IMO-selectietoets I donderdag 7 juni 2018

Vergelijkbare documenten
IMO-selectietoets I vrijdag 6 juni 2014

Uitwerkingen toets 8 juni 2011

IMO-selectietoets I woensdag 5 juni 2013

Uitwerkingen toets 9 juni 2010

IMO-selectietoets I donderdag 2 juni 2016

Uitwerkingen toets 12 juni 2010

Selectietoets vrijdag 9 maart 2018

Uitwerkingen toets 18 maart 2011

IMO-selectietoets I donderdag 1 juni 2017

Selectietoets vrijdag 8 maart 2013

Selectietoets vrijdag 18 maart 2016

De Cirkel van Apollonius en Isodynamische Punten

IMO-selectietoets III zaterdag 4 juni 2016

IMO-selectietoets III zaterdag 3 juni 2017

7.0 Voorkennis. Definitie = Een afspraak, die niet bewezen hoeft te worden.

Selectietoets vrijdag 10 maart 2017

Selectietoets vrijdag 21 maart 2014

dan liggen C en D op dezelfde cirkelboog AB (constante hoek) dus A, B, C en D liggen op één cirkel, dus ABCD is een koordenvierhoek

8.1 Gelijkvormige en congruente driehoeken [1] Willem-Jan van der Zanden

VWO finales. versie oktober 2012

Samenvatting stellingen uit de meetkunde Moderne Wiskunde voor het VWO (bovenbouw)

Vlakke meetkunde. Verwijzingen naar definities en stellingen die bij een bewijs mogen worden gebruikt zonder nadere toelichting.

WISKUNDE-ESTAFETTE 2011 Uitwerkingen

STELLINGEN & BEWIJZEN 5VWO wiskunde B 1 e versie

Uitwerkingen tentamen Wiskunde B 16 januari 2015

12.1 Omtrekshoeken en middelpuntshoeken [1]

Vermoeden: De drie deellijnen gaan door 1 punt. 33c. Vermoeden: De drie zwaartelijnen gaan door 1 punt. 33d.

Tentamen Wiskunde B. Het gebruik van een mobiele telefoon of andere telecommunicatieapparatuur tijdens het tentamen

Meetkunde. Trainingsweekend januari Gerichte hoeken. gerichte hoeken, driehoeksongelijkheid, Ravi

Selectietoets vrijdag 22 maart 2019

Lijst van formules en verwijzingen naar definities/stellingen die in het examen vwo wiskunde B wordt opgenomen

Tentamen Wiskunde B. Het gebruik van een mobiele telefoon of andere telecommunicatieapparatuur tijdens het tentamen

1 Vlaamse Wiskunde Olympiade : Tweede Ronde.

Overzicht eigenschappen en formules meetkunde

Uitwerkingen toets 9 juni 2012

Antwoordmodel - Vlakke figuren

Eerste ronde Nederlandse Wiskunde Olympiade

Uitwerkingen wizprof D = = B 6 ronden duren 6 minuten en 66 seconden, dus 7 minuten en 6 seconden.

Blok 6B - Vaardigheden

Bewijzen onder leiding van Ludolph van Ceulen

Tentamen Wiskunde B. Het gebruik van een mobiele telefoon of andere telecommunicatieapparatuur tijdens het tentamen

Tentamen Wiskunde B CENTRALE COMMISSIE VOORTENTAMEN WISKUNDE. Datum: 16 januari uur Aantal opgaven: 5

Estafette. 36 < b < 121. Omdat b een kwadraat is, is b een van de getallen 49, 64, 81 en 100. Aangezien a ook een kwadraat is, en

Samenvatting VWO wiskunde B H04 Meetkunde

Examen VWO. wiskunde B. tijdvak 2 woensdag 21 juni uur. Bij dit examen hoort een uitwerkbijlage.

