LICHT EN GELUID IN DE ARTSENPRAKTIJK

Maat: px
Weergave met pagina beginnen:

Download "LICHT EN GELUID IN DE ARTSENPRAKTIJK"

Transcriptie

1 LICHT EN GELUID IN DE ARTSENPRAKTIJK 1 INLEIDING Licht en geluid zijn beide voorbeelden van wat we in de natuurkunde een golfverschijnsel noemen. We spreken ook wel van een golfbeweging, een trilling of van straling. Zie figuur 1. Figuur 1. Golfbeweging De volgende begrippen zijn van belang: De golflengte λ (eenheid nanometer, nm, 1 nm = 10 9 m). De golflengte is de afstand tussen 2 punten in de golf die op hetzelfde moment dezelfde beweging uitvoeren. De amplitude of amplitudo (A). De amplitude is de maximale uitwijking van een trillend punt ten opzichte van de ruststand, anders gezegd de hoogte van de top van de golf. De trillingstijd T (eenheid seconde, s). De trillingstijd is de tijd waarin een punt van de golf 1 volledige golfbeweging heeft uitgevoerd. De frequentie f (eenheid Herz, Hz). De frequentie geeft het aantal golven aan die een punt in 1 seconde uitvoert. Er geldt f = 1/T. Het menselijk lichaam is in staat om verschillende golfverschijnselen, trillingen of straling waar te nemen. Daarvoor beschikt het lichaam over zintuigen. Met het oog kunnen we licht waarnemen. De golflengte van zichtbaar licht varieert tussen 400 nm en 700 nm. Met de warmtereceptoren (onder andere in de huid) kunnen we infrarood (IR) straling, ook wel warmtestraling genoemd, waarnemen. De golflengte van IR straling varieert tussen 800 nm en nm. IR straling is voor het menselijk oog onzichtbaar. Met het oor kunnen we geluid waarnemen. Het menselijk oor is gevoelig voor geluidsgolven met een frequentie tussen de 16 Hz en Hz. Deze grenzen zijn sterk afhankelijk van leeftijd en komen tijdens het ouder worden dichter bij elkaar te liggen: de ondergrens stijgt iets, de bovengrens kan dalen tot Hz. Er zijn ook vormen van straling die we niet waar kunnen nemen. Het meest bekende voorbeeld daarvan is röntgenstraling. De golflengte van röntgenstraling varieert tussen 3 nm en 0,006 nm. Er zijn 2 verschillen tussen geluidsgolven enerzijds en licht, IR en röntgenstraling anderzijds: Licht, IR en röntgen zijn voorbeelden van zogenoemde elektromagnetische straling. Elektromagnetische straling kan zich voortplanten in vacuüm, in lucht, in water, enzovoort. De snelheid waarmee elektromagnetische golven zich voortplanten is altijd gelijk aan de lichtsnelheid (c). In lucht en in vacuüm geldt c = km/s = m/s, in water geldt c = km/s. Geluidsgolven kunnen zich alleen maar voortplanten in een andere stof, een medium, zoals lucht, water, botten, enzovoort. De trillingen worden door de moleculen van het medium doorgegeven. De voortplantingssnelheid van geluidsgolven is veel lager dan de lichtsnelheid. In lucht is de voortplantingssnelheid van geluid 340 m/s, in water circa 1500 m/s en in botten circa 4000 m/s. Geluid is dus geen elektromagnetische straling. Het verband tussen golflengte, frequentie en voortplantingssnelheid is bij alle golfbewegingen hetzelfde: De formule luidt: f λ = v. Hierin is v de voortplantingssnelheid.

2 Bij elektromagnetische straling luidt de formule f λ = c (De v is dan vervangen door de lichtsnelheid c). Als straling op een voorwerp valt, kunnen de volgende dingen gebeuren: De straling gaat om het voorwerp heen. We spreken van omspoelen. Dit gebeurt als de golflengte groter is dan het voorwerp. De straling gaat dwars door het voorwerp heen. Dit gebeurt als de golflengte veel kleiner is dan de deeltjes waaruit het voorwerp is opgebouwd. We spreken van doordringing. De straling dringt door in het voorwerp, maar komt er aan de achterkant niet meer uit. Dit gebeurt als de golflengte ongeveer even groot is als de deeltjes waaruit de stof is opgebouwd of even groot is als de openingen tussen deze deeltjes. Bovendien mag de energie van de straling niet al te hoog zijn. We spreken van absorptie. De straling kaatst terug op het oppervlak van het voorwerp, bijvoorbeeld zoals bij een spiegel. Dit gebeurt als de golflengte van de straling groter is dan de deeltjes waaruit het oppervlak van de stof is opgebouwd, groter is dan de openingen tussen deze deeltjes, maar kleiner dan het totale voorwerp. We spreken van reflectie. In beide laatste gevallen is er sprake van schaduwvorming. De amplitude van straling is belangrijk voor de energie van de golfbeweging. Bij een grote amplitude bevat de straling veel energie. Straling met een hoge energie heeft een groter doordringend vermogen. Naast de amplitude blijkt ook de frequentie van de straling invloed te hebben op de energie ervan. Straling met een hogere frequentie heeft in het algemeen een grotere energie en daarmee een groter doordringend vermogen. Om stoornissen in het waarnemen van licht en geluid te verhelpen, is een grondige kennis vereist van het functioneren van het oog en het oor. Daarnaast worden licht en geluid veelvuldig toegepast in diagnostische apparatuur. Toepassing van licht vinden we bij de endoscopen zoals de gastroscoop, laparoscoop en bronchoscoop. Licht wordt verder nog gebruikt in analytische apparatuur zoals de verschillende fotometers, waaronder de hemoglobinemeter (Hb-meter). Toepassing van geluid vinden we bij de stethoscoop, in de audiometrie en in de echografie. We bespreken in deze uitgave hoe we licht en geluid waarnemen. Bovendien bespreken we enkele toepassingen van licht en geluid in de artsenpraktijk. Vragen en opdrachten 1. a Wat is het kenmerk van alle elektromagnetische straling? b Waarom is geluid geen elektromagnetische straling? 2. a Bereken de frequentie van rood licht, violet licht, zachte röntgenstralen (golflengte 3 nm) en harde röntgenstralen (golflengte 0,006 nm). b Bereken voor deze 4 situaties ook de trillingstijd T van 1 golfbeweging. 3. Van welke 2 factoren is de energie van straling afhankelijk? 4. Welke straling bevat meer energie? a rood licht of blauw licht b zichtbaar licht of röntgenstraling 5. a Bereken de golflengte van ultrasoon geluid van Hz in lucht, in water en in botten. b Kan een mens dit geluid waarnemen? c Wat zou het woord ultrasoon betekenen? 2 Licht Zichtbaar licht bestaat uit verschillende kleuren. Je spreekt van het zichtbare deel van het elektromagnetische spectrum. In de kleurenschijf zijn de 3 primaire kleuren gearceerd. De 3 niet gearceerde kleuren zijn de secundaire kleuren. Dit zijn mengkleuren van de primaire kleuren die er naast staan. Kleuren die tegenover elkaar liggen in de kleurenschijf noem je complementaire kleuren. Als we 2 complementaire kleuren licht op ons oog laten vallen, dan ziet ons oog wit licht. Wit licht is dus een combinatie van paren van complementaire kleuren. Figuur 2 Kleurenschijf

3 Zonlicht bevat alle golflengtes en wordt dus door ons oog gezien als wit licht. Als ons oog totaal geen licht waarneemt, spreken we van zwart. Zwart is dus het ontbreken van licht en net als wit geen kleur op zichzelf. De getallen in de kleurenschijf geven de golflengtes aan in nanometer. REFLECTIE Wij kunnen voorwerpen en de kleur daarvan waarnemen doordat deze voorwerpen het licht dat erop valt terugkaatsen (reflectie). Als wij een voorwerp waarnemen als wit, dan wil dat zeggen dat het voorwerp alle opvallende licht ook reflecteert. Een zwart voorwerp reflecteert helemaal geen opvallend licht, het opvallende licht wordt volledig opgenomen in het voorwerp (absorptie). Een groen voorwerp kaatst alleen maar groen licht terug, alle andere licht, en vooral de complementaire kleur, wordt geabsorbeerd, enzovoort. Er bestaan ook stoffen die bepaalde kleuren wel doorlaten en andere niet, zogenoemde lichtfilters. Als je nu met een lichtfilter dat alleen groen licht doorlaat naar een rode aardbei kijkt, ziet het oog de aardbei als zwart. Dit komt omdat groen en rood complementair zijn. De rode aardbei reflecteert rood licht en absorbeert al het groene licht. Het groene lichtfilter laat alleen groen licht door, maar dat zendt de rode aardbei niet uit. Dus er komt door het groene filter geen licht vanuit de aardbei in ons oog, waardoor deze zwart lijkt. Bij reflectie van licht is de structuur van het oppervlak ook belangrijk. Een glad en plat oppervlak kaatst het licht regelmatig terug. We noemen dit spiegelende werking. Bij een ruw oppervlak kaatst het opvallende licht in allerlei willekeurige richtingen terug. Hier is sprake van verstrooiing. Bij reflectie geldt altijd een vaste regel, namelijk hoek van inval is hoek van terugkaatsing. De hoek waaronder de lichtstralen op het oppervlak komen, meet je altijd ten opzichte van de normaal. Dit is de lijn die loodrecht op het oppervlak staat. Bij een vlak, plat oppervlak staat die normaal altijd in dezelfde richting, bij een gebogen of ruw oppervlak wijst de normaal in verschillende punten ook allerlei kanten op (zie figuur 3). De normaal is in figuur 3 telkens met een onderbroken lijn weergegeven. evenwijdige reflectie bij een plat oppervlak diffuse reflectie bij een ruw oppervlak Figuur 3 Reflectie Lichtstralen die evenwijdig aan elkaar blijven lopen, vormen een parallelle lichtbundel. Laserlicht is een voorbeeld van een parallelle lichtbundel. Lichtstralen die dwars door elkaar heen en alle kanten uitgaan, vormen strooilicht. Lichtstralen die op een regelmatige manier steeds verder uit elkaar gaan lopen en waarbij het lijkt alsof ze uit 1 punt komen, vormen een divergente of divergerende lichtbundel. Lichtstralen die op een regelmatige manier steeds dichter naar elkaar toebewegen en waarbij ze uiteindelijk in 1 punt samenkomen, vormen een convergente of convergerende lichtbundel. Divergente en convergente lichtbundels zijn uitgebeeld in figuur 4 convergerende lichtbundel divergerende lichtbundel Figuur 4 Convergente en divergente lichtbundel

4 BREKING Lichtstralen die op een doorzichtig materiaal vallen, kunnen daar ook doorheen gaan. Bij bijna alle materialen treedt er dan breking van de lichtstraal op. Het beste is dat te zien in een prisma, een driehoekig geslepen stuk glas. Als daar wit licht op valt, zie je achter het prisma alle kleuren van de regenboog. Elke kleur breekt namelijk net iets anders. In een druppel water kun je dit effect ook zien. Dit is in figuur 5 uitgebeeld. Breking van licht (en van andere elektromagnetische straling) wordt veroorzaakt doordat de voortplantingssnelheid in verschillende materialen anders is. In vacuüm en lucht is de lichtsnelheid m/s, maar in glas is het bijvoorbeeld m/s en in water 2, m/s. Als het licht overgaat van een stof waarin de lichtsnelheid hoog is naar eentje met een lagere lichtsnelheid, dan breekt de lichtstraal naar de normaal toe. In het omgekeerde geval breekt de lichtstraal van de normaal af. normaal normaal lucht glas glas lucht Figuur 5 Breking Bij breking van licht gebruik je het begrip brekingsindex om aan te geven hoe sterk de breking is. Je berekent de brekingsindex door de lichtsnelheid in de stof waar de straal vandaan komt te delen door de lichtsnelheid in de stof waar de straal naar toe gaat. Je geeft de brekingsindex aan met de letter n. Bij de overgang lucht glas geldt dus: n = c(lucht) : c(glas) = km/s : km/s = 1,5. Bij de overgang glas lucht geldt dan: n = c(glas) : c(lucht) = km/s : km/s = 0,67. We concluderen: als n groter is dan 1 dan breekt het licht naar de normaal toe, als n kleiner is dan 1 dan breekt het licht van de normaal af. Vragen en opdrachten 1. a Je mengt de kleuren rood en groen in gelijke intensiteit. Welke kleur zie je dan? Waarom? b Dezelfde vraag voor de kleuren rood, geel, violet en groen. 2. a Welke kleur krijg je als je rood en geel mengt? b Welke kleur krijg je als je evenveel rood, geel en blauw mengt? 3. a Teken in de volgende 4 situaties hoe de invallende lichtstralen gereflecteerd worden. A B C D Figuur 6 Reflectie tekenen b Teken nu zelf een situatie waarin lichtstralen recht op een holle spiegel vallen en teruggekaatst worden. c In welke situatie in a en b is sprake van een divergerende reflectie en in welke situatie van een convergerende? 4. Als het zonlicht op je huid valt, voel je daar ook warmte van. In welke situatie krijg je het warmer, als je witte kleren draagt of als je zwarte kleren draagt? Waarom?

