Werkstuk Natuurkunde Zwaartekracht

Maat: px
Weergave met pagina beginnen:

Download "Werkstuk Natuurkunde Zwaartekracht"

Transcriptie

1 Werkstuk Natuurkunde Zwaartekracht Werkstuk door een scholier 3554 woorden 14 juni ,4 230 keer beoordeeld Vak Natuurkunde Zwaarte Kracht Zwaartekracht en andere Fundamentele Krachten De zwaartekracht is een aantrekkende kracht die bestaat tussen alle dingen met massa of energie. De zwaartekracht wordt beschouwd als één van de vier fundamentele natuurkrachten, naast de elektromagnetische kracht, de sterke kernkracht en de zwakke kernkracht. De laatste twee spelen alleen een rol in atoomkernen en zijn daar heel belangrijk voor kernreacties en radioaktiviteit. De elektromagnetische kracht zorgt ervoor dat negatief elektrisch geladen deeltjes en positief elektrisch geladen deeltjes elkaar aantrekken, en dat gelijkgestemde ladingen elkaar afstoten. De elektromagnetische kracht bindt negatief geladen elektronen aan positief geladen atoomkernen en is belangrijk in elke scheikundige reactie, en natuurlijk in elektriciteit en magnetische effecten. Als er geen sterke kernkracht was dan zouden er waarschijnlijk geen andere elementen bestaan dan waterstof, want zonder kernkracht zouden er geen twee of meer protonen bij elkaar in een atoomkern kunnen zitten, omdat die allemaal positieve elektrische lading dragen en elkaar daarom sterk elektromagnetisch afstoten. De sterke kernkracht moet op de zeer kleine schaal van een atoomkern dus wel een stuk sterker zijn dan de elektromagnetische kracht. De kernkrachten nemen echter veel sneller af met toenemende afstand dan de elektromagnetische krachten doen, zodat buiten de atoomkern de elektromagnetische kracht het wint van de kernkrachten. De Formule van Zwaartekracht Voor zover bekend is Isaac Newton uit Engeland de eerste mens geweest die de zwaartekracht begon te begrijpen (op wetenschappelijke wijze), en dat was in de 17e eeuw. Zijn wetten van de zwaartekracht vormen ook vandaag nog het fundament van de studie van de bewegingen in het heelal. Aan het begin van de 20e eeuw bedacht Albert Einstein de Algemene Relativiteitstheorie* waaruit door versimpeling de wetten van Newton volgen. Alleen in situaties waarbij materie snelheden dicht bij die van het licht kan krijgen beginnen de antwoorden van de theorieën van Newton en Einstein flink te verschillen. In meer gewone situaties zijn die verschillen zeer klein, maar toch soms wel meetbaar. In alle testen die tot nu toe gedaan zijn is gebleken dat in zulke gevallen de theorie van Einstein precies klopt (zo goed als het gemeten kan worden), en die van Newton dus te simpel is. Pagina 1 van 7

2 De beste beschrijving die we nu hebben van de werking van zwaartekracht is via een formule uit de Algemene Relativiteitstheorie van Albert Einstein. Die formule is klein maar er hoort heel veel uitleg bij met moeilijke wiskunde (bijvoorbeeld tensorrekening), dus die is alleen geschikt voor mensen die die moeilijke wiskunde al kennen. Dit is Newton s formule van zwaartekracht: F = G M m/r 2 In deze formule is F de zwaartekracht tussen een massa M en een andere massa m die elk in een punt geconcentreerd zijn, is r de afstand tussen de twee puntmassa's, en is G de universele zwaartekrachtsconstante. Als je M en m meet in kilogram, r in meter, en F in Newton (een eenheid van kracht, symbool N), dan heeft G de waarde 6.672e-11 m³/(kg s²). Bijvoorbeeld, de zwaartekracht tussen twee puntmassa's van 10 kg op een onderlinge afstand van 1 m is gelijk aan 6.672e-11*10*10/(1*1) = 6.672e-9 N. De zwaartekrachtswet van Newton geldt ook voor sommige massa's die niet in een punt geconcentreerd zijn. Voor dingen die puntsymmetrisch zijn (zodat je ze willekeurig kunt draaien en ze er toch steeds hetzelfde uit zien) neem je gewoon de afstand tussen de middelpunten van de bollen, en dan klopt de formule net zo goed als voor puntmassa's. Voor willekeurige dingen klopt de zwaartekrachtswet niet precies maar wel ongeveer, als je de afstand tussen de middelpunten (meer precies: tussen de zwaartepunten) voor r neemt, en vooral als de afstand tussen de dingen veel groter is dan hun afmetingen. Voor hele precieze antwoorden moet je de precieze vorm en verdeling van massa over het ding meerekenen. *Albert Einstein heeft aan het begin van de 20e eeuw twee Relativiteitstheorieën opgesteld, namelijk de Speciale Relativiteitstheorie en de Algemene Relativiteitstheorie. Deze theorieën zijn nu de beste die we hebben voor de beschrijving van ruimte en tijd en zwaartekracht. De Algemene Relativiteitstheorie is een uitbreiding van de Speciale Relativiteitstheorie en beschrijft hoe het zit met ruimte en tijd ook als er wel krachten op de waarnemer werken. De Algemene Relativiteitstheorie stelt dat de gevolgen van een versnelling niet af hangen van de oorzaak van de versnelling (zelfs niet als dat de zwaartekracht is). Hieruit volgt onder andere dat zwaartekracht licht af doet buigen en de tijd kan vertragen. Het bereik van de Zwaartekracht De zwaartekracht van de Aarde gaat oneindig ver door, maar wordt wel steeds zwakker als je steeds hoger boven de Aarde komt. De regel is als volgt: Telkens als je tweemaal verder van het midden van de Aarde komt is de zwaartekracht nog maar een kwart zo sterk. De straal van de Aarde is ongeveer 6400 km dus als je 6400 km boven de grond bent (en dus 2 maal 6400 km van het midden van de Aarde) dan is de zwaartekracht nog maar een kwart van wat hij op de grond is. Ook de zwaartekracht van andere voorwerpen gaat oneindig ver door en neemt af met het kwadraat van de afstand. Zware massa en trage massa Massa komt voor in twee fundamentele formules uit de natuurkunde. De tweede Bewegingswet van Pagina 2 van 7

3 Newton zegt dat "de verandering van beweging is recht evenredig met de uitgeoefende kracht", wat neerkomt op de formule (Vgl. 1) F = mi a Waar F de uitgeoefende kracht is, a de opgewekte versnelling en mi de evenredigheidsconstante die voor een gegeven voorwerp een vaste waarde heeft en die de trage massa genoemd wordt. De Universele Zwaartekrachtswet van Newton beschrijft de zwaartekracht tussen twee lichamen gebaseerd op hun eigenschappen en op de afstand tussen hun zwaartepunten: (Vgl. 2) Fg = G Mg mg / r² Waar Fg de zwaartekracht is, Mg de zware massa van één van de lichamen, mg de zware massa van het andere voorwerp, en r de afstand tussen hun zwaartepunten. Als je de Fg uit vergelijking 1 gelijk stelt aan de F uit vergelijking 2, dan kun je de versnelling uitrekenen die de zwaartekracht geeft. Deze is (Vgl. 3) g = ag = Fg/mi = G Mg (mg/mi) / r² Het equivalentieprincipe stelt dat de zware massa van een voorwerp identiek is aan de trage massa van dat voorwerp, ofwel mg mi, zodat (Vgl. 4) g = G Mg / r ² Dat onafhankelijk is van de massa mi = mg = m van het versnelde voorwerp. Vanwege het equivalentieprincipe is de zwaartekrachtsversnelling die een voorwerp ondervindt onafhankelijk van de massa van dat voorwerp. De Maan ondergaat bijvoorbeeld een bepaalde versnelling vanwege de zwaartekracht van de Aarde. Als je de Maan vervangt door een auto, dan zal die auto precies dezelfde versnelling ondergaan op dezelfde plaats. Echter, het equivalentieprincipe vergelijkt alleen versnellingen die verschillende voorwerpen ondergaan in dezelfde situatie op dezelfde plaats. Het zegt bijvoorbeeld helemaal niets over de versnelling van het andere voorwerp. Als je de Maan vervangt door een auto, dan is de versnelling van de auto hetzelfde als dat van de Maan was, maar de versnelling van de Aarde is dan een stuk minder omdat het nu door een veel minder massief voorwerp aangetrokken wordt. (We vergelijking twee systemen: In systeem A worden de Aarde en de Maan stil gehouden op hun gemiddelde afstand. Systeem B is gelijk aan systeem A maar heeft een tweede Aarde in plaats van de Maan. Laat nu de voorwerpen in de beide systemen los zodat ze onder invloed van hun zwaartekracht naar elkaar toe vallen. De twee Aardes in systeem B zullen eerder tegen elkaar botsen dan de Aarde en de Maan in systeem A (als we aannemen dat ze allemaal vrij vallen uit een beginsituatie zonder snelheid). De Maan uit systeem A begint met dezelfde versnelling als de Aardes uit systeem B (vanwege het equivalentieprincipe), maar de Aarde in systeem A begint met een veel kleinere versnelling omdat de massa van de Maan die hem aantrekt zoveel kleiner is (omdat vergelijking 6 nog wel de massa van het andere voorwerp bevat). De som van de versnellingen van de twee voorwerpen in systeem B is daarom groter dan de som van de versnellingen in systeem A, dus zullen de voorwerpen in systeem B eerder bij elkaar komen dan de voorwerpen in systeem A.) Hoe zwaartekracht ontstaat Zwaartekracht is een eigenschap van massa. Alles dat massa heeft, heeft ook zwaartekracht. De Pagina 3 van 7