1 Vlaamse Wiskunde Olympiade : Eerste Ronde.

Een bol die raakt aan de zijden van een scheve vierhoek

Driehoeksongelijkheid en Ravi (groep 1)

12 Bewijzen in de vlakke meetkunde

Meetkundige Ongelijkheden Groep 2

Inversie. r 2 P Q. P Q =

Katern 3. Meetkunde. Inhoudsopgave. Inleiding. 1 Hoeken 2. 2 Congruentie en gelijkvormigheid 4. 3 Driehoeken 8. 4 Vierhoeken 12

jaar Wiskundetoernooi Estafette n = 2016

Laat men ook transversalen toe buiten de driehoek, dan behoren bij één waarde van v 1 telkens twee transversalen l 1 en l 2. Men kan ze onderscheiden

Eindexamen vwo wiskunde B 2013-I

Tentamen Wiskunde B. Het gebruik van een mobiele telefoon of andere telecommunicatieapparatuur tijdens het tentamen

d = 8 cm 2 6 A: = 26 m 2 B: = 20 m 2 C: = 18 m 2 D: 20 m 2 E: 26 m 2

Examen VWO. wiskunde B. tijdvak 1 dinsdag 25 mei uur. Bij dit examen hoort een uitwerkbijlage.

16.2 TREK AF VAN. Hoofdstuk 16 HAAKJES VWO. 8 a 16.0 INTRO. 1 b De uitkomsten zijn allemaal 3. c (n + 1)(n 1) (n + 2)(n 2) = 3

16.2 TREK AF VAN. Hoofdstuk 16 HAAKJES VWO. 8 a 16.0 INTRO. 1 b De uitkomsten zijn allemaal 3. c (n + 1)(n 1) (n + 2)(n 2) = 3

wiskunde B vwo 2017-I

Meetkundige ongelijkheden Groep A

Tentamen Wiskunde B. Het gebruik van een mobiele telefoon of andere telecommunicatieapparatuur tijdens het tentamen

Noordhoff Uitgevers bv

Diagnostische toets. AMB stelling van de omtrekshoek AMB ˆ ANB. AQB ARB ˆ 180 koordenvierhoekstelling =

Estafette. ABCD is een vierkant met zijden van lengte 1. Γ is de cirkel met straal 1 en middelpunt C. P is het snijpunt van lijnstuk AC met Γ. ?

Driehoeken. Enkele speciale topics. Arne Smeets. Trainingsweekend Februari 2008

Examen VWO. wiskunde B. tijdvak 2 woensdag 18 juni uur. Bij dit examen hoort een uitwerkbijlage.

Antwoorden. Magische vierkanten Vierkant voor Wiskunde Doeboek 8

WISKUNDE-ESTAFETTE 2015 Uitwerkingen

2. E Het getal is 38: 24 = 3 x 8. Tel je de cijfers op, dan krijg je = 11.

4.0 Voorkennis. 1) A B AB met A 0 en B 0 B B. Rekenregels voor wortels: Voorbeeld 1: Voorbeeld 2: Willem-Jan van der Zanden

8.0 Voorkennis. Voorbeeld 1: Bereken het snijpunt van 3x + 2y = 6 en -2x + y = 3

Hoofdstuk 4 Kansrekening

Opgave 1 - Uitwerking

Examen VWO wiskunde B. tijdvak 1 woensdag 22 mei uur. Bij dit examen hoort een uitwerkbijlage.

In de 4som-puzzel kun je de gegeven sommen variëren. Nog zo eentje.

1 Introductie. 2 Oppervlakteformules

1 Vlaamse Wiskunde Olympiade : Eerste Ronde.

2010-I. A heeft de coördinaten (4 a, 4a a 2 ). Vraag 1. Toon dit aan. Gelijkstellen: y= 4x x 2 A. y= ax

Week Hier vind je uitwerkingen van enkele opgaven uit het dictaat Grafen: Kleuren en Routeren.

4.0 Voorkennis. 1) A B AB met A 0 en B 0 B B. Rekenregels voor wortels: Voorbeeld 1: Voorbeeld 2: Willem-Jan van der Zanden

Estafette. De langste zijde wordt in twee ongelijke stukken verdeeld. Laat x de lengte van het ene stuk zijn, dan is het andere stuk 25 x.