5 5. Zeg van de volgende voorwerpen welke kleuren licht worden gereflecteerd, geabsorbeerd en/ of doorgelaten (of een combinatie van deze 3). a een blauwe houten kist d een rode robijn b een bruine glazen fles e een groen blad (van een boom) c een zwarte rubberen laars f een glas met melk erin 6. a Welke kleur ziet het oog als je een geel voorwerp bekijkt door een violet lichtfilter? b Welke kleur ziet het oog als je een blauw voorwerp bekijkt door een rood lichtfilter? 7. De brekingsindex geeft aan hoe sterk een lichtstraal wordt afgebogen. Je kunt de brekingsindex berekenen door de lichtsnelheid van het licht in de stof waar de lichtstraal vandaan komt te delen door de lichtsnelheid in de stof waar de lichtstraal naar toe gaat. Bereken de brekingsindex voor de overgang lucht water, de overgang glas water en de overgang water lucht. 8. Welke eenheid heeft de brekingsindex? 9. IJs waarop nog niet geschaatst is, is vaak heel helder. IJs waarop wel geschaatst is, is wit-grijs van kleur. Verklaar waarom ijs waarop al geschaatst is wit-grijs van kleur is. 3 HET OOG 3.1 BOUW VAN HET OOG EN BEELDVORMING Figuur 7 Het oog Voor de beeldvorming door het oog zijn de volgende onderdelen van belang. - Het hoornvlies is het voorste deel van het harde oogvlies. Het is doorzichtig en sterk gekromd om het invallend licht te convergeren. - De pupil is een opening in het vaatvlies. De pupil kan groter en kleiner worden gemaakt door een kringspier in de iris. De pupil regelt de hoeveelheid licht die het oog binnenvalt. - De lens bevindt zich vlak achter de pupil en is via banden verbonden met de zogenoemde accommodatiespier. De lens is een soepel, elastisch en doorzichtig onderdeel van het oog. De lens is altijd bol, zodat de binnenvallende lichtstralen verder convergeren. Als de ringvormige accommodatiespier zich samentrekt, wordt de lens boller doordat de banden slap hangen. In de rusttoestand van de accommodatiespier zijn de banden strak getrokken en is de lens vrijwel plat. De vormverandering van de lens noem je accommodatie (= aanpassing). - Het netvlies bevat de zintuigcellen voor het waarnemen van de lichtstralen. Het netvlies is niet overal even gevoelig voor licht. De gele vlek, recht achter de lens, bevat zeer veel zintuigcellen en is zeer gevoelig. De blinde vlek, de plaats waar de oogzenuw de oogbol verlaat, bevat geen zintuigcellen en is dus ongevoelig voor licht. De ruimten tussen hoornvlies en lens en tussen lens en netvlies zijn opgevuld met doorzichtige stoffen die de lichtstralen normaal gesproken ongehinderd doorlaten. Om een scherp beeld van een voorwerp te krijgen, moeten de lichtstralen die uit één punt van het voorwerp komen, op het netvlies ook weer samenvallen in één beeldpunt. Het oog realiseert dit door de lens op een bepaalde manier te accommoderen. Anders gezegd: de lens wordt zodanig ingesteld dat het voorwerp scherp waargenomen wordt. Om dichterbij te kijken, moet de lens boller worden, de accommodatiespier trekt dan samen, de banden gaan slap hangen en de lens wordt bol dankzij zijn elasticiteit. Om verder weg te kijken, moet de lens platter worden, de accommodatiespier verslapt, de banden trekken strak waardoor de lens wordt 'uitgerekt'. De bolling van de lens is aan een maximum gebonden. Dit betekent dat er een minimale afstand is tussen het oog en een voorwerp om dit scherp te kunnen zien.

6 Je spreekt van het nabijheidspunt. Voorwerpen die zich tussen het nabijheidspunt en het oog bevinden, worden niet scherp waargenomen omdat de lichtstralen niet genoeg convergeren. Het nabijheidspunt is afhankelijk van de leeftijd. Voor kinderen ligt het op ongeveer 10 cm; bij ouderen komt het steeds verder weg te liggen omdat de elasticiteit van de lens afneemt. De maximale bolling wordt dan steeds geringer. Oudere mensen krijgen daarom vaak moeite met lezen. Men is dan presbyoop (verziend door ouderdom). Presbyopie is te verhelpen door een positieve lens (een 'plus'-bril) voor het oog te plaatsen om de lens te helpen de invallende lichtstralen te convergeren. Het nabijheidspunt wordt zo kunstmatig dichterbij gehaald. Dit alles is samengevat in figuur OOGAFWIJKINGEN Figuur 8 Accommodatie De oogafwijkingen waar wij ons hier mee bezighouden, gaan over misvormingen van het beeld op het netvlies. Dit kan vele oorzaken hebben, zoals afwijkingen in de doorlaatbaarheid voor licht van het hoornvlies of de andere doorzichtige delen van het oog, waardoor het binnenvallende licht verstrooid wordt. De meest voorkomende afwijkingen hebben echter te maken met de bolling van de lens of de lengte van de oogas (= afstand tussen lens en netvlies). Deze moeten op elkaar afgestemd zijn, anders vallen lichtstralen uit 1 punt van een voorwerp niet samen op het netvlies. Het voorwerp wordt dan wazig waargenomen. Er kunnen zich 2 situaties voordoen: a de lichtstralen komen voor het netvlies al samen (bijziendheid of myopie); b de lichtstralen komen pas achter het netvlies samen (verziendheid of hypermetropie). In beide gevallen heeft 1 punt van het voorwerp meer dan 1 beeldpunt op het netvlies. Zie figuur 9. a Myopie (bijziend) b Hypermetropie (verziend) De oorzaak van myopie kan zijn een te lange oogas (as-myopie) of een te sterke bolling van de lens (lens-myopie). Het gevolg is in beide gevallen dat de lichtstralen al voor het netvlies samenkomen. Myopie geeft vooral problemen bij het zien op afstand. De lens is bij volledige ontspanning van de accommodatiespier nog te bol. De lichtstralen worden te sterk geconvergeerd. Correctie van deze oogafwijking is mogelijk door het dragen van een negatieve (holle) lens. De 'min'-lens divergeert de lichtstralen, ter compensatie van de sterkere convergentie door het oog (figuur a). Figuur 9 Oogafwijkingen De oorzaak van hypermetropie kan zijn een te korte oogas (as-hypermetropie) of een te geringe bolling van de lens (lens-hypermetropie). In beide gevallen komen de lichtstralen pas achter het netvlies samen. Er ontstaat een virtueel beeld. Hypermetropie geeft vooral problemen bij dichtbij kijken. De invallende lichtstralen worden niet voldoende geconvergeerd. Correctie van hypermetropie is mogelijk door het dragen van een positieve (bolle) lens. De 'plus'-lens convergeert de lichtstralen al gedeeltelijk, ter aanvulling van de te geringe convergentie door het oog (figuur b). Bij de correctie van myopie en hypermetropie gebruiken we lenzen. Dit zijn speciaal geslepen stukjes glas of kunststof die het invallende licht op een speciale manier breken. Er bestaan bolle lenzen (positieve of + lenzen) en holle lenzen (negatieve of lenzen).

7 De sterkte van een lens drukken we uit in dioptrieën. Het aantal dioptrieën is gelijk aan 1/f; f is de afstand tussen het midden van de lens en het brandpunt, de brandpuntsafstand, uitgedrukt in meter. Een + of een voor het aantal dioptrieën geeft aan of je een bolle respectievelijk een holle lens bedoelt. Voorbeelden 1 Een lens met een sterkte van 5 dioptrieën is hol en heeft een brandpuntsafstand f van 0,2 m = 20 cm. (1/0,2 = 5) 2 Een lens met een sterkte van +2,5 dioptrieën is bol en heeft een brandpuntsafstand f van 0,4 m = 40 cm. (1/0,4 = 2,5) In paragraaf 2 is de werking van een prisma al aan de orde geweest. Lenzen zijn feitelijk heel veel prisma s bij elkaar. In figuur 10 is uitgebeeld hoe de breking van lichtstralen door lenzen verloopt. a breking door prisma s b convergente breking, bolle lens c divergente breking, holle lens Figuur 10 Breking door lenzen In figuur 10 a en b zie je dat een bolle lens lichtstralen convergeert. Lichtstralen die evenwijdig op de lens vallen komen allemaal terecht in het brandpunt achter de lens. In figuur 10 c is te zien dat een holle lens lichtstralen divergeert. De getrokken stippellijntjes geven de plek aan waar de divergerende bundel vandaan lijkt te komen. Dit punt blijkt het brandpunt van de holle lens te zijn, maar dit is een virtueel punt omdat de lichtstralen hier niet echt vandaan komen, dat lijkt alleen maar zo. Vragen en opdrachten 1 a Wat is inspannender, dichtbij kijken of ver weg kijken. Waarom? b In welke situatie is de lens in het oog het meest ontspannen? 2 Wat is het verschil tussen presbyopie en hypermetropie? Wat is de overeenkomst tussen deze beide oogafwijkingen? 3 Ga voor jezelf eens na op welke afstand jouw nabijheidspunt ligt. Je kunt dit uitzoeken door een potlood in verticale stand steeds dichter naar je toe te halen. Vanaf een zeker punt vervaagt het beeld. Merk ook op dat het scherp krijgen van het beeld steeds moeizamer gaat. 4 Soms ontstaan er 'krasjes' op het hoornvlies. Wat is het gevolg hiervan voor de beeldvorming door het oog? 5 a Waarom hebben bijziende mensen moeite met ver weg kijken en geen moeite met dichtbij kijken? b Waarom hebben verziende mensen moeite met dichtbij kijken en niet met ver weg kijken? 6 Beredeneer of het brandpunt van de maximaal geaccommodeerde ooglens voor of achter het nabijheidspunt ligt. Bedenk daarbij hoe lichtstralen die door het brandpunt gaan, gebroken worden. 7 Bereken de brandpuntsafstand voor de volgende lenzen (sterktes uitgedrukt in dioptrie): a +6 b -1,75 c -3 d +3,25 e +1,5 f -4,5. 8 Bereken de sterkte van de volgende lenzen met brandpuntsafstand: a 8 cm b 0,6 m c 100 cm d 0,125 m 9 Leg uit of iemand met presbyopie zijn of haar bril voortdurend moet dragen. 10 Wat is het verschil tussen een leesbril en een bril die iemand altijd moet dragen? 11 Waarom kun je een verziend oog niet corrigeren met een negatieve bril? 12 We zijn 2 keer de letter f tegengekomen als afkorting voor een begrip. Welke 2 begrippen zijn dat? 13 Waarom wordt een lichtstraal die door het midden van een lens valt, niet gebroken? Zie figuur Je wilt een stukje papier aansteken met een brilglas. Je houdt het brilglas in de zon en je probeert de zonnestralen te convergeren op een stukje papier. Welk soort lens kun je hiervoor gebruiken, een + lens, een lens of allebei? 15 a Hoe worden lichtstralen die uit het brandpunt aan de voorkant van een bolle lens komen, gebroken? b Welke lichtstralen die op een holle lens vallen, gaan achter de lens als een parallelle bundel verder?

8 4 APPARATUUR DIE GEBRUIKMAAKT VAN LICHT 4.1 DIAGNOSTISCHE APPARATUUR; ENDOSCOPEN Endoscopie is een methode om met behulp van starre of flexibele buizen inwendige lichaamsholten (zoals de buikholte of de maag) of holle kanalen (bijvoorbeeld de darm) te onderzoeken. In 1879 werd de eerste starre endoscoop ontwikkeld door Nitze. Pas sinds 1958 zijn er volledig buigzame endoscopen beschikbaar. De moderne endoscopen zijn allemaal gemaakt van glasvezels (glasfiber). Je spreekt van fiber-endoscopen. De belangrijkste beeldvormende onderdelen van de endoscoop zijn de lichtgeleiders, de beeldgeleiders, het oculair en de tip. Zie figuur 11. De lichtgeleiders brengen licht van buiten in de lichaamsholte. Het licht wordt in de lichaamsholte weerkaatst. Het weerkaatste licht wordt opgevangen door een lens aan het uiteinde van de beeldgeleiders en vanuit de lichaamsholte teruggeleid naar het oculair. Figuur 11 Endoscopen Het oculair is het onderdeel waarin de beeldgeleiders uitkomen en waardoor de teruggekaatste lichtstralen zichtbaar worden gemaakt. Het bevindt zich altijd buiten het lichaam. De tip is de punt van de endoscoop die in het lichaam gebracht wordt en waarin de lichtgeleiders en de beeldgeleiders uitmonden. Met behulp van een besturingsmechanisme kan de tip over een hoek van 210 gedraaid worden. Zo kan de tip 'rondkijken' in de lichaamsholte. De beeld- en lichtgeleiders worden samengepakt in een rubber mantel. Het revolutionaire aan het gebruik van glasvezels is dat de endoscoop in willekeurige bochten gedraaid kan worden zonder dat dit de helderheid en de scherpte van het beeld aantast. Er is geen ingewikkeld systeem van spiegels, prisma's en lenzen meer nodig om het licht te geleiden. Deze opmerkelijke eigenschap van glasfibers is te verklaren uit wat we al weten over breking van licht. Wanneer lichtstralen uit een stof met een lagere lichtsnelheid (grotere optische dichtheid) overgaan naar een stof met een hogere lichtsnelheid (kleinere optische dichtheid), bijvoorbeeld de overgang van glas naar lucht, dan worden de lichtstralen van de normaal af gebroken. Er doen zich dan 3 mogelijkheden voor (zie ook figuur 12): 1 Breking: lichtstralen die recht of bijna recht op het grensvlak vallen, worden gebroken van de normaal af en gaan verder in de lucht. 2 Maximale breking: lichtstralen die onder een speciale hoek op het grensvlak vallen, worden zo gebroken dat ze evenwijdig aan het grensvlak verder gaan. Deze speciale hoek noem je de grenshoek. 3 Reflectie: lichtstralen die onder een kleinere hoek dan de grenshoek op het grensvlak vallen, worden niet gebroken maar gereflecteerd. Deze lichtstralen blijven dus in het glas. lucht lucht * lucht glas glas * = grenshoek Maximale breking glas Breking Reflectie Figuur 12 Breking en reflectie

