De 37 e Internationale Natuurkunde Olympiade Singapore Practicum-toets Woensdag 12 juli 2006



Vergelijkbare documenten
De 42 e Internationale Natuurkunde Olympiade Bangkok, Thailand Experimentele toets Donderdag 14 juli 2011

Tentamen Optica. 20 februari Zet je naam, studentennummer en studierichting bovenaan elk vel dat je gebruikt. Lees de 6 opgaven eerst eens door.

Hertentamen Optica. 20 maart Zet je naam, studentennummer en studierichting bovenaan elk vel dat je gebruikt. Lees de 6 opgaven eerst eens door.

DE XXXII INTERNATIONALE NATUURKUNDE OLYMPIADE

Uitwerkingen Hertentamen Optica

Uitwerkingen Tentamen Optica

Diffractie door helix structuren (Totaal aantal punten: 10)

PRACTICUM TOETS Donderdag, 25 juli 2002

Lichtsnelheid. 1 Inleiding. VWO Bovenbouwpracticum Natuurkunde Practicumhandleiding

TENTAMEN. x 2 x 3. x x2. cos( x y) cos ( x) cos( y) + sin( x) sin( y) d dx arcsin( x)

Aan de slag met de nieuwe leerplannen fysica 2 de graad ASO GO!

Eindronde Natuurkunde Olympiade practicumtoets deel: Omvallend melkpak

Hertentamen Optica,11 april 2016 : uitwerkingen

, met ω de hoekfrequentie en

Faculteit Biomedische Technologie. 9 april 2018, 18:00-21:00 uur

TECHNISCHE UNIVERSITEIT EINDHOVEN. Tentamen OGO Fysisch Experimenteren voor minor AP (3MN10) en Tentamen Inleiding Experimentele Fysica (3NA10)

Uitwerkingen tentamen Optica

Faculteit Technische Natuurkunde Tentamen OPTICA voor BMT (3D010) 22 juni 1999, 14:00-17:00 uur

DE XXXIII INTERNATIONALE NATUURKUNDE OLYMPIADE

FACULTEIT TECHNISCHE NATUURKUNDE. Kenmerk: /Gor/Hsa/Rrk. Datum: TENTAMEN

De snelheid van de auto neemt eerst toe en wordt na zekere tijd constant. Bereken de snelheid die de auto dan heeft.

34 e Internationale Natuurkunde Olympiade Taipei, Taiwan Experimentele toets Woensdag 6 augustus 2003 Beschikbare tijd: 5 uur. Lees dit eerst!

NATUURKUNDE OLYMPIADE EINDRONDE 2013 PRAKTIKUMTOETS

Geluidsnelheid. 1 Inleiding. VWO Bovenbouwpracticum Natuurkunde Practicumhandleiding

6.1 Voortplanting en weerkaatsing van licht

Uitwerkingen Tentamen Optica

Benodigdheden Lichtkastje met één smalle spleet, half cirkelvormige schijf van perspex, blad met gradenverdeling

DE XXXII INTERNATIONALE NATUURKUNDE OLYMPIADE

Tentamen Optica. 19 februari 2008, 14:00 uur tot 17:00 uur

De 35 e Internationale Natuurkunde Olympiade Pohang, Zuid-Korea Practicum-toets Maandag 19 juli 2004

Labo Fysica. Michael De Nil

Technische Universiteit Eindhoven

FACULTEIT TECHNISCHE NATUURKUNDE. Kenmerk: /vGr. Datum: 24 juli 2000 TENTAMEN

IPhO2009. Experimentele toets Woensdag 15 juli 2009

E-II. Diffractie als gevolg van de oppervlaktespanningsgolven op water

XXX INTERNATIONALE NATUURKUNDE OLYMPIADE LEICESTER, GROOT BRITANNIË PRACTICUM-TOETS

Faculteit Technische Natuurkunde Proeftentamen OPTICA voor BMT (3D010) 8 maart 1999, 14:00-17:00 uur