WISKUNDE-ESTAFETTE Minuten voor 20 opgaven. Het totaal aantal te behalen punten is 500

6 A: = 26 m 2 B: = 20 m 2 C:

1 Delers 1. 3 Grootste gemene deler en kleinste gemene veelvoud 12

Over de construeerbaarheid van gehele hoeken

4 A: = 10 B: 4 C: 8 D: 8

12 Vlaamse Wiskunde Olympiade : Eerste ronde.

x y C. von Schwartzenberg 1/22 = + = Zie de lijnen in de figuur hiernaast. Zie de grafiek van k in de figuur rechts hiernaast. 2b

14.0 Voorkennis. sin sin sin. Sinusregel: In elke ABC geldt de sinusregel:

Figuren en invulbewijzen

1 Vlaamse Wiskunde Olympiade : Tweede Ronde.

P is nu het punt waarvan de x-coördinaat gelijk is aan die van het punt X en waarvan de y-coördinaat gelijk is aan AB (inclusief het teken).

wiskunde B vwo 2017-II

16 a. b a. b 6a. de Wageningse Methode Antwoorden H21 OPPERVLAKTE HAVO 1

Vlaamse Wiskunde Olympiade : eerste ronde

Uitwerkingen voorbeeldtentamen 1 Wiskunde B 2018

25 JAAR VLAAMSE WISKUNDE OLYMPIADE. De slechtst beantwoorde vragen in de eerste ronde per jaar

Enkel-, Dubbelverhouding en Harmonische Objecten

Transcriptie:

IMO-selectietoets I donderdag 7 juni 018 NEDERLANDSE W I S K U N D E OLYMPIADE Uitwerkingen Opgave 1. Gegeven is een bord met m rijen en n kolommen, waarbij m en n positieve gehele getallen zijn. Je mag één pion plaatsen op een vakje van dit bord, maar niet het vakje linksonder of het vakje rechtsboven. Vervolgens begint een slak een wandeling te maken over het bord. De slak begint in het vakje linksonder en mag horizontaal en verticaal bewegen. De slak komt niet op het vakje met de pion, maar wil verder elk vakje precies één keer aandoen, waarbij het vakje rechtsboven zijn eindpunt is. Op welke vakjes kun je de pion neerzetten zodat de slak in zijn opzet kan slagen? Oplossing. Nummer de rijen van beneden naar boven met 1 tot en met m en nummer de kolommen van links naar rechts met 1 tot en met n. De slak begint dus in vakje 1, 1) en eindigt in vakje m, n). Kleur nu de vakjes als een schaakbord, waarbij vakje i, j) zwart wordt als i + j even is en wit als i + j oneven is. Omdat m en n even zijn, zijn er evenveel zwarte als witte vakjes. De slak begint en eindigt op een zwart vakje en bezoekt tijdens zijn wandeling om en om zwarte en witte vakjes. Het aantal zwarte vakjes waar hij komt, is dus 1 groter dan het aantal witte vakjes waar hij komt. Daarom moet de pion wel op een wit vakje staan, dus een vakje i, j) met i + j oneven. We laten nu zien dat als de pion op zo n vakje staat, de slak altijd zijn wandeling kan maken. Zij 1 k m en 1 l n zo dat de pion in één van de rijen k 1 en k staat en in één van de kolommen l 1 en l. Laat de slak alle rijen met rijnummer kleiner dan k 1 in zijn geheel aflopen: de oneven rijen van links naar rechts, dan één vakje omhoog en de even rijen van rechts naar links terug. Vervolgens weer één vakje omhoog en dan is hij weer op een oneven rij. Op een gegeven moment komt de slak aan in rij k 1 en staat dan op het vakje helemaal links. Zolang de slak nog in de kolommen met nummer kleiner dan l 1 zit, bezoekt hij elk -vierkantje in rijen k 1, k) in de volgorde linksonderlinksboven-rechtsboven-rechtsonder. En dan komt hij linksonder weer aan in het volgende -vierkantje. Op een gegeven moment arriveert hij in kolom l 1. Hij staat dan op vakje k 1, l 1) en daar kan de pion niet staan, want k 1 + l 1 is even. In dit -vierkantje staat de pion ofwel linksboven ofwel rechtsonder. In het eerste geval loopt de slak linksonder-rechtsonder-rechtsboven en in het tweede geval loopt hij linksonderlinksboven-rechtsboven. In beide gevallen eindigt hij in dit -vierkantje in het vakje rechtsboven. De rest van de -vierkantjes in deze rijen kan hij dus in de volgorde linksboven-linksonder-rechtsonder-rechtsboven bezoeken. Steeds eindigt hij rechtsboven. Als hij uiteindelijk in de laatste kolom is aangekomen, gaat hij een rij omhoog, naar rij k + 1. Daar komt hij dus rechtsonderin aan. De overige rijen loopt hij weer in z n geheel af: de oneven rijen van rechts naar links, dan een vakje omhoog en de even rijen van links

