Toets gecijferdheid augustus 2005
|
|
|
- Gerrit van Veen
- 8 jaren geleden
- Aantal bezoeken:
Transcriptie
1 Toets gecijferdheid augustus 2005 Naam: Klas: score: Datum: Algemene aanwijzingen: - Noteer alle berekeningen en oplossingen in dit boekje - Blijf niet te lang zoeken naar een oplossing - Denk aan de tijd - Gebruik van een zakrekenmachine is niet toegestaan - Gebruik van een geodriehoek of liniaal wordt aanbevolen Veel succes!
2 Opgave 1. Hoofdrekenen: handig rekenen Los de volgende sommen op door handig te rekenen. Je mag niet cijferen. Laat duidelijk zien hoe je ze uitrekent. a ,85 = = ,15 = 2151,15 b. 6202, ,65 = = 6500 c : 1,7 = : 17 = 2000 dus : 1,7 = : 17 = 3 dus 51 : 1,7 = : 1,7 = d. 25 x 198 = 50 x 99 = 50 x = 4950 Voor elk goed berekend antwoord een heel punt.
3 Opgave 2. Schattend rekenen Los op door te rekenen met mooie, ronde getallen. a. Een stukje uit de krant. ENGELSE DROP UIT ENGELAND? Nederlanders eten zo n 32 miljoen kilo drop! Almere Als meneer Klikspaan en ik op vakantie gaan nemen we altijd een grote zak drop mee. Het liefst Engelse drop en dropmunten. Want in het buitenland kennen ze het fenomeen drop helemaal niet. En zonder drop kunnen we écht niet. Omdat het voor ons zo normaal is, leek het me leuk eens wat meer te weten te komen over dropjes. Want hoe wordt drop gemaakt en waar komt het eigenlijk vandaan? Wist je dat Nederlanders 32 miljoen kilo drop eten? Dat lijkt veel, maar die 32 miljoen kilo komt overeen met ongeveer zeven gram drop per persoon per dag. Wist je dat Nederlanders 32 miljoen kilo drop eten? Dat lijkt veel, maar die 32 miljoen kilo komt overeen met ongeveer zeven gram drop per persoon per dag. Nederlanders eten zo n 32 miljoen kilo drop per jaar! Maar dat is ongeveer 7 gram per persoon per dag, volgens de krant. (Zie kader.) Kan dat ongeveer kloppen? Laat duidelijk zien hoe je rekent. 32 miljoen kg per jaar per 16 miljoen inwoners dus 2 kg per persoon per jaar. Kortom 1 persoon eet ongeveer 2 kg drop per jaar Als je elke dag ongeveer 7 gram drop eet, dan is dat jaarlijks 7 x 300 = 2100 gram. Als je dus 6 dagen per week drop eet (dan mis je 52 dagen per jaar) en kan het dus aardig kloppen. b. Michael rekent op zijn rekenmachine correct uit: 204,05 x 0, = Hij neemt de uitkomst van zijn schermpje over maar vergeet de komma. Hij schrijft op Waar moet de komma geplaatst worden? Licht duidelijk toe. 204,05 x 0, x 0,25 = = 56 dus de komma moet na de 4: 54,972 Voor elk goed berekend antwoord twee punten.
4 Opgave 3. Verhoudingen a. Drie mensen verdelen een bedrag volgens de verhouding 2 : 3 : 4. De persoon die het meest krijgt, heeft na de verdeling gekregen. Hoe groot was het oorspronkelijke bedrag dat de drie mensen verdeelden? Dus stel persoon één krijgt 2,- dan krijgt persoon twee 3,- en persoon drie 4,-. Ze hadden dan 9,- verdeeld, zie onderstaande verhoudingstabel. ontvangt persoon persoon persoon totaal Dus verdeelden ze in totaal euro. b. Als de accu van mijn laptop nog voor 10% geladen is, waarschuwt hij automatisch dat ik moet overstappen op netstroom. Ik begin met werken en mijn accu geeft het volgende aan: Nog 32%, genoeg voor 40 minuten Ik wil verder werken op de accu van mijn laptop. Hoeveel minuten kan ik nog werken voordat het bericht komt dat ik over moet stappen op netstroom? Laat duidelijk zien hoe je rekent. 32 % = 40 minuten 16 % = 20 minuten 8 % = 10 minuten 2 % = 2,5 minuten dus 10 % = 12,5 minuten. Let op: als de accu nog 10% vol is, kun je dus nog 12,5 minuut werken. Dat betekent dat je vanaf het moment dat de accu voor 32% vol zat, nog 40 12,5 = 27,5 minuut kan werken. Voor elk goed berekend antwoord twee punten.
5 Opgave 4. Rekenvaria a. Ik heb twee getallen. Als ik ze met elkaar vermenigvuldig, krijg ik 208. Als ik ze bij elkaar optel, is de uitkomst 34. Welke twee getallen zijn het? Slim als je bent, zie je dat 10 x 20 = 200 en = 30. De getallen moeten dus in de buurt van de 10 en in de buurt van de 20 zitten. Getal 1 Getal 2 opgeteld Keer elkaar conclusie Het product is te groot, ik verander 10 in 11, kijken wat er gebeurt Het product wordt groter, ik verlaag de oorspronkelijke 10 in Begint al in de buurt te komen, ik verlaag de 9 in een Hebbes! b. Lieke telt regelmatig de cijfers van de tijd van haar digitale klok bij elkaar. Als zij om 15:30 op haar klok kijkt, is de uitkomst = 9. Hoe laat moet Lieke op haar klok kijken, om de uitkomst zo groot mogelijk te laten zijn? Het moet 19:59 geweest zijn. De uitkomst is dan = 24 Voor elk goed berekend antwoord twee punten.