4 zwaartekracht is evenredig met de massa, dus als de massa een bepaalde factor groter wordt dan wordt de zwaartekracht dat ook met dezelfde factor. Zwaartekracht hoort bij alles dat massa heeft. De zwaartekracht die je zelf opwekt is echter veel kleiner dan de zwaartekracht die een planeet opwekt, en is ook veel kleiner dan de elektromagnetische krachten die de eigenschappen van alle dingen om ons heen bepalen (behalve van radioactiviteit), dus merk je normaal gesproken niet dat dingen op Aarde ook zwaartekracht hebben. Albert Einstein heeft ons geleerd dat ruimte en tijd verweven zijn, zodat hoe lang iets is of hoe lang iets duurt niet voor iedereen gelijk is zelfs als iedereen perfecte meetapparatuur heeft. Dat soort effecten zijn alleen merkbaar voor dingen met een snelheid dicht bij die van licht. Zo kunnen sommige zeer snelle kosmische deeltjes tot vrij laag in de dampkring komen omdat voor hen vanwege hun zeer grote snelheid de tijd langzamer verloopt (of, gezien vanuit hun perspectief, dat de dampkring dunner is) en het dus langer (volgens onze klok) duurt voor ze uit elkaar vallen dan voor gelijksoortige langzame kosmische deeltjes. De ruimte-tijd (de combinatie van ruimte en tijd) wordt vervormd door de aanwezigheid van massa, net zoals een zware bal een kuil maakt als je hem op een strakgetrokken stuk rubber legt. De kromming van de ruimte-tijd merken wij op als zwaartekracht. Als je een knikker over rubber laat rollen dan zal die knikker door de kuil van een rechte baan afgebogen worden, net alsof de knikker aangetrokken wordt door de bal die de kuil maakt, maar eigenlijk buigt de knikker alleen af omdat de strook rubber waar hij overheen rolt niet vlak is, of dat nu door de nabije bal komt of door iets anders. Op dezelfde manier lijkt het alsof de zwaartekracht van de Aarde direct aan de Maan trekt en de Maan zo in een baan rond de Aarde houdt, maar "eigenlijk" wordt de Maan van een rechte lijn afgebogen omdat de ruimte-tijd op haar pad niet vlak is, wat weer komt door de aanwezigheid van de Aarde. Er gebeurt dus niets speciaals in een planeet om aantrekkingskracht op te wekken. Een planeet heeft alleen merkbare zwaartekracht omdat hij een zeer grote hoeveelheid massa heeft. Zwaartekracht uitschakelen Als er nooit zwaartekracht was geweest, dan zouden er geen sterren, planeten, melkwegstelsels of mensen geweest zijn, maar alleen wolken van gas en stof, gelijk verdeeld over het Heelal en veel kouder dan het ooit op de Zuidpool wordt. Als je de zwaartekracht tussen de Aarde en de Zon plotseling uit zou schakelen, dan zou de Aarde recht door vliegen in de richting die hij toen toevallig had en met de snelheid ten opzichte van de Zon die hij toevallig had, want de eerste Wet van Newton zegt dat iets waarop geen krachten werken met een constante snelheid langs een rechte lijn beweegt. De baansnelheid van de Aarde is ongeveer 30 km/s, dus zou de Aarde dan met die snelheid van de Zon weg vliegen. Voor zover wij weten is het echter onmogelijk om zwaartekracht uit te schakelen, omdat het een eigenschap is van massa. Als ergens massa is dan is er ook zwaartekracht. De enige toestand waarin je geen gewicht voelt is als je in vrije val bent. In de ruimte is dat willekeurig lang vol te houden, maar nabij het aardoppervlak is dat alleen tijdelijk te doen, bijvoorbeeld in een vliegtuig dat langs de juiste paraboolbaan naar boven en weer naar beneden vliegt. Om in en uit die baan te geraken heb je dan juist bewegingen nodig die je een groter gevoel van gewicht geven dan op de grond. Astronauten trainen voor gewichtloosheid door van zo'n vliegtuig gebruikt te maken. Pagina 4 van 7

5 Gewicht Je kunt zwaartekracht alleen voelen als die tegengewerkt wordt. Als je op de grond staat dan trekt de zwaartekracht van de Aarde je naar beneden maar duwt de grond je even hard omhoog, en daarom blijf je gewoon staan, maar je voelt de zwaartekracht dan wel, als gewicht. Een astronaut in de ruimte weegt helemaal niets, maar heeft nog steeds dezelfde massa (hetzelfde aantal kilogrammen) als op Aarde. Massa en gewicht zijn dus niet hetzelfde. Je massa is hoeveel materiaal er in je hele lichaam zit. Je gewicht is hoeveel kracht de grond (of iets anders waarop je staat) op je uitoefent. Als je op de Aarde of de Maan of een ander hemellichaam staat dan is je gewicht evenredig met je massa maar ook met de zwaartekrachtsversnelling. Als de zwaartekracht minder sterk is, dan wordt je minder sterk naar beneden getrokken en duwt de grond je dus ook minder sterk weer naar boven (zodat je rustig kunt blijven staan), dus weeg je dan minder. Je weegt op de Maan minder dan op de Aarde omdat de zwaartekracht op de Maan minder sterk is dan op Aarde. Er zijn twee fundamenteel verschillende soorten weegschalen. Er is een soort die gewichten (massa's) vergelijkt en er is een soort die krachten meet. We noemen iets van de eerste soort een balans. Voor de tweede ken ik geen algemene naam. Ik zal ze hier veerweegschaal noemen. Bij een balans moet je tegengewichten toevoegen of weghalen of verschuiven totdat het ding waarvan je de massa wilt weten in balans is met de tegengewichten waarvan je de massa al kent. Aan hoever je de tegengewichten moest verschuiven of aan hoeveel tegengewichten je moest gebruiken kun je aflezen wat de onbekende massa is. Deze meting is niet afhankelijk van de zwaartekracht (behalve dat het niet werkt als er helemaal geen zwaartekracht is), dus meet je hiermee de massa en niet het gewicht. Als je op een veerweegschaal gaat staan dan druk je een veer van de weegschaal in vanwege de zwaartekracht die je naar beneden trekt. Als je meer massa hebt dan druk je de veer verder in en dan geeft de veerweegschaal een grotere waarde aan. Als je jezelf weegt op een plek met minder zwaartekracht, dan druk je de veer minder ver in en geeft de veerweegschaal een kleinere waarde aan. De metingen met veerweegschalen hangen dus af van de sterkte van de zwaartekracht, dus meet je daarmee het gewicht en niet de massa. De meeste veerweegschalen meten in een eenheid van massa (zoals het kilogram), hoewel ze eigenlijk zouden moeten meten in een eenheid van kracht (zoals de newton). Je moet de kilogrammen van een veerweegschaal dus opvatten als "kilogrammen in de standaardzwaartekracht van de Aarde". Wat gebeurt er nu als je met een balans en een veerweegschaal naar de Maan gaat en jezelf daar meet? Dan zal de balans even veel aanwijzen als op Aarde, omdat de tegengewichten net zoveel lichter geworden zijn als jijzelf en je dus nog steeds in balans houden. De veerweegschaal zal op de Maan ongeveer zes keer minder aanwijzen, omdat de zwaartekracht op de Maan ongeveer zes keer minder sterk is als op de Aarde. Ook op Aarde is de zwaartekracht niet overal precies hetzelfde, dus zal je gewicht op Aarde ook een beetje afhangen van waar je bent. Op de polen is de zwaartekracht ongeveer een half procent (een tweehonderdste deel) sterker dan op de evenaar, dus zul je op de polen ongeveer een half procent meer wegen dan op de evenaar. Voor iemand van 50 kg scheelt dat een gewicht equivalent met ongeveer een kwart kilogram. Het gewicht van een voorwerp is afhankelijk van de positie van het voorwerp op Aarde hoofdzakelijk omdat de Aarde om zijn as draait. Als de Aarde niet om zijn as zou draaien dan zou het gewicht van een Pagina 5 van 7

