Examen Data Analyse II - Deel 2
|
|
|
- Laura Claes
- 10 jaren geleden
- Aantal bezoeken:
Transcriptie
1 Examen Data Analyse II - Deel 2 Tweede Bachelor Biomedische Wetenschappen 10 januari 2011 Naam De systolische bloeddruk (in mmhg) van 21 mannen is weergegeven in volgende QQ-plot. Normal Q Q Plot Sample Quantiles Theoretical Quantiles (a) Doe op basis van deze grafiek een uitspraak omtrent het al dan niet normaal verdeeld zijn van de systolische bloeddruk in deze populatie. (b) Vul volgende tabel aan met (een benadering van) de gevraagde waarde. Leg uit hoe u deze waarden gevonden hebt. Gemiddelde 114 Mediaan Standaarddeviatie 9.7 Eerste kwartiel Derde kwartiel Minimum Maximum 1
2 2 (c) Teken een boxplot van de gegevens. (d) Zijn er op basis van de boxplot outliers aanwezig? Leg uit. (e) In de volgende figuur ziet u twee histogrammen, welke hoort bij de gegevens? Motiveer uw antwoord. Histogram Histogram Frequency Frequency
3 3 (f) Men definieert prehypertensie als een systolische bloeddruk tussen 120mmHg en 139mmHg. Als u mag veronderstellen dat de systolische bloeddruk normaal verdeeld is, schat de kans op prehypertensie in de populatie. 2. Anti-epileptica medicijnen (AED) kunnen een nadelige invloed hebben op de botmineraaldensiteit (BMD) en het metabolisme. In het artikel Bone health in young women with epilepsy after one year of antiepileptic drug monotherapy (Pack et al., Neurology 2008) wordt onderzocht of de invloed op de BMD bij vrouwen verschilt bij 4 anti-epileptica medicijnen (carbamazepine CBZ, lamotrigine LTG, phenytoin PHT en valproate VPA). De remodelleringsfase van een bot duurt ongeveer 3 maanden. Uit de groep premenopauzale vrouwen met epilepsie die al minstens 6 maanden 1 van de 4 AED innemen, werd een lukrake steekproef genomen. (a) Wat is een reden om patiënten te nemen die reeds minstens 6 maanden het medicijn innemen? (b) Is het belangrijk om leeftijd mee te nemen in het onderzoek als mogelijke confounder van het AED-effect in deze studie? Waarom wel of waarom niet? (c) Zou een andere type design hier meer geschikt zijn? Motiveer. In Table 2 staan de gegevens samengevat voor de botmineraaldensiteit op 3 plaatsen (Lumbar spine, Femoral neck, Total hip) voor de 4 behandelingsgroepen, gemeten
4 4 op 2 tijdstippen (bij start van de studie (baseline) en na 1 jaar). De lijnen die overeenkomen met Baseline Z score en 1-Year Z score laten we hier buiten beschouwing. (d) Beschouw de p-waarde bij de ANOVA-test uitgevoerd voor de baselinewaarden in de Lumbar spine. Waarom kiest men hier voor een ANOVA-test? Wat is de nulhypothese, alternatieve hypothese in dit geval en wat kan je besluiten op het 5% significantieniveau? (e) Stel dat je wilt nagaan of de gemiddelde botmineraaldensiteit in de lumbar spine na 1 jaar studie verschilt van deze bij de aanvang van de studie bij de LTG-behandeling. Welke test zou je hiervoor uitvoeren? Wat zijn de voorwaarden voor deze test? Als je bepaalde voorwaarden nog expliciet moet nagaan, geef dan aan met welke grafiek je dit kan doen. Geef de bijhorende teststatistiek en leid de gegevens die je hierbij nodig hebt, indien mogelijk, af uit de tabel. De test zelf hoef je niet uit te voeren. Stel dat je voor elke behandeling op de 3 botplaatsen wil nagaan of de gemiddelde BMD verschilt tussen baseline en 1 jaar later. Hoe zou je ervoor zorgen dat de globale kans op een Type I-fout 5% is? Leg uit. (f) Bereken, indien mogelijk, het 99%-betrouwbaarheidsinterval voor het gemiddeld
5 5 verschil in BMD na 1 jaar in de femoral neck tussen patiënten die CBZ innemen en patiënten die LTG innemen. Wat kan je hieruit besluiten? (g) Stel dat je wilt onderzoeken of de gemiddelde BMD in de total hip na 1 jaar studie groter is bij de PHT-behandeling dan bij de CBZ-behandeling. Welke steekproefgrootte heb je dan nodig bij beide groepen opdat deze test op het 5% significantieniveau een power van 90% heeft om een gemiddeld populatieverschil (PHT-CBZ) van 0.05 g/cm 2 te vinden? Hierbij mag je aannemen dat de populatievarianties gelijk zijn aan de steekproefvarianties en dat de 2 groepen even groot moeten zijn.