Licht; Elektromagnetische straling een golf Licht; een deeltje (foto-elektrisch effect). Licht; als een lichtstraal Licht beweegt met de

NATIONALE NATUURKUNDE OLYMPIADE. Eindronde practicumtoets A. 5 juni beschikbare tijd: 2 uur (per toets A of B)

Schriftelijk examen 2e Ba Biologie Fysica: elektromagnetisme

Hoofdstuk 3: Licht. Natuurkunde VWO 2011/

Samenvatting Natuurkunde Hoofdstuk 2 Licht. Wat moet je leren/ kunnen voor het PW H2 Licht?

FACULTEIT TECHNISCHE NATUURWETENSCHAPPEN Opleiding Technische Natuurkunde TENTAMEN

Bepaling van de diameter van een haar

The 41 st International Physics Olympiad in Croatie Experimentele toets Woensdag 21 juli 2010

Wet van Snellius. 1 Lichtbreking 2 Wet van Snellius 3 Terugkaatsing van licht tegen een grensvlak

Faculteit Biomedische Technologie Tentamen OPTICA (8N040) 16 augustus 2012, 9:00-12:00 uur

Woensdag 30 augustus, uur

Eindronde Natuurkunde Olympiade 2018 theorietoets deel 1

a) Bepaal door middel van een constructie de plaats van het beeld van de scherf en bepaal daaruit hoe groot Arno de scherf door de loep ziet.

Deze toets bestaat uit 4 opgaven (31 punten). Gebruik eigen grafische rekenmachine en BINAS toegestaan. Veel succes! ZET JE NAAM OP DEZE

TWEEDE RONDE NATUURKUNDE OLYMPIADE 2015 TOETS APRIL :00 12:45 uur

Uitwerkingen tentamen optica

Fysica 2 Practicum. X-stralen

Uitwerking- Het knikkerbesraadsel

Geleid herontdekken van de golffunctie

Cover voor de experimentele toets

NATUURKUNDE OLYMPIADE EINDRONDE 2016 PRACTICUMTOETS

Faculteit Biomedische Technologie. 28 januari 2016, 18:00-21:00 uur

Optica Optica onderzoeken met de TI-nspire

Tentamen Golven en Optica

Tussen een lichtbron en een scherm staat een voorwerp. Daardoor ontstaat een schaduw van het voorwerp op het scherm. lichtbron

Experimentele toets 07 Juli Algemene aanwijzingen

Eindronde Natuurkunde Olympiade 2015 theorietoets deel 1

Exact Periode 5.2. Licht

Uitwerkingen 1. Opgave 1 Bij mist wordt het licht door de waterdruppeltjes weerkaatst. Opgave 2 Groter Kleiner. Opgave 3

Noorderpoort Beroepsonderwijs Stadskanaal. Reader. Reflectie en breking. J. Kuiper. Transfer Database

JANNEKE SCHENK. Over de REGENBOOG. Regenbogen en andere lichtverschijnselen aan de hemel, natuurkundig verklaard voor iedereen

Aan de slag met de nieuwe leerplannen fysica 2 de graad ASO

N A T U U R W E T E N S C H A P P E N V O O R H A N D E L 1 Copyright

Eindexamen wiskunde B havo II

Invals-en weerkaatsingshoek + Totale terugkaatsing

Hoofdstuk 4: Licht. Natuurkunde Havo 2011/2012.

Examen HAVO. wiskunde B. tijdvak 2 woensdag 22 juni uur. Bij dit examen hoort een uitwerkbijlage.

Naam: Klas: Toets Holografie VWO (versie A) Opgave 1 Geef van de volgende beweringen aan of ze waar (W) of niet waar (NW) zijn. Omcirkel je keuze.