9 De licht- en de beeldgeleiders in een endoscoop zijn opgebouwd uit een groot aantal uiterst dunne glasvezels. Elke glasvezel bestaat uit een kern van glas met een hoge optische dichtheid (dus een lagere lichtsnelheid) en daaromheen een mantel met een lagere optische dichtheid (dus een hogere lichtsnelheid). Lichtstralen die in de kern lopen en op het grensvlak met de mantel vallen, zullen in geval van breking van de normaal af buigen. Lichtstralen lopen meestal evenwijdig aan het grensvlak door de glasvezel, zodat de invalshoek bijna altijd kleiner is dan de grenshoek. Er is dus eigenlijk altijd sprake van reflectie en de lichtstraal blijft in de kern. Zie figuur 13. Figuur 13 Lichtgeleiding in een glasvezel De grote vlucht die de endoscopie de laatste jaren heeft genomen, is enerzijds toe te schrijven aan de sterk verbeterde apparatuur, waardoor artsen vrijwel in alle holle ruimten in het lichaam kunnen kijken zonder de noodzaak van operatief ingrijpen of het maken van röntgenfoto's. Een kleine incisie (snee), bijvoorbeeld in de lies of in de buikwand, is vaak voldoende. Een tweede zeer belangrijke verbetering is de mogelijkheid, naast het diagnosticeren tegelijkertijd enkele therapeutische handelingen te verrichten. De endoscoop is namelijk vaak uitgerust met een biopsiekanaal in de mantel waardoor een biopsietang in het lichaam gebracht kan worden. Met de biopsietang kan je stukjes weefsel of kleine stenen verwijderen en afvoeren door het biopsiekanaal (biopsie betekent: onderzoeken van weefsel dat uit een levend wezen is verwijderd). Via het biopsiekanaal is het echter ook mogelijk om kleine hulpmiddelen in het lichaam aan te brengen, bijvoorbeeld een endoprothese voor drainage van galwegen of pancreas of een nieuwe hartklep. De combinatie van scoop en biopsiekanaal maakt het mogelijk tijdens 1 behandeling te diagnosticeren en kleine ingrepen te verrichten. In figuur 14 is goed te zien hoe de biopsietang uit de scoop komt. Figuur 14 Röntgenopname van een fiberscoop met biopsietang (met dank aan dr. R.G.J.R.A. Vanderschueren) Vragen en opdrachten 1. Voor welk lichaamsdeel worden de volgende scopen gebruikt? a laparoscoop c bronchoscoop b gastroscoop d enteroscoop 2. Bereken de brekingsindex in een glasvezel met een kern waarvoor geldt c = km/s en een mantel waarvoor c = km/s. De lichtstralen komen uit de kern. 3. Worden alle lichtstralen die zich in de kern van een glasvezel voortplanten gereflecteerd als ze tegen de overgang kern/ mantel aankomen? Waarom wel/ niet? 4. Wat versta je onder de grenshoek? 5. Worden lichtstralen die van een stof met een hoge lichtsnelheid (kleine optische dichtheid) overgaan in een stof met lagere lichtsnelheid (grote optische dichtheid) vanuit een bepaalde invalshoek ook gereflecteerd? Leg je antwoord uit. 4.2 ANALYTISCHE APPARATUUR; FOTOMETERS De bepaling van het hemoglobinegehalte in het bloed gebeurt met een spectrofotometer, bijvoorbeeld de Spencer Hb meter. Andere typen Hb-meters zijn de filterfotometer en de Sicca-hemo-meter.

10 In een fotometer laat je licht door een oplossing vallen en je meet hoeveel licht de oplossing absorbeert (extinctie ofwel uitdoving) of doorlaat (transmissie). Zie figuur 15. Figuur 15 Schematische weergave van een fotometer De hoeveelheid licht die de oplossing absorbeert, is een maat voor de concentratie van de stof die je wilt meten. De meter geeft aan hoeveel % van het licht dat op de oplossing valt, geabsorbeerd dan wel doorgelaten is. Voorbeeld Zuiver water laat invallend licht volledig door. De transmissie is dan 100%, de extinctie 0%. Een hemoglobine-oplossing (Hb-oplossing) zal vooral groen licht met een golflengte van 540 nm absorberen. Afhankelijk van de concentratie van de Hb-oplossing zal de transmissie dan bijvoorbeeld 37% zijn, terwijl de extinctie dan 63% bedraagt. Extinctie en transmissie zijn samen 100% als we dezelfde oplossing met licht van dezelfde golflengte doorschijnen. Voor het verkrijgen van betrouwbare waarden is het belangrijk eerst een zogenaamde ijkcurve te maken. Je meet met een serie oplossingen waarvan je de concentratie kent welke exctinctie of welke transmissie de fotometer aangeeft. Wanneer je vervolgens onder dezelfde condities (dezelfde kleur en intensiteit licht waarmee je meet, gebruik van dezelfde cuvet, het buisje waarin je de oplossing doet) een onbekende oplossing in de fotometer stopt, kun je de concentratie van deze oplossing bepalen. Bij de Hb-meters is op de schaalverdeling aangegeven hoeveel gram Hb er per 100 ml bloed aanwezig is (gram%). De ijkcurve is hierin al door de fabrikant verwerkt. Fotometers voor de bepaling van de concentratie van gekleurde stoffen in oplossing heten ook wel colorimeters (color = kleur). Met het filter in de fotometer kan de golflengte van het licht dat op de oplossing valt, ingesteld worden. Bij veel meters heeft de fabrikant dit al gedaan, dan meet je met een vaste golflengte. Voor de bepaling van het hemoglobinegehalte met een Hb-meter gebruik je groen licht met een golflengte van 540 nm, omdat dit licht door hemoglobine het beste wordt geabsorbeerd. Elke stof absorbeert een andere kleur het beste, namelijk de complementaire kleur. Een rode stof absorbeert dus vooral groen licht, een blauwe stof absorbeert vooral oranje licht en een gele stof absorbeert vooral violet licht, enzovoort. In figuur 16 is een absorptiespectrum van een stof getekend. Je ziet duidelijk dat de extinctie bij elke golflengte anders is. Figuur 16 Absorptiespectrum

11 Vragen en opdrachten 1. Welke kleur licht wordt door de gegeven stoffen doorgelaten en welke kleur wordt het sterkst geabsorbeerd? a Een blauwe koper(ii)sulfaatoplossing. b Een geel lood(ii)jodide neerslag. c Een groen blad. d Een zwarte brok steenkool. 2. In figuur 16 is het absorptiespectrum van een stof weergegeven. a Bij welke golflengte is de extinctie maximaal? b Bij welke golflengte is de transmissie het grootst? c Welke kleur heeft deze stof volgens jou? Waarom? d Met welke golflengte zal je de concentratie van deze stof gaan meten in een fotometer? 3. Je hebt 2 blauwe koper(ii)sulfaatoplossingen. De extincties zijn respectievelijk 60% en 68%. a Welke kleur heeft het licht waarmee de extinctie gemeten wordt? b Bereken de transmissie van elke oplossing. c Welke oplossing heeft de grootste concentratie? d Van welke oplossing zal de intensiteit van de blauwe kleur het grootste zijn? 4. Leg uit wat een ijkcurve is. Wat is het nut van een ijkcurve? 5. a Waarom gebruik je in een hemoglobinemeter groen licht of een groen filter? b Welke kleur ziet de Hb-meter als de extinctie van het bloed 100% is? 6. a Leg uit of je een hemoglobine-meter ook kunt gebruiken voor het meten van de concentratie van een andere stof, bijvoorbeeld een geel-groene ijzer(iii)chloride oplossing? b Aan welke eis moet een fotometer voldoen om van meerdere stoffen de concentratie te kunnen meten? 4.3 CURATIEVE APPARATUUR; LASER De term laser is een afkorting van Light Amplification and Stimulated Emission of Radiation. Deze afkorting geeft kort aan hoe een laser werkt: een hoeveelheid licht wordt aangemaakt en door er steeds meer energie in te stoppen krijg je uiteindelijk een bijzonder krachtige lichtbundel. (Zie figuur 17.) Typische eigenschappen van lasers zijn: het licht is monochromatisch, dat wil zeggen: het heeft altijd maar 1 golflengte, 1 kleur; het licht komt altijd als een zuiver evenwijdige lichtbundel uit het laserapparaat. Dit heeft als gevolg dat een lichtbundel uit een laser op 200 m afstand nog steeds een even grote doorsnede heeft als wanneer hij de laser verlaat; het licht is bijzonder intens, het bevat bijzonder veel energie. Mensen die met lasers werken, moeten altijd een donkere bril op. Je mag ook nooit recht in een laserstraal kijken, omdat dan het netvlies verbrandt. Een lasermachine bestaat uit een met gas gevulde glazen staaf of buis. Je wekt licht op door een stof (bijvoorbeeld een mengsel van helium en neon, kooldioxide, goud, enzovoort) te beschieten met elektronen, waardoor deze stof licht van een bepaalde kleur gaat uitstralen. Het licht wordt versterkt door het tussen 2 spiegels heen en weer te laten kaatsen. De smalle, evenwijdige en krachtige laserstraal die de machine produceert heeft 1 kleur of golflengte, die afhankelijk is van de gebruikte stof. De He-Ne laser verspreidt bijvoorbeeld rood licht, maar in principe zijn er lasers te maken in elke gewenste golflengte, ook in IR en UV. Enkele van de talloze gebruiksmogelijkheden zijn het vastzetten van losgelaten stukjes van het netvlies, verdamping van wild vlees en tumoren en het stelpen van inwendige bloedingen. Ook kunnen met laser de kleurstofkorrels van een tatoeage worden verdampt. Verder kunnen verkleuringen in de huid verholpen worden met lasers. De toepassingsmogelijkheden worden door nieuwe ontwikkelingen in de lasertechnologie nog uitgebreider en lasertherapie zou in de toekomst kunnen uitgroeien tot een standaard behandelingswijze. Figuur 17 Laserbuis en toepassing op de huid

12 Vragen en opdrachten 1. Wat betekent het woord monochromatisch? 2. Waarom kan een laserbundel zo enorm ver schijnen? 3. De paragraaf titel luidt curatieve apparatuur. Je kunt bij een laser wellicht beter spreken van destructieve apparatuur. Leg uit waarom dat zo is. 4. Noem een risico dat verbonden is aan het laseren van ogen. 5 GELUID 5.1 AARD EN VOORTPLANTING VAN GELUID Geluid ontstaat door het in trilling brengen van voorwerpen, bijvoorbeeld een snaar van een gitaar, de benen van een stemvork, een kristallen glas waar je met een mes tegen tikt, enzovoort. Het trillende voorwerp brengt de trilling over op de moleculen van de omringende stof, bijvoorbeeld lucht. De moleculen in lucht geven de trilling door aan het trommelvlies en zo nemen wij het geluid waar. Geluid heeft dus altijd een andere stof (een medium) nodig om zich voort te planten. In vacuüm is geen geluid. De voortplantingssnelheid van geluid hangt af van het medium. In tabel 1 is een aantal waarden voor de voortplantingssnelheid van geluid weergegeven. Tabel 1 Voortplantingssnelheid van geluid in verschillende media stof (medium) geluidssnelheid (m/s) stof (medium) geluidssnelheid (m/s) aluminium ijzer glas botweefsel koper steen zeewater water kwik ethanol hout (eiken) hout (wilgen) kurk rubber waterdamp stikstof lucht zuurstof Het contact tussen de deeltjes in het medium is bepalend voor de snelheid waarmee een geluidsgolf zich in die stof voortplant. Zitten de deeltjes dicht tegen elkaar aan, dan wordt de beweging sneller doorgegeven dan wanneer de deeltjes ver uit elkaar zitten. Ook de bewegingsvrijheid van de deeltjes speelt een belangrijke rol. TOONHOOGTE Bij geluid geef je eigenlijk altijd de frequentie op als maat voor het soort geluid. Bij elektromagnetische straling gebruik je meestal de golflengte. De definities voor de begrippen golflengte (λ), amplitude (A), trillingstijd (T) en frequentie (f) zijn bij geluidsgolven hetzelfde als bij elektromagnetische golven. Het verband tussen de voortplantingssnelheid, de frequentie en de golflengte is ook identiek, namelijk v = f λ. De frequentie van het geluid bepaalt de toonhoogte. Hoge tonen hebben een hoge frequentie, lage tonen een lage frequentie. Hoge frequentie wil zeggen dat er per seconde heel veel trillingen gemaakt worden. Ons oor kan geluid waarnemen met frequenties tussen 16 Hz en Hz. Dit zijn de gehoorgrenzen. Geluidsgolven met een lagere frequentie, bijvoorbeeld 2 Hz, noemen we infrageluid. Vaak kun je deze zeer lage tonen wel voelen, doordat delen van je lichaam mee gaan trillen met deze lage frequentie. Geluidsgolven met een hele hoge frequentie, bijvoorbeeld Hz, noemen we ultrageluid ofwel ultrasonoor of ultrasoon geluid. Sommige dieren (honden, dolfijnen, vleermuizen) kunnen dit geluid wel horen GELUIDSSTERKTE De sterkte of intensiteit van geluid (de amplitude) druk je uit in de eenheid decibel (db). In tabel 2 zijn de verschillende geluidssterktes en bijbehorende db waarden beschreven. Elke stap van 10 betekent dat het geluid 10x sterker wordt. Dus het geluid van een personenauto die 120 km/uur rijdt is 100x zo sterk als het geluid van een geanimeerd gesprek.

13 Tabel 2 Geluidsterkte en decibel geluidsterkte in db beschrijving soort geluid 0 absolute stilte 10 vallend blad 20 ritselen van bladeren bij een zacht windje 30 fluistergesprek 40 zacht gesprek op 1 meter afstand 50 verkeersgeluiden op een rustige weg niet in de spits, werkgeluiden in een kantoorruimte 60 geanimeerd gesprek 70 drukke winkelstraat, warenhuis 80 personenauto bij 120 km/uur, brommer bij 30 km/uur 90 orkest, zware vrachtwagen 100 drukkerij, metaalbedrijf 110 houtcirkelzaag, drilboor 120 auto met kapotte uitlaat 130 startend straalvliegtuig op 50 meter afstand 140 startend straalvliegtuig op 25 meter afstand ECHO Geluid kan net als licht geabsorbeerd en gereflecteerd worden. Geluid kan ook door voorwerpen of stoffen heen gaan (doordringen) of om voorwerpen heen gaan (omspoelen). Absorptie en reflectie zijn het meest interessant qua toepassingsmogelijkheden. Wollige stoffen zoals gordijnen en vloerbedekking absorberen geluid heel sterk. Deze stoffen hebben dus een geluiddempende werking. Reflectie of terugkaatsing van geluid noemen we echo. Er zit altijd enige tijd tussen het uitzenden van het geluid en het terughoren van de echo. De voortplantingssnelheid van geluid is immers niet zo heel erg groot. Vleermuizen en dolfijnen gebruiken de tijd tussen het uitzenden en terughoren van een geluidssignaal om zich te oriënteren. De sonar van een boot gebruikt dit tijdverschil om te meten hoe diep het water is, zie figuur 18. De pieper zendt een toon uit, de microfoon vangt de echo 1 seconde later op. Het water is dan 740 meter diep, want in water legt geluid in 1 seconde 1480 meter af en dat is 2x de afstand van de boot tot de bodem. Echografie is gebaseerd op dit principe. Figuur 18 Toepassing van geluidsgolven, echo DOPPLEREFFECT Als een trein met een fluit langs je rijdt, dan hoor je op het moment van passeren dat de toonhoogte verandert. Op zich is dat vreemd, want de fluit van de trein zal niet net op het moment dat hij jou passeert een andere toon gaan uitzenden. Toch hoor je de toonhoogte veranderen. Dit noem je het dopplereffect. Zie figuur 19.