6 6 3. Om een bepaalde ziekte te detecteren, moet men een bloedtest ondergaan. De ervaring leert dat als iemand de ziekte heeft, er 75% kans is dat het resultaat van de test positief is. Voor iemand die de ziekte niet heeft, is er echter ook 5% kans dat het resultaat positief is. Men kan aantonen dat 5% van de bevolking drager is van de ziekte. (a) Wat is de conditionele kans dat iemand de ziekte heeft, als de bloedtest positief uitvalt? (b) Als het resultaat positief is, gebeurt er een tweede test. Voor personen die de ziekte niet hebben en met een positief resultaat op de eerste test, is deze steeds negatief; voor personen die de ziekte hebben en met een positief resultaat op de eerste test is er 95% kans op een positief resultaat op de tweede test. Wat is de conditionele kans dat iemand ziek is, als de tweede test negatief is en de eerste test positief was? 4. In het artikel The association between psoriasis, diabetes mellitus, and atherosclerosis in Israel: a case-control study (Shapiro et al., Journal of the American Academy of Dermatology 2007) onderzocht men o.a. het verband tussen psoriasis (een chronische huidaandoening) en diabetes mellitus. Hiertoe verzamelde men gegevens uit de Israëlische Maccabi Healthcare Services (MHS) database en gebruikte men een retrospectieve case-controledesign met cases met psoriasis en een controlegroep van personen. De gegevens staan samengevat in de volgende tabel: diabetes mellitus geen diabetes mellitus psoriasis geen psoriasis (a) Voer een test uit op het 5% significantieniveau om te onderzoeken of het hebben van diabetes mellitus en psoriasis onafhankelijk zijn. Formuleer duidelijke de nulhypothese en alternatieve hypothese. Ga tevens na of de voorwaarden voor deze test voldaan zijn. Wat is uw besluit?
7 7 (b) Schat, indien mogelijk, op basis van deze gegevens het relatief risico op psoriasis voor mensen met diabetis mellitus versus mensen zonder diabetes mellitus en formuleer de betekenis hiervan. (c) Schat, indien mogelijk, op basis van deze gegevens de odds ratio OR op psoriasis voor mensen met diabetis mellitus versus mensen zonder diabetes mellitus en formuleer de betekenis hiervan. (d) Bereken het 99% betrouwbaarheidsinterval van deze odds ratio op basis van de tabel en tracht hieruit een besluit te trekken. (e) Als men de verzamelde gegevens onderverdeelt volgens het geslacht van de patiënten, krijgen we de volgende tabellen:
8 8 Mannen diabetes mellitus geen diabetes mellitus psoriasis geen psoriasis Vrouwen diabetes mellitus geen diabetes mellitus psoriasis geen psoriasis Ga na of het geslacht een effect-modificator is. Indien dit niet het geval is, is er dan sprake van confounding door het geslacht? Leg uit.
G0N11a Statistiek en data-analyse: project Eerste zittijd Modeloplossing
G0N11a Statistiek en data-analyse: project Eerste zittijd 2007-2008 Modeloplossing Opmerking vooraf: Deze modeloplossing is een heel volledig antwoord op de gestelde vragen. Om de maximumscore op een vraag
Examen G0N34 Statistiek
Naam: Richting: Examen G0N34 Statistiek 8 september 2010 Enkele richtlijnen : Wie de vragen aanneemt en bekijkt, moet minstens 1 uur blijven zitten. Je mag gebruik maken van een rekenmachine, het formularium
Voorbeeldtentamen Statistiek voor Psychologie
Voorbeeldtentamen Statistiek voor Psychologie 1) Vul de volgende uitspraak aan, zodat er een juiste bewering ontstaat: De verdeling van een variabele geeft een opsomming van de categorieën en geeft daarbij
Examen Statistiek II: Project
Examen Statistiek II: Project S. Vansteelandt Academiejaar 2014-2015 U krijgt 2 uur 30 minuten voor het examen, inclusief het mondelinge examen dat maximaal 15 min duurt. Het examen is relatief lang omdat,
Hoofdstuk 7: Statistische gevolgtrekkingen voor distributies
Hoofdstuk 7: Statistische gevolgtrekkingen voor distributies 7.1 Het gemiddelde van een populatie Standaarddeviatie van de populatie en de steekproef In het vorige deel is bij de significantietoets uitgegaan
Beschrijvend statistiek
1 Beschrijvend statistiek 1. In een school werd het intelligentiequotiënt gemeten van de leerlingen van het zesde jaar (zie tabel). De getallen werden afgerond tot op de eenheid. De berekeningen mogen
Hoofdstuk 3 Statistiek: het toetsen
Hoofdstuk 3 Statistiek: het toetsen 3.1 Schatten: Er moet een verbinding worden gelegd tussen de steekproefgrootheden en populatieparameters, willen we op basis van de een iets kunnen zeggen over de ander.