Uitwerkingen Hertentamen Optica

Practicumtoets natuurkunde De Boksbal 5-havo deel 1 duur: 25 minuten

TENTAMEN NATUURKUNDE

TWEEDE RONDE NATUURKUNDE OLYMPIADE 2017 TOETS APRIL :00 12:45 uur

Lees dit eerst! 1. Voor het experiment is 5 uur beschikbaar. 2. Beschrijf uitsluitend de voorkant van het papier.

Hoofdstuk 2 De sinus van een hoek

Als l groter wordt zal T. Als A groter wordt zal T

Opgave 1 Golven op de bouwplaats ( 20 punten, ) Een staalkabel met lengte L hangt verticaal aan een torenkraan.

Opgave 1 Geef van de volgende zinnen aan of ze waar (W) of niet waar (NW) zijn. Omcirkel je keuze.

XXX INTERNATIONALE NATUURKUNDE OLYMPIADE PADUA, ITALIË PRACTICUM-TOETS

Statistiek voor Natuurkunde Opgavenserie 4: Lineaire regressie

TECHNISCHE UNIVERSITEIT EINDHOVEN

45e Internationale Natuurkunde Olympiade Astana, Kazakhstan Experimentele toets Donderdag, 17 Juli 2014

Vrijdag 8 juni, uur

Exact Periode 5. Dictaat Licht

Proef van Melde. m l In deze proef gaan we na of dit in de praktijk klopt.

2.1 Wat is licht? 2.2 Fotonen

Geometrische optica. Hoofdstuk Principe van Huygens. 1.2 Weerkaatsing van lichtgolven.

6.1 Voortplanting en weerkaatsing van licht 6.2 Spiegel en spiegelbeeld

Voorbereiding toelatingsexamen arts/tandarts. Fysica: Licht als golf en als deeltje. 4 november Brenda Casteleyn, PhD

Docentenhandleiding omvallend melkpak:

FACULTEIT TECHNISCHE NATUURWETENSCHAPPEN. Opleiding Technische Natuurkunde TENTAMEN

Eindexamen wiskunde B1-2 havo 2001-II

Eindronde Natuurkunde Olympiade 2014 theorietoets deel 1

Invals en weerkaatsingshoek + Totale reflectie

Transcriptie:

Lees dit eerst! De 37 e Internationale Natuurkunde Olympiade Singapore Practicum-toets Woensdag 12 juli 2006 1. Voor de practicumtoets is 5 uur beschikbaar. 2. Het experiment bestaat uit 4 onderdelen die in totaal 20 punten waard zijn. 3. Gebruik uitsluitend de door de organisatie ter beschikking gestelde apparatuur. 4. Schrijf je oplossingen op het schrijfpapier. Deze zullen beoordeeld worden. - Gebruik uitsluitend de voorkant van het papier - Begin elk deel op een apart vel papier - Schrijf bovenaan elk papier het volgende: 1. Het deelnummer (Part No.) voor het betreffende deel 2. Het pagina nummer (Page No.) 3. Het totale aantal pagina s (Total No. Of Pages) gebruikt voor de betreffende vraag 4. Je landcode (Country Code) en je studentcode (Student Code) - Druk je bondig uit beperk het gebruik van tekst tot een minimum. Gebruik zo veel mogelijk vergelijkingen, getallen, symbolen, figuren en grafieken. - Zet een kruis door alle beschreven bladen die niet nagekeken hoeven te worden. Neem deze bladen ook niet op in de nummering van de bladen.. 5. Gebruik bij elke vraag het antwoordblad om je uiteindelijke antwoord in het juiste hokje te zetten. Geef de antwoorden met het juiste aantal significante cijfers. Vergeet niet om de eenheden te noteren. 6. Leg aan het eind alle bladen in de juiste volgorde: het antwoordblad, daarna de beschreven bladen die nagekeken moeten worden en de grafieken die nagekeken moeten worden en de beschreven bladen en grafieken die je niet nagekeken wilt hebben. leg de ongebruikte bladen en de opgaven onderop. 7. Bevestig alles met een paperclip. 8. Laat alles op je tafel achter. Je mag niets meenemen uit de examenhal.