14 Figuur 19 Het dopplereffect De toon die de trein uitzendt, heeft een gelijke frequentie in alle richtingen. De afstand tussen de geluidsgolven is in alle richtingen ook hetzelfde. Maar als de trein gaat rijden, komen de golven aan de voorkant dichterbij elkaar te liggen en aan de achterkant juist verder uit elkaar. Iemand die zich voor de trein bevindt, wordt per seconde getroffen door meer geluidsgolven, met andere woorden met een hogere frequentie. Deze persoon hoort dus een hogere toon. Iemand die achter de trein staat, wordt per seconde getroffen door minder geluidsgolven, dus in een lagere frequentie. Deze persoon hoort een lagere toon. Hoe groter de snelheid van de trein, hoe meer de golven aan de voorkant ingedrukt en aan de achterkant uit elkaar getrokken worden, dus hoe groter het verschil in toonhoogte. Andersom geldt dus ook dat het verschil in toonhoogte een maat is voor de snelheid van de trein. Een apparaatje wat werkt met het dopplereffect is de zogenoemde dopptone. Het wordt gebruikt om bijvoorbeeld te luisteren naar de hartslag van ongeboren kinderen of naar de snelheid waarmee bloed door de aderen stroomt. 5.2 HET OOR Het oor kan geluid waarnemen doordat de trillingen van de lucht overgebracht worden op het trommelvlies. De trillende lucht zorgt voor een wisselende druk op het trommelvlies. Via de 3 gehoorbeentjes worden deze variaties in de druk versterkt doorgegeven aan het ovale venster. Dit is een vlies dat ongeveer 15x kleiner is dan het trommelvlies. Vanwege dit verschil in oppervlak en door versterking in de 3 gehoorbeentjes neemt het ovale venster ongeveer een 20x zo sterke drukvariatie waar als het trommelvlies. Oorschelp Gehoorbeentjes Ronde venster Gehoorgang Ovale venster Slakkenhuis Trommelvlies Buis van Eustachius Figuur 20 Oor Achter het ovale venster bevindt zich een vloeistof in het zogenoemde slakkenhuis. Deze vloeistof gaat trillen en geeft de drukvariaties door aan de gehoorzintuigen (trilharen in het slakkenhuis). Op deze manier kunnen we geluid waarnemen met een frequentie tussen de 16 Hz en Hz. Bij het ouder worden verliest het trommelvlies een deel van zijn elasticiteit. Vooral hoogfrequente trillingen worden dan minder goed waargenomen. De bovengrens kan dan dalen tot Hz. Vragen en opdrachten 1. Als het onweert bereken je vaak op welke afstand de onweersbui zich bevindt door het aantal seconden te tellen tussen het zien van de lichtflits (bliksem) en het horen van de donder. a b Waarom zien we de bliksem eerder dan dat we de donder horen? Bereken op welke afstand de onweersbui zich bevindt als er 3 seconden tussen de bliksem en de donder zitten.

15 2. Bereken de golflengte van geluidsgolven met een frequentie van 16 Hz, Hz en Hz in a lucht b ijzer c water d botweefsel. 3. Tabel 1 is in drieën te verdelen: vaste stoffen, vloeistoffen en gassen. a Hoe verhouden de geluidssnelheden in vaste stoffen, vloeistoffen en gassen zich ten opzichte van elkaar? b Geef een verklaring voor deze verhouding. 4. Een geluidsisolator is een stof die geluid slecht doorlaat. Noem de 3 beste geluidsisolatoren (= geluiddempende stoffen) uit tabel In een vacuümruimte wordt een stemvork in trilling gebracht. Wordt deze trilling nu overgebracht op de wand van de ruimte? Waarom wel/ niet? 6. De gevoeligheid van het oor voor hoge tonen wordt in de loop van het leven minder. Dit heeft te maken met de elasticiteitsvermindering van het trommelvlies. a Leg uit of hoge tonen snelle of langzame trillingen veroorzaken. b Waarom wordt juist de gevoeligheid voor hoge tonen minder en niet voor lage tonen? 7. Noem 2 verschillen tussen geluidsgolven en elektromagnetische golven 8. Wat is infrageluid en wat is ultrageluid? 9. a Bereken hoe diep het zeewater is als de echo na 2 seconden wordt waargenomen door de sonar. b Leg uit wat de naam sonar te maken heeft met het meten van geluid. 10. Hoe wordt in het oor het binnenkomende geluid versterkt? Noem 2 redenen. 11. Als een politie auto langs je heen scheurt met loeiende sirene, dan hoor je een toonhoogte verschil. a Hoe heet dit effect? b Gaat de toonhoogte omhoog of omlaag? c d Op welk moment neem je het verschil in toonhoogte waar? Stel dat de politieauto achteruit rijdt met een loeiende sirene. Gaat de toonhoogte dan omlaag of omhoog? 6 TOEPASSINGEN VAN GELUID IN DE ARTSENPRAKTIJK 6.1 DE STETHOSCOOP Een stethoscoop is een diagnostisch hulpmiddel waarvan de werking berust op resonantie. Onder resonantie verstaan we het verschijnsel dat voorwerpen mee gaan trillen onder invloed van een trilling in de omgeving van dat voorwerp. Voorbeelden hiervan zijn het mee rammelen van onderdelen van een auto bij bepaalde snelheden, een piano die geluid geeft als je een harde klap op het hout geeft, een gong die zachtjes gaat galmen als je een harde gil slaakt, enzovoort. Een stethoscoop bestaat uit een metalen plaatje waaraan met lucht gevulde slangen zijn gekoppeld. Door het plaatje tegen de borstkas (stethos = borst) te houden, gaat het meetrillen (resoneren) met de geluiden en de bewegingen die het hart en de longen maken. De trillingen van het plaatje worden overgebracht op de lucht in de slangen. Via de slangen worden de trillingen naar het oor geleid en uiteindelijk aan het trommelvlies doorgegeven. Door een juiste interpretatie van deze trillingen kan de arts de toestand van het hart en de longen beoordelen. 6.2 ECHOGRAFIE Onder echo verstaan we het verschijnsel dat uitgezonden geluid na enige tijd terugkeert bij de bron. Dit is alleen maar mogelijk als de geluidsgolven door een obstakel gereflecteerd worden. Net als bij elektromagnetische straling treedt reflectie op als het obstakel groot is ten opzichte van de golflengte van het geluid. Geluid met een hoge frequentie (kleine golflengte) wordt door vrijwel alle voorwerpen waar het op valt gereflecteerd. Geluid met een lage frequentie (grote golflengte) omspoelt voorwerpen en wordt minder gereflecteerd (zie hiervoor). Vleermuizen, walvissen en dolfijnen maken gebruik van ultrageluid (hoge frequentie, kleine golflengte) om obstakels of prooidieren waar te nemen. Uit de tijd die verstrijkt tussen het uitzenden van het signaal en het waarnemen van de echo kan worden afgeleid op welke afstand het obstakel zich bevindt. Een echo is zwakker dan het uitgezonden geluid. Dit wordt veroorzaakt door absorptie en verstrooiing van een deel van het geluid door het voorwerp waartegen de reflectie optreedt. Echografie is een diagnostische techniek die gebaseerd is op het waarnemen van de echo van ultrasone geluidsgolven. Je gebruikt geluidsgolven van 2 tot 10 MHz (megahertz = 1 miljoen hertz).

16 Het ultrageluid wordt opgewekt in een zender, die je in de nabijheid van het te onderzoeken lichaamsdeel op de huid houdt. De huid blijft dus intact. De zender zendt een korte geluidspuls uit. De weefsels die zich in de geluidsbundel bevinden zullen elk op hun eigen wijze een echo veroorzaken: - weefsels die weinig geluid absorberen geven een sterke echo; weefsels die veel geluid absorberen een zwakke (de dichtheid van de weefsels is erg bepalend); - echo's die snel terugkeren zijn van weefsels die zich relatief dicht bij de zender bevinden, echo's die lang op zich laten wachten zijn afkomstig van verder afgelegen structuren. Je vangt echo's op in een ontvanger. Door te letten op de sterkte van de echo en de tijd die verstrijkt voordat de echo waargenomen wordt, krijg je informatie over de structuur van het onderzochte lichaamsdeel. Door koppeling van de echograaf met een computer is het mogelijk de echo's om te zetten in een visueel beeld. Je spreekt dan van echoscopie (scopie = zien). Op deze manier kan je afwijkingen in een orgaan snel constateren. Door snel achter elkaar meer dan 1 scan (een cyclus van een geluidspuls en het opvangen van de echo) uit te voeren, is het mogelijk bewegingen in het lichaam waar te nemen. Voorbeelden zijn het vaststellen van het hartritme of het meten van de stromingssnelheid van het bloed. De metingen worden preciezer als ook het verschil in frequentie tussen puls en echo gemeten wordt (het dopplereffect). Een veel gebruikte toepassing van echoscopie is het volgen van de follikelgroei en het constateren van een eisprong. Ook de ontwikkeling van een embryo in de baarmoeder kan door echoscopie op een relatief eenvoudige manier gevolgd worden. Tot nog toe is geen schadelijke invloed van ultrageluid op de onderzochte weefsels of embryo's vastgesteld. Voor de patiënt is echografie een weinig belastende diagnostische techniek. De diagnose kan immers gesteld worden zonder het lichaam te beschadigen. 6.3 AUDIOMETRIE Figuur 21 Echobeeld van een embryo In de audiometrie meet je de grootte van het gehoorverlies bij een slechthorende. Een slechthorende zal een geluid met een bepaalde sterkte niet waarnemen, terwijl een normaal horend mens dit geluid wel hoort. Nu is de grootte van het gehoorverlies ook frequentie afhankelijk. Ook gezonde mensen horen niet alle frequenties even goed; je oren werken het beste bij een toon van ongeveer 4000 Hz. Er wordt dus gekeken naar welke sterkte van geluid (aantal db) mensen bij een bepaalde toonhoogte (aantal Hz) nog kunnen waarnemen. Dit levert de grafiek van figuur 22. Figuur 22 Oorspan De onderste lijn geeft de gehoorgrens aan. Je ziet duidelijk dat de gehoorgrens of gehoordrempel bij elke frequentie anders is. De bovenste lijn geeft de pijngrens aan. Ook deze is afhankelijk van de frequentie. De afstand tussen de gehoordrempel en de pijngrens noem je de oorspan. De gehoordrempel van een toon van 1000 Hz is precies 0 db, maar voor een toon van 4000 Hz ligt de gehoordrempel bij -7 db en voor een toon van 100 Hz bij 20 db. Hoe is het nu mogelijk dat je geluiden van minder dan 0 db soms toch kunt horen? En dat je geluiden van meer dan 0 db soms niet hoort? Veel experimenten die uitgevoerd worden om de gevoeligheid van het oor te meten, gebeuren met een toon van 1000 Hz. De proefpersoon krijgt dan een koptelefoon op die aangesloten is op een toongenerator. Met de volumeknop van deze toongenerator wordt het kleinste geluidsvolume dat de proefpersoon nog kan horen, gezocht. Deze minimale geluidsvolume bij een toon van 1000 Hz is gekozen als het