Vandaag. Onderzoeksmethoden: Statistiek 3. Recap 2. Recap 1. Recap Centrale limietstelling T-verdeling Toetsen van hypotheses
Vandaag Onderzoeksmethoden: Statistiek 3 Peter de Waal (gebaseerd op slides Peter de Waal, Marjan van den Akker) Departement Informatica Beta-faculteit, Universiteit Utrecht Recap Centrale limietstelling
Schriftelijk examen statistiek, data-analyse en informatica. Maandag 29 mei 1995
Schriftelijk examen statistiek, data-analyse en informatica Maandag 29 mei 1995 Tweede jaar kandidaat arts + Tweede jaar kandidaat in de biomedische wetenschappen Naam: Voornaam: Vraa Kengetal g Blad 1
Examen G0N34 Statistiek
Naam: Richting: Examen G0N34 Statistiek 7 juni 2010 Enkele richtlijnen : Wie de vragen aanneemt en bekijkt, moet minstens 1 uur blijven zitten. Je mag gebruik maken van een rekenmachine, het formularium
Hiermee rekenen we de testwaarde van t uit: n. 10 ( x ) ,16
modulus strepen: uitkomst > 0 Hiermee rekenen we de testwaarde van t uit: n 10 ttest ( x ) 105 101 3,16 n-1 4 t test > t kritisch want 3,16 >,6, dus 105 valt buiten het BI. De cola bevat niet significant
HOOFDSTUK 6: INTRODUCTIE IN STATISTISCHE GEVOLGTREKKINGEN
HOOFDSTUK 6: INTRODUCTIE IN STATISTISCHE GEVOLGTREKKINGEN Inleiding Statistische gevolgtrekkingen (statistical inference) gaan over het trekken van conclusies over een populatie op basis van steekproefdata.
9. Lineaire Regressie en Correlatie
9. Lineaire Regressie en Correlatie Lineaire verbanden In dit hoofdstuk worden methoden gepresenteerd waarmee je kwantitatieve respons variabelen (afhankelijk) en verklarende variabelen (onafhankelijk)
Examen Kansrekening en Wiskundige Statistiek: oplossingen
Examen Kansrekening en Wiskundige Statistiek: oplossingen S. Vansteelandt Academiejaar 006-007 1. Een team van onderzoekers wil nagaan of een bepaald geneesmiddel Triptan meer effectief is dan aspirine
Hoeveel vertrouwen heb ik in mijn onderzoek en conclusie? Les 1
Hoeveel vertrouwen heb ik in mijn onderzoek en conclusie? Les 1 1 Onderwerpen van de lessenserie: De Normale Verdeling Nul- en Alternatieve-hypothese ( - en -fout) Steekproeven Statistisch toetsen Grafisch
Behandeling van oudere patiënt met epilepsie. C.L.P. Deckers SEIN Zwolle
Behandeling van oudere patiënt met epilepsie C.L.P. Deckers SEIN Zwolle Incidentie van epilepsie nieuwe gevallen per 100.000 inwoners 160 140 120 100 80 60 40 20 0 0 10 20 30 40 50 60 70 80 leeftijd (jaren)
Inzet van games in de praktijk van het verpleeghuis. Hogeschool Zuyd, juni 2012
Inzet van games in de praktijk van het verpleeghuis Hogeschool Zuyd, juni 2012 1 SilverFit maakt systemen voor virtuele revalidatie SilverFit maakt een systemen voor virtuele fysiotherapie en ouderenfitness
We illustreren deze werkwijze opnieuw a.h.v. de steekproef van de geboortegewichten
Hoofdstuk 8 Betrouwbaarheidsintervallen In het vorige hoofdstuk lieten we zien hoe het mogelijk is om over een ongekende karakteristiek van een populatie hypothesen te formuleren. Een andere manier van
TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamen Statistiek 2 voor TeMa (2S195) op dinsdag , uur.
TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Statistiek voor TeMa (S95) op dinsdag 3-03-00, 9- uur. Bij het tentamen mag gebruik worden gemaakt van een zakrekenmachine en
Wiskunde B - Tentamen 1
Wiskunde B - Tentamen Tentamen 57 Wiskunde B voor CiT vrijdag januari 5 van 9. tot. uur Dit tentamen bestaat uit 6 opgaven, formulebladen en tabellen. Vermeld ook uw studentnummer op uw werk en tentamenbriefje.