naar rechts terug. In rij m eindigt hij dus rechtsboven, precies zoals gevraagd. We concluderen dat de pion op de vakjes i, j) met i + j oneven neergezet kan worden.

Opgave. Gegeven is een driehoek ABC met C = 90. Het midden van AC noemen we D en de loodrechte projectie van C op BD noemen we E. Bewijs dat de raaklijn in C aan de omgeschreven cirkel van AEC loodrecht op AB staat. Oplossing I. Noem S het snijpunt van de raaklijn en AB. We moeten dus bewijzen dat BSC = 90. Vanwege BCD = 90 = CED geldt BCD CED, dus DC = DE. Om- DB DC dat DA = DC volgt hieruit DA = DE. Samen met BDA = EDA geeft dit DB DA ADE BDA zhz). Dus ABD = EAD. Omdat SC een raaklijn is aan de omgeschreven cirkel van AEC geldt vanwege de raaklijnomtrekshoekstelling ook dat EAD = EAC = SCE. Dus SCE = ABD = SBE. Hieruit volgt dat SBCE een koordenvierhoek is. Dus BSC = BEC = 90. Oplossing II. Zij P de spiegeling van B in D. Dan snijden AC en P B elkaar middendoor, dus is CBAP een parallellogram. Dus CAP = ACB = 90 = CEP. Dit betekent dat CEAP een koordenvierhoek is en dat CP een middellijn van zijn omgeschreven cirkel is. De raaklijn in C aan deze omgeschreven cirkel staat loodrecht op de middellijn CP. Aangezien in het parallellogram AB CP, staat de raaklijn dus ook loodrecht op AB.

Oplossing III. Zij S de loodrechte projectie van C op AB. Er geldt dan BS C = 90 = BEC, dus BCS E is een koordenvierhoek. Er volgt dat EDC = 90 ECD = ECB = 180 ES C = ES A, dus EDA = 180 EDC = 180 ES A, waaruit volgt dat ADES een koordenvierhoek is. Nu is S AE = S DE. Verder is vanwege Thales D het middelpunt van de cirkel door A, C en S, dus is DS A = S AD. Deze twee resultaten samen geven EAC = S AC S AE = S AD S AE = DS A S DE. Met de buitenhoekstelling in driehoek DS B is dit gelijk aan S BD = S BE en vanwege koordenvierhoek BCS E is dat weer gelijk aan S CE. Dus EAC = S CE. Met de raaklijnomtrekshoekstelling volgt hieruit dat S C raakt aan de omgeschreven cirkel van EAC. Deze raaklijn S C staat dus inderdaad loodrecht op AB.