17 internationale nulniveau voor de geluidssterkte, ofwel 0 db. Ook de andere geluidsniveaus zijn vastgesteld met een toon van 1000 Hz. De schaalverdeling bij de volumeknop geldt dus eigenlijk alleen maar voor tonen van 1000 Hz. Toch gebruik je deze zelfde schaalverdeling ook voor tonen die hoger of lager zijn (dus bij andere frequenties). Daardoor is het mogelijk dat de gehoordrempel voor bepaalde frequenties onder 0 db ligt en voor andere boven 0 db. De gehoordrempel ligt dus bij elke frequentie op een eigen geluidsniveau. Hetzelfde geldt voor de pijngrens. In de figuur zijn de gehoordrempel en pijngrens voor zuivere tonen uitgezet. Een zuivere toon heeft 1 frequentie. Voorbeeld: De centrale c op een muziekinstrument heeft een frequentie van 256 Hz, de c een octaaf hoger 512 Hz en de c een octaaf lager 128 Hz. De meeste geluiden die ons oor waarneemt, zijn echter samengesteld uit tonen met verschillende frequenties. Zo brengt de menselijke stem geluid voort met frequenties tussen de 250 Hz en 8 khz. Bij de uitspraak van een woord als 'dalen' worden zeer veel tonen en zeer veel frequenties gebruikt. Ook de tonen van een muziekinstrument zijn eigenlijk samengestelde tonen. Sla je bijvoorbeeld de centrale c op een piano aan, dan komen daarin golven voor met frequentie 256 Hz, maar ook de zogenoemde boven- of ondertonen met frequenties 64 Hz, 128 Hz, 512 Hz, 1024 Hz enz. (ook allemaal c's). Een patiënt die bepaalde tonen niet meer hoort, kan best in staat zijn een gesprek te volgen. Deze patiënt mist misschien een aantal frequenties bij de uitspraak van bepaalde woorden, maar begrijpt met de frequenties die hij of zij wel hoort, toch wat er gezegd wordt. Er zijn 2 soorten audiometrie, te weten toonaudiometrie en spraakaudiometrie. Het verschil zit vooral in het feit dat toonaudiometrie werkt met zuivere (piep)tonen (enkelvoudige frequenties) en dat spraakaudiometrie werkt met gesproken woorden (meervoudige frequenties). TOONAUDIOMETRIE In de toonaudiometrie bepaal je met behulp van zuivere tonen de gehoordrempel van de patiënt. De tonen worden voortgebracht door een toongenerator die ingebouwd is in een audiometer. Hierbij dien je rekening te houden met het feit dat geluidsgolven op 2 manieren waargenomen kunnen worden, namelijk via luchtgeleiding en via beengeleiding. Onder luchtgeleiding versta je het waarnemen van geluidstrillingen via de gehoorgang, het trommelvlies, de gehoorbeentjes, het ovale venster en de trilharen in het slakkenhuis. Onder beengeleiding versta je het waarnemen van geluidstrillingen die via de schedel overgebracht worden op het slakkenhuis en de trilharen daarin. De schedel wordt namelijk door geluidsgolven in trilling gebracht (resonantie). Geluidswaarneming via beengeleiding is onafhankelijk van het trommelvlies en de gehoorbeentjes. Een audiometer dient uitgerust te zijn met een koptelefoon om de luchtgeleiding te meten en met een beengeleidingstelefoon. De beengeleidingstelefoon wordt achter de oorschelp op de schedel geplaatst. Met een schakelaar op de audiometer kan je omschakelen van luchtgeleiding naar beengeleiding. De meetprocedure is in beide gevallen als volgt: Meet als eerste het beste oor. Het andere oor wordt dan meestal gemaskeerd (krijgt een zacht geruis aangeboden uit een koptelefoon). Begin met een toon van 1000 Hz op de laagste geluidssterkte. Verhoog vervolgens de sterkte tot de patiënt de toon goed hoort. Draai dan de sterkte in stappen van 10 db terug tot de patiënt aarzelt of hij/ zij de toon nog hoort. Ga dan met stappen van 5 db omhoog of naar beneden. Herhaal deze procedure met tonen van 500 Hz, 250 Hz, 2000 Hz, 4000 Hz en 8000 Hz in deze volgorde. Noteer telkens het minimale geluidsniveau dat nog door de patiënt wordt waargenomen. De waargenomen geluidsdrempels worden weergegeven in een grafiek. Je noemt dit een drempelaudiogram. Een volledig drempelaudiogram bevat 4 gehoordrempels: - een luchtgeleidingsdrempel voor het linker- en rechteroor; - een beengeleidingsdrempel voor het linker- en rechteroor. In figuur 23 is een drempelaudiogram met 2 gehoordrempels getekend. De gebruikte symbolen zijn internationaal afgesproken en betekenen het volgende: linkeroor luchtgeleiding x beengeleiding ] rechteroor luchtgeleiding o beengeleiding [

18 In dit audiogram wordt het gehoorverlies uitgezet als functie van de frequentie. Hierbij ga je er van uit dat de gehoordrempel van een normaal horend mens in het volledige frequentiebereik 0 db is. Je kiest voor de frequenties van 250 Hz tot 8000 Hz omdat dit het zogenoemde spraakgebied is. diogra SPRAAKAUDIOMETRIE In de spraakaudiometrie maak je gebruik van gesproken woorden, die speciaal geselecteerd zijn voor dit doel. Deze woorden staan op zogenoemde PB-lijsten (PB betekent 'phonetical balanced' ofwel fonetisch gebalanceerd ). Een voorbeeld van zo'n PB-lijst is: drijven, bot, baden, lekker, woog, pa, hele, zakken, mag, rand, gezien, ster, deken, net, feiten, lamme, hit, gave, sier, wist. De woorden staan op een bandrecorder of worden via een microfoon ingesproken. In het laatste geval moet je ervoor zorgen dat de patiënt de mond van de spreker niet kan zien. Bandrecorder of microfoon zijn aangesloten op een audiometer. De patiënt krijgt de woorden via een koptelefoon aangeboden. Met de audiometer kan je het geluidsniveau bepalen, het oor instellen dat getest wordt en het andere oor eventueel maskeren. Je noteert bij een aantal geluidsniveaus het percentage woorden dat de patiënt foutloos kan herhalen. Kon de patiënt van de voorgaande lijst bijvoorbeeld 2 woorden niet herhalen, dan is het percentage foutloos herhaalde woorden 90% (ga dit na). Het blijkt dat normaal horende mensen een score van 50% halen bij een geluidsniveau van 25 db. Dit geluidsniveau noem je de spraakverstaandrempel. Je begint de meting bij een geluidsniveau waarbij de patiënt de woorden goed verstaat en foutloos terug kan zeggen. Vervolgens daal je telkens 10 db, totdat de patiënt nog 50% van de woorden foutloos kan herhalen. Dit geluidsniveau is de spraakverstaanvaardigheidsdrempel van de patiënt. Figuur 24 Spraakaudiogram De gestippelde lijn in figuur 24 geeft de score aan van een normaal horend persoon, de getrokken lijn van een slechthorende. Je ziet dat de stippellijn door het punt 25 db, 50% gaat. Het geluidsniveau heeft 2 schaalverdelingen. De schaalverdeling bij de onderste horizontale lijn komt overeen met het werkelijke geluidsniveau. De tweede schaalverdeling van de db's staat halverwege het audiogram. Deze is 25 db verschoven ten opzichte van de eerste schaalverdeling. Het voordeel hiervan is, dat het gehoorverlies van een slechthorende direct afleesbaar is. In de grafiek lezen we af dat de slechthorende een score van 50% haalt bij een geluidsniveau van 55 db (onderste schaalverdeling). De spraakverstaanvaardigheidsdrempel van de patiënt is dus 55 db. Het gehoorverlies bedraagt dan 55 db 25 db = 30 db. Dit is op de tweede schaalverdeling halverwege de grafiek direct af te lezen. Vragen en opdrachten 1. Bereken op welke afstand het obstakel zich bevindt als een vleermuis na 4 seconden de echo waarneemt. Gebruik de geluidssnelheid in lucht. 2. Een stemvork heeft een frequentie van 250 Hz. Bereken de golflengte van de geluidsgolf in lucht (kies zelf een geschikte eenheid voor de golflengte). 3. Geef 2 boventonen en een ondertoon van een toon met frequentie 300 Hz. 4. Waarom gebruik je ultrageluid en geen geluid met lagere frequenties in de echografie?

19 5. Wat is het verschil tussen echografie en echoscopie? 6. Hoeveel Hz is 3 MHz, 45 MHz, 12 khz, 150 khz? 7. Leg uit hoe met een dopplerecho een vernauwing in een bloedvat gemeten kan worden. 8. Bepaal met behulp van figuur 22 de oorspan bij tonen van 250 Hz, 4000 Hz en 10 khz. 9. Lees in figuur 22 af welke tonen we kunnen horen bij een geluidsniveau van minder dan 0 db. 10. Wat bedoel je met de term 'spraakgebied'? 11. a Hoe groot is het gehoorverlies van het rechteroor bij de patiënt uit het toonaudiogram in figuur 23 gemiddeld? b Is de beengeleidings- of de luchtgeleidingsdrempel voor het rechteroor weergegeven in figuur 23? 12. Een patiënt heeft een zeer stijf trommelvlies. De rest van het oor functioneert normaal. Hoe groot zal het gehoorverlies ten gevolge van de beengeleiding nu zijn? 13. a Hoe groot is het gehoorverlies bij een patiënt die een toon van 20 Hz met een geluidssterkte van 100 db nog net hoort? Gebruik figuur 22. b Waarom is het bepalen van het gehoorverlies in een figuur zoals figuur 22 minder praktisch dan in een drempelaudiogram (figuur 23)? 14. In figuur 23 is bij de eerste verticale lijn geen frequentie vermeld. Welke frequentie zou daar ingevuld moeten worden? Waarom? 15. Wat is het verschil tussen de spraakverstaandrempel en de spraakverstaanvaardigheidsdrempel? 16. a Hoe groot is het gehoorverlies van de patiënt uit het audiogram in figuur 24? b Waarom is het in de praktijk gemakkelijker om de schaalverdeling 25 db te verschuiven? 17. Een patiënt heeft een gehoorverlies van 40 db in een spraakaudiogram. Op welk geluidsniveau ligt de spraakverstaanvaardigheidsdrempel voor deze patiënt? 18. In figuur 25 zijn 3 golven getekend. Dit zijn voorstellingen van geluidsgolven in lucht. Toon a heeft een frequentie van 500 Hz. a Bereken de trillingstijd T van toon a. b Bereken ook de golflengte van toon a. Gebruik de geluidssnelheid in lucht. c Bepaal met behulp van figuur 25 ook de golflengte van toon b en toon c. d Bereken tot slot de frequenties van toon b en toon c. Figuur 25 Golflengte en frequentie berekenen

20 ANTWOORDEN 1 Introductie 1 a Elektromagnetische straling plant zich voort met de lichtsnelheid, 300 km/s. b Geluid heeft een veel lagere voortplantingssnelheid, in elk geval geen 300 km/s. 2 a+b Rood licht heeft λ = 700 nm, f = c / λ, dus f = m/s / 0, m = 4,3 x Hz ( ). Verder geldt T = 1/f, dus T = 2,3 x s. Violet licht heeft λ = 400 nm, f = 7,5 x Hz en T = 1,3 x s. Zachte röntgenstraling heeft λ = 3 nm, f = 1,0 x Hz en T = 1,0 x s. Harde röntgenstraling heeft λ = 0,006 nm, f = 5,0 x Hz en T = 2,0 x s. 3 De energie is afhankelijk van de amplitude en van de frequentie. 4 a Blauw licht heeft een kleinere golflengte en een hogere frequentie dan rood licht en bevat dus meer energie. b Röntgenstraling heeft een veel kleinere golflengte dan zichtbaar licht en een veel hogere frequentie, dus röntgenstraling bevat veel meer energie. 5 a λ = v / f, dus in lucht 340 m/s / Hz = 0,0136 m (= 1,36 cm), in water 1500 m/s / Hz = 0,06 m (= 6 cm), in botten 4000 m/s / Hz = 0,16 m (= 16 cm). b Een mens kan deze frequentie niet waarnemen. c Ultrasoon betekent geluid met een heel hoge frequentie (boven de Hz, voor de mens niet hoorbaar). 2 Licht 1 a Wit, rood en groen zijn complementaire kleuren. b Ook wit, het zijn twee paren van complementaire kleuren (rood / groen en geel / violet). 2 a Oranje, dat is de mengkleur van rood en geel. b Wit, de drie hoofdkleuren in gelijke intensiteit geven samen wit. (Geel en blauw geven groen en groen en rood zijn weer complementair, dus samen wit). 3 a b A B C D c Divergerende reflectie bij 3a C en D en convergerend bij b. In geval van 3a A en B is er sprake van reflectie op verschillende platte vlakken. Per plat vlak blijven de gereflecteerde stralen evenwijdig aan elkaar, doordat het meerdere vlakken betreft, is er toch ook sprake van divergentie. 4 Bij het dragen van zwarte kleren wordt al het zonlicht geabsorbeerd door de kleren, dan blijft de warmte in de kleren hangen. Witte kleren kaatsen het zonlicht terug, je raakt dus minder opgewarmd in witte kleren. 5 a Blauw licht wordt teruggekaatst, de rest wordt geabsorbeerd. Hout laat geen licht door. b Bruin licht wordt teruggekaatst, het overige licht wordt geabsorbeerd en doorgelaten. Glas laat licht door. c Alle licht wordt geabsorbeerd, geen terugkaatsing of doorlating. d Rood licht wordt teruggekaatst, het overige licht wordt geabsorbeerd en een beetje doorgelaten. e Groen licht wordt teruggekaatst, het overige licht wordt geabsorbeerd en een beetje (een blad is erg dun) doorgelaten. f Het glas laat alle licht door, de melk kaatst alle licht terug. 6 a Een geel voorwerp kaatst alleen geel licht terug, alle andere licht en vooral de complementaire kleur wordt geabsorbeerd. Een violet lichtfilter laat alleen maar violet licht door, de overige kleuren worden tegengehouden, dus ook de gele lichtstralen. Dus lijkt het gele voorwerp bekeken door een violet filter zwart van kleur. b Een blauw voorwerp kaatst alleen blauw licht terug. Een rood lichtfilter laat alleen rood licht passeren, de rest wordt tegengehouden. Ook hier lijkt het voorwerp dus zwart. 7 Lucht water, glas water, water lucht. brekingsindex (lucht water) = lichtsnelheid in lucht / lichtsnelheid in water = 3 x 10 8 / 2,25 x 10 8 = 1,3

trillingen golven licht geluid

trillingen golven licht geluid trillingen golven licht geluid Licht en geluid zijn beide voorbeelden van wat we in de natuurkunde een golfverschijnsel noemen. We spreken ook wel van een golfbeweging, een trilling of van straling. Golfbeweging

Nadere informatie

3HAVO Totaaloverzicht Licht

3HAVO Totaaloverzicht Licht 3HAVO Totaaloverzicht Licht Algemene informatie Terugkaatsing van licht kan op twee manieren: Diffuus: het licht wordt in verschillende richtingen teruggekaatst (verstrooid) Spiegelend: het licht wordt

Nadere informatie

Samenvatting Hoofdstuk 5. Licht 3VMBO

Samenvatting Hoofdstuk 5. Licht 3VMBO Samenvatting Hoofdstuk 5 Licht 3VMBO Hoofdstuk 5 Licht We hebben zichtbaar licht in de kleuren Rood, Oranje, Geel, Groen, Blauw en Violet (en alles wat er tussen zit) Wit licht bestaat uit een mengsel

Nadere informatie

Samenvatting Natuurkunde Hoofdstuk 2 Licht. Wat moet je leren/ kunnen voor het PW H2 Licht?

Samenvatting Natuurkunde Hoofdstuk 2 Licht. Wat moet je leren/ kunnen voor het PW H2 Licht? Wat moet je leren/ kunnen voor het PW H2 Licht? Alles noteren met significantie en in de standaard vorm ( in hoeverre dit lukt). Eerst opschrijven wat de gegevens en formules zijn en wat gevraagd wordt.