EIND TOETS TOEGEPASTE BIOSTATISTIEK I. 30 januari 2009
EIND TOETS TOEGEPASTE BIOSTATISTIEK I 30 januari 2009 - Dit tentamen bestaat uit vier opgaven onderverdeeld in totaal 2 subvragen. - Geef bij het beantwoorden van de vragen een zo volledig mogelijk antwoord.
Extra Opgaven. 3. Van 10 personen meten we 100 keer de hartslag na het sporten. De gemiddelde hartslag van
Extra Opgaven 1. Een persoon doet een HIV-test. Helaas is de uitslag positief. De test is echter niet perfect. De persoon vraagt zich af wat de kans is dat hij nu ook echt HIV heeft. Gegeven is: de kans
DEZE PAGINA NIET vóór 8.30u OMSLAAN!
STTISTIEK 1 VERSIE MT15303 1308 1 WGENINGEN UNIVERSITEIT LEERSTOELGROEP MT Tentamen Statistiek 1 (MT-15303) 5 augustus 2013, 8.30-10.30 uur EZE PGIN NIET vóór 8.30u OMSLN! STRT MET INVULLEN VN NM, REGISTRTIENUMMER,
Hoofdstuk 5 Een populatie: parametrische toetsen
Hoofdstuk 5 Een populatie: parametrische toetsen 5.1 Gemiddelde, variantie, standaardafwijking: De variantie is als het ware de gemiddelde gekwadrateerde afwijking van het gemiddelde. Hoe groter de variantie
Toetsende Statistiek Week 5. De F-toets & Onderscheidend Vermogen
M, M & C 7.3 Optional Topics in Comparing Distributions: F-toets 6.4 Power & Inference as a Decision 7.1 The power of the t-test 7.3 The power of the sample t- Toetsende Statistiek Week 5. De F-toets &
1. De volgende gemiddelden zijn gevonden in een experiment met de factor Conditie en de factor Sekse.
Oefentoets 1 1. De volgende gemiddelden zijn gevonden in een experiment met de factor Conditie en de factor Sekse. Conditie = experimenteel Conditie = controle Sekse = Vrouw 23 33 Sekse = Man 20 36 Van
Hoofdstuk 6 Twee populaties: parametrische toetsen
Hoofdstuk 6 Twee populaties: parametrische toetsen 6.1 De t-toets voor het verschil tussen twee gemiddelden: In veel onderzoekssituaties zijn we vooral in de verschillen tussen twee populaties geïnteresseerd.
We berekenen nog de effectgrootte aan de hand van formule 4.2 en rapporteren:
INDUCTIEVE STATISTIEK VOOR DE GEDRAGSWETENSCHAPPEN OPLOSSINGEN BIJ HOOFDSTUK 4 1. Toets met behulp van SPSS de hypothese van Evelien in verband met de baardlengte van metalfans. Ga na of je dezelfde conclusies
introductie Wilcoxon s rank sum toets Wilcoxon s signed rank toets introductie Wilcoxon s rank sum toets Wilcoxon s signed rank toets
toetsende statistiek week 1: kansen en random variabelen week : de steekproevenverdeling week 3: schatten en toetsen: de z-toets week : het toetsen van gemiddelden: de t-toets week 5: het toetsen van varianties:
S0A17D: Examen Sociale Statistiek (deel 2)
S0A17D: Examen Sociale Statistiek (deel 2) 21 juni 2011 Naam : Jaar en studierichting : Lees volgende aanwijzingen eerst voor het examen te beginnen : Wie de vragen aanneemt en bekijkt, moet minstens 1
Bestaat er een betekenisvol verband tussen het geslacht en het voorkomen van dyslexie? Gebruik de Chi-kwadraattoets voor kruistabellen.