6 voorwerp veel minder variëren met de plaats op Aarde. Dan zou het gewicht alleen nog veranderen door minieme zwaartekrachtsverschillen die te maken hebben met bergen of zware gesteenten in de buurt (of juist niet in de buurt). Als je in een draaimolen zit dan voel je een middelpuntvliedende kracht naar buiten toe en die kracht wordt sterker als de draaimolen sneller draait of als je verder van het midden af zit (dus dichter bij de buitenkant). Net zo werkt er een middelpuntvliedende kracht* op iemand die op de draaiende Aarde staat. Net als in een draaimolen is die kracht sterker als je verder van de draaias bent, dus is hij het sterkste op de evenaar en afwezig op de polen. Het verschil is niet zo groot: maar ongeveer een half procent. Iets is gewichtloos als de zwaartekracht erop niet wordt tegengewerkt en als het ook geen eigen voortstuwing heeft. Iets dat vrij in de ruimte zweeft is dus gewichtloos. Dat kan een astronaut zijn, een kunstmaan of een ruimteschip, maar ook de Maan of een planeet zoals de Aarde, of de Zon. Als de zwaartekracht vrij spel heeft, dan ben je wel gewichtloos maar heeft de zwaartekracht wel invloed op je weg door de ruimte: De zwaartekracht verandert dan je richting of je snelheid of allebei. Middelpuntzoekende (centripetale) kracht Wanneer een bal aan een touwtje wordt rondgeslingerd, werkt er op de bal een kracht naar binnen. Deze naar binnen gerichte kracht wordt veroorzaakt door een middelpuntzoekende kracht: de spanning in het touwtje. De grootte van deze kracht is gelijk aan mv 2/r, waarbij m de massa van de bal is, v de snelheid en r de afstand van de bal tot het draaipunt, in dit geval de hand. Op de hand die het touwtje rondslingert, werkt een kracht naar buiten: de middelpuntvliedende (centrifugale) kracht. Resonanties In de natuurwetenschappen is een resonant verschijnsel een verschijnsel waarbij een bepaalde combinatie van effecten zichzelf zodanig versterkt dat het gevolg veel groter is dan je zou verwachten op basis van de kleine originele effecten. Meestal gebeurt de versterking alleen als de effecten optreden met één van de natuurlijke frequenties van het resonante verschijnsel. De mooie tonen die er uit een goed gestemd muziekinstrument komen zijn bijvoorbeeld het gevolg van resonantie. Je slaat of strijkt of blaast het instrument op een manier waar een wijd bereik aan frequenties in zit, maar alleen het geluid met de natuurlijke frequenties van het muziekinstrument wordt resonant versterkt en krijgen wij te horen. In de astronomie wordt resonantie ook gebruikt als naam voor een geval waarin kleine effecten die normaal gesproken te verwaarlozen zijn nu wel een merkbaar effect hebben omdat ze precies in de maat lopen met iets anders. Twee soorten resonanties komen vaak voor, namelijk baan-baanresonantie en spinbaanresonantie. Die worden nader uitgelegd. Als een hemellichaam in een resonantie gevangen is en als één van de belangrijke perioden van de resonantie voldoende langzaam door andere oorzaken verandert, dan kan de onderlinge zwaartekracht de resonantie in stand houden en dan veranderen de andere belangrijke perioden dus mee. Een verandering van perioden betekent dat er energie uitgewisseld wordt, dus zijn resonanties belangrijke manieren om energie uit te wisselen. Baan-baanresonanties Pagina 6 van 7

7 Baan-baanresonantie is het geval als twee hemellichamen periodiek ongeveer dezelfde posities innemen ten opzichte van elkaar, zodat hun onderlinge zwaartekracht er voor zorgt dat dat zo blijft (in een stabiele resonantie), of juist dat ze daar snel weer vandaan komen (in een onstabiele resonantie), hoewel die onderlinge zwaartekracht veel kleiner is dan de zwaartekracht tussen de Zon en elk van de hemellichamen. In het geval van baan-baanresonantie tussen twee hemellichamen is een bepaald veelvoud van de omlooptijd (jaar) van het ene hemellichaam precies gelijk aan een bepaald veelvoud van de omlooptijd van het andere hemellichaam. Zo is bijvoorbeeld Pluto gevangen in een 3:2-baan-baanresonantie met Neptunus: Elke twee omlopen van Pluto zijn gemiddeld precies even lang als elke drie omlopen van Neptunus. Zaken in Lagrangepunten* zijn gevangen in 1:1-baan-baanresonanties. Zo hebben de Trojaanse en Griekse groepen van asteroïden een 1:1-baanresonantie met Jupiter, en heeft de Hilda-groep van asteroïden een 3:2-baanresonantie met Jupiter. Onstabiele baan-baanresonanties (2:1, 3:1, 5:2, enzovoorts) zorgen voor de zogenaamde Kirkwoodgaten in de verdeling van asteroïden over de lengten van de halve lange as van hun baan. Baan-baanresonanties kunnen ook tussen meer dan twee hemellichamen optreden, maar die kunnen ingewikkelder in elkaar steken en dan hoeven de omloopperioden niet precies veelvouden van elkaar te zijn. Zo zijn de manen Io, Europa en Ganymedes van Jupiter allen gevangen in een gezamelijke baanbaanresonantie. Spin-baanresonanties Spin-baanresonantie is het geval als een hemellichaam periodiek dezelfde oriëntatie inneemt na een geheel aantal omloopperioden van het hemellichaam. Spin-baanresonantie gebeurt als een bepaald veelvoud van de draaiperiode (dag) van het hemellichaam precies gelijk is aan een bepaald veelvoud van de omloopperiode (jaar) van het hemellichaam. Ik weet niet of er ook onstabiele spin-baanresonanties zijn net als er onstabiele baan-baanresonanties zijn. Alle grote manen in ons Zonnestelsel zijn in een 1:1-spin-baanresonantie: Die manen tonen altijd dezelfde kant aan de planeet, zoals onze Maan ook doet ten opzichte van de Aarde. Het lijkt erop dat de planeet Mercurius in een 3:2-spin-baanresonantie gevangen is: Driemaal de draaiperiode (dag) van Mercurius is gelijk aan tweemaal zijn omloopperiode (jaar). *In een stelsel met twee hemellichamen die in cirkelbanen om hun gemeenschappelijke zwaartepunt draaien zijn er vijf punten waar de zwaartekracht van de twee lichamen en de middelpuntvliedende kracht in de cirkelbaan van het punt precies met elkaar in evenwicht zijn. Die punten zijn de Lagrangepunten, vernoemd naar de wiskundige die ze voor het eerst uitrekende. Pagina 7 van 7

Begripsvragen: Cirkelbeweging

Begripsvragen: Cirkelbeweging Handboek natuurkundedidactiek Hoofdstuk 4: Leerstofdomeinen 4.2 Domeinspecifieke leerstofopbouw 4.2.1 Mechanica Begripsvragen: Cirkelbeweging 1 Meerkeuzevragen 1 [H/V] Een auto neemt een bocht met een

Nadere informatie

1. Zwaartekracht. Hoe groot is die zwaartekracht nu eigenlijk?

1. Zwaartekracht. Hoe groot is die zwaartekracht nu eigenlijk? 1. Zwaartekracht Als een appel van een boom valt, wat gebeurt er dan eigenlijk? Er is iets dat zorgt dat de appel begint te vallen. De geleerde Newton kwam er in 1684 achter wat dat iets was. Hij kwam

Nadere informatie

Samenvatting NaSk 1 Natuurkrachten

Samenvatting NaSk 1 Natuurkrachten Samenvatting NaSk 1 Natuurkrachten Samenvatting door F. 1363 woorden 30 januari 2016 4,1 5 keer beoordeeld Vak NaSk 1 Krachten Op een voorwerp kunnen krachten werken: Het voorwerp kan een snelheid krijgen

Nadere informatie

Verslag Natuurkunde Algemene relativiteitstheorie

Verslag Natuurkunde Algemene relativiteitstheorie Verslag Natuurkunde Algemene relativiteitstheo Verslag door een scholier 775 woorden 29 augustus 2016 6,2 1 keer beoordeeld Vak Methode Natuurkunde Nova Inhoudsopgave Ruimtetijd 2 Einsteins equivalentieprincipe

Nadere informatie

Theorie: Snelheid (Herhaling klas 2)

Theorie: Snelheid (Herhaling klas 2) Theorie: Snelheid (Herhaling klas 2) Snelheid en gemiddelde snelheid Met de grootheid snelheid geef je aan welke afstand een voorwerp in een bepaalde tijd aflegt. Over een langere periode is de snelheid

Nadere informatie

Samenvatting Natuurkunde Kracht

Samenvatting Natuurkunde Kracht Samenvatting Natuurkunde Kracht Samenvatting door een scholier 1634 woorden 16 oktober 2003 5,7 135 keer beoordeeld Vak Natuurkunde Samenvatting Practicum 48 Kracht: Heeft een grootte en een richting.