6 Opgave 5. Meten a. Vul de juiste maat in: (toelichten is niet nodig) de hoogte van dit lokaal is ongeveer 35 dm de inhoud van een blikje cola is ongeveer 3 dl het gewicht van een brood is ongeveer 0,8 kg de oppervlakte van een leerlingentafeltje is ongeveer 35 dm 2 de inhoud van een emmer is ongeveer ml, cc of cm 3 b. Hiernaast zie je een plattegrond van een tuin. De lengten zijn in meters. Hoeveel vierkante meter is de oppervlakte van deze tuin? Laat duidelijk zien hoe je het oplost. Ik splits de tuin op in een rechthoek en een driehoek, zie tekening. De oppervlakte van de rechthoek = 22 x 20 = 440 m 2. De oppervlakte van de driehoek is de helft van 6 x 20. Dus 3 x 20 = 60 m 2. Totaal dus 500 m 2. Voor elk goed berekend onderdeel twee punten; bij onderdeel a geldt: bij elke fout wordt een in punt mindering gebracht.
7 Opgave 6. Breuken en kommagetallen Maak de opgaven op een inzichtelijke manier. Licht je antwoord duidelijk toe. a. Het lijnstuk tussen de twee breuken is in twee gelijke stukken verdeeld. Welke breuk hoort bij de pijl te staan? Vereenvoudig de breuk zo veel als mogelijk. Licht je antwoord toe b. In een wijnglas gaat 8 1 liter. Hoeveel glazen kan ik vullen met twee flessen wijn van 4 3 liter? Licht je antwoord toe = liter + = = liter Dus 6 glazen is 4 3 liter = 1 fles. Dus 12 glazen is twee flessen van 4 3 liter. Voor elk goed berekend antwoord twee punten.
8 Opgave 7. Ordenen, vergelijken en afronden Licht je antwoord duidelijk toe. a. Zet in volgorde van klein naar groot. 768 duizend 0,08 miljard ,72 miljoen 0,72 miljoen duizend 0,08 miljard b. Hang de volgende getallen op de goede plaats aan de getallenlijn Elk streepje = 0,10 erbij. 0,40 0,45 0,50 0,55 0,60 0,65 0,70 0,75 0,80 0, ,85 Voor elk goed berekend antwoord kun je twee punten verdienen.
9 Opgave 8. Procenten Laat steeds duidelijk zien hoe je het oplost. a. Op de website staat een auto te koop aangeboden. De vraagprijs is 2500,-. De uiteindelijk koper betaalt 1750,- voor de auto. Hoeveel procent korting heeft deze koper weten te bedingen? De korting bedraagt 750,- 500 EUR = 5 1 e deel, dus 20%. 250 EUR = 10 1 e deel, dus 10%. 30 % b. Een aanbieding: nu zit er 90 gram tandpasta in de tube. Hoeveel gram tandpasta zat er eerst in een tube, dus voordat je er 20% gratis bij kreeg? 120% = 90 gram 60% = 45 gram 20% = 15 gram 120% - 20% = 100% dus = 75 gram. c. Van 1 tot 100 % Korting Bij aankoop van een montuur geldt de leeftijd van de koper als kortingspercentage. Iemand is 25 jaar en hoeft nu maar 105 te betalen. Hoeveel was het montuur voordat de korting werd gegeven? 25 jaar = 25% korting. Dus 75% = 105,-. Dus 25% = 35,-. Dus 100% = 140,-. Een goed berekend antwoord levert voor onderdeel a 1 punt. Een goed berekend antwoord levert voor onderdeel b en c elk punt.
10 Opgave 9. Cijferen Los deze opgaven cijferend op. a = b , ,88 = 9399,56 c. 6,46 x 22,5 = 145,35 d. 4042,5 : 17,5 = 231 Voor elk goed berekend antwoord een heel punt.
11 Opgave 10. Meetkunde De kubus is schuin voor de helft in zwarte verf gedompeld. Geef in onderstaande uitslagen aan waar de verf zit. De bodem is al zwart aangegeven. of Elke juiste uitslag is goed voor 2 punten.
12 Opgave 11. Toepassingen a. s Morgens is het heel druk in de winkel. s Middags is het lang stil. Vlak voor sluitingstijd, vijf uur s middags, komen er weer veel klanten. Welke grafiek past daarbij? aantal klanten figuur 1 aantal klanten figuur 2 aantal klanten figuur 3 9:00 17:00 9:00 17:00 9:00 17:00 Figuur 3 is de juiste figuur. b. In de trein is het t drukst tijdens de ochtendspits en tijdens de avondspits. Schets in de figuur hieronder een mogelijke grafiek die past bij deze situatie. aantal reizigers 0:00 08:00 12:00 18:00 24:00 tijd Einde Elk goed beantwoord onderdeel is goed voor 2 punten.
Toets gecijferdheid december 2004
Toets gecijferdheid december 2004 Naam: Klas: score: Datum: Algemene aanwijzingen: - Noteer alle berekeningen en oplossingen in dit boekje - Blijf niet te lang zoeken naar een oplossing - Denk aan de tijd
Toets gecijferdheid april 2006 versie 3
Toets gecijferdheid april 2006 versie 3 Naam: Klas: score: Datum: Studentnummer: Algemene aanwijzingen: - Noteer alle berekeningen en oplossingen in dit boekje - Blijf niet te lang zoeken naar een oplossing
Toets gecijferdheid april 2006 versie 1
Toets gecijferdheid april 2006 versie 1 Naam: Klas: score: Datum: Studentnummer: Algemene aanwijzingen: - Noteer alle berekeningen en oplossingen in dit boekje - Blijf niet te lang zoeken naar een oplossing
Toets gecijferdheid mei 2004
Toets gecijferdheid mei 2004 Naam: Datum: Klas: score cijfer Algemene aanwijzingen: - Noteer alle berekeningen en oplossingen in dit boekje - Blijf niet te lang zoeken naar een oplossing - Denk aan de
Toets gecijferdheid maart 2004
Toets gecijferdheid maart 2004 Naam: Datum: Klas: score cijfer Algemene aanwijzingen: - Noteer alle berekeningen en oplossingen in dit boekje - Blijf niet te lang zoeken naar een oplossing - Denk aan de
Leerlijnen rekenen: De wereld in getallen
Leerlijnen rekenen: De wereld in getallen Groep 7(eerste helft) Getalbegrip - Telrij tot en met 1 000 000 - Uitspraak en schrijfwijze van de getallen (800 000 en 0,8 miljoen) - De opbouw en positiewaarde
Leerlijnen groep 7 Wereld in Getallen
Leerlijnen groep 7 Wereld in Getallen 1 2 REKENEN Boek 7a: Blok 1 - week 1 in geldcontext 2 x 2,95 = / 4 x 2,95 = Optellen en aftrekken tot 10.000 - ciferend; met 2 of 3 getallen 4232 + 3635 + 745 = 1600
TOETS REKENEN / WISKUNDE. Naam:... School:...