Pagina 1 / 11 Onderdelenlijst Label Onderdeel Aantal Label Onderdeel Aantal Microgolfzender 1 Roosterstructuur in 1,A,I een verzegelde doos Microgolfontvanger 1 Hoekmeter 1,B,J (goniometer) Houder voor zender / 2 Prismahouder 1,C,K ontvanger Digitale multimeter 1 Draaitafel 1,D,L Gelijkspanningsbron 1 Lens- / spiegelhouder 1,E,M voor zender Plaat die als dunne 1 Vlak-cilindrische 1,F,N film dienst doet lens Spiegel (metalen 1 Prisma gemaakt van 2,G,O plaat) paraffine Halfdoorlatende 1 Blu-Tack (om 1 pakje,h spiegel (beam halfdoorlatende splitter, blauw spiegel vast te zetten) perspex) Schuifmaat (krijg je apart) 1 30 cm meetlat (krijg je apart) 1

Pagina 2 / 11 Let op : Het uitgezonden vermogen van de microgolfzender ligt binnen de standaard veiligheidsgrenzen. Kijk echter nooit rechtsreeks van dichtbij in de zender als deze aanstaat. Maak de doos I,I met het rooster niet open. De prisma s,o die van paraffine gemaakt zijn, zijn kwetsbaar. Let op: Het uitgangssignaal van de microgolfontvanger (CURRENT OUTOUT) is evenredig met de AMPLITUDE van de microgolf. Gebruik de microgolfontvanger steeds in de stand: LO. Verander de schaal van de multimeter niet tijdens het opnemen van een meetserie. Zet de componenten die je tijdens een bepaalde meting niet gebruikt zo ver mogelijk uit de buurt om evenuele interferentie zo klein mogelijk te houden. Gebruik in je tekeningen steeds de labels,a,,b,,c,... om daarmee de verschillende componenten aan te duiden.

Pagina 3 / 11 Zwarte draad Rode draad De digitale multimeter moet gebruikt worden met de draden in de op de foto aangegeven posities. In dit experiment moet je de schaal 2m gebruiken.

Practicum Deel 2 Pagina 4 / 11 Deel 1 Michelson Interferometer bepaling van de golflengte 1.1 Inleiding In een Michelson interferometer verdeelt een halfdoorlatende spiegel (beam splitter) de inkomende elektromagnetische (EM) golf in twee golven die via gescheiden wegen weer bij elkaar gebracht worden zodat ze interfereren. In figuur 1.1 is de Michelson interferometer schematisch weergegeven. Een inkomende golf loopt van de zender via twee verschillende wegen naar de ontvanger. Deze golven interfereren in de ontvanger. De sterkte van het signaal in de ontvanger hangt af van het faseverschil tussen de twee golven, dat verandert zodra het optische weglengteverschil verandert. Beam splitter Receiver Transmitter Reflectors Figuur 1.1 Schematische tekening van een Michelson Interferometer 1.2 Onderdelenlijst 1) Microgolfzender,A (Transmitter) met houder,c 2) Microgolfontvanger,B (Receiver) met houder,c 3) Hoekmeter,J 4) 2 spiegels (Reflectors) : spiegel,gmet houder,m en dunne film,fdie ook als een spiegel werkt 5) Halfdoorlatende spiegel,h (Beam splitter) met de draaitafel,l waar de halfdoorlatende spiegel (beam splitter) opgezet wordt 6) Digitale multimeter,d 1.3 Opdracht: Bepaling van de golflengte van de microgolven [2 punten] Bepaal de golflengte λ van de microgolven in lucht door met de componenten die in de onderdelenlijst staan een Michelson interferometer te bouwen. Doe de noodzakelijke metingen om de golflengte te bepalen met een nauwkeurigheid 0,02 cm. Merk op dat de dunne film halftransparant is; zorg er dus voor dat je er niet achter gaat staan, omdat dit je metingen zou kunnen beïnvloeden.