Nadere informatie

Samenvatting Natuurkunde Natuurkunde Samenvatting NOVA 3 vwo

Samenvatting Natuurkunde Natuurkunde Samenvatting NOVA 3 vwo Samenvatting Natuurkunde Natuurkunde Samenvatting NOVA 3 vwo Samenvatting door N. 1441 woorden 9 oktober 2012 7,6 27 keer beoordeeld Vak Methode Natuurkunde Nova PARAGRAAF 1; KRACHT Krachten herkennen

Nadere informatie

Populair-wetenschappelijke samenvatting

Populair-wetenschappelijke samenvatting Populair-wetenschappelijke samenvatting Dit proefschrift gaat over zwaartekracht, en een aantal van de bijzondere effecten die zij heeft op de beweging van sterren wanneer die extreem dicht bij elkaar

Nadere informatie

Begripsvragen: Elektrisch veld

Begripsvragen: Elektrisch veld Handboek natuurkundedidactiek Hoofdstuk 4: Leerstofdomeinen 4.2 Domeinspecifieke leerstofopbouw 4.2.4 Elektriciteit en magnetisme Begripsvragen: Elektrisch veld 1 Meerkeuzevragen Elektrisch veld 1 [V]

Nadere informatie

Hoofdstuk 8 Hemelmechanica. Gemaakt als toevoeging op methode Natuurkunde Overal

Hoofdstuk 8 Hemelmechanica. Gemaakt als toevoeging op methode Natuurkunde Overal Hoofdstuk 8 Hemelmechanica Gemaakt als toevoeging op methode Natuurkunde Overal 8.1 Gravitatie Geocentrisch wereldbeeld - Aarde middelpunt van heelal - Sterren bewegen om de aarde Heliocentrisch wereldbeeld

Nadere informatie

CIRKELBEWEGING & GRAVITATIE VWO

CIRKELBEWEGING & GRAVITATIE VWO CIRKELBEWEGING & GRAVITATIE VWO Foton is een opgavenverzameling voor het nieuwe eindexamenprogramma natuurkunde. Foton is gratis te downloaden via natuurkundeuitgelegd.nl/foton Uitwerkingen van alle opgaven

Nadere informatie

Wordt echt spannend : in 2015 want dan gaat versneller in Gevene? CERN echt aan en gaat hij draaien op zijn ontwerp specificaties.

Wordt echt spannend : in 2015 want dan gaat versneller in Gevene? CERN echt aan en gaat hij draaien op zijn ontwerp specificaties. Nog niet gevonden! Wordt echt spannend : in 2015 want dan gaat versneller in Gevene? CERN echt aan en gaat hij draaien op zijn ontwerp specificaties. Daarnaast ook in 2015 een grote ondergrondse detector.

Nadere informatie

Deel 4: Krachten. 4.1 De grootheid kracht. 4.1.1 Soorten krachten

Deel 4: Krachten. 4.1 De grootheid kracht. 4.1.1 Soorten krachten Deel 4: Krachten 4.1 De grootheid kracht 4.1.1 Soorten krachten We kennen krachten uit het dagelijks leven: vul in welke krachten werkzaam zijn: trekkracht, magneetkracht, spierkracht, veerkracht, waterkracht,

Nadere informatie

toelatingsexamen-geneeskunde.be

toelatingsexamen-geneeskunde.be Fysica juli 2009 Laatste update: 31/07/2009. Vragen gebaseerd op het ingangsexamen juli 2009. Vraag 1 Een landingsbaan is 500 lang. Een vliegtuig heeft de volledige lengte van de startbaan nodig om op

Nadere informatie

Einstein (2) op aardoppervlak. versnelling van 10m/s 2. waar het foton zich bevindt a) t = 0 b) t = 1 s c) t = 2 s op t=0,t=1s en t=2s A B C A B

Einstein (2) op aardoppervlak. versnelling van 10m/s 2. waar het foton zich bevindt a) t = 0 b) t = 1 s c) t = 2 s op t=0,t=1s en t=2s A B C A B Einstein (2) In het vorig artikeltje zijn helaas de tekeningen, behorende bij bijlage 4,"weggevallen".Omdat het de illustratie betrof van de "eenvoudige" bewijsvoering van de kromming der lichtstralen

Nadere informatie

Werkblad 3 Bewegen antwoorden- Thema 14 (NIVEAU BETA)

Werkblad 3 Bewegen antwoorden- Thema 14 (NIVEAU BETA) Werkblad 3 Bewegen antwoorden- Thema 14 (NIVEAU BETA) Theorie In werkblad 1 heb je geleerd dat krachten een snelheid willen veranderen. Je kunt het ook omdraaien, als er geen kracht werkt, dan verandert

Nadere informatie

Naam: Janette de Graaf. Groep: 7. Datum:Februari Het heelal.

Naam: Janette de Graaf. Groep: 7. Datum:Februari Het heelal. Naam: Janette de Graaf. Groep: 7. Datum:Februari 2017. Het heelal. Inhoudsopgaven. Hoofdstuk 1. Ons zonnestelsel. Blz 3 Hoofdstuk 2. De zon. Blz 4-5 Hoofdstuk 3. De maan. Blz 6 Hoofdstuk 4. Planeten. Blz

Nadere informatie

H2: Het standaardmodel

H2: Het standaardmodel H2: Het standaardmodel 2.1 12 Fundamentele materiedeeltjes De elementaire deeltjes worden in 2 groepen opgedeeld volgens spin (aantal keer dat een deeltje rond zijn eigen as draait), de fermionen zijn

Nadere informatie

3HV H1 Krachten.notebook September 22, krachten. Krachten Hoofdstuk 1

3HV H1 Krachten.notebook September 22, krachten. Krachten Hoofdstuk 1 krachten Krachten Hoofdstuk 1 een kracht zelf kun je niet zien maar... Waaraan zie je dat er een kracht werkt: Plastische Vervorming (blijvend) Elastische Vervorming (tijdelijk) Bewegingsverandering/snelheidsverandering

Nadere informatie

Samenvatting Natuurkunde Samenvatting 4 Hoofdstuk 4 Trillingen en cirkelbewegingen

Samenvatting Natuurkunde Samenvatting 4 Hoofdstuk 4 Trillingen en cirkelbewegingen Samenvatting Natuurkunde Samenvatting 4 Hoofdstuk 4 rillingen en cirkelbewegingen Samenvatting door Daphne 1607 woorden 15 maart 2019 0 keer beoordeeld Vak Methode Natuurkunde Natuurkunde overal Samenvatting

Nadere informatie

Samenvatting Natuurkunde Syllabus domein C: beweging en energie

Samenvatting Natuurkunde Syllabus domein C: beweging en energie Samenvatting Natuurkunde Syllabus domein C: beweging en energie Samenvatting door R. 2564 woorden 31 januari 2018 10 2 keer beoordeeld Vak Natuurkunde Subdomein C1. Kracht en beweging Specificatie De kandidaat

Nadere informatie

Advanced Creative Enigneering Skills

Advanced Creative Enigneering Skills Enigneering Skills Kinetica November 2015 Theaterschool OTT-2 1 Kinematica Kijkt naar de geometrische aspecten en niet naar de feitelijke krachten op het systeem Kinetica Beschouwt de krachten Bewegingsvergelijkingen

Nadere informatie

Het Quantum Universum. Cygnus Gymnasium

Het Quantum Universum. Cygnus Gymnasium Het Quantum Universum Cygnus Gymnasium 2014-2015 Wat gaan we doen? Fundamentele natuurkunde op de allerkleinste en de allergrootste schaal. Groepsproject als eindopdracht: 1) Bedenk een fundamentele wetenschappelijk