Oplossingen hoofdstuk IX 1. Bestaat er een verband tussen het geslacht en het voorkomen van dyslexie? Uit een aselecte steekproef van 00 leerlingen (waarvan 50% jongens en 50% meisjes) uit het basisonderwijs
herkansing Methoden van Onderzoek en Statistiek, 6 juli 2012 versie 1
herkansing Methoden van Onderzoek en Statistiek, 6 juli 2012 versie 1 Vraag 1 Een onderzoeker gebruikt een experimenteel design om een hypothese te toetsen over het gemiddelde in de populatie. Hiertoe
Niet de hoogte, wel de oppervlakte. Aandachtspunten bij. - statistische technieken voor een continue veranderlijke
Niet de hoogte, wel de oppervlakte Prof. dr. Herman Callaert Aandachtspunten bij - statistische technieken voor een continue veranderlijke - de interpretatie van een histogram - de normale dichtheidsfunctie
Kansrekening en Statistiek
Kansrekening en Statistiek College 11 Dinsdag 25 Oktober 1 / 27 2 Statistiek Vandaag: Hypothese toetsen Schatten 2 / 27 Schatten 3 / 27 Vragen: liegen 61 Amerikanen werd gevraagd hoeveel % van de tijd
Examen Statistische Modellen en Data-analyse. Derde Bachelor Wiskunde. 14 januari 2008
Examen Statistische Modellen en Data-analyse Derde Bachelor Wiskunde 14 januari 2008 Vraag 1 1. Stel dat ɛ N 3 (0, σ 2 I 3 ) en dat Y 0 N(0, σ 2 0) onafhankelijk is van ɛ = (ɛ 1, ɛ 2, ɛ 3 ). Definieer
Examen HAVO. Wiskunde A1,2
Wiskunde A1,2 Examen HAVO Hoger Algemeen Voortgezet Onderwijs Tijdvak 1 Donderdag 25 mei 13.30 16.30 uur 20 00 Dit examen bestaat uit 19 vragen. Voor elk vraagnummer is aangegeven hoeveel punten met een
Statistiek voor A.I.
Statistiek voor A.I. College 13 Donderdag 25 Oktober 1 / 28 2 Deductieve statistiek Orthodoxe statistiek 2 / 28 3 / 28 Jullie - onderzoek Tobias, Lody, Swen en Sander Links: Aantal broers/zussen van het
DEEL II DOEN! - Praktische opdracht statistiek WA- 4HAVO
DEEL II DOEN! - Praktische opdracht statistiek WA- 4HAVO Leerlingmateriaal 1. Doel van de praktische opdracht Het doel van deze praktische opdracht is om de theorie uit je boek te verbinden met de data
Klantonderzoek: statistiek!
Klantonderzoek: statistiek! Statistiek bij klantonderzoek Om de resultaten van klantonderzoek juist te interpreteren is het belangrijk de juiste analyses uit te voeren. Vaak worden de mogelijkheden van
Statistiek voor Natuurkunde Opgavenserie 4: Lineaire regressie
Statistiek voor Natuurkunde Opgavenserie 4: Lineaire regressie Inleveren: Uiterlijk 15 februari voor 16.00 in mijn postvakje Afspraken Overleg is toegestaan, maar iedereen levert zijn eigen werk in. Overschrijven
6.1 Beschouw de populatie die wordt beschreven door onderstaande kansverdeling.
Opgaven hoofdstuk 6 I Learning the Mechanics 6.1 Beschouw de populatie die wordt beschreven door onderstaande kansverdeling. De random variabele x wordt tweemaal waargenomen. Ga na dat, indien de waarnemingen
Enkelvoudige ANOVA Onderzoeksvraag Voorwaarden
Er is onderzoek gedaan naar rouw na het overlijden van een huisdier (contactpersoon: Karolijne van der Houwen (Klinische Psychologie)). Mensen konden op internet een vragenlijst invullen. Daarin werd gevraagd
Kruis per vraag slechts één vakje aan op het antwoordformulier.
Toets Stroom 1.2 Methoden en Statistiek tul, MLW 7 april 2006 Deze toets bestaat uit 25 vierkeuzevragen. Kruis per vraag slechts één vakje aan op het antwoordformulier. Vraag goed beantwoord dan punt voor
Cursus Statistiek 2. Fellowonderwijs Opleiding Intensive Care. UMC St Radboud, Nijmegen
Cursus Statistiek 2 Fellowonderwijs Opleiding Intensive Care UMC St Radboud, Nijmegen Cursus Statistiek 2 Steekproefgrootte en power berekening Vergelijken van gemiddelden (T-testen) Niet-parametrische
15.1 Beslissen op grond van een steekproef [1]
15.1 Beslissen op grond van een steekproef [1] Voorbeeld 1: Een vulmachine vult flessen met een inhoud van X ml. X is normaal verdeeld met μ = 400 en σ = 4 Er wordt een steekproef genomen van 40 flessen.