Practicum Deel 2 Pagina 5 / 11 Deel 2 Dunne film interferentie 2.1 Inleiding Een evenwijdige EM-golf valt op een diëlektrische dunne film, waarna één deel (straal A) gereflecteerd wordt en een ander deel (straal B) wordt gebroken (zie figuur 2.1). Straal B wordt aan de onderkant van de film gereflecteerd en verlaat, na breking, de bovenkant van de dunne film. De stralen A en B interfereren; men noemt dit dunne-film-interferentie. A θ 1 θ 1 B n t θ 2 Figuur 2.1 Schema van interferentie aan een dunne laag Afhankelijk van het verschil in optische weglengte tussen straal A en B is er constructieve of destructieve interferentie. De intensiteit I hangt af van het weglengteverschil tussen de twee interfererende stralen. Het weglengteverschil hangt op zijn beurt weer af van de invalshoek θ 1 van de invallende straal, de golflengte λ van de straling en de dikte t en brekingsindex n van de dunne film. De brekingsindex n van de dunne film kan daarom bepaald worden uit het I -θ 1 grafiek en gebruik makend van de waarde van t en λ. 2.2 Onderdelenlijst 1) Microgolfzender,A met houder,c 2) Microgolfontvanger,B met houder,c 3) Vlak-cilindrische lens,n met houder,m 4) Hoekmeter (goniometer),j 5) Draaitafel,L 6) Digitale multimeter,d 7) Rechthoekig stuk polymeer materiaal,f, dat als dunne film dienst doet 8) Schuifmaat

Practicum Deel 2 Pagina 6 / 11 2.3 Opdrachten: bepaling van de brekingsindex van het stuk polymeer materiaal [6 punten] 1) Leid de uitdrukkingen af die gelden voor constructieve en voor destructieve interferentie, uitgedrukt in θ 1, t, λ, en n. [1 punt] 2) Ontwerp een experiment om het uitgangsignaal S van de ontvanger te bepalen als functie van de invalshoek θ 1 (varieer θ 1 van 40 tot 75 ), waarbij alleen de componenten van onderdelenlijst 2.2 gebruikt mogen worden. Maak van de opstelling een tekening. Geef daarin duidelijk de invalshoek en reflectiehoek aan, evenals de plaats van de dunne film op de draaitafel. Markeer alle onderdelen met gebruikmaking van de labels die op bladzijde 1 gegeven zijn. Maak een tabel van je metingen. Maak een grafiek van de metingen van het uitgangsignaal S als functie van de invalshoek θ 1. Bepaal hieruit nauwkeurig de hoeken die horen bij constructieve en destructieve interferentie. [3 punten] 3) Neem aan dat de brekingsindex van lucht 1,00 is. Bepaal nu de orde van interferentie m in je experiment en bepaal de brekingsindex n van het polymeer materiaal. Noteer de waarden m en n op het antwoordblad. [1,5 punten] 4) Voer een foutenanalyse uit voor je resultaten en bepaal de fout in n. Schrijf de waarde van de fout Δn op het antwoordblad. [0,5 punten] Opmerkingen De lens moet vóór de microgolfzender geplaatst worden met de platte kant naar de zender toe om een quasi-parallelle microgolfbundel te krijgen. De afstand tussen de platte kant van de lens en de hoorn van de zender moet 3 cm zijn. Voor de beste resultaten moet de afstand tussen ontvanger en zender zo groot mogelijk zijn. Afwijkingen van een vlakke golf van de door de zender uitgezonden microgolf kunnen extra pieken in het geobserveerde patroon geven. In het voorgeschreven bereik van 40 tot 75 komen als gevolg van interferentie slechts één maximum en één minimum voor.