Nadere informatie

Hoofdstuk 4: Licht. Natuurkunde Havo 2011/2012.

Hoofdstuk 4: Licht. Natuurkunde Havo 2011/2012. Hoofdstuk 4: Licht Natuurkunde Havo 2011/2012 www.lyceo.nl Hoofdstuk 4: Licht Natuurkunde 1. Kracht en beweging 2. Licht en geluid 3. Elektrische processen 4. Materie en energie Beweging Trillingen en

Nadere informatie

1. 1 Wat is een trilling?

1. 1 Wat is een trilling? 1. 1 Wat is een trilling? Een trilling is een beweging die steeds wordt herhaald. Bijvoorbeeld een massa m dat aan een veer hangt. In rust bevindt m zich in de evenwichtsstand. Als m beweegt noemen we

Nadere informatie

Samenvatting Natuurkunde Hoofdstuk 3 Licht en Lenzen

Samenvatting Natuurkunde Hoofdstuk 3 Licht en Lenzen Samenvatting Natuurkunde Hoofdstuk 3 Licht en Lenzen Samenvatting door A. 1760 woorden 11 maart 2016 7,4 132 keer beoordeeld Vak Methode Natuurkunde Nova 1: Lichtbreking Een dunne lichtbundel - een lichtstraal

Nadere informatie

Hoofdstuk 3: Licht. Natuurkunde VWO 2011/2012. www.lyceo.nl

Hoofdstuk 3: Licht. Natuurkunde VWO 2011/2012. www.lyceo.nl Hoofdstuk 3: Licht Natuurkunde VWO 2011/2012 www.lyceo.nl Hoofdstuk 3: Licht Natuurkunde 1. Mechanica 2. Golven en straling 3. Elektriciteit en magnetisme 4. Warmteleer Rechtlijnige beweging Trilling en

Nadere informatie

Samenvatting Natuurkunde H3 optica

Samenvatting Natuurkunde H3 optica Samenvatting Natuurkunde H3 optica Samenvatting door een scholier 992 woorden 19 januari 2013 5,6 22 keer beoordeeld Vak Methode Natuurkunde Natuurkunde overal Hoofdstuk 3 Optica 3.1 Zien Dit hoofdstuk

Nadere informatie

Licht; Elektromagnetische straling een golf Licht; een deeltje (foto-elektrisch effect). Licht; als een lichtstraal Licht beweegt met de

Licht; Elektromagnetische straling een golf Licht; een deeltje (foto-elektrisch effect). Licht; als een lichtstraal Licht beweegt met de Licht; Elektromagnetische straling een golf Licht; een deeltje (foto-elektrisch effect). Licht; als een lichtstraal Licht beweegt met de lichtsnelheid ~300.000 km/s! Rechte lijn Pijl er in voor de richting

Nadere informatie

1 f T De eenheid van trillingstijd is (s). De eenheid van frequentie is (Hz).

1 f T De eenheid van trillingstijd is (s). De eenheid van frequentie is (Hz). 1. 1 Wat is een trilling? Een trilling is een beweging die steeds wordt herhaald. Bijvoorbeeld een massa m dat aan een veer hangt. In rust bevindt m zich in de evenwichtsstand. Als m beweegt noemen we

Nadere informatie

6.1 Voortplanting en weerkaatsing van licht

6.1 Voortplanting en weerkaatsing van licht Uitwerkingen opgaven hoofdstuk 6 6.1 Voortplanting en weerkaatsing van licht Opgave 1 Opgave 2 Bij diffuse terugkaatsing wordt opvallend licht in alle mogelijke richtingen teruggekaatst, zelfs als de opvallende

Nadere informatie

6.1 Voortplanting en weerkaatsing van licht 6.2 Spiegel en spiegelbeeld

6.1 Voortplanting en weerkaatsing van licht 6.2 Spiegel en spiegelbeeld 6.1 Voortplanting en weerkaatsing van licht 6.2 Spiegel en spiegelbeeld Lichtbronnen: Directe lichtbronnen produceren zelf licht Indirecte lichtbronnen reflecteren licht. Je ziet een voorwerp als er licht

Nadere informatie

Tabellenboek. Gitaar

Tabellenboek. Gitaar 4T versie 1 Natuur- en scheikunde 1, Geluid Werk netjes en nauwkeurig Geef altijd een duidelijke berekening of een verklaring Veel succes, Slj en Zan Tabellenboek 1. Neem de volgende tabel netjes over

Nadere informatie

In de figuur hieronder zie je een Elektromagnetische golf: een golf die bestaat uit elektrische en magnetische trillingen.(zie figuur).

In de figuur hieronder zie je een Elektromagnetische golf: een golf die bestaat uit elektrische en magnetische trillingen.(zie figuur). 2.1 Wat is licht? In de figuur hieronder zie je een Elektromagnetische golf: een golf die bestaat uit elektrische en magnetische trillingen.(zie figuur). Licht is een elektromagnetische golf. Andere voorbeelden

Nadere informatie

Samenvatting Natuurkunde Hoofdstuk 5 en 6

Samenvatting Natuurkunde Hoofdstuk 5 en 6 Samenvatting Natuurkunde Hoofdstuk 5 en 6 Samenvatting door een scholier 1748 woorden 7 februari 2005 6 53 keer beoordeeld Vak Methode Natuurkunde Scoop Samenvatting Natuurkunde H5 Spiegels en lenzen +

Nadere informatie

Wet van Snellius. 1 Lichtbreking 2 Wet van Snellius 3 Terugkaatsing van licht tegen een grensvlak

Wet van Snellius. 1 Lichtbreking 2 Wet van Snellius 3 Terugkaatsing van licht tegen een grensvlak Wet van Snellius 1 Lichtbreking 2 Wet van Snellius 3 Terugkaatsing van licht tegen een grensvlak 1 Lichtbreking Lichtbreking Als een lichtstraal het grensvlak tussen lucht en water passeert, zal de lichtstraal

Nadere informatie

T1 Wat is licht? FIG. 3 Zo teken je een lichtstraal. De pijl geeft de richting van het licht aan.

T1 Wat is licht? FIG. 3 Zo teken je een lichtstraal. De pijl geeft de richting van het licht aan. T1 Wat is licht? Lichtbron, lichtstraal en lichtsnelheid Licht ontstaat in een lichtbron. Een aantal bekende lichtbronnen zijn: de zon en de sterren; verschillende soorten lampen (figuur 1); vuur, maar

Nadere informatie

Exact Periode 5. Dictaat Licht

Exact Periode 5. Dictaat Licht Exact Periode 5 Dictaat Licht 1 1 Wat is licht? In de figuur hieronder zie je een elektromagnetische golf: een golf die bestaat uit elektrische en magnetische trillingen.(zie figuur). Licht is een elektromagnetische

Nadere informatie

Thema 7Oog, oogafwijkingen en oogcorrecties

Thema 7Oog, oogafwijkingen en oogcorrecties 07-01-2005 10:27 Pagina 1 Oog, oogafwijkingen en oogcorrecties Inleiding Het oog is een zeer gevoelig en bruikbaar optisch instrument. In figuur 2.56 zie je een aantal doorsnedentekeningen van het menselijk

Nadere informatie

Golven. 4.1 Lopende golven

Golven. 4.1 Lopende golven Golven 4.1 Lopende golven Samenvatting bladzijde 158: Lopende golf Transversale golf http://www.pontes.nl/~natuurkunde/vwogolf164/transversale_golfsimulation.html Longitudinale golf http://www.pontes.nl/~natuurkunde/vwogolf164/longitudinale_golfsimulation.html

Nadere informatie

N A T U U R W E T E N S C H A P P E N V O O R H A N D E L 1 Copyright

N A T U U R W E T E N S C H A P P E N V O O R H A N D E L 1 Copyright N AT U U R W E T E N S C H A P P E N V O O R H A N D E L 1 2 LICHT EN ZIEN 2.1 Donkere lichamen en lichtbronnen 2.1.1 Donkere lichamen Donkere lichamen zijn lichamen die zichtbaar worden als er licht

Nadere informatie

Exact Periode 5.2. Licht

Exact Periode 5.2. Licht Exact Periode 5.2 Licht 1 1 Wat is licht? In de figuur hieronder zie je een elektromagnetische golf: een golf die bestaat uit elektrische en magnetische trillingen.(zie figuur). Licht is een elektromagnetische

Nadere informatie

Exact Periode 5 Niveau 3. Dictaat Licht

Exact Periode 5 Niveau 3. Dictaat Licht Exact Periode 5 Niveau 3 Dictaat Licht 1 1 Wat is licht? In de figuur hieronder zie je een elektromagnetische golf: een golf die bestaat uit elektrische en magnetische trillingen.(zie figuur). Licht is

Nadere informatie

Opgave 2 Amplitude = afstand tussen de evenwichtsstand en de uiterste stand.

Opgave 2 Amplitude = afstand tussen de evenwichtsstand en de uiterste stand. Uitwerkingen 1 Als dit heen en weer beweegt om de evenwichtsstand. Amplitude = afstand tussen de evenwichtsstand en de uiterste stand. Een trilling = de beweging van een voorwerp tussen twee opeenvolgende

Nadere informatie

Tekstboek. VMBO-T Leerjaar 1 en 2

Tekstboek. VMBO-T Leerjaar 1 en 2 Tekstboek VMBO-T Leerjaar 1 en 2 JHB Pastoor 2015 Arnhem 1 Inhoudsopgave i-nask Tekstboek VMBO-T Leerjaar 1 en 2 Hoofdstuk 1 Licht 1.1 Licht Zien 3 1.2 Licht en Kleur 5 1.3 Schaduw 10 1.4 Spiegels 15 Hoofdstuk

Nadere informatie

Goed voorbeeld is muziekinstrumenten. Snaar gitaar trilt, blokfluit lucht trilt, trommel, vlies trilt.

Goed voorbeeld is muziekinstrumenten. Snaar gitaar trilt, blokfluit lucht trilt, trommel, vlies trilt. Samenvatting door een scholier 1120 woorden 21 maart 2005 6,1 89 keer beoordeeld Vak NaSk Horen en gehoord worden (geluid) Geluid heeft alles te maken met trillingen hoeft niet altijd direct te worden

Nadere informatie

4 Geluid. 4.1 Een knikker als lawaaimaker 4.3 Zelf een muziekinstrument maken

4 Geluid. 4.1 Een knikker als lawaaimaker 4.3 Zelf een muziekinstrument maken 4 Geluid DO-IT Datum 4. Een knikker als lawaaimaker 4.3 Zelf een muziekinstrument maken PARAGRAFEN Datum 4. Opdrachten -9 4.2 Opdrachten -24 4.3 Opdrachten -27 4.4 Opdrachten -8 Test jezelf 4 PRACTICUM

Nadere informatie

Naam Klas: Repetitie trillingen en geluid HAVO ( 1 t/m 6)

Naam Klas: Repetitie trillingen en geluid HAVO ( 1 t/m 6) Naam Klas: Repetitie trillingen en geluid HAVO ( 1 t/m 6) Vraag 1 Een luidspreker en een microfoon zijn in principe op dezelfde manier opgebouwd. Alleen werken ze in omgekeerde richting. Wat bij een luidspreker

Nadere informatie

Basic Creative Engineering Skills

Basic Creative Engineering Skills Visuele Perceptie Oktober 2015 Theaterschool OTT-1 1 Visuele Perceptie Op tica (Gr.) Zien leer (der wetten) v.h. zien en het licht. waarnemen met het oog. Visueel (Fr.) het zien betreffende. Perceptie

Nadere informatie

d. Bereken bij welke hoek α René stil op de helling blijft staan (hij heeft aanvankelijk geen snelheid). NB: René gebruikt zijn remmen niet.

d. Bereken bij welke hoek α René stil op de helling blijft staan (hij heeft aanvankelijk geen snelheid). NB: René gebruikt zijn remmen niet. Opgave 1 René zit op zijn fiets en heeft als hij het begin van een helling bereikt een snelheid van 2,0 m/s. De helling is 15 m lang en heeft een hoek van 10º. Onderaan de helling gekomen, heeft de fiets

Nadere informatie

Les 22 Zintuig 2. Zintuig, sensor. Prikkel. Zintuig, sensor, oog, oogaccommodatie, iris, refractie, glaucoom, evenwichtsorgaan, oor

Les 22 Zintuig 2. Zintuig, sensor. Prikkel. Zintuig, sensor, oog, oogaccommodatie, iris, refractie, glaucoom, evenwichtsorgaan, oor Les 22 Zintuig 2 Zintuig, sensor, oog, oogaccommodatie, iris, refractie, glaucoom, evenwichtsorgaan, oor ANZN 1e leerjaar - Les 22 - Matthieu Berenbroek, 2000-2011 1 Zintuig, sensor Zintuig is een orgaan

Nadere informatie

Waarom zien veel mensen onscherp?

Waarom zien veel mensen onscherp? Refractie afwijking Waarom zien veel mensen onscherp? Om scherp te zien moeten lichtstralen uit de buitenwereld precies op het netvlies van het oog samenvallen. Het hoornvlies en de lens in het oog zorgen

Nadere informatie

2.1 Wat is licht? 2.2 Fotonen

2.1 Wat is licht? 2.2 Fotonen 2.1 Wat is licht? In de figuur hieronder zie je een Elektromagnetische golf: een golf die bestaat uit elektrische en magnetische trillingen.(zie figuur). Licht is een elektromagnetische golf. Andere voorbeelden

Nadere informatie

Voorbereiding toelatingsexamen arts/tandarts. Fysica: Licht als golf en als deeltje. 24 juli 2015. dr. Brenda Casteleyn

Voorbereiding toelatingsexamen arts/tandarts. Fysica: Licht als golf en als deeltje. 24 juli 2015. dr. Brenda Casteleyn Voorbereiding toelatingsexamen arts/tandarts Fysica: Licht als golf en als deeltje 24 juli 2015 dr. Brenda Casteleyn Met dank aan: Atheneum van Veurne (http://www.natuurdigitaal.be/geneeskunde/fysica/wiskunde/wiskunde.htm),

Nadere informatie

Repetitie Lenzen 3 Havo Naam: Klas: Leerstof: 1 t/m 7

Repetitie Lenzen 3 Havo Naam: Klas: Leerstof: 1 t/m 7 Repetitie Lenzen 3 Havo Naam: Klas: Leerstof: 1 t/m 7 Opgave 1 Iris krijgt een bril voorgeschreven van 4 dioptrie. Zij houdt de bril in de zon en probeert de stralen te bundelen om zodoende een stukje

Nadere informatie

Theorie: Eigenschappen van geluid (Herhaling klas 2)

Theorie: Eigenschappen van geluid (Herhaling klas 2) Theorie: Eigenschappen van geluid (Herhaling klas 2) Geluidsbron, tussenstof en ontvanger Een geluidsbron is een voorwerp dat trilt. Dat kan in principe ieder voorwerp zijn. Of je een geluid kan horen

Nadere informatie

Geometrische optica. Hoofdstuk 1. 1.1 Principe van Huygens. 1.2 Weerkaatsing van lichtgolven.