Oplossingen hoofdstuk 9
Oplossingen hoofdstuk 9 1. Bestaat er een verband tussen het geslacht en het voorkomen van dyslexie? Uit een aselecte steekproef van 200 leerlingen (waarvan 50% jongens en 50% meisjes) uit het basisonderwijs
TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamen Statistiek 2 voor TeMa (2S195) op dinsdag ,
TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Statistiek 2 voor TeMa (2S95) op dinsdag 5-03-2005, 9.00-22.00 uur Bij het tentamen mag gebruik worden gemaakt van een zakrekenmachine
Toetsen van Hypothesen. Het vaststellen van de hypothese
Toetsen van Hypothesen Wisnet-hbo update maart 2008 1. en Het vaststellen van de hypothese De nulhypothese en de Alternatieve hypothese. Het gaat in deze paragraaf puur alleen om de formulering. Er wordt
Les 1: de normale distributie
Les 1: de normale distributie Elke Debrie 1 Statistiek 2 e Bachelor in de Biomedische Wetenschappen 18 oktober 2018 1 Met dank aan Koen Van den Berge Indeling lessen Elke bullet point is een week. R en
Les 1: Waarschijnlijkheidrekening
Les 1: Waarschijnlijkheidrekening A Men neemt een steekproef van 1000 appelen. Deze worden ingedeeld volgens gewicht en volgens symptomen van een bepaalde schimmel: geen, mild, gematigd of ernstig. Het
HOOFDSTUK 7: STATISTISCHE GEVOLGTREKKINGEN VOOR DISTRIBUTIES
HOOFDSTUK 7: STATISTISCHE GEVOLGTREKKINGEN VOOR DISTRIBUTIES 7.1 Het gemiddelde van een populatie Standaarddeviatie van de populatie en de steekproef In het vorige deel is bij de significantietoets uitgegaan
Antwoordvel Versie A
Antwoordvel Versie A Interimtoets Toegepaste Biostatistiek 13 december 013 Naam:... Studentnummer:...... Antwoorden: Vraag Antwoord Antwoord Antwoord Vraag Vraag A B C D A B C D A B C D 1 10 19 11 0 3
Werkblad 1 Normale dichtheidsfunctie als benadering voor een klokvormig histogram
Werkblad 1 Normale dichtheidsfunctie als benadering voor een klokvormig histogram Probeer zeker de opdrachten 1, 4 en 6 te maken. 1. In de tabel hieronder vind je gegevens over de borstomtrek van 5732
SPSS Introductiecursus. Sanne Hoeks Mattie Lenzen
SPSS Introductiecursus Sanne Hoeks Mattie Lenzen Statistiek, waarom? Doel van het onderzoek om nieuwe feiten van de werkelijkheid vast te stellen door middel van systematisch onderzoek en empirische verzamelen
Stochastiek 2. Inleiding in de Mathematische Statistiek 1/19
Stochastiek 2 Inleiding in de Mathematische Statistiek 1/19 Herhaling H.1 2/19 Mathematische Statistiek We beschouwen de beschikbare data als realisatie(s) van een stochastische grootheid X.(Vaak een vector
TECHNISCHE UNIVERSITEIT EINDHOVEN
TECHNISCHE UNIVERSITEIT EINDHOVEN Tentamen Biostatistiek voor BMT (2S390) op 17-11-2003 U mag alleen gebruik maken van een onbeschreven Statistisch Compendium (dikt. nr. 2218) en van een zakrekenmachine.
Kansrekening en Statistiek
Kansrekening en Statistiek College 12 Donderdag 21 Oktober 1 / 38 2 Statistiek Indeling: Stochast en populatie Experimenten herhalen Wet van de Grote Getallen Centrale Limietstelling 2 / 38 Deductieve
Hoofdstuk 10 Eenwegs- en tweewegs-variantieanalyse
Hoofdstuk 10 Eenwegs- en tweewegs-variantieanalyse 10.1 Eenwegs-variantieanalyse: Als we gegevens hebben verzameld van verschillende groepen en we willen nagaan of de populatiegemiddelden van elkaar verscihllen,
Examen VWO. Wiskunde A1,2 (nieuwe stijl)
Wiskunde A1,2 (nieuwe stijl) Examen VWO Voorbereidend Wetenschappelijk Onderwijs Tijdvak 2 Woensdag 18 juni 13.3 16.3 uur 2 3 Voor dit examen zijn maximaal zijn 88 punten te behalen; het examen bestaat
Feedback rapport per huisarts
ACHIL: evaluatie van de zorgtrajecten diabetes mellitus type 2 en chronische nierinsufficiëntie Achil Phase 1 (2009-2013). Ambulatory Care Health Information Laboratory Feedback rapport per huisarts Dataverzameling
11.0 Voorkennis. Wanneer je met binomcdf werkt, werk je dus altijd met een kans van de vorm P(X k)
11.0 Voorkennis Let op: Cumulatieve binomiale verdeling: P(X k) = binomcdf(n,p,k) Wanneer je met binomcdf werkt, werk je dus altijd met een kans van de vorm P(X k) Voorbeeld 1: Binomiaal kanseperiment
Meervoudige ANOVA Onderzoeksvraag Voorwaarden
Er is onderzoek gedaan naar rouw na het overlijden van een huisdier (contactpersoon: Karolijne van der Houwen (Klinische Psychologie)). Mensen konden op internet een vragenlijst invullen. Daarin werd gevraagd
Beschrijvende statistiek
Beschrijvende statistiek Beschrijvende en toetsende statistiek Beschrijvend Samenvatting van gegevens in de steekproef van onderzochte personen (gemiddelde, de standaarddeviatie, tabel, grafiek) Toetsend
HOOFDSTUK VI NIET-PARAMETRISCHE (VERDELINGSVRIJE) STATISTIEK
HOOFDSTUK VI NIET-PARAMETRISCHE (VERDELINGSVRIJE) STATISTIEK 1 1. INLEIDING Parametrische statistiek: Normale Verdeling Niet-parametrische statistiek: Verdelingsvrij Keuze tussen de twee benaderingen I.