Practicum Deel 3 Pagina 7 / 11 Deel 3 Verstoorde Totale Interne Reflectie 3.1 Inleiding Het verschijnsel Totale Inwendige Reflectie (TIR) kan optreden wanneer een vlakke golf van een optisch dicht naar een optisch minder dicht medium gaat. De geometrische optica voorspelt dat de TIR aan het grensvlak plaatsvindt. In werkelijkheid dringt de inkomende golf in het minder dichte medium door, legt een bepaalde afstand evenwijdig aan het grensvlak af en wordt dan terug gereflecteerd naar het dichte medium (zie figuur 3.1). Dit effect kan beschreven worden met behulp van een verschuiving D van de gereflecteerde golf en is bekend als de Goos-Hänchen verschuiving. n 1 Prisma θ 1 D n 2 Lucht Fig. 3.1: Schets van de TIR die een Elektro-Magnetische (EM) golf ondergaat in een prisma. De verschuiving D in lucht evenwijdig aan het oppervlak is de Goos-Hänchen verschuiving. Prisma Zender n 1 z θ 1 D n 2 Lucht d Fig. 3.2: Schets van de experimentele opstelling met de prisma s en de luchtspleet met dikte d. Verder is z de afstand van de hoek van het prisma tot de centrale as van de zender. Als een derde medium met een brekingsindex n 1 (dus gelijk aan de brekingsindex van het eerste medium) op een kleine afstand d van het eerste medium geplaatst wordt (zie figuur 3.2) vindt tunneling van de EM golf door het tweede medium plaats. Dit verschijnsel is bekend als de Verstoorde Totale Interne Reflectie (VTIR). De intensiteit I t van de doorgelaten golf neemt exponentieel af met de afstand d: ( γ ) It = I0 exp 2 d (3.1) waarbij I 0 de intensiteit van de inkomende golf voorstelt en γ gelijk is aan: n 1 2π n 2 γ = sin θ1 1 (3,2) λ n 2 1 2 2 Prisma Ontvanger λ is de golflengte van de EM golf in medium 2 en n 2 is de brekingsindex van lucht. Neem aan dat de brekingsindex van lucht gelijk is 1,0.

Practicum Deel 3 Pagina 8 / 11 3.2 Onderdelenlijst 1) Microgolfzender,A met houder,c 2) Microgolfontvanger,B met houder,c 3) Vlak-cilindrische lens,n met houder,m 4) 2 gelijkzijdige prisma s (gemaakt van paraffine),o met houder,k en draaitafel,l die als houder wordt gebruikt 5) Digitale multimeter,d 6) Hoekmeter (goniometer),j 7) Lineaal 3.3 Beschrijving van het experiment Ontwerp een experiment om de intensiteit I t als functie van de dikte d van de luchtspleet in VTIR te bepalen. Gebruik alleen de apparatuur genoemd in onderdeel 3.2. Let hierbij op: Gebruik één arm van de goniometer voor het uitlijnen van de prisma s. Let er op dat de oppervlakken van de prima s zo goed mogelijk evenwijdig aan elkaar staan. De afstand tussen het oppervlak van de lens en het oppervlak van het prisma moet 2 cm zijn. Plaats de ontvanger zodanig dat zijn hoorn in contact is met het prisma. Optimaliseer de plaats van de ontvanger langs het oppervlak van het prisma om bij elke waarde van d een maximaal signaal te krijgen. Zet de digitale multimeter op de 2 ma schaal. Doe metingen vanaf d = 0,6 cm. Stop met de metingen wanneer de aanwijzing van de multimeter minder dan 0,20 ma wordt. 3.4 Opdracht: Bepaling van de brekingsindex van het prisma [6 punten] Opdracht 1 [1 punt] Schets je meetopstelling en geef bij elk onderdeel een label volgens de tabel op bladzijde 1. Geef ook de afstand z (zie figuur 3.2) aan. Opdracht 2 Vermeld je meetresultaten in een tabel. Doe je experiment twee maal. [2,1 punten] Opdracht 3 [2,9 punten] (a) Bepaal grafisch de brekingsindex n 1 van het prisma. Doe ook de foutenberekening. (b) Vermeld op je antwoordblad de brekingsindex n 1 en de onzekerheid Δn 1.