Geometrische optica. Hoofdstuk 1. 1.1 Principe van Huygens. 1.2 Weerkaatsing van lichtgolven. Inhoudsopgave Geometrische optica Principe van Huygens Weerkaatsing van lichtgolven 3 Breking van lichtgolven 4 4 Totale weerkaatsing en lichtgeleiders 6 5 Breking van lichtstralen door een sferisch diopter

Nadere informatie

Basic Creative Engineering Skills

Basic Creative Engineering Skills Spiegels en Lenzen September 2015 Theaterschool OTT-2 1 September 2015 Theaterschool OTT-2 2 Schaduw Bij puntvormige lichtbron ontstaat een scherpe schaduw. Vraag Hoe groot is de schaduw van een voorwerp

Nadere informatie

De snelheid van de auto neemt eerst toe en wordt na zekere tijd constant. Bereken de snelheid die de auto dan heeft.

De snelheid van de auto neemt eerst toe en wordt na zekere tijd constant. Bereken de snelheid die de auto dan heeft. Opgave 1 Een auto Met een auto worden enkele proeven gedaan. De wrijvingskracht F w op de auto is daarbij gelijk aan de som van de rolwrijving F w,rol en de luchtwrijving F w,lucht. F w,rol heeft bij elke

Nadere informatie

4 Geluid 81213-4. Noordhoff Uitgevers bv

4 Geluid 81213-4. Noordhoff Uitgevers bv 4 Geluid 76 81213-4 In een stadion kan het soms heel stil zijn. Je kunt dan even praten met je buurman. Maar vaak is er een zee van geluid. Het publiek moedigt met zingen en spreekkoren de spelers aan.

Nadere informatie

Waarneming zintuig adequate prikkel fysiek of chemisch zien oog licht fysiek ruiken neus gasvormige

Waarneming zintuig adequate prikkel fysiek of chemisch zien oog licht fysiek ruiken neus gasvormige Paragraaf 7.1 prikkel Signalen die een zintuigcel uit de omgeving opvangt actiepotentiaal Verschil in elektrische lading over de membraan van een zenuwcel op het moment van een impuls adequate prikkel

Nadere informatie

3hv h2 kortst.notebook January 08, H2 Licht

3hv h2 kortst.notebook January 08, H2 Licht 3hv h2 kortst.notebook January 08, 209 H2 Licht Wanneer een lichtstraal van het ene materiaal het andere ingaat kan de richting van de lichtstraal veranderen. Hoe de straal afbuigt heeft te maken met de

Nadere informatie

. Dat kun je het beste doen in een donkere ruimte. Dan gebruik je een stroboscooplamp die de hele korte licht fitsen maakt van 0,5 sec.

. Dat kun je het beste doen in een donkere ruimte. Dan gebruik je een stroboscooplamp die de hele korte licht fitsen maakt van 0,5 sec. Samenvatting door Jelino 1367 woorden 19 oktober 2015 7 3 keer beoordeeld Vak NaSk Natuur-scheikunde H7 + H8 7.1 beweging vastleggen Bewegingen vastleggen doe je met een stroboscoopcamera. Dat kun je het

Nadere informatie

Samenvatting NaSk H7 geluid

Samenvatting NaSk H7 geluid Samenvatting NaSk H7 geluid Samenvatting door F. 1082 woorden 30 september 2017 5,4 15 keer beoordeeld Vak Methode NaSk Nova 1. Geluidsbron = een voorwerp dat geluid maakt. Geluidsgolf = een afwisselende

Nadere informatie

Uitwerkingen. Hoofdstuk 2 Licht. Verkennen

Uitwerkingen. Hoofdstuk 2 Licht. Verkennen Uitwerkingen Hoofdstuk 2 Licht Verkennen I a. Teken het gebouw met de zon in de tekening. De stand van de zon bepaalt waar de schaduw terecht komt. b. Maak een tekening in bovenaanzicht. Jij staat voor

Nadere informatie

Opgave 3 De hoofdas is de lijn door het midden van de lens en loodrecht op de lens.

Opgave 3 De hoofdas is de lijn door het midden van de lens en loodrecht op de lens. Uitwerkingen 1 Opgave 1 Bolle en holle. Opgave 2 Opgave 3 De hoofdas is de lijn door het midden van de lens en loodrecht op de lens. Opgave 4 Divergente, convergente en evenwijdige. Opgave 5 Een bolle

Nadere informatie

Noorderpoort Beroepsonderwijs Stadskanaal. Reader. Reflectie en breking. J. Kuiper. Transfer Database

Noorderpoort Beroepsonderwijs Stadskanaal. Reader. Reflectie en breking. J. Kuiper. Transfer Database Noorderpoort Beroepsonderwijs Stadskanaal Reader Reflectie en breking J. Kuiper Transfer Database ThiemeMeulenhoff ontwikkelt leermiddelen voor Primair Onderwijs, Algemeen Voortgezet Onderwijs, Beroepsonderwijs

Nadere informatie

Toets Communicatie (eindtoets) 1

Toets Communicatie (eindtoets) 1 Toets Communicatie (eindtoets) 1 De toets bij het hoofdstuk communicatie. Maak in elk geval de toets passend bij de route die je hebt gedaan. Maak ook nog een toets voor een andere route. Probeer zo goed

Nadere informatie

Handleiding bij geometrische optiekset 112114

Handleiding bij geometrische optiekset 112114 Handleiding bij geometrische optiekset 112114 INHOUDSOPGAVE / OPDRACHTEN Algemene opmerkingen Spiegels 1. Vlakke spiegel 2. Bolle en holle spiegel Lichtbreking en kleurenspectrum 3. Planparallel blok 4.

Nadere informatie

Hierin is λ de golflengte in m, v de golfsnelheid in m/s en T de trillingstijd in s.

Hierin is λ de golflengte in m, v de golfsnelheid in m/s en T de trillingstijd in s. Inhoud... 2 Opgave: Golf in koord... 3 Interferentie... 4 Antigeluid... 5 Staande golven... 5 Snaarinstrumenten... 6 Blaasinstrumenten... 7 Opgaven... 8 Opgave: Gitaar... 8 Opgave: Kerkorgel... 9 1/10

Nadere informatie

Basic Creative Engineering Skills

Basic Creative Engineering Skills Visuele Perceptie November 2016 OTT-1 1 Visuele Perceptie Op tica (Gr.) Zien leer (der wetten) v.h. zien en het licht. waarnemen met het oog. Visueel (Fr.) het zien betreffende. Perceptie 1 waarneming

Nadere informatie

4VMBO H5 LES.notebook January 27, Geluid. BINAStabellen: 6, 7, 8, 27, 28, 29 en 30. Luidspreker. Drukverschillen

4VMBO H5 LES.notebook January 27, Geluid. BINAStabellen: 6, 7, 8, 27, 28, 29 en 30. Luidspreker. Drukverschillen Geluid BINAStabellen: 6, 7, 8, 27, 28, 29 en 30 Luidspreker Drukverschillen Snaar Snaar Snaar Snaar Snaar Snaar Snaar Snaar Oor Trommelvlies met daarachter hamer aambeeld, stijgbeugel trilhaartjes met

Nadere informatie

Spreekbeurten.info Spreekbeurten en Werkstukken http://spreekbeurten.info

Spreekbeurten.info Spreekbeurten en Werkstukken http://spreekbeurten.info Oog Inleiding De meeste mensen hebben 5 zintuigen. Het gezichtsvermogen om te zien, het gehoor om te horen, de reuk om te ruiken, de smaak om te proeven en het gevoel om te voelen. Met zintuigen maak je

Nadere informatie

Voorbereiding toelatingsexamen arts/tandarts. Fysica: Geluid 10/6/2014. dr. Brenda Casteleyn

Voorbereiding toelatingsexamen arts/tandarts. Fysica: Geluid 10/6/2014. dr. Brenda Casteleyn Voorbereiding toelatingsexamen arts/tandarts Fysica: Geluid 10/6/2014 dr. Brenda Casteleyn Met dank aan: Atheneum van Veurne (http://www.natuurdigitaal.be/geneeskunde/fysica/wiskunde/wiskunde.htm), Leen

Nadere informatie

Samenvatting NaSk Hoofdstuk t/m 4.5

Samenvatting NaSk Hoofdstuk t/m 4.5 Samenvatting NaSk Hoofdstuk 2 + 4.1 t/m 4.5 Samenvatting door Sietske 852 woorden 4 augustus 2013 2,1 4 keer beoordeeld Vak Methode NaSk Natuur- en scheikunde actief 2.1 Woordweb à voor overzicht wat nodig

Nadere informatie

C.V.I. 9.5 Geluid in de vleeswarenindustrie

C.V.I. 9.5 Geluid in de vleeswarenindustrie 9 ARBEIDSOMSTANDIGHEDEN 9.5 GELUID IN DE VLEESWARENINDUSTRIE Auteur : Ir. S.P. van Duin februari 1998 blad 1 van 7 INHOUDSOPGAVE 1 WAT IS GELUID................................................... 3 2 HOE

Nadere informatie

Tentamen Optica. 19 februari 2008, 14:00 uur tot 17:00 uur

Tentamen Optica. 19 februari 2008, 14:00 uur tot 17:00 uur Tentamen Optica 19 februari 2008, 14:00 uur tot 17:00 uur Zet je naam en studierichting bovenaan elk vel dat je gebruikt. Lees de 8 opgaven eerst eens door. De opgaven kunnen in willekeurige volgorde gemaakt

Nadere informatie

Uitwerkingen 1. Opgave 1 Bij mist wordt het licht door de waterdruppeltjes weerkaatst. Opgave 2 Groter Kleiner. Opgave 3

Uitwerkingen 1. Opgave 1 Bij mist wordt het licht door de waterdruppeltjes weerkaatst. Opgave 2 Groter Kleiner. Opgave 3 Uitwerkingen 1 Opgave 1 Bij mist wordt het licht door de waterdruppeltjes weerkaatst. Opgave 2 Groter Kleiner Opgave 3 Opgave 4 Licht, steeds donkerder (bij halfschaduw), donker (kernschaduw), steeds lichter

Nadere informatie

Examen ste tijdvak Vinvis zingt toontje lager

Examen ste tijdvak Vinvis zingt toontje lager Examen 2014 1 ste tijdvak Vinvis zingt toontje lager Blauwe vinvissen communiceren met elkaar door te zingen. blauwe vinvis Als vinvisvrouwtjes dichtbij zijn, zingen de mannetjes zachter en lager. 2p 33

Nadere informatie

Oefen-vt vwo4 B h6/7 licht 2007/2008. Opgaven en uitwerkingen vind je op www.agtijmensen.nl

Oefen-vt vwo4 B h6/7 licht 2007/2008. Opgaven en uitwerkingen vind je op www.agtijmensen.nl Opgaven en uitwerkingen vind je op www.agtijmensen.nl Oefen-vt vwo4 h6/7 licht 007/008. Lichtbreking (hoofdstuk 6). Een glasvezel bestaat uit één soort materiaal met een brekingsindex van,08. Laserstraal

Nadere informatie

m 2. De berekening terug uitvoeren met die P en r = 100 m i.p.v. 224 m levert L = 57 db.

m 2. De berekening terug uitvoeren met die P en r = 100 m i.p.v. 224 m levert L = 57 db. Doppler A B PASSERENDE FLUIT Het vriest licht; de maan schijnt door de bomen. Ik sta op 100 m van de kruising van twee wegen. Op de kruisende weg rijdt een open auto. Een inzittende blaast op een fluitje

Nadere informatie

Zonnestraling. Samenvatting. Elektromagnetisme

Zonnestraling. Samenvatting. Elektromagnetisme Zonnestraling Samenvatting De Zon zendt elektromagnetische straling uit. Hierbij verplaatst energie zich via elektromagnetische golven. De golflengte van de straling hangt samen met de energie-inhoud.

Nadere informatie

Exact periode 3.1 Dictaat exact blok

Exact periode 3.1 Dictaat exact blok Exact periode 3.1 Dictaat exact blok 3 1 3-7-017 Hoofdstuk 0 Buiten haakjes halen. Bekijk de powerpoint-presentatie: 01a. Buiten haakjes halen Maak de oefeningen op pagina. Dictaat exact blok 3 3-7-017

Nadere informatie

Handleiding Oogfunctiemodel

Handleiding Oogfunctiemodel Handleiding Oogfunctiemodel 300132 De mogelijkheden van het oog functiemodel zijn: - beeldvorming, met een positieve lens - gekleurde voorwerpen zien - accommoderen; werking van de ooglens - oogafwijkingen

Nadere informatie

Scherp zien onder water

Scherp zien onder water Scherp zien onder water Keuzeopdracht biologie/natuurkunde voor de bovenbouw Een verdiepende opdracht over de werking van lenzen Voorkennis: het oog; breking van licht; brekingsindex; beeldvorming bij

Nadere informatie

Voorbereiding toelatingsexamen arts/tandarts. Fysica: Geluid. 4 november Brenda Casteleyn, PhD

Voorbereiding toelatingsexamen arts/tandarts. Fysica: Geluid. 4 november Brenda Casteleyn, PhD Voorbereiding toelatingsexamen arts/tandarts Fysica: Geluid 4 november 2017 Brenda Casteleyn, PhD Met dank aan: Atheneum van Veurne, Leen Goyens (http://users.telenet.be/toelating) 1. Inleiding Dit oefeningenoverzicht

Nadere informatie

Labo Fysica. Michael De Nil

Labo Fysica. Michael De Nil Labo Fysica Michael De Nil 4 februari 2004 Inhoudsopgave 1 Foutentheorie 2 1.1 Soorten fouten............................ 2 1.2 Absolute & relatieve fouten..................... 2 2 Geometrische Optica

Nadere informatie

Aan de slag met de nieuwe leerplannen fysica 2 de graad ASO GO!