Nadere informatie

Kracht en Beweging. Intro. Newton. Theorie even denken. Lesbrief 4

Kracht en Beweging. Intro. Newton. Theorie even denken. Lesbrief 4 Lesbrief 4 Kracht en Beweging Theorie even denken Intro Kracht is overal. Een trap op een bal, een windstoot, een worp Als een voorwerp versnelt of vertraagt, is er een kracht aan het werk. Newton De eenheid

Nadere informatie

Uitwerking Opgave Zonnestelsel 2005/2006: 1. 1 Het Zonnestelsel en de Zon. 1.1 Het Barycentrum van het Zonnestelsel

Uitwerking Opgave Zonnestelsel 2005/2006: 1. 1 Het Zonnestelsel en de Zon. 1.1 Het Barycentrum van het Zonnestelsel Uitwerking Opgave Zonnestelsel 2005/2006: 1 1 Het Zonnestelsel en de Zon 1.1 Het Barycentrum van het Zonnestelsel Door haar grote massa domineert de Zon het Zonnestelsel. Echter, de planeten hebben een

Nadere informatie

Een bal wegschoppen Een veer indrukken en/of uitrekken Een lat ombuigen Een wagentjes voorduwen

Een bal wegschoppen Een veer indrukken en/of uitrekken Een lat ombuigen Een wagentjes voorduwen - 31 - Krachten 1. Voorbeelden Een bal wegschoppen Een veer indrukken en/of uitrekken Een lat ombuigen Een wagentjes voorduwen 2. Definitie Krachten herken je aan hun werking, aan wat ze veranderen of

Nadere informatie

Naam van de kracht: Uitleg: Afkorting: Spierkracht De kracht die wordt uitgeoefend door spieren van de mens. F spier

Naam van de kracht: Uitleg: Afkorting: Spierkracht De kracht die wordt uitgeoefend door spieren van de mens. F spier Samenvatting door F. 823 woorden 3 maart 2015 7,4 32 keer beoordeeld Vak NaSk Sport, kracht en beweging 1 Naam van de kracht: Uitleg: Afkorting: Spierkracht De kracht die wordt uitgeoefend door spieren

Nadere informatie

Speciale relativiteitstheorie

Speciale relativiteitstheorie versie 13 februari 013 Speciale relativiteitstheorie J.W. van Holten NIKHEF Amsterdam en LION Universiteit Leiden c 1 Lorentztransformaties In een inertiaalstelsel bewegen alle vrije deeltjes met een

Nadere informatie

krachten sep 3 10:09 Krachten Hoofdstuk 1 Bewegingsverandering/snelheidsverandering (bijv. verandering van bewegingsrichting)

krachten sep 3 10:09 Krachten Hoofdstuk 1 Bewegingsverandering/snelheidsverandering (bijv. verandering van bewegingsrichting) krachten sep 3 10:09 Krachten Hoofdstuk 1 een kracht zelf kun je niet zien maar... Waaraan zie je dat er een kracht werkt: Plastische Vervorming (blijvend) Elastische Vervorming (tijdelijk) Bewegingsverandering/snelheidsverandering

Nadere informatie

Opgave 2 Een kracht heeft een grootte, een richting en een aangrijpingspunt.

Opgave 2 Een kracht heeft een grootte, een richting en een aangrijpingspunt. Uitwerkingen 1 Opgave 1 Het aangrijpingspunt van een kracht is de plaats waar de kracht op het voorwerp werkt. De werklijn van een kracht is de denkbeeldige (rechte) lijn die samenvalt met de bijbehorende

Nadere informatie

Emergente zwaartekracht Prof. Dr. Erik Verlinde

Emergente zwaartekracht Prof. Dr. Erik Verlinde Prof. Dr. Erik Verlinde ! 3 grote problemen met zwaartekracht! Zwaartekracht op subatomair niveau! Versnelde uitdijing heelal! Zwaartekracht moet uitdijing afremmen! Er moet dus donkere energie zijn! Te

Nadere informatie

Basiscursus Sterrenkunde

Basiscursus Sterrenkunde Basiscursus Sterrenkunde Les 1 Sterrenwacht Tweelingen te Spijkenisse 24 April 2019 Inhoud van de cursus Inleiding Geschiedenis Afstanden in het heelal Het zonnestelsel Onze zon en andere sterren Sterrenstelsels

Nadere informatie

Ik doe mijn spreekbeurt over de ruimte omdat ik het een interessant onderwerp vind en ik er graag meer over wilde weten.

Ik doe mijn spreekbeurt over de ruimte omdat ik het een interessant onderwerp vind en ik er graag meer over wilde weten. Boekverslag door J. 1981 woorden 29 juli 2003 6.3 208 keer beoordeeld Vak Nederlands Ik doe mijn spreekbeurt over de ruimte omdat ik het een interessant onderwerp vind en ik er graag meer over wilde weten.

Nadere informatie

Leerstof: Hoofdstukken 1, 2, 4, 9 en 10. Hulpmiddelen: Niet grafische rekenmachine, binas 6 de druk. Let op dat je alle vragen beantwoordt.

Leerstof: Hoofdstukken 1, 2, 4, 9 en 10. Hulpmiddelen: Niet grafische rekenmachine, binas 6 de druk. Let op dat je alle vragen beantwoordt. Oefentoets Schoolexamen 5 Vwo Natuurkunde Leerstof: Hoofdstukken 1, 2, 4, 9 en 10 Tijdsduur: Versie: A Vragen: Punten: Hulpmiddelen: Niet grafische rekenmachine, binas 6 de druk Opmerking: Let op dat je

Nadere informatie

Thema 1 Natuurlijke verschijnselen

Thema 1 Natuurlijke verschijnselen Naut samenvatting groep 8 Mijn Malmberg Thema 1 Natuurlijke verschijnselen Samenvatting Krachten Als je kracht uitoefent op een voorwerp, reageert dat altijd op dezelfde manier. Enkele belangrijke krachten

Nadere informatie

Werkstuk Nederlands De Ruimte werkstuk

Werkstuk Nederlands De Ruimte werkstuk Werkstuk Nederlands De Ruimte werkstuk Werkstuk door Denise 1472 woorden 24 maart 2019 0 keer beoordeeld Vak Nederlands Het zonnestelsel Inhoudsopgave Inleiding Onderzoeksvraag Het ontstaan Planeten De

Nadere informatie

Inleiding Astrofysica

Inleiding Astrofysica Inleiding Astrofysica Hoorcollege II 17 september 2018 Samenvatting hoorcollege I n Praktische aspecten: n aangemeld op Blackboard? n Overzicht van ontwikkelingen in de moderne sterrenkunde en de link

Nadere informatie

Zwart gat Simulatie KORTE BESCHRIJVING

Zwart gat Simulatie KORTE BESCHRIJVING Zwart gat Simulatie KORTE BESCHRIJVING Veel kinderen hebben ooit al gehoord van een zwart gat, en ze weten dat het een bodemloze put is. Als iets in een zwart gat valt, kan het er onmogelijk uit ontsnappen

Nadere informatie

Uit: Niks relatief. Vincent Icke Contact, 2005

Uit: Niks relatief. Vincent Icke Contact, 2005 Uit: Niks relatief Vincent Icke Contact, 2005 Dé formule Snappiknie kanniknie Waarschijnlijk is E = mc 2 de beroemdste formule aller tijden, tenminste als je afgaat op de meerderheid van stemmen. De formule

Nadere informatie

Bram Achterberg Afdeling Sterrenkunde IMAPP, Radboud Universiteit Nijmegen

Bram Achterberg Afdeling Sterrenkunde IMAPP, Radboud Universiteit Nijmegen Bram Achterberg Afdeling Sterrenkunde IMAPP, Radboud Universiteit Nijmegen Een paar basisfeiten over ons heelal: Het heelal expandeert: de afstanden tussen verre (groepen van) sterrenstelsels wordt steeds

Nadere informatie

Uitwerkingen 1. ω = Opgave 1 a.