TOETS REKENEN / WISKUNDE Naam:... School:... Datum:... Groep:... 1A. Hoofdrekenen: optellen en aftrekken Reken de sommen op je eigen manier uit. Gebruik het kladblaadje als je een tussenstap wilt noteren.
Scoreblad bewis 01. naam cursist: naam afnemer: werkpunt. niet goed. tellen. getalbegrip. algemeen 01 04. bewerking en. optellen en.
Scoreblad bewis naam cursist: datum: naam afnemer: inhoud vraag opmerkingen OK werkpunt niet goed tellen eieren tellen in dozen van 10 getallen verder aanvullen in kralenketting getalbegrip getallen ertussen
Opdracht 2.1 a t/m c. Er zijn veel mogelijkheden. De vorm hoeft dus niet gelijk te zijn om toch een vierkant van dezelfde grootte te krijgen.
Uitwerkingen hoofdstuk Gebroken getallen. Kennismaken met breuken.. Deel van geheel Opdracht. a t/m c. Er zijn veel mogelijkheden. De vorm hoeft dus niet gelijk te zijn om toch een vierkant van dezelfde
WISKUNDE: HERHALINGSOEFENINGEN EINDE ZESDE LEERJAAR
WISKUNDE: HERHALINGSOEFENINGEN EINDE ZESDE LEERJAAR Getallenkennis: getalbegrip 1. Noteer het getal: 5D 2H 6HD 7t 9d 2. Noteer het getal: MMXVIII Getallenkennis: werken met gegevens 3. Hoeveel maanden
2 REKENEN MET BREUKEN 3. 2.3 Optellen van breuken 6. 2.5 Aftrekken van breuken 9. 2.7 Vermenigvuldigen van breuken 11. 2.9 Delen van breuken 13
REKENEN MET BREUKEN. De breuk. Opgaven. Optellen van breuken 6. Opgaven 8. Aftrekken van breuken 9.6 Opgaven 9.7 Vermenigvuldigen van breuken.8 Opgaven.9 Delen van breuken.0 Opgaven. Een deel van een deel.
Leerlijnen groep 6 Wereld in Getallen
Leerlijnen groep 6 Wereld in Getallen 1 REKENEN Boek 6a: Blok 1 - week 1 - buurgetallen - oefenen op de getallenlijn Geld - optellen van geldbedragen - aanvullen tot 10 105 : 5 = 2 x 69 = - van digitaal
Instructie voor Docenten. Hoofdstuk 4 KOMMAGETALLEN BASIS
Instructie voor Docenten Hoofdstuk 4 KOMMAGETALLEN BASIS Instructie voor docenten H4 KOMMAGETALLEN BASIS DOELEN VAN DE LES: Leerlingen weten dat getallen in de plaatswaardekaart een bepaalde waarde hebben,
INHOUDSTAFEL. inhoudstafel... 2
INHOUDSTAFEL inhoudstafel... 2 getallenkennis waarde van cijfers in een getal... 6 grote getallen... 7 rekentaal... 8 rekentaal deel 2... 9 soorten getallen... 9 rekentaal deel 3... 10 de ongelijke verdeling...
Leerlijnen groep 8 Wereld in Getallen
Leerlijnen groep 8 Wereld in Getallen 1 2 3 4 REKENEN Boek 8a: Blok 1 - week 1 Oriëntatie - uitspreken en schrijven van getallen rond 1 miljoen - introductie miljard - helen uit een breuk halen 5/4 = -
Leerjaar 3: Doelenlijst Rekenen/Wiskunde voor leerroute A, B en C
Leerjaar 3: Doelenlijst Rekenen/Wiskunde voor leerroute A, B en C Getallen, Verhoudingen, Meten en meetkunde, Verbanden GETALLEN Onderdeel 1 Optellen en aftrekken (inclusief getalverkenning en schatten)
1. Hoeveel per stuk? a. Hiernaast zie je vier aanbiedingen uit de supermarkt. Hoeveel moet je per stuk ongeveer betalen?...
BLAD 26: BREUKEN 1. Hoeveel per stuk? a. Hiernaast zie je vier aanbiedingen uit de supermarkt. Hoeveel moet je per stuk ongeveer betalen?............ b. Neem je rekenmachine en bepaal de precieze prijs
Duizend 3 getallen achter de komma 230 duizend 230 000 46 duizend 46 000 Andersom 345 600 345,6 duizend 24 500 24,5 duizend
Hoofdstuk 5 5A Grote getallen Duizend 3 getallen achter de komma 230 duizend 230 000 46 duizend 46 000 Andersom 345 600 345,6 duizend 24 500 24,5 duizend Miljoen 6 getallen achter de komma 230 miljoen
drs. W.M.F. Beuker, training en begeleiding in onderwijs
Stadsdeel zuidoost H1 Getallen een 1 tien 10 honderd 100 duizend 1 000 tienduizend 10 000 honderdduizend 100 000 een miljoen 1 000 000 tien miljoen 10 000 000 honderd miljoen 100 000 000 een miljard 1
Onthoudboekje rekenen
Onthoudboekje rekenen Inhoud 1. Hoofdrekenen: natuurlijke getallen tot 100 000 Optellen (p. 4) Aftrekken (p. 4) Vermenigvuldigen (p. 5) Delen (p. 5) Deling met rest (p. 6) 2. Hoofdrekenen: kommagetallen