Aan de slag met de nieuwe leerplannen fysica 2 de graad ASO GO! Aan de slag met de nieuwe leerplannen fysica 2 de graad ASO GO! M. Beddegenoodts, M. De Cock, G. Janssens, J. Vanhaecht woensdag 17 oktober 2012 Specifieke Lerarenopleiding Natuurwetenschappen: Fysica

Nadere informatie

Voorbereiding toelatingsexamen arts/tandarts. Fysica: Licht als golf en als deeltje. 4 november Brenda Casteleyn, PhD

Voorbereiding toelatingsexamen arts/tandarts. Fysica: Licht als golf en als deeltje. 4 november Brenda Casteleyn, PhD Voorbereiding toelatingsexamen arts/tandarts Fysica: Licht als golf en als deeltje 4 november 2017 Brenda Casteleyn, PhD Met dank aan: Atheneum van Veurne, Leen Goyens (http://users.telenet.be/toelating)

Nadere informatie

Uitwerkingen Hoofdstuk 2 Licht

Uitwerkingen Hoofdstuk 2 Licht Uitwerkingen Hoofdstuk 2 Licht Verkennen I a. Teken het gebouw met de zon in de tekening. De stand van de zon bepaalt waar de schaduw terecht komt. b. Een platte tekening. Jij staat voor de spiegel, de

Nadere informatie

Hoofdstuk 2 De sinus van een hoek

Hoofdstuk 2 De sinus van een hoek Hoofdstuk 2 De sinus van een hoek 2.1 Hoe hoog zit m n ventiel? Als een fietswiel ronddraait zal, de afstand van de as tot het ventiel altijd gelijk blijven. Maar als je alleen van opzij kijkt niet! Het

Nadere informatie

Overal Natuurkunde 3V Uitwerkingen Hoofdstuk 6 Licht

Overal Natuurkunde 3V Uitwerkingen Hoofdstuk 6 Licht Overal Natuurkunde 3V Uitwerkingen Hoofdstuk 6 Licht 6. Licht en beeld A a Primair licht is afkomstig uit een lichtbron en wordt ook wel direct licht genoemd. Secundair licht is niet direct afkomstig uit

Nadere informatie

Opgave 1: Constructies (6p) In figuur 1 op de bijlage staat een voorwerp (doorgetrokken pijl) links van de lens.

Opgave 1: Constructies (6p) In figuur 1 op de bijlage staat een voorwerp (doorgetrokken pijl) links van de lens. NATUURKUNDE KAS 5 ROEWERK H4-06/0/00 PROEWERK Deze toets bestaat uit 4 opgaven (totaal 3 punten). Gebruik van eigen grafische rekenmachine en BINAS is toegestaan. Veel succes! ZET EERST JE NAAM OP DE Opgave

Nadere informatie

Extra oefenopgaven licht (1) uitwerkingen

Extra oefenopgaven licht (1) uitwerkingen Uitwerking van de extra opgaven bij het onderwerp licht. Als je de uitwerking bij een opgave niet begrijpt kun je je docent altijd vragen dit in de les nog eens uit te leggen! Extra oefenopgaven licht

Nadere informatie

Zintuigelijke waarneming

Zintuigelijke waarneming Zintuigelijke waarneming Biologie Havo klasse 5 HENRY N. HASSENKHAN SCHOLENGEMEENSCHAP LELYDORP [HHS-SGL] Docent: A. Sewsahai Doelstellingen De student moet de verschillende typen zintuigen kunnen opnoemen

Nadere informatie

Deze toets bestaat uit 4 opgaven (33 punten). Gebruik eigen grafische rekenmachine en BINAS toegestaan. Veel succes! ZET JE NAAM OP DEZE

Deze toets bestaat uit 4 opgaven (33 punten). Gebruik eigen grafische rekenmachine en BINAS toegestaan. Veel succes! ZET JE NAAM OP DEZE NAAM: NATUURKUNDE KAS 5 ROEFWERK H14 13/05/2009 PROEFWERK Deze toets bestaat uit 4 opgaven (33 punten). Gebruik eigen grafische rekenmachine en BINAS toegestaan. Veel succes! ZET JE NAAM OP DEZE Opgave

Nadere informatie

Natuur-/scheikunde Klas men

Natuur-/scheikunde Klas men Natuur-/scheikunde Klas 1 2015-2016 men 1 Wat zie ik? Over fotonen. Je ziet pas iets (voorwerp, plant of dier) wanneer er lichtdeeltjes afkomstig van dat voorwerp je oog bereiken. Die lichtdeeltjes noemen

Nadere informatie

a) Bepaal door middel van een constructie de plaats van het beeld van de scherf en bepaal daaruit hoe groot Arno de scherf door de loep ziet.

a) Bepaal door middel van een constructie de plaats van het beeld van de scherf en bepaal daaruit hoe groot Arno de scherf door de loep ziet. NATUURKUNDE KLAS 5 ROEWERK H14-05/10/2011 PROEWERK Deze toets bestaat uit 3 opgaven (totaal 31 punten). Gebruik van eigen grafische rekenmachine en BINAS is toegestaan. Veel succes! ZET EERST JE NAAM OP

Nadere informatie

Handleiding Optiekset met bank

Handleiding Optiekset met bank Handleiding Optiekset met bank 112110 112110 112114 Optieksets voor practicum De bovenstaande Eurofysica optieksets zijn geschikt voor alle nodige optiekproeven in het practicum. De basisset (112110) behandelt

Nadere informatie

Eindexamen natuurkunde havo I

Eindexamen natuurkunde havo I Opgave 1 Lord of the Flies Lees eerst de tekst in het kader. Er bestaan twee soorten brillenglazen: - bolle (met een positieve sterkte) en - holle (met een negatieve sterkte). In de figuren hiernaast is

Nadere informatie

Geluidsnelheid. 1 Inleiding. VWO Bovenbouwpracticum Natuurkunde Practicumhandleiding

Geluidsnelheid. 1 Inleiding. VWO Bovenbouwpracticum Natuurkunde Practicumhandleiding VWO Bovenbouwpracticum Natuurkunde Practicumhandleiding Geluidsnelheid 1 Inleiding De voortplantingsnelheid v van geluidgolven (of: de geluidsnelheid) in lucht is zo n 340 m/s. Deze geluidsnelheid is echter

Nadere informatie

Lichtsnelheid. 1 Inleiding. VWO Bovenbouwpracticum Natuurkunde Practicumhandleiding

Lichtsnelheid. 1 Inleiding. VWO Bovenbouwpracticum Natuurkunde Practicumhandleiding VWO Bovenbouwpracticum Natuurkunde Practicumhandleiding Lichtsnelheid 1 Inleiding De voortplantingsnelheid c van elektromagnetische golven (of: de lichtsnelheid) in vacuüm is internationaal vastgesteld

Nadere informatie

- Prikkels worden opgevangen - Prikkels worden omgezet in impulsen (elektrische stroomstootjes)

- Prikkels worden opgevangen - Prikkels worden omgezet in impulsen (elektrische stroomstootjes) Samenvatting Thema 7: Zintuiglijke waarneming Basisstof 1 Prikkel: invloed van buitenaf (milieu) op een organisme Adequate prikkel: de prikkel die geschikt is voor een bepaald zintuig: - Lichtprikkels

Nadere informatie

6,2. Werkstuk door een scholier 1565 woorden 1 december keer beoordeeld. Natuurkunde. Wat is kleur?

6,2. Werkstuk door een scholier 1565 woorden 1 december keer beoordeeld. Natuurkunde. Wat is kleur? Werkstuk door een scholier 1565 woorden 1 december 2002 6,2 174 keer beoordeeld Vak Natuurkunde Wat is kleur? Zodra s'morgens het eerste licht er is, kunnen wij vaag kleuren onderscheiden. Bij verschillende

Nadere informatie

Samenvatting project natuur zintuigen

Samenvatting project natuur zintuigen Samenvatting project natuur zintuigen Let op: De plaatjes hoef je niet te leren! Samenvatting van de huid Hoe voel je? In je huid zitten drukreceptoren die gestimuleerd worden door jouw vinger. Ze sturen

Nadere informatie

Golflengte: licht is een (elektromagnetische) golf met een golflengte en een frequentie

Golflengte: licht is een (elektromagnetische) golf met een golflengte en een frequentie Golflengte: licht is een (elektromagnetische) golf met een golflengte en een frequentie Spectrum elektromagnetisch: licht met een kortere golflengte dan 400nm en licht met een langere golflengte dan 700

Nadere informatie

Samenvatting door een scholier 1922 woorden 10 februari keer beoordeeld. Natuurkunde

Samenvatting door een scholier 1922 woorden 10 februari keer beoordeeld. Natuurkunde Samenvatting door een scholier 1922 woorden 10 februari 2012 6 129 keer beoordeeld Vak Methode Natuurkunde Nova 1 Zien Lichtbronnen zien Lichtbronnen: Voorwerpen die zelf licht geven Lichtstralen: de straal

Nadere informatie

Samenvatting Biologie Hoofdstuk 3

Samenvatting Biologie Hoofdstuk 3 Samenvatting Biologie Hoofdstuk 3 Samenvatting door S. 1377 woorden 11 februari 2017 0 keer beoordeeld Vak Biologie Biologie hoofdstuk 3 samenvattingen 3.1 Prikkels Prikkel = informatie uit je omgeving

Nadere informatie

Oog. Netvlies: Ooglens: Voor de stralengang in het oog van lichtstralen zijn de volgende drie onderdelen belangrijk.

Oog. Netvlies: Ooglens: Voor de stralengang in het oog van lichtstralen zijn de volgende drie onderdelen belangrijk. Oog Voor de stralengang in het oog van lichtstralen zijn de volgende drie onderdelen belangrijk. Netvlies: Ooglens: Op het netvlies bevinden zich lichtgevoelige zintuigcellen; staafjes en kegeltjes (voor

Nadere informatie

Kernvraag: Hoe verplaatst licht zich en hoe zien we dat?

Kernvraag: Hoe verplaatst licht zich en hoe zien we dat? Kernvraag: Hoe verplaatst licht zich en hoe zien we dat? Naam: Groep: http://www.cma-science.nl Activiteit 1 Hoe verplaatst licht zich? 1. Als je wel eens de lichtstraal van een zaklamp hebt gezien, weet

Nadere informatie

Lichtverstrooiing en lichtgeleiding

Lichtverstrooiing en lichtgeleiding Lichtverstrooiing en lichtgeleiding Materiaal: Uitvoering: Zaklamp Laserpointer Laserwaterpas Doorzichtige plastic fles Doorzichtig bakje Melk Boortje Lichtverstrooiing: Neem een doorzichtig plastic bakje

Nadere informatie

Docent: A. Sewsahai Thema: Zintuigelijke waarneming

Docent: A. Sewsahai Thema: Zintuigelijke waarneming HENRY N. HASSENKHAN SCHOLENGEMEENSCHAP LELYDORP [HHS-SGL] ARTHUR A. HOOGENDOORN ATHENEUM - VRIJE ATHENEUM - AAHA Docent: A. Sewsahai Thema: Zintuigelijke waarneming De student moet de verschillende typen

Nadere informatie

Suggesties voor demo s lenzen

Suggesties voor demo s lenzen Suggesties voor demo s lenzen Paragraaf 1 Toon een bolle en een holle lens. Demo convergerende werking van een bolle lens Laat een klein lampje (6 V) steeds dichter bij een bolle lens komen. Geef de verschillende

Nadere informatie

1.1 Het oog. 1.1.1 Beschermende delen van het oog. Deel 1 Hoe verkrijgen organismen informatie over hun omgeving?

1.1 Het oog. 1.1.1 Beschermende delen van het oog. Deel 1 Hoe verkrijgen organismen informatie over hun omgeving? 1.1 Het oog 1.1.1 Beschermende delen van het oog Door welke delen worden je ogen beschermd? Vul de juiste benaming in. Geef telkens de functie van de delen. Delen Functie 1 2 3 4 5 6 1.1 Het oog 1 1.1.2

Nadere informatie

OntdekZelf - geluid. Met bijgaande materialen kunt u (een deel van) onderstaande experimenten uitvoeren, afhankelijk van wat u heeft aangeschaft.

OntdekZelf - geluid. Met bijgaande materialen kunt u (een deel van) onderstaande experimenten uitvoeren, afhankelijk van wat u heeft aangeschaft. Werkwijze Alle OntdekZelf experimenten zijn bedoeld voor de leerling om zelf te ontdekken. Laat de leerling vanaf het begin werken met zijn materialen en ontdekken hoe hij tot een antwoord of een werkende

Nadere informatie

hoofdstuk 5 Lenzen (inleiding).

hoofdstuk 5 Lenzen (inleiding). hoofdstuk 5 Lenzen (inleiding). 5.1 Drie soorten lichtbundels Als lichtstralen een bundel vormen kan dat op drie manieren. 1. een evenwijdige bundel. 2. een convergerende bundel 3. een divergerende bundel.

Nadere informatie

Noorderpoort Beroepsonderwijs Stadskanaal. Reader. Lenzen. J. Kuiper. Transfer Database

Noorderpoort Beroepsonderwijs Stadskanaal. Reader. Lenzen. J. Kuiper. Transfer Database Noorderpoort Beroepsonderwijs Stadskanaal Reader Lenzen J. Kuiper Transfer Database ThiemeMeulenhoff ontwikkelt leermiddelen voor Primair nderwijs, Algemeen Voortgezet nderwijs, Beroepsonderwijs en Volwasseneneducatie

Nadere informatie