Uitwerkingen 1. ω = Opgave 1 a. Uitwerkingen Opgave π omtrek diameter Eén radiaal is de hoek, gemeten vanuit het middelpunt van een cirkel, waarbij de lengte van de boog gelijk is aan de straal. c. s ϕ r d. ϕ ω t Opgave π (dus ongeveer

Nadere informatie

Basiscursus Sterrenkunde. Sterrenwacht Tweelingen, Spijkenisse 8 Mei 2019

Basiscursus Sterrenkunde. Sterrenwacht Tweelingen, Spijkenisse 8 Mei 2019 Basiscursus Sterrenkunde Sterrenwacht Tweelingen, Spijkenisse 8 Mei 2019 Deze les Zijn er nog vragen n.a.v. de vorige les? Deze les: Ontstaan zonnestelsel De Zon Ons zonnestelsel binnen het sterrenstelsel

Nadere informatie

Hoofdstuk 4 Trillingen en cirkelbewegingen. Gemaakt als toevoeging op methode Natuurkunde Overal

Hoofdstuk 4 Trillingen en cirkelbewegingen. Gemaakt als toevoeging op methode Natuurkunde Overal Hoofdstuk 4 Trillingen en cirkelbewegingen Gemaakt als toevoeging op methode Natuurkunde Overal U (V) 4.1 Eigenschappen van trillingen Harmonische trilling Een electrocardiogram (ECG) gaf het volgende

Nadere informatie

1 Leerlingproject: Relativiteit 28 februari 2002

1 Leerlingproject: Relativiteit 28 februari 2002 1 Leerlingproject: Relativiteit 28 februari 2002 1 Relativiteit Als je aan relativiteit denkt, dan denk je waarschijnlijk als eerste aan Albert Einstein. En dat is dan ook de bedenker van de relativiteitstheorie.

Nadere informatie

Hoofdstuk 4 Trillingen en cirkelbewegingen. Gemaakt als toevoeging op methode Natuurkunde Overal

Hoofdstuk 4 Trillingen en cirkelbewegingen. Gemaakt als toevoeging op methode Natuurkunde Overal Hoofdstuk 4 Trillingen en cirkelbewegingen Gemaakt als toevoeging op methode Natuurkunde Overal U (V) 4.1 Eigenschappen van trillingen Harmonische trilling Een electrocardiogram (ECG) gaf het volgende

Nadere informatie

Higgs-deeltje. Peter Renaud Heideheeren. Inhoud

Higgs-deeltje. Peter Renaud Heideheeren. Inhoud Higgs-deeltje Peter Renaud Heideheeren Inhoud 1. Onze fysische werkelijkheid 2. Newton Einstein - Bohr 3. Kwantumveldentheorie 4. Higgs-deeltjes en Higgs-veld 3 oktober 2012 Heideheeren 2 1 Plato De dingen

Nadere informatie

Module B: Wie kan het raam hebben geforceerd?

Module B: Wie kan het raam hebben geforceerd? Module B: Wie kan het raam hebben geforceerd? Situatieschets Bij het onderzoek door de politie is gebleken dat er een raam is geforceerd. Zeer waarschijnlijk is de dader door dat raam binnengekomen. Dat

Nadere informatie

Viscositeit. par. 1 Inleiding

Viscositeit. par. 1 Inleiding Viscositeit par. 1 Inleiding Viscositeit is een eigenschap van vloeistoffen (en van gassen) die aangeeft hoe ondoordringbaar de vloeistof is voor een vast voorwerp. Anders gezegd met de grootheid viscositeit

Nadere informatie

Viscositeit. par. 1 Inleiding

Viscositeit. par. 1 Inleiding Viscositeit par. 1 Inleiding Viscositeit is een eigenschap van vloeistoffen (en van gassen) die aangeeft hoe ondoordringbaar de vloeistof is voor een vast voorwerp. Anders gezegd met de grootheid viscositeit

Nadere informatie

Samenvatting Natuurkunde Hoofdstuk 7 + zonnestelsel en heelal

Samenvatting Natuurkunde Hoofdstuk 7 + zonnestelsel en heelal Samenvatting Natuurkunde Hoofdstuk 7 + zonnestelsel en heelal Samenvatting door C. 1741 woorden 24 juni 2016 1,4 1 keer beoordeeld Vak Methode Natuurkunde Nu voor straks Natuurkunde H7 + Zonnestelsel en

Nadere informatie

10 Had Halley gelijk: worden de maanden korter?

10 Had Halley gelijk: worden de maanden korter? 10 Had Halley gelijk: worden de en korter? Dit is de laatste module. We kunnen nu (eindelijk!) terugkomen op de vraag waar we twee jaar geleden mee begonnen. Terugblik In 1695 had de Engelse astronoom

Nadere informatie

Het zonnestelsel en atomen

Het zonnestelsel en atomen Het zonnestelsel en atomen Lieve mensen, ik heb u over de dampkring van de aarde verteld. Een dampkring die is opgebouwd uit verschillende lagen die men sferen noemt. Woorden als atmosfeer en stratosfeer

Nadere informatie

Samenvatting NaSk 1, 2 en 3

Samenvatting NaSk 1, 2 en 3 Samenvatting NaSk 1, 2 en 3 Samenvatting door een scholier 586 woorden 28 september 2016 2,9 3 keer beoordeeld Vak NaSk Overal is Nask 1.1 Zonder Nask -> andere wereld Natuurkunde en Scheikunde Natuurkunde:

Nadere informatie

6.1. Boekverslag door K woorden 22 mei keer beoordeeld

6.1. Boekverslag door K woorden 22 mei keer beoordeeld Boekverslag door K. 1555 woorden 22 mei 2002 6.1 301 keer beoordeeld Vak ANW 1. Inleiding Ik doe mijn werkstuk over ons zonnestelsel, omdat het me boeit wat er verder is dan onze aarde. Ook doe ik mijn

Nadere informatie

Einstein s Relativiteits theorie Een uitleg met middelbare school wiskunde Andrré van der Hoeven Docent natuurkunde Emmauscollege Rotterdam

Einstein s Relativiteits theorie Een uitleg met middelbare school wiskunde Andrré van der Hoeven Docent natuurkunde Emmauscollege Rotterdam Einstein s Relativiteits theorie Een uitleg met middelbare school wiskunde André van der Hoeven Docent natuurkunde Emmauscollege Rotterdam Einstein s speciale relativiteitstheorie, maarr dan begrijpelijk

Nadere informatie

Werkstuk Natuurkunde Negen planeten

Werkstuk Natuurkunde Negen planeten Werkstuk Natuurkunde Negen planeten Werkstuk door een scholier 1608 woorden 3 januari 2005 5,7 93 keer beoordeeld Vak Natuurkunde Planeten Ontstaan van het zonnestelsel Vlak na een explosie, de Big Bang

Nadere informatie

De massadichtheid, dichtheid of soortelijke massa van een stof is de massa die aanwezig is in een bepaald

De massadichtheid, dichtheid of soortelijke massa van een stof is de massa die aanwezig is in een bepaald Hieronder wordt uitgelegd wat massadichtheid betekent. De massadichtheid, dichtheid of soortelijke massa van een stof is de massa die aanwezig is in een bepaald volume. De massadichtheid is dus bijvoorbeeld

Nadere informatie

Verslag Natuurkunde De uitrekking van veren

Verslag Natuurkunde De uitrekking van veren Verslag Natuurkunde De uitrekking van veren Verslag door Evelien 582 woorden 2 februari 2017 6,5 71 keer beoordeeld Vak Natuurkunde De uitrekking van veren Literatuuronderzoek Massa heeft als eenheid kg,

Nadere informatie

Aarde Onze Speciale Woonplaats

Aarde Onze Speciale Woonplaats Aarde Onze Speciale Woonplaats Wat Earth in space BEWOONBAARHEID voor intelligente wezens betreft is er geen betere planeet dan de AARDE! Wij leven op een doodgewoon rotsblok dat rond gaat om een middelmatige

Nadere informatie

Mkv Magnetisme. Vraag 1 Twee lange, rechte stroomvoerende geleiders zijn opgehangen in hetzelfde verticale vlak, op een afstand d van elkaar.

Mkv Magnetisme. Vraag 1 Twee lange, rechte stroomvoerende geleiders zijn opgehangen in hetzelfde verticale vlak, op een afstand d van elkaar. Mkv Magnetisme Vraag 1 Twee lange, rechte stroomvoerende geleiders zijn opgehangen in hetzelfde verticale vlak, op een afstand d van elkaar. In een punt P op een afstand d/2 van de rechtse geleider is

Nadere informatie

Krachten (4VWO) www.betales.nl

Krachten (4VWO) www.betales.nl www.betales.nl Grootheden Scalairen Vectoren - Grootte - Eenheid - Grootte - Eenheid - Richting Bv: m = 987 kg x = 10m (x = plaats) V = 3L Bv: F = 17N s = Δx (verplaatsing) v = 2km/h Krachten optellen

Nadere informatie

Wat weet je al over zwaartekracht? We schrijven de ideeën van de deelnemers op een flipover.