2.1 Kennismaken met breuken. 2.1.1 Deel van geheel. Opdracht 1 Welk deel van deze cirkel is zwart ingekleurd?
Oefenopdrachten hoofdstuk Gebroken getallen RekenWijzer, oefenopdrachten hoofdstuk Gebroken getallen. Kennismaken met breuken.. eel van geheel Opdracht Welk deel van deze cirkel is zwart ingekleurd? deel
Deel C. Breuken. vermenigvuldigen en delen
Deel C Breuken vermenigvuldigen en delen - 0 Sprongen op de getallenlijn. De sprongen op de getallenlijn zijn even groot. Schrijf passende breuken of helen bij de deelstreepjes. 0 Welk eindpunt wordt bereikt
Procenten 75% 33% 10% 50% 40% 25% 50% 100%
Procenten 50% 75% 25% 100% 10% 40% 50% 33% Uitleg procenten & Hoofdstuk 1A: hele procenten Uitleg : Procent betekent: 1/100 deel Bij procentrekenen werken we met HOEVEELHEDEN Bij een hoeveelheid van iets
Rekenboek 3 havo/vwo. Antwoorden NOORDHOFF UITGEVERS 2014 REKENBOEK 3 HAVO/VWO ANTWOORDEN 1
Rekenboek havo/vwo Antwoorden NOORDHOFF UITGEVERS 04 REKENBOEK HAVO/VWO ANTWOORDEN Blok Getallen. Bewerkingen a 45 d 6 g 8 b 60 e 90 h 687 c 4 f 56 i 48 a 4 d 000 b 4 000 e 000 c 70 f 0 000 a 7 d 0 b 70
Hoofdstuk 5 gaat over rekenen. Deel 2 is eigenlijk herhaling van alle stof. Trainen voor het examen.
Hoofdstuk 5 gaat over rekenen. Deel 2 is eigenlijk herhaling van alle stof. Trainen voor het examen. Het werkt als volgt, Je maakt een opgave bijv. opgave 1. Hoe gaat het ook al weer denk je dan. Nou,
RekenWijzer, uitwerkingen hoofdstuk 2 Gebroken getallen
Uitwerkingen 2. Kennismaken met breuken 2.. Deel van geheel Opdracht B 8 deel. ( deel + 8 deel). Opdracht 2 C 5 deel Opdracht C Driehoek C past in driehoek A. Aangezien driehoek A deel is van de tekening,
Lesopbouw: instructie. Start. Instructie. Blok 4. Lesinhoud Kommagetallen: vermenigvuldigen met kommagetallen Kommagetallen: delen met kommagetallen
Week Blok Bijwerkboek 0 Les Rekenboek Lessen 0 0, 0 0, 0, keer 0, 0,, flesjes 0,, 0, 0 0 plankjes stukjes 0 0 Lesinhoud Kommagetallen: vermenigvuldigen met kommagetallen Kommagetallen: delen met kommagetallen
Derde domein: gebroken getallen. 1 Kennismaking met breuken. 1.1 De breuk als deel van een geheel. Opdracht 1. Opdracht 2. blaadje 1.
Derde domein: gebroken getallen 1 Kennismaking met breuken 1.1 De breuk als deel van een geheel Opdracht 2 blaadje 1 blaadje 2 blaadje 3 blaadje 4 Een blaadje in twee delen vouwen geeft de helft van een
Derde domein: gebroken getallen. 1 Kennismaking met breuken. 1.1 De breuk als deel van een geheel. Opdracht 1. Opdracht 2. blaadje 1.
Derde domein: gebroken getallen 1 Kennismaking met breuken 1.1 De breuk als deel van een geheel blaadje 1 blaadje 2 blaadje 3 blaadje 4 Een blaadje in twee delen vouwen geeft de helft van een heel blaadje.
Inhoud kaartenbak groep 8
Inhoud kaartenbak groep 8 1 Getalbegrip 1.1 Ligging van getallen tussen duizendvouden 1.2 Plaatsen van getallen op de getallenlijn 1.3 Telrij t/m 100 000 1.4 Telrij t/m 100 000 1.5 Getallen splitsen en
BLAD 21: AAN DE OPPERVLAKTE
BLAD 21: AAN DE OPPERVLAKTE 1. Maak het getal a. In de figuur hiernaast zie je zes getallen staan: één in het rondje, en vijf in de rechthoek. Probeer nu om het getal in de cirkel te 'maken' met de getallen
7. 123 187 45 - - - - - - + 355 8. 35/595\17 59 35 245 245
Antwoorden CITO 14-15 1. 295 187 - - - - - - + 482 2. 11/935\85 93 Hoe vaak past 11 in 93 88 8*11=88, dit is het grootste getal dat we van 93 af kunnen halen. 55 93-88=5 dan schuiven we de andere 5 ook
Naam:... Datum:... 36 + 12 =. 2 x 15 =. 47 + 43 =. 4 x 12 =. 25 + 11 =. 6 x 7 =. 38-16 =. 100 : 4 =. 17-6 =. 36 : 6 =.
Opvraging Wiskunde W1 36 + 12 =. 2 x 15 =. 47 + 43 =. 4 x 12 =. 25 + 11 =. 6 x 7 =. 38-16 =. 100 : 4 =. 17-6 =. 36 : 6 =. 2 Goed lezen en oplossen. Ik koop in de supermarkt een krant (80 cent), een brood
Analyse professionele gecijferdheid.