mlw stroom 2.2: Biostatistiek en Epidemiologie
mlw stroom 2.2: Biostatistiek en Epidemiologie Hoorcollege 1: Onderzoeksopzet en risikomaten Rosner 13.1-13.4 Capaciteitsgroep Methodologie en Statistiek tul / UM 10 januari 2006 Methodologie en Statistiek
Opgave 1: (zowel 2DM40 als 2S390)
TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Biostatistiek voor BMT (DM4 en S39) op donderdag, 4.-7. uur Bij het tentamen mag gebruik worden gemaakt van een zakrekenmachine
6.1 Beschouw de populatie die beschreven wordt door onderstaande kansverdeling.
Opgaven hoofdstuk 6 I Basistechnieken 6.1 Beschouw de populatie die beschreven wordt door onderstaande kansverdeling. x 0 2 4 6 p(x) ¼ ¼ ¼ ¼ a. Schrijf alle mogelijke verschillende steekproeven van n =
Kengetal Antwoord Nee Nee Ja Nee Ja Ja Nee Toetsgrootheid 1,152 1,113 2,048 1,295 1,152 1,113 0,607
1. Om na te gaan of de gemiddelde bijdrage dezelfde is voor ziekenkas A en voor ziekenkas B heeft men op een toevallige wijze 30 personen geselecteerd waarvan 15 aangesloten zijn bij ziekenkas A en 15
Inleiding Applicatie Software - Statgraphics
Inleiding Applicatie Software - Statgraphics Beschrijvende Statistiek /k 1/35 OPDRACHT OVER BESCHRIJVENDE STATISTIEK Beleggen Door een erfenis heeft een vriend van u onverwacht de beschikking over een
Figuur 1: Voorbeelden van 95%-betrouwbaarheidsmarges van gemeten percentages.
MARGES EN SIGNIFICANTIE BIJ STEEKPROEFRESULTATEN. De marges van percentages Metingen via een steekproef leveren een schatting van de werkelijkheid. Het toevalskarakter van de steekproef heeft als consequentie,
Inleiding Applicatie Software - Statgraphics. Beschrijvende Statistiek
Inleiding Applicatie Software - Statgraphics Beschrijvende Statistiek OPDRACHT OVER BESCHRIJVENDE STATISTIEK Beleggen Door een erfenis heeft een vriend van u onverwacht de beschikking over een klein kapitaaltje
Eindexamen wiskunde A1-2 vwo 2004-I
4 Beoordelingsmodel Examenresultaten aflezen in figuur : 77% heeft een score van 65 lager Dus 3% heeft een score hoger dan 65 Dat zijn (ongeveer) 59 kandidaten aflezen in figuur : 77% heeft een score van
Controleer linksonder of je een bestand hebt met records.
VWO 6, Wiskunde A Computertoets bij bestand vrijetijdsbesteding Inleiding In deze toets maak je gebruik van een groot gegevensbestand van het CBS over de vrijetijdsbesteding van volwassenen. Het bestand
Hierbij is het steekproefgemiddelde x_gemiddeld= en de steekproefstandaardafwijking
Opdracht 9a ----------- t-procedures voor een enkelvoudige steekproef Voor de meting van de leesvaardigheid van kinderen wordt als toets de Degree of Reading Power (DRP) gebruikt. In een onderzoek onder
Masterclass: statistical analysis 101. Bianca de Greef Sander van Kuijk Afdeling KEMTA
Masterclass: statistical analysis 101 Bianca de Greef Sander van Kuijk Afdeling KEMTA Inhoud Masterclass Deel 1 (theorie): Het fundament van statistisch toetsen Steekproefgrootte en power Deel 2 (casus):
Tentamen Biostatistiek 2 voor BMT (2DM50), op dinsdag 5 april 2011 9.00-12.00 uur
Faculteit der Wiskunde en Informatica Tentamen Biostatistiek 2 voor BMT (2DM50), op dinsdag 5 april 2011 9.00-12.00 uur Bij het tentamen mag alleen gebruik worden gemaakt van een zakrekenmachine. Het gebruik
Statistiek met Excel. Schoolexamen en Uitbreidingsopdrachten. Dit materiaal is gemaakt binnen de Leergang Wiskunde schooljaar 2013/14
Statistiek met Excel Schoolexamen en Uitbreidingsopdrachten 2 Inhoudsopgave Achtergrondinformatie... 4 Schoolexamen Wiskunde VWO: Statistiek met grote datasets... 5 Uibreidingsopdrachten vwo 5... 6 Schoolexamen
Statistische variabelen. formuleblad
Statistische variabelen formuleblad 0. voorkennis Soorten variabelen Discreet of continu Bij kwantitatieve gegevens gaat het om meetbare gegeven, zoals temperatuur, snelheid of gewicht. Bij een discrete
2. In de klassen 2A en 2B is een proefwerk gemaakt. Je ziet de resultaten in de frequentietabel. 2A 2B
1. (a) Bereken het gemiddelde salaris van de werknemers in de tabel hiernaast. (b) Bereken ook het mediale salaris. (c) Hoe groot is het modale salaris hier? salaris in euro s aantal werknemers 15000 1
Technologie: TI-Nspire CX CAS Niveau: beginner
Introductie : Statistiek met de TI-Nspire CX CAS Met de TI-Nspire hebben we een groot aantal statistische functies tot onze beschikking die het rekenwerk binnen de beschrijvende statistiek vergemakkelijken.