Wat weet je al over zwaartekracht? We schrijven de ideeën van de deelnemers op een flipover. 1 2 Wat weet je al over zwaartekracht? We schrijven de ideeën van de deelnemers op een flipover. Wetenschappers hebben in de 17 e eeuw het meeste ontdekt over zwaartekracht, onder andere Galileo en Simon

Nadere informatie

Uitwerking examen Natuurkunde1,2 HAVO 2007 (1 e tijdvak)

Uitwerking examen Natuurkunde1,2 HAVO 2007 (1 e tijdvak) Uitwerking examen Natuurkunde, HAVO 007 ( e tijdvak) Opgave Optrekkende auto. Naarmate de grafieklijn in een (v,t)-diagram steiler loopt, zal de versnelling groter zijn. De versnelling volgt immers uit

Nadere informatie

Onderwijs op maat voor uitdaging en motivering Krachten 4

Onderwijs op maat voor uitdaging en motivering Krachten 4 1. Aan welke 4 zaken herken je dat er een kracht op een voorwerp werkt? Verandering van richting, vorm, snelheid of het houdt iets op zijn plaats. 2. Welke 3 eigenschappen heeft een Vector aangrijppunt,

Nadere informatie

Tweede Bijeenkomst: Zoektocht naar het Verborgen Hemelbeeld. Rond de Waterput donderdag 31 oktober 2013 Allan R. de Monchy

Tweede Bijeenkomst: Zoektocht naar het Verborgen Hemelbeeld. Rond de Waterput donderdag 31 oktober 2013 Allan R. de Monchy Tweede Bijeenkomst: Zoektocht naar het Verborgen Hemelbeeld Rond de Waterput donderdag 31 oktober 2013 Allan R. de Monchy Twee bijeenkomsten: Donderdag 17 oktober 2013: Historische ontwikkelingen van Astrologie.

Nadere informatie

ONTDEK HET PLANETARIUM! DE ANTWOORDEN GROEP 5-6

ONTDEK HET PLANETARIUM! DE ANTWOORDEN GROEP 5-6 ONTDEK HET PLANETARIUM! DE ANTWOORDEN GROEP 5-6 OPKAMER (12) Dit onderdeel past bij kerndoel 46, 52, 53 en 56. Het bed hier is heel kort. Eise zelf was 1 meter 74. Hoe moest hij dan slapen? Mensen sliepen

Nadere informatie

QUARK_5-Thema-01-elektrische kracht Blz. 1

QUARK_5-Thema-01-elektrische kracht Blz. 1 QUARK_5-Thema-01-elektrische kracht Blz. 1 THEMA 1: elektrische kracht Elektriciteit Elektrische lading Lading van een voorwerp Fenomeen: Sommige voorwerpen krijgen een lading door wrijving. Je kan aan

Nadere informatie

Hoofdstuk 3 Kracht en beweging. Gemaakt als toevoeging op methode Natuurkunde Overal

Hoofdstuk 3 Kracht en beweging. Gemaakt als toevoeging op methode Natuurkunde Overal Hoofdstuk 3 Kracht en beweging Gemaakt als toevoeging op methode Natuurkunde Overal 3.1 Soorten krachten Twee soorten grootheden Scalars - Grootte - Eenheid Vectoren - Grootte - Eenheid - Richting Bijvoorbeeld:

Nadere informatie

klas 2-3 - 4 "Eenheden"

klas 2-3 - 4 Eenheden Naam: klas 2-3 - 4 "Eenheden" Klas: Het woord eenheid betekent dat dingen hetzelfde zijn. In de natuurkunde, scheikunde en techniek kan van alles gemeten worden. Iedereen kan elkaars metingen pas gebruiken

Nadere informatie

1 Leerlingproject: Kosmische straling 28 februari 2002

1 Leerlingproject: Kosmische straling 28 februari 2002 1 Leerlingproject: Kosmische straling 28 februari 2002 1 Kosmische straling Onder kosmische straling verstaan we geladen deeltjes die vanuit de ruimte op de aarde terecht komen. Kosmische straling is onder

Nadere informatie

HERTENTAMEN PLANETENSTELSELS 13 JULI 2015,

HERTENTAMEN PLANETENSTELSELS 13 JULI 2015, HERTENTAMEN PLANETENSTELSELS 13 JULI 2015, 14.00-17.00 LEES ONDERSTAANDE GOED DOOR: DIT TENTAMEN OMVAT DRIE OPGAVES. OPGAVE 1: 3.5 PUNTEN OPGAVE 2: 2.5 PUNTEN OPGAVE 3: 2.0 PUNTEN HET EINDCIJFER OMVAT

Nadere informatie

XXX INTERNATIONALE NATUURKUNDE OLYMPIADE PADUA, ITALIË THEORIE-TOETS

XXX INTERNATIONALE NATUURKUNDE OLYMPIADE PADUA, ITALIË THEORIE-TOETS XXX INTERNATIONALE NATUURKUNDE OLYMPIADE PADUA, ITALIË THEORIE-TOETS 22 juli 1999 70 --- 13 de internationale olympiade Opgave 1. Absorptie van straling door een gas Een cilindervormig vat, met de as vertikaal,

Nadere informatie

Hoofdstuk 12 Elektrische velden. Gemaakt als toevoeging op methode Natuurkunde Overal

Hoofdstuk 12 Elektrische velden. Gemaakt als toevoeging op methode Natuurkunde Overal Hoofdstuk 12 Elektrische velden Gemaakt als toevoeging op methode Natuurkunde Overal 12.1 Elektrische kracht en lading Elektrische krachten F el + + F el F el F el r F el + F el De wet van Coulomb q Q

Nadere informatie

Quantummechanica en Relativiteitsleer bij kosmische straling

Quantummechanica en Relativiteitsleer bij kosmische straling Quantummechanica en sleer bij kosmische straling Niek Schultheiss 1/19 Krachten en krachtdragers Op kerndeeltjes werkt de zwaartekracht. Op kerndeeltjes werkt de elektromagnetische kracht. Kernen kunnen

Nadere informatie

Planeten. Zweven in vaste banen om een ster heen. In ons zonnestelsel zweven acht planeten rond de zon. Maar wat maakt een planeet nou een planeet?

Planeten. Zweven in vaste banen om een ster heen. In ons zonnestelsel zweven acht planeten rond de zon. Maar wat maakt een planeet nou een planeet? Planeten Zweven in vaste banen om een ster heen In ons zonnestelsel zweven acht planeten rond de zon. Maar wat maakt een planeet nou een planeet? Een planeet: zweeft in een baan rond een ster; is zwaar

Nadere informatie

Reis door het zonnestelsel

Reis door het zonnestelsel Reis door het zonnestelsel GROEP 7-8 61 70 minuten 1, 23, 32 en 46 De leerling: weet dat de afstanden tussen de planeten heel groot zijn kan zich een voorstelling maken van de afstand van de aarde tot

Nadere informatie

Sterrenkunde Ruimte en tijd (3)

Sterrenkunde Ruimte en tijd (3) Sterrenkunde Ruimte en tijd (3) Zoals we in het vorige artikel konden lezen, concludeerde Hubble in 1929 tot de theorie van het uitdijende heelal. Dit uitdijen geschiedt met een snelheid die evenredig

Nadere informatie

Vergelijk het maar met een ijsberg: de 20% die uitsteekt boven water zien we. De 80% onder water zien we niet, maar is er wel!

Vergelijk het maar met een ijsberg: de 20% die uitsteekt boven water zien we. De 80% onder water zien we niet, maar is er wel! Elektronen, protonen & neutronen: dat zijn de bouwstenen van alles wat ik hier om mij heen zie: jullie, de stoelen waarop jullie zitten en het podium waar ik op sta. En de lucht die we inademen. En in

Nadere informatie

HOE VIND JE EXOPLANETEN?

HOE VIND JE EXOPLANETEN? LESBRIEF GEEF STERRENKUNDE DE RUIMTE! ZOEKTOCHT EXOPLANETEN Deze NOVAlab-oefening gaat over een van de manieren om planeten buiten ons zonnestelsel op te sporen. De oefening is geschikt voor de bovenbouw

Nadere informatie

Uitdijing van het heelal

Uitdijing van het heelal Uitdijing van het heelal Zijn we centrum van de expansie? Nee Alles beweegt weg van al de rest: Alle afstanden worden groter met zelfde factor a(t) a 4 2 4a 2a H Uitdijing van het heelal (da/dt) 2 0 a(t)

Nadere informatie

Eindexamen vwo natuurkunde pilot 2012 - I

Eindexamen vwo natuurkunde pilot 2012 - I Eindexamen vwo natuurkunde pilot 0 - I Opgave Lichtpracticum maximumscore De buis is aan beide kanten afgesloten om licht van buitenaf te voorkomen. maximumscore 4 De weerstanden verhouden zich als de

Nadere informatie

Opdracht 3: Baanintegratie: Planeet in een dubbelstersysteem

Opdracht 3: Baanintegratie: Planeet in een dubbelstersysteem PLANETENSTELSELS - WERKCOLLEGE 3 EN 4 Opdracht 3: Baanintegratie: Planeet in een dubbelstersysteem In de vorige werkcolleges heb je je pythonkennis opgefrist. Je hebt een aantal fysische constanten ingelezen,

Nadere informatie

Relativiteitstheorie met de computer

Relativiteitstheorie met de computer Relativiteitstheorie met de computer Jan Mooij Mendelcollege Haarlem Met een serie eenvoudige grafiekjes wordt de (speciale) relativiteitstheorie verduidelijkt. In vijf stappen naar de tweelingparadox!