Analyse professionele gecijferdheid. In de ze analyse ga je na in hoeverre je professioneel gecijferd bent. Professionele gecijferdheid bestaat uit drie onderdelen: Basale gecijferdheid: het kunnen oplossen
Onderwijsassistent REKENEN BASISVAARDIGHEDEN
Onderwijsassistent REKENEN BASISVAARDIGHEDEN Verhoudingstabel Wat zijn verhoudingen Rekenen met de verhoudingstabel Kruisprodukten Wat zijn verhoudingen * * * 2 Aantal rollen 1 2 12 Aantal beschuiten 18
Deel 1: Getallenkennis
Deel 1: Getallenkennis 1 Natuurlijke getallen 10 1.1 De waarde van cijfers in natuurlijke getallen 10 Les 1: Natuurlijke getallen kleiner dan 100 000 10 Les 2: Natuurlijke getallen kleiner dan 1 000 000
Vervolgcursus Rekenen Tweede bijeenkomst 4 februari 2015 vincent jonker & monica wijers
Vervolgcursus Rekenen Tweede bijeenkomst 4 februari 2015 vincent jonker & monica wijers Krant Programma 1. Terugblik en huiswerk 2. Kommagetallen 3. Meten 4. Huiswerk Deel 1 HUISWERK Huiswerk Neem een
REKENMODULE INHOUD. Rekenen voor vmbo-groen en mbo-groen
REKENMODULE INHOUD Rekenen voor vmbo-groen en mbo-groen Colofon RekenGroen. Rekenen voor vmbo- groen en mbo- groen Extra Rekenmodule Inhoud Leerlingtekst Versie 1.0. November 2012 Auteurs: Mieke Abels,
Niveau 2F Lesinhouden Rekenen
Niveau 2F Lesinhouden Rekenen LES 1 Begintest LES 2 Getallen Handig optellen en aftrekken Handig vermenigvuldigen en delen Schattend rekenen Negatieve getallen optellen en aftrekken Decimale getallen vermenigvuldigen
Doelenlijst 5: GETALLEN onderdeel KOMMAGETALLEN
Doelenlijst 5: GETALLEN onderdeel KOMMAGETALLEN 45 Passende Perspectieven rekenen Doelenlijst 5: Getallen, onderdeel Kommagetallen Doel: Orde van grootte, uitspraak, schrijfwijze en betekenis van kommagetallen
Optellen IT1 Antwoord M3 IT6 Antwoord M
Optellen IT1 Antwoord M3 IT6 Antwoord M5 8 + 1 38 + 23 2 + 5 47 + 48 5 + 3 26 + 57 4 + 6 55 + 38 IT2 Antwoord E3 IT7 Antwoord E5 14 + 3 200 + 380 4 + 15 240 + 80 12 + 7 440 + 270 2 + 16 245 + 383 IT3 Antwoord
Kennis van de telrij De kinderen kunnen tellen en terugtellen tot 10 met sprongen van 1 en van 2.
Rekenrijk doelen groep 1 en 2 De kinderen kunnen tellen en terugtellen tot 10 met sprongen van 1 en van 2. Aantallen kunnen tellen De kinderen kunnen kleine aantallen tellen. De kinderen kunnen eenvoudige
Leerlingexemplaar analyse rekenvaardigheid
Leerlingexemplaar analyse rekenvaardigheid 1 Opgave 1: Hoofdrekenen Los elk van de volgende opgaven op, door gebruik te maken van eigenschappen van getallen en eigenschappen van bewerkingen. Je mag de
1 Basisrekenen en letterrekenen.
Uitwerkingen versie 0 Basisrekenen en letterrekenen. Opgave. Opbouw van getallen. a 605 6 00 + 5 b 3.78 3 000+ 00+ 7 0+ 8 c 56.890 56 000+ 8 00+ 9 0+ 0 d 900.30 900 000+ 00+ 0+ 0 e 3.56.675 3.000.000+
SAMENVATTING BASIS & KADER
SAMENVATTING BASIS & KADER Afronden Hoe je moet afronden hangt af van de situatie. Geldbedragen rond je meestal af op twee decimalen, 15,375 wordt 15,38. Grote getallen rondje meestal af op duizendtallen,
Leerdoelen groep 7. Pluspunt rekenen
Leerdoelen groep 7 Pluspunt rekenen NB. De leerdoelen van deze rekenmethode bieden wij de kinderen aan middels Denken in Doelen. Dat betekent dat we niet exact de blokken van de methode volgen, maar dat
Verhoudingen - Voorbeeldtoets bij 'Handig met getallen, 2', hoofdstuk 1
Verhoudingen - Voorbeeldtoets bij 'Handig met getallen, 2', hoofdstuk 1 Deze toets bestaat uit 20 opgaven. Voor elke goede oplossing krijg je 2 punten; vanaf 28 punten is de toets voldoende. Je kunt de
Deel 1: Getallenkennis
Deel 1: Getallenkennis 1 Natuurlijke getallen 10 1.1 De waarde van cijfers in natuurlijke getallen 10 Les 1: Natuurlijke getallen kleiner dan 10 000 10 Les 2: Natuurlijke getallen kleiner dan 100 000 13
Ouderbijeenkomst Rekenen. Procenten, kommagetallen en breuken
Ouderbijeenkomst Rekenen Procenten, kommagetallen en breuken Even vooraf Ga ik te snel, geef het aan Ga ik te langzaam, geef het aan Heeft u vragen, stel ze Mobieltjes graag op stil of uit. Vooraf 2 Wil
Hoofdstuk 1: Basisvaardigheden
Hoofdstuk 1: Basisvaardigheden Wiskunde VMBO 2011/2012 www.lyceo.nl Hoofdstuk 1: Basisvaardigheden Wiskunde 1. Basisvaardigheden 2. Grafieken en formules 3. Algebraïsche verbanden 4. Meetkunde Getallen
Leerjaar 4: Doelenlijst Rekenen/Wiskunde voor leerroute A, B en C
Leerjaar 4: Doelenlijst Rekenen/Wiskunde voor leerroute A, B en C Getallen, Verhoudingen, Meten en meetkunde, Verbanden GETALLEN Onderdeel 1 Optellen en aftrekken (inclusief getalverkenning en schatten)
Deel 1: Getallenkennis
Deel 1: Getallenkennis 1 Natuurlijke getallen 10 1.1 De waarde van cijfers in natuurlijke getallen 10 Les 1: Natuurlijke getallen kleiner dan 10 000 10 Les 2: Natuurlijke getallen kleiner dan 100 000 13
Rekenportfolio. Naam: cm 2. m 3 + = 1 _ 12
Tytsjerksteradiel Rekenportfolio Naam: cm 2 1 5 7 + = 5 10 10 m 3 1 _ 12 X 5 1 + = 5 1 + Inhoudsopgave Voorwoord 3 Domein getallen 4 - Optellen, aftrekken, vermenigvuldigen en delen 5 - Breuken 6 - Rekenvolgorde
Routeboekje. bij Rekenrijk. Groep 7 Blok 6. Van...