Practicum Deel 4 Pagina 9 / 11 Deel 4 Microgolf diffractie aan een rooster van metalen staven: Bragg-reflectie 4.1 Inleiding De wet van Bragg De roosterstructuur van een kristal kan worden onderzocht met behulp van de wet van Bragg, 2dsinθ = mλ (4.1) met d de afstand tussen twee evenwijdige kristalvlakken die de röntgenstraal reflecteren ; m de orde van interferentie en θ de hoek tussen de invallende röntgenstraalbundel en de kristalvlakken. De wet van Bragg is ook bekend als Bragg-reflectie of röntgendiffractie. Een rooster van metalen staven Omdat de waarden van de golflengte van de röntgenstralen en de roosterconstante van een kristal vergelijkbaar zijn, wordt het experiment voor Braga-reflectie met röntgenstraling uitgevoerd. Voor microgolven treedt echter diffractie op in kristalstructuren met een veel grotere roosterconstante. Deze kan met een meetlat bepaald worden. b d a z y x Figuur 4.1. Een rooster van metalen staven met roosterconstanten a en b met een onderlinge afstand tussen de vlakken d.

Practicum Deel 4 Pagina 10 / 11 a b d y Figuur 4.2. Bovenaanzicht van het rooster van metalen staven zoals weergegeven in figuur 4.1 (niet op schaal). De lijnen stellen de vlakken voor van het rooster. In dit experiment wordt de wet van Bragg de roosterconstante van het rooster van metalen staven te bepalen. Zo n metaalrooster is gegeven in figuur 4.1: de metalen staven worden getoond als dikke verticale lijnen. Figuur 4.2 geeft een bovenaanzicht (omlaag kijkend langs de z-as) van het rooster van metalen staven, de punten geven de metalen staven aan en de lijnen de diagonale roostervlakken. 4.2 Onderdelenlijst x 1) Microgolfzender,A met houder,c 2) Microgolfontvanger,B met houder,c 3) Vlak-cilindrische lens,n met houder,m 4) Gesloten, verzegelde doos met een rooster van metalen staven,i 5) Draaitafel,L 6) Digitale multimeter,d 7) Hoekmeter (goniometer),j a a z y Figuur 4.3: Een eenvoudig vierkant rooster x

Practicum Deel 4 Pagina 11 / 11 In dit experiment werk je met een eenvoudig vierkant rooster van metalen staven, zoals in figuur 4.3. Het rooster zit in een dichte doos. Je moet de roosterconstante van het rooster experimenteel bepalen. MAAK DE DOOS NIET OPEN. Je krijgt geen punten als na het experiment blijkt dat het zegel van de doos verbroken is. 4.3 Opdrachten: bepaling van de roosterconstante van het gegeven eenvoudige vierkante rooster Opdracht 1 [1 punt] Teken een bovenaanzicht van het eenvoudige vierkante rooster in figuur 4.3. Geef in de tekening de roosterconstante a aan van het rooster en de afstand d tussen de diagonale vlakken. Leid met behulp van deze tekening de wet van Bragg af. Opdracht 2 [5 punten] Ontwerp een diffractie experiment, waarbij je gebruik maakt van de wet van Bragg en van het gegeven materiaal, om de roosterconstante a van het rooster te bepalen. (a) Schets de experimentele opstelling. Benoem alle onderdelen, gebruik de labels van pagina 1 en geef de hoek θ tussen zender en roostervlakken aan en de hoek ζ tussen zender en ontvanger. De diffractievlakken zijn de diagonale vlakken, die met een rode lijn op de doos worden aangegeven. [1,5 punten] (b) Voer het experiment uit voor 20 θ 50. Geef je resultaten in een tabel op het antwoordblad en noteer zowel θ als ζ. [1,4 punten] (c) Maak een grafiek van de intensiteit van de teruggekaatste bundel als functie van θ. [1,3 punten] (d) Bepaal de roosterconstante a met behulp van de grafiek en schat de meetonzekerheid. [0,8 punten] Opmerking: Voor de beste resultaten moet de zender gedurende het experiment op dezelfde plaats blijven staan. Je moet ook de afstand tussen de zender en het rooster, alsook die tussen het rooster en de ontvanger op ongeveer 50 cm houden. Gebruik alleen de diagonale vlakken in dit experiment. Je resultaten zullen niet correct zijn als je andere vlakken gebruikt. De kant van de doos met de rode lijn moet aan de bovenkant zijn.. Maak voor een grotere nauwkeurigheid gebruik van de symmetrie om de plaats van de piek in de diffractie te bepalen.