Nadere informatie

E = m c 2. Massa. Energie. (licht-) Snelheid. Wetenschappers en denkers. E=mc 2 HOVO. Hoe u het zelf had kunnen bedenken 1.

E = m c 2. Massa. Energie. (licht-) Snelheid. Wetenschappers en denkers. E=mc 2 HOVO. Hoe u het zelf had kunnen bedenken 1. Energie Massa E = m c 2 en hoe u het zelf had kunnen bedenken. (licht) Snelheid Dr. Harm van der Lek vdlek@vdlek.nl Natuurkunde hobbyist Wetenschappers en denkers 1500 1600 1700 1800 1900 2000 Galileo

Nadere informatie

Praktische opdracht ANW Zwarte gaten

Praktische opdracht ANW Zwarte gaten Praktische opdracht ANW Zwarte gaten Praktische-opdracht door een scholier 2138 woorden 2 mei 2003 6,9 64 keer beoordeeld Vak ANW Inleiding. Al heel lang speelt het heelal een rol in onze samenleving.

Nadere informatie

Proef Natuurkunde Massa en zwaartekracht; veerconstante

Proef Natuurkunde Massa en zwaartekracht; veerconstante Proef Natuurkunde Massa en zwaartekracht; ve Proef door een scholier 1568 woorden 20 januari 2003 4,9 273 keer beoordeeld Vak Natuurkunde Natuurkunde practicum 1.3 Massa en zwaartekracht; ve De probleemstelling

Nadere informatie

Lessen in Krachten. Door: Gaby Sondagh en Isabel Duin Eckartcollege

Lessen in Krachten. Door: Gaby Sondagh en Isabel Duin Eckartcollege Lessen in Krachten Door: Gaby Sondagh en Isabel Duin Eckartcollege Krachten werken op alles en iedereen. Sommige krachten zijn nodig om te blijven leven. Als er bijv. geen zwaartekracht zou zijn, zouden

Nadere informatie

krachten kun je voorstellen door een vector (pijl) deze wordt op schaal getekend en heeft: Als de vector 5 cm is dan is de kracht hier 50 N

krachten kun je voorstellen door een vector (pijl) deze wordt op schaal getekend en heeft: Als de vector 5 cm is dan is de kracht hier 50 N Kracht kunnen we herkennen door: Verandering van richting door trekken of duwen. Verandering van vorm a) Plastisch (vorm veranderd niet terug) b) Elastisch (vorm veranderd terug {elastiek}) Versnellen

Nadere informatie

Massa. Energie. E = m c 2. (licht-) Snelheid. en hoe u het zelf had kunnen bedenken. Dr. Harm van der Lek. Natuurkunde hobbyist

Massa. Energie. E = m c 2. (licht-) Snelheid. en hoe u het zelf had kunnen bedenken. Dr. Harm van der Lek. Natuurkunde hobbyist Massa Energie E = m c 2 en hoe u het zelf had kunnen bedenken. (licht-) Snelheid Dr. Harm van der Lek vdlek@vdlek.nl Natuurkunde hobbyist 2 Wetenschappers en denkers 1500 1600 1700 1800 1900 2000 Galileo

Nadere informatie

Hoofdstuk 6: Elektromagnetisme

Hoofdstuk 6: Elektromagnetisme Hoofdstuk 6: lektromagnetisme Natuurkunde VWO 2011/2012 www.lyceo.nl Hoofdstuk 6: lektromagnetisme Natuurkunde 1. Mechanica 2. Golven en straling 3. lektriciteit en magnetisme 4. Warmteleer Rechtlijnige

Nadere informatie

Equivalentie en tijddilatatie bij plaatsbepaling met het Global Positioning System

Equivalentie en tijddilatatie bij plaatsbepaling met het Global Positioning System Equivalentie en tijddilatatie bij plaatsbepaling met het Global Positioning System Jiri Oen (5814685) Jacinta Moons (5743206) 1 juli 2009 Samenvatting Om de positie van een ontvanger op aarde te bepalen

Nadere informatie

1 Krachten. Krachten om je heen. Nova. Leerstof. Toepassing

1 Krachten. Krachten om je heen. Nova. Leerstof. Toepassing 1 Krachten 1 Krachten om je heen Leerstof 1 a Je kunt zien dat er een kracht op een voorwerp werkt doordat de beweging of de vorm van het voorwerp verandert. b Bij een elastische vervorming is het voorwerp

Nadere informatie

Laten we eens kijken naar de volgende grafiek:

Laten we eens kijken naar de volgende grafiek: Hoogte en snelheidscontrole Een vliegtuig is moeilijker te besturen dan een auto. Dat komt niet alleen om dat de cockpit ingewikkelder is, meer knopjes bevat. Het werkelijke, achterliggende, probleem is

Nadere informatie

NATIONALE NATUURKUNDE OLYMPIADE. Tweede ronde - theorie toets. 21 juni beschikbare tijd : 2 x 2 uur

NATIONALE NATUURKUNDE OLYMPIADE. Tweede ronde - theorie toets. 21 juni beschikbare tijd : 2 x 2 uur NATIONALE NATUURKUNDE OLYMPIADE Tweede ronde - theorie toets 21 juni 2000 beschikbare tijd : 2 x 2 uur 52 --- 12 de tweede ronde DEEL I 1. Eugenia. Onlangs is met een telescoop vanaf de Aarde de ongeveer

Nadere informatie

4 Het heelal 6. De zon. De aarde. Jupiter. De maan. Ons zonnestelsel. Mars. Mercurius Venus

4 Het heelal 6. De zon. De aarde. Jupiter. De maan. Ons zonnestelsel. Mars. Mercurius Venus Inhoud 4 Het heelal 6 De zon 10 8 De aarde De maan Jupiter 18 12 Ons zonnestelsel 14 15 16 Mars Mercurius Venus 22 Saturnus Verre planeten 24 Satellieten van het zonnestelsel 20 26 Planetoïden 27 Kometen

Nadere informatie

HOVO cursus Kosmologie

HOVO cursus Kosmologie HOVO cursus Kosmologie Voorjaar 011 prof.dr. Paul Groot dr. Gijs Nelemans Afdeling Sterrenkunde, Radboud Universiteit Nijmegen HOVO cursus Kosmologie Overzicht van de cursus: 17/1 Groot Historische inleiding

Nadere informatie

7 College 01/12: Electrische velden, Wet van Gauss

7 College 01/12: Electrische velden, Wet van Gauss 7 College 01/12: Electrische velden, Wet van Gauss Berekening van electrische flux Alleen de component van het veld loodrecht op het oppervlak draagt bij aan de netto flux. We definieren de electrische

Nadere informatie

In een U-vormige buis bevinden zich drie verschillende, niet mengbare vloeistoffen met dichtheden ρ1, ρ2 en ρ3. De hoogte h1 = 10 cm en h3 = 15 cm.

In een U-vormige buis bevinden zich drie verschillende, niet mengbare vloeistoffen met dichtheden ρ1, ρ2 en ρ3. De hoogte h1 = 10 cm en h3 = 15 cm. Fysica Vraag 1 In een U-vormige buis bevinden zich drie verschillende, niet mengbare vloeistoffen met dichtheden ρ1, ρ2 en ρ3. De hoogte h1 = 1 cm en h3 = 15 cm. De dichtheid ρ3 wordt gegeven door:

Nadere informatie

fragment Fantastic 4

fragment Fantastic 4 1 In dit fragment uit de science fiction film Fantastic 4 worden astronauten lam gestraald door zogenaamde kosmische straling. Zij komen er goed van af want door die straling muteert hun DNA zodanig dat

Nadere informatie

nieuw deeltje deeltje 1 deeltje 2 deeltje 2 tijd

nieuw deeltje deeltje 1 deeltje 2 deeltje 2 tijd Samenvatting Inleiding De kern Een atoom bestaat uit een kern en aan de kern gebonden elektronen, die om de kern cirkelen. Dat de elektronen aan de kern gebonden zijn, komt doordat er een kracht werkt

Nadere informatie