T De functies f en g zijn gegeven door f (x)=4 ln x en g(x) =(ln x) 4 met x > 0. De grafieken van f en g snijden elkaar in S en T. f g Een lijn x = p snijdt tussen S en T de grafiek van f in en de grafiek van g in B. Vraag 6. Bereken exact de maximale lengte van B. Schrijf je antwoord zo eenvoudig mogelijk. S B x = p plossing: B = f (p) g(p) = 4 ln p (ln p) 4. fgeleide nulstellen geeft:

00-I vraag 6 T De functies f en g zijn gegeven door f (x)=4 ln x en g(x) =(ln x) 4 met x > 0. De grafieken van f en g snijden elkaar in S en T. f g Een lijn x = p snijdt tussen S en T de grafiek van f in en de grafiek van g in B. Vraag 6. Bereken exact de maximale lengte van B. Schrijf je antwoord zo eenvoudig mogelijk. S B x = p plossing: B = f (p) g(p) = 4 ln p (ln p) 4. fgeleide nulstellen geeft: 3 4 4(ln p) 0 p p kettingregel Uitwerken:

00-I vraag 6 T De functies f en g zijn gegeven door f (x)=4 ln x en g(x) =(ln x) 4 met x > 0. De grafieken van f en g snijden elkaar in S en T. f g Een lijn x = p snijdt tussen S en T de grafiek van f in en de grafiek van g in B. Vraag 6. Bereken exact de maximale lengte van B. Schrijf je antwoord zo eenvoudig mogelijk. S B x = p plossing: B = f (p) g(p) = 4 ln p (ln p) 4. fgeleide nulstellen geeft: 3 4 4(ln p) 0 p p Uitwerken: 4 ( (ln p) 3 ) 0 p

00-I vraag 6 T De functies f en g zijn gegeven door f (x)=4 ln x en g(x) =(ln x) 4 met x > 0. De grafieken van f en g snijden elkaar in S en T. f g Een lijn x = p snijdt tussen S en T de grafiek van f in en de grafiek van g in B. Vraag 6. Bereken exact de maximale lengte van B. Schrijf je antwoord zo eenvoudig mogelijk. S B x = p plossing: B = f (p) g(p) = 4 ln p (ln p) 4. fgeleide nulstellen geeft: 3 4 4(ln p) 0 p p Uitwerken: 4 ( (ln ) 3 ) 0 (ln ) 3 p p du s ln p p

00-I vraag 6 T De functies f en g zijn gegeven door f (x)=4 ln x en g(x) =(ln x) 4 met x > 0. De grafieken van f en g snijden elkaar in S en T. f g Een lijn x = p snijdt tussen S en T de grafiek van f in en de grafiek van g in B. Vraag 6. Bereken exact de maximale lengte van B. Schrijf je antwoord zo eenvoudig mogelijk. S B x = p plossing: B = f (p) g(p) = 4 ln p (ln p) 4. fgeleide nulstellen geeft: 3 4 4(ln p) 0 p p Uitwerken: 4 ( (ln ) 3 ) 0 (ln ) 3 p p dus ln p p De maximum lengte van B is:

00-I vraag 6 T De functies f en g zijn gegeven door f (x)=4 ln x en g(x) =(ln x) 4 met x > 0. De grafieken van f en g snijden elkaar in S en T. f g Een lijn x = p snijdt tussen S en T de grafiek van f in en de grafiek van g in B. Vraag 6. Bereken exact de maximale lengte van B. Schrijf je antwoord zo eenvoudig mogelijk. S B x = p plossing: B = f (p) g(p) = 4 ln p (ln p) 4. fgeleide nulstellen geeft: 3 4 4(ln p) 0 p p Uitwerken: 4 ( (ln ) 3 ) 0 (ln ) 3 p p dus ln p p De maximum lengte van B is: 4 () 4 = 3

00-I vraag 7 en 8 m Gegeven zijn twee evenwijdige lijnen k en m en een punt er tussenin. Je kunt op elk van de twee gegeven lijnen een punt tekenen zo dat deze punten samen met punt de hoekpunten zijn van een rechthoekige, gelijkbenige driehoek. Een dergelijke driehoek noemen we een geodriehoek. Er zijn verschillende gevallen mogelijk. In deze opgave bekijken we de situatie waarbij het hoekpunt van de rechte hoek van de geodriehoek rechts van punt op k ligt. Hieronder staat eerst een constructie. Daarna wordt aan je gevraagd te bewijzen dat het resultaat inderdaad een geodriehoek is. p k zijn de punten B en C getekend zo dat B BC en B = BC. Punt D is op m getekend met DC C. p k is vervolgens punt E getekend zo dat DE=45. B C E 45 o D k m k

00-I vraag 7 en 8 m Gegeven zijn twee evenwijdige lijnen k en m en een punt er tussenin. Je kunt op elk van de twee gegeven lijnen een punt tekenen zo dat deze punten samen met punt de hoekpunten zijn van een rechthoekige, gelijkbenige driehoek. Een dergelijke driehoek noemen we een geodriehoek. Er zijn verschillende gevallen mogelijk. In deze opgave bekijken we de situatie waarbij het hoekpunt van de rechte hoek van de geodriehoek rechts van punt op k ligt. Hieronder staat eerst een constructie. Daarna wordt aan je gevraagd te bewijzen dat het resultaat inderdaad een geodriehoek is. p k zijn de punten B en C getekend zo dat B BC en B = BC. Punt D is op m getekend met DC C. p k is vervolgens punt E getekend zo dat DE=45. B C E 45 o D k m k Vraag 7. Bewijs dat vierhoek CED een koordenvierhoek is.

00-I vraag 7 en 8 Vraag 7. Bewijs dat vierhoek CED een koordenvierhoek is. 45 o D m Gegeven: B BC en B = BC, DC C, DE = 45. Bewijs: B C E k BC is gelijkbenig en rechthoekig, dus CB =

00-I vraag 7 en 8 Vraag 7. Bewijs dat vierhoek CED een koordenvierhoek is. 45 o D m Gegeven: B BC en B = BC, DC C, DE = 45. Bewijs: B C E k BC is gelijkbenig en rechthoekig, dus CB = 45 o. BCE =

00-I vraag 7 en 8 Vraag 7. Bewijs dat vierhoek CED een koordenvierhoek is. 45 o D m Gegeven: B BC en B = BC, DC C, DE = 45. Bewijs: B C E k BC is gelijkbenig en rechthoekig, dus CB = 45 o. BCE = 80 o (gestrekte hoek) =

00-I vraag 7 en 8 Vraag 7. Bewijs dat vierhoek CED een koordenvierhoek is. 45 o D m Gegeven: B BC en B = BC, DC C, DE = 45. Bewijs: B C E k BC is gelijkbenig en rechthoekig, dus CB = 45 o. BCE = 80 o (gestrekte hoek) = 45 o + 90 o + DCE, dus DCE = en CE =.