Antwoordblad Pagina 1 van 12 Country Code Student Code Deel 1: 1. Je meetresultaten zijn: For Examiners Use Only 2. De golflengte λ =

Antwoordblad Pagina 2 van 12 Country Code Student Code Deel 2: Opdracht 1 Voorwaarde voor constructieve interferentie For Examiners Use Only Voorwaarde voor destructieve interferentie Opdracht 2 (a) Schets van de meetopstelling.

Antwoordblad Pagina 3 van 12 Country Code Student Code Deel 2: Opdracht 2 (Vervolg van de vorige pagina) (b) Je meetresultaten in tabelvorm. For Examiners Use Only

Antwoordblad Pagina 4 van 12 Country Code Student Code Deel 2: Opdracht 2 (Vervolg van de vorige pagina) For Examiners Use Only (c) Teken de grafiek (op het apart bijgeleverde grafiekpapier). (d) Invalshoek θ max, die hoort bij constructieve interferentie Invalshoek θ min, die hoort bij destructieve interferentie Opdracht 3 Orde van interferentie, m = De brekingsindex n van de dunne film = Opdracht 4 Δn =

Antwoordblad Pagina 5 van 12 Country Code Student Code Deel 3: Opdracht 1 Schets van de meetopstelling. For Examiners Use Only

Antwoordblad Pagina 6 van 12 Country Code Student Code Deel 3: Opdracht 2 Je meetresultaten in tabelvorm. Voer je metingen twee keer uit. For Examiners Use Only

Antwoordblad Pagina 7 van 12 Country Code Student Code Deel 3: Opdracht 2 (Vervolg van de vorige pagina) For Examiners Use Only

Antwoordblad Pagina 8 van 12 Country Code Student Code Deel 3: Opdracht 3 For Examiners Use Only a) Teken je grafieken op het apart geleverde grafiekpapier. b) De brekingsindex n 1 = De onzekerheid n 1 =

Antwoordblad Pagina 9 van 12 Country Code Student Code Deel 4: Opdracht 1 For Examiners Use Only Boven-aanzicht van het vierkante kristalrooster: Afleiding van de wet van Bragg:

Antwoordblad Pagina 10 van 12 Country Code Student Code Deel 4: Opdracht 2 For Examiners Use Only (a) Schets je meetopstelling

Antwoordblad Pagina 11 van 12 Country Code Student Code Deel 4: Opdracht 2 (Vervolg van de vorige pagina) For Examiners Use Only (b) Je meetresultaten in tabelvorm: θ ( ) ζ ( )

Antwoordblad Pagina 12 van 12 Country Code Student Code Deel 4: Opdracht 2 (Vervolg van de vorige pagina) For Examiners Use Only (c) Teken de grafiek van de intensiteit als functie van θ op het apart geleverde grafiekpapier. (d) Rooster constante, a = Experimentele onzekerheid, Δa =