Routeboekje bij Rekenrijk Groep 7 Blok 6 Van... Groep 7 Blok 6 Les 1 Leerkrachtgebonden LB 7a 142 1 Hoeveel bussen? meedoen LB 7a 142 2 Reken uit - LB 7a 142 3 Reken uit maken LB 7a 143 4 Schat eerst,
BLAD 16: HAM EN KAAS. b. Bij de maatbeker horen verschillende inhoudsmaten. Hiernaast staan ze op een rij. Schrijf op de stippeltjes wat het betekent.
BLAD 16: HAM EN KAAS 1. Hoeveel is het goedkoper? a. Twee aanbiedingen bij de supermarkt. Hoeveel cent is het goedkoper? 6 witte bolletjes:... 10 scharreleieren:... b. Reken van deze aanbiedingen ook uit
Analyse professionele gecijferdheid antwoorden
Analyse professionele gecijferdheid antwoorden Merk op dat er vaak meerdere antwoorden en redeneringen mogelijk zijn. Onderstaande uitwerkingen zijn dus zeker niet uitputtend. Opgave 1 Los elk van de volgende
Leerlijnenpakket STAP incl. WIG. Rekenen Rekenen. Datum: 08-05-2014. Schooltype BAO (Regulier) Herkomst Landelijk Periode DL -20 t/m 200
Leerlijnenpakket STAP incl. WIG Schooltype BAO (Regulier) Herkomst Landelijk Periode DL -20 t/m 200 Rekenen Rekenen 1.1 Getallen - Optellen en aftrekken tot 10 - Groep 3 BB/ KB GL + PRO 1.1.1 zegt de telrij
Tijd: seconden, minuten, uren, dagen, weken, maanden, jaren
Uren, Dagen, Maanden, Jaren,. Tijd: seconden, minuten, uren, dagen, weken, maanden, jaren 1 minuut 60 seconden 1 uur 60 minuten 1 half uur 30 minuten 1 kwartier 15 minuten 1 dag (etmaal) 24 uren 1 week
Aanbod rekenstof augustus t/m februari. Groep 3
Aanbod rekenstof augustus t/m februari Groep 3 Blok 1 Oriëntatie: tellen van hoeveelheden tot 10, introductie van de getallenlijn tot en met 10, tellen en terugtellen t/m 20, koppelen van getallen aan
Groep 3. Getalbegrip hele getallen. Optellen en aftrekken. Geld
Groep 3 Getalbegrip hele getallen De leerlingen werken de eerste periode in het getallengebied tot 20 en 40. De tweede helft van het jaar ook tot 100. De leerlingen leren het verder- en terugtellen, tellen
Instructie voor Docenten. Hoofdstuk19 KOMMAGETALLEN - BASIS
Instructie voor Docenten Hoofdstuk9 KOMMAGETALLEN - BASIS Instructie voor docenten H9: KOMMAGETALLEN DE BASIS DOELEN VAN DE LES: Leerlingen weten dat getallen in de plaatswaarde kaart een bepaalde waarde
Deze stelling zegt dat je iedere rechthoekige driehoek kunt maken door drie vierkanten met de hoeken tegen elkaar aan te leggen.
Meetkunde Inleiding We beginnen met het doorlezen van alle theorie uit hoofdstuk 3 van het boek. Daar staan een aantal algemene regels goed uitgelegd. Waar je nog wat extra uitleg over nodig hebt, is de
1.Tijdsduur. maanden:
1.Tijdsduur 1 etmaal = 24 uur 1 uur = 60 minuten 1 minuut = 60 seconden 1 uur = 3600 seconden 1 jaar = 12 maanden 1 jaar = 52 weken 1 jaar = 365 (of 366 in schrikkeljaar) dagen 1 jaar = 4 kwartalen 1 kwartaal
Ouderbijeenkomst Rekenen
Ouderbijeenkomst Rekenen Breuken Breuken, procenten en kommagetallen horen bij elkaar. Vooraf Ga ik te snel, geef het aan Ga ik te langzaam, geen het aan Heeft u vragen, stel ze. op stil/tril a.u.b. Wat
7 Hoeken. Kern 3 Hoeken. 1 Tekenen in roosters. Kern 2 Hoeken meten Kern 3 Hoeken tekenen Kern 4 Kijkhoeken. Kern 1 Tegelvloeren. Kern 3 Oppervlakte
1 Tekenen in roosters Kern 1 Tegelvloeren Kern 2 Oppervlakte Kern 3 Het assenstelsel Kern 4 Rechthoeken 2 Rekenen Kern 1 De rekenmachine Kern 2 Voorrangsregels Kern 3 Afronden Kern 4 Afronden 3 Grafieken
Vervolgcursus Proeftuin Rekenen Tweede bijeenkomst 3 februari 2016 vincent jonker & monica wijers
Vervolgcursus Proeftuin Rekenen Tweede bijeenkomst 3 februari 2016 vincent jonker & monica wijers 1 league is. miles 1 mile is.. furlongs 1 furlong is. chains 1 foot is.. inches 1 yard is inches 1 league
Verkorte versie van de SYLLABUS REKENEN 2F EN 3F (VO en MBO, versie mei 2015) Aanpassing van product van CvTE
Verkorte versie van de SYLLABUS REKENEN 2F EN 3F (VO en MBO, versie mei 2015) Aanpassing van product van CvTE 1. Inleiding Vanaf 1 oktober 2015 gelden nieuwe afspraken omtrent het rekenexamen 3F. De exameneisen
GETALLEN Onderdeel: Getalbegrip Doel: Je bewust zijn dat getallen verschillende betekenissen hebben.