17/04/2013. 1. Epidemiologische studies. Children should not be treated as miniature men and women Abraham Jacobi
Aanpak en interpretatie van een epidemiologische studie Aanpak en interpretatie van een epidemiologische studie Katia Verhamme, MD, PhD Epidemioloog OLV Ziekenhuis-Aalst Erasmus MC Rotterdam 20 april 2013
Feedback proefexamen Statistiek I 2009 2010
Feedback proefexamen Statistiek I 2009 2010 Het correcte antwoord wordt aangeduid door een sterretje. 1 Een steekproef van 400 personen bestaat uit 270 mannen en 130 vrouwen. Een derde van de mannen is
Verklarende Statistiek: Toetsen. Zat ik nou in dat kritische gebied of niet?
Verklarende Statistiek: Toetsen Zat ik nou in dat kritische gebied of niet? Toetsen, Overzicht Nulhypothese - Alternatieve hypothese (voorbeeld: toets voor p = p o in binomiale steekproef) Betrouwbaarheid
TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamen Statistiek (2DD14) op vrijdag 17 maart 2006, 9.00-12.00 uur.
TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Statistiek DD14) op vrijdag 17 maart 006, 9.00-1.00 uur. UITWERKINGEN 1. Methoden om schatters te vinden a) De aannemelijkheidsfunctie
Tentamen Wiskunde A CENTRALE COMMISSIE VOORTENTAMEN WISKUNDE. Datum: 19 december Aantal opgaven: 6
CENTRALE COMMISSIE VOORTENTAMEN WISKUNDE Tentamen Wiskunde A Datum: 19 december 2018 Tijd: 13.30 16.30 uur Aantal opgaven: 6 Lees onderstaande aanwijzingen s.v.p. goed door voordat u met het tentamen begint.
Examen VWO 2015. wiskunde C. tijdvak 2 woensdag 17 juni 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.
Examen VWO 2015 tijdvak 2 woensdag 17 juni 13.30-16.30 uur wiskunde C Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 22 vragen. Voor dit examen zijn maximaal 79 punten te behalen. Voor
Samenvatting. J. Nachtegaal, S.E. Kramer, J.M. Festen (Amsterdam)
Samenvatting Associatie tussen gehoorverlies en psychosociale gezondheid bij 18 tot 70 jarigen: eerste resultaten van de Nationale Longitudinale Studie naar Horen (NL-SH). J. Nachtegaal, S.E. Kramer, J.M.
Kun je met statistiek werkelijk alles bewijzen?
Kun je met statistiek werkelijk alles bewijzen? Geert Verbeke Biostatistisch Centrum, K.U.Leuven International Institute for Biostatistics and statistical Bioinformatics [email protected] http://perswww.kuleuven.be/geert
Statistiek voor A.I. College 12. Dinsdag 23 Oktober
Statistiek voor A.I. College 12 Dinsdag 23 Oktober 1 / 20 2 Deductieve statistiek Orthodoxe statistiek 2 / 20 3 / 20 Jullie - onderzoek Wivine Tijd waarop je opstaat (uu:mm wordt weergeven als uumm). Histogram
Studie type Populatie Patiënten kenmerken Interventie Controle Dataverzameling
Evidence tabel bij ADHD in kinderen en adolescenten (studies naar adolescenten met ADHD en ) Auteurs, Gray et al., 2011 Thurstone et al., 2010 Mate van bewijs A2 A2 Studie type Populatie Patiënten kenmerken