Leerroute 3 Jaargroep: 8 GETALLEN Onderdeel: Getalbegrip Doel: Je bewust zijn dat getallen verschillende betekenissen hebben. Je bewust zijn dat getallen verschillende betekenissen kunnen hebben. (hoeveelheidsgetal,
Het Metriek Stelsel. Over meten, omtrek, oppervlakte en inhoud
Het Metriek Stelsel Over meten, omtrek, oppervlakte en inhoud lengte in meter afkorting naam hoeveel meter 1 km kilometer 1 000 1 hm hectometer 100 1 dam decameter 10 1 m meter 1 1 dm decimeter 0,1 1 cm
Rekenmachine. Willem-Jan van der Zanden
Rekenmachine Vanaf hoofdstuk 5 mag je bij wiskunde bij bepaalde hoofdstukken een eenvoudige rekenmachine gebruiken; Als je nog geen rekenmachine hebt, koop dan een CASIO fx; Heb je al een rekenmachine
STOF VOOR SCHOOLEXAMEN 1
STOF VOOR SCHOOLEXAMEN 1 Nederlands Hoofdstuk 1 en 2. Lezen Taal en woordenschat Grammatica en spelling Schrijfopdracht (zakelijke e-mail) Geldt voor alle niveaus. Engels Het eerste schoolexamen Engels
Leerstofoverzicht groep 3
Leerstofoverzicht groep 3 Getallen en relaties Basisbewerkingen Verhoudingen Leerlijn Groep 3 uitspraak, schrijfwijze, kenmerken begrippen evenveel, minder/meer cijfer 1 t/m 10, groepjes aanvullen tot
Les 20: gelijknamige breuken, gelijkwaardige breuken en breuken vereenvoudigen
Getallenkennis Target 1 Les 1: getalbegrip to 10 000 000 wb. p. 1+2, sb 1 Les 5: kommagetallen tot 0,001 wb. p. 8-9, sb 5 Les 12: breuken vergelijken en sorteren wb. p. 15-16, sb 10 Les 13: breuk als operator,getal,verhouding,
Opgave 1. a = =994. b = = c. 37,5 x 64 = 75x32=150x16=300x8=2400. d.
Opgave 1 Los elk van de volgende opgaven zo handig mogelijk, niet cijferend, op. Noteer de oplossingen wiskundig correct en laat duidelijk uitkomen hoe je tot je antwoord bent gekomen. a. 2593-1599 = 2594-1600=994
Vragen Rekenvaardigheid Pabo
Vragen Rekenvaardigheid Pabo 60 minuten 29 opgaven Probeer onderstaande opgaven binnen de gestelde tijd te maken. De antwoorden staan op http://lopabo.fontys.nl Te behalen 60 punten. 45 punten is 5,5 Bij
1BK2 1BK6 1BK7 1BK9 2BK1
Kern Subkern Leerdoel niveau BK begrippen vmbo waar in bettermarks 1.1.1. Je gebruikt positieve en negatieve getallen, breuken en decimale getallen in hun onderlinge samenhang en je ligt deze toe binnen
toetswijzer wiskunde curriculumdifferentiatie 6de leerjaar *De waarde van natuurlijke getallen en kommagetallen, bv = 8 D + 5 H + 6 T + 0 E
toetswijzer wiskunde curriculumdifferentiatie 6de leerjaar naam:... Getallenkennis *De waarde van natuurlijke getallen en kommagetallen, bv. 8 560 = 8 D + 5 H + 6 T + 0 E *Getallen in de positietabel noteren
27/11/2012 SCHATTEN....en niet alleen op zolder
SCHATTEN...en niet alleen op zolder 2 3 1 68,3 x 21,5 3415 683 1366 1468,45 146845 Komma vergeten! Schatten: 70 x 20 = 1400 Ik schat 15 m hoog. Situatie Een magazijnier moet een bestelling plaatsen. Voor
TVE TIEN VRAGEN EXTENSIE LVS - VCLB WISKUNDE Midden 1ste leerjaar INSTRUCTIE BIJ VRAGEN Wiskunde Midden 1 ste leerjaar
TVE TIEN VRAGEN EXTENSIE LVS - VCLB WISKUNDE Midden 1ste leerjaar INSTRUCTIE BIJ VRAGEN Wiskunde Midden 1 ste leerjaar Vraag 1: (pg 64 oefening 2 - Basisboek LVS wiskunde toetsen 2) Het verschil tussen
Deel 12 en 13 van De Wiskanjers Zorg: Curriculumdifferentiatie
Deel 12 en 13 van De Wiskanjers Zorg: Curriculumdifferentiatie Deze mappen willen wegwijzers aanreiken om vanuit begrip en respect het beste te halen uit die leerlingen die de basis wiskundeleerstof uit
Overig nieuws Hulp ouders bij rekenen deel 3.
Overig nieuws Hulp ouders bij rekenen deel 3. Het rekenonderwijs van tegenwoordig ziet er anders uit dan vroeger. Dat komt omdat er nieuwe inzichten zijn over hoe kinderen het beste leren. Vroeger lag
spiekboek rekenen beter rekenen op de entreetoets van het Cito groep
spiekboek rekenen beter rekenen op de entreetoets van het Cito groep de o ra en a oor a 1. ik lees de opgave 2. ik kijk naar het plaatje 3. wat is de som die schrijf ik op kladpapier 4. ik kijk naar de
Begin situatie Wiskunde/Rekenen. VMBO BB leerling
VMBO BB leerling Verbanden en Hoge -bewerkingen onder 100 -tafels t/m 10 (x:) -bewerkingen met eenvoudige grote en -makkelijk rekenen -vergelijken/ordenen op getallenlijn -makkelijke breuken omzetten -deel
Het metriek stelsel. Grootheden en eenheden.
Het metriek stelsel. Metriek komt van meten. Bij het metriek stelsel gaat het om maten, zoals lengte, breedte, hoogte, maar ook om gewicht of inhoud. Er zijn verschillende maten die je moet kennen en die
Getallen. 1 Doel: een getallenreeks afmaken De leerlingen maken de getallenreeks af met sprongen van 150 000.
Getallen Basisstof getallen Lesdoelen De leerlingen kunnen: een reeks afmaken; waarde van cijfers in een groot getal opschrijven; getallen op de getallenlijn plaatsen; afronden op miljarden; getallen in
Rekenmachine. Willem-Jan van der Zanden
Rekenmachine Vanaf hoofdstuk 5 mag je bij wiskunde bij bepaalde hoofdstukken een eenvoudige rekenmachine gebruiken; Als je nog geen rekenmachine hebt, koop dan een CASIO fx; Heb je al een rekenmachine
Strategiekaarten. Deze strategiekaarten horen bij de ThiemeMeulenhoff-uitgave (ISBN 978 90 557 4642 2): Rekenen: een hele opgave, deel 2
Deze strategiekaarten horen bij de ThiemeMeulenhoff-uitgave (ISBN 978 90 557 4642 2): Joep van Vugt Anneke Wösten Handig optellen; tribunesom* Bij optellen van bijna ronde getallen zoals 39, 198, 2993,..
Toets bij 2F Opgavenboekje rekenen 1
Voortgezet onderwijs en middelbaar beroepsonderwijs Toetsen taal en rekenen Toets bij F Opgavenboekje rekenen In deze toets staan 0 opgaven Gebruik op je antwoordblad de kolom waarboven staat: Rekenen
Kies uit: 10,25 11,5 11,125 10,875 11,875 10,125 10,50 11,001 10,99 11,75
Blok les. Hoeveel kilometer is er gefietst? Wat stond er bij vertrek op de teller van Murat?. Zet in volgorde van klein naar groot. a,8 m b 0,7 km c, kg d, g,8 m 7 km kg, g 8 m 7, km 0,0 kg 0, g 0,8 m
rekentrainer jaargroep 7 Fietsen op Terschelling. Teken en vul in. Zwijsen naam: reken-wiskundemethode voor het basisonderwijs
Zwijsen jaargroep 7 naam: reken-wiskundemethode voor het basisonderwijs Waar staat deze paddenstoel ongeveer? Teken op de kaart. Welke afstand of welke route fietsen de kinderen? naam route afstand Janna
rekentrainer jaargroep 7 Fietsen op Terschelling. Teken en vul in. Zwijsen naam: reken-wiskundemethode voor het basisonderwijs
Zwijsen jaargroep 7 naam: reken-wiskundemethode voor het basisonderwijs Waar staat deze paddenstoel ongeveer? Teken op de kaart. Welke afstand of welke route fietsen de kinderen? naam route afstand Janna
Als je, van achter naar voor, na iedere 3 cijfers een klein beetje ruimte laat, of je zet een punt, wordt het allemaal duidelijker.
Samenvatting leerjaar 4 hoofdstuk 1: Rekenen Grote getallen Grote getallen, zoals 5300000000 zijn niet eenvoudig te lezen. Je kunt je gemakkelijk vergissen in een nul meer of minder, met grote gevolgen.
STOF VOOR SCHOOLEXAMEN 5
STOF VOOR SCHOOLEXAMEN 5 Nederlands Hoofdstuk 1 en 2. Lezen Taalverzorging en woordenschat Grammatica en spelling Schrijfopdracht (artikel) Groene boekje (lessen 19 t/m 27) Geldt voor alle niveaus. Engels
Toelatingsexamen. Vakcode: Wiskunde basis onderbouw. Tijdsduur: 2 uur en 30 minuten
Toelatingsexamen VOORBLAD VOORBEELDEXAMEN Vakcode: Wiskunde basis onderbouw Tijdsduur: 2 uur en 30 minuten De volgende hulpmiddelen zijn toegestaan bij het examen: rekenmachine (maar geen grafische) kladpapier
Inhoud. 1 Ruimtefiguren 8. 4 Lijnen en hoeken 148. 2 Plaats bepalen 60. 5 Negatieve getallen 198. 3 Rekenen 100
1 BK deel 1 Voorkennis 1 Aan de slag met wiskunde 6 1 Ruimtefiguren 8 1.1 Wiskundige ruimte guren 10 1.2 Vlakken, ribben en hoekpunten 14 1.3 Kubus en vierkant 17 1.4 Balk en rechthoek 24 1.5 Cilinder
Naam:... Nr... SPRONG 7
Naam:... Nr.... SPRONG 7 G Vul de verhoudingstabel aan. Tijdens de winterperiode worden de karretjes van de roetsjbaan geschilderd. Voor karretje is /5 liter rode verf, 3/5 liter zwarte verf en /2 liter
INHOUDSOPGAVE. HOOFDSTUK 6 AFRONDEN Inleiding Cijfers Verstandig afronden 48 BLZ
INHOUDSOPGAVE BLZ HOOFDSTUK 1 DOMEIN A: GETALLEN 15 1.1. Inleiding 15 1.2. Cijfers en getallen 15 1.3. Gebroken getallen 16 1.4. Negatieve getallen 17 1.5. Symbolen en vergelijken van getallen 19 HOOFDSTUK