Opgave 3. Zij n 0 een geheel getal. Een rij a 0, a 1, a,... van gehele getallen wordt als volgt gedefinieerd: er geldt a 0 = n en voor k 1 is a k het kleinste gehele getal groter dan a k 1 waarvoor a k + a k 1 het kwadraat van een geheel getal is. Bewijs dat er precies n positieve gehele getallen zijn die niet te schrijven zijn in de vorm a k a l met k > l 0. Oplossing. Zij m = n. We bewijzen eerst dat de rij kwadraten a 0 + a 1, a 1 + a,... precies de rij m + 1), m + ),... is. Vervolgens laten we zien dat de verschillen a i a i 1 een rij opeenvolgende even getallen en een rij opeenvolgende oneven getallen vormen. Hiermee kunnen we daarna het gevraagde bewijzen. Merk op dat a 0 + a 1 het kleinste kwadraat is dat groter is dan n. Er geldt dus a 0 + a 1 = m + 1). We bewijzen nu met inductie naar i dat a i 1 + a i = m + i). Voor i = 1 hebben we dit zojuist bewezen. Stel dat a j 1 + a j = m + j). Dat betekent dat a j 1 m+j 1) anders had a j zo gekozen kunnen worden dat a j 1 + a j = m + j 1) ) en dus a j = m + j) a j 1 m + j) m + j 1) = m + 4mj + j m + mj + j + 1 m j) = m + mj + j 1 + m + j < m + mj + j + 1 + m + j m + j + 1) =. Hieruit volgt dat a j +a j+1 m+j+1). Er geldt bovendien a j +a j+1 > a j 1 +a j = m+j), dus a j + a j+1 = m + j + 1). Dit voltooit de inductie. Definieer nu b i = a i a i 1 voor alle i 1. Dan geldt b i+ b i = a i+ a i+1 a i + a i 1 = a i+ + a i+1 ) + a i + a i 1 ) a i+1 + a i ) = m + i + ) + m + i) m + i + 1) = m + i) + 4m + i) + 4 + m + i) m + i) 4m + i) = voor alle i 1. We zien nu dat b 1, b 3, b 5,...) = b 1, b 1 +, b 1 + 4,...), b, b 4, b 6,...) = b, b +, b + 4,...). Er geldt b 1 +b = a a 1 )+a 1 a 0 ) = a +a 1 ) a 1 +a 0 ) = m+) m+1) = m+3. In het bijzonder hebben b 1 en b verschillende pariteit. Nu kunnen in elk geval alle getallen

met dezelfde pariteit als b 1 en minstens gelijk aan b 1 geschreven worden als a k a k 1 voor zekere k. Hetzelfde geldt voor de getallen met dezelfde pariteit als b en minstens gelijk aan b. Alle getallen van de vorm a k a l met k l + zijn minstens gelijk aan b k + b k 1 b 1 + b en dus groter dan b 1 en groter dan b. We kunnen op deze manier dus geen nieuwe getallen meer maken. De getallen die niet te schrijven zijn als a k a l met k > l 0 zijn dus precies de getallen met dezelfde pariteit als b 1 en kleiner dan b 1 en de getallen met dezelfde pariteit als b en kleiner dan b. Dit zijn in totaal b1 1 b 1 + getallen, waarbij binnen de haken van de entierfunctie precies één van beide keren een geheel getal staat. We kunnen dit dus schrijven als b 1 1 + b 1 1 = b 1 + b 3 = m = m. Er zijn dus precies m = n positieve gehele getallen die niet op de gevraagde manier te schrijven zijn.

Opgave 4. Gegeven is een verzameling A van functies f : R R. Voor alle f 1, f A bestaat er een f 3 A zodat f 1 f y) x ) + x = f 3 x + y) voor alle x, y R. Bewijs dat voor alle f A geldt: voor alle x R. f x fx) ) = 0 Oplossing. Invullen van x = 0 geeft f 1 f y) ) = f 3 y), dus de f 3 die bij f 1 en f hoort, is blijkbaar de samenstelling f 3 x) = f 1 f x)). Invullen van x = y geeft nu dat voor alle f 1, f A f 1 f y) + y ) y = f 3 0) = f 1 f 0)) voor alle y R. Invullen van x = f y) geeft dat er voor alle f 1, f A een f 3 A bestaat met f 1 0) + f y) = f 3 f y) + y ) voor alle y R. We hebben hiervoor gezien dat we f 3 f y) + y) kunnen schrijven als y + f 3 f 0)). Dus f y) = y + f 3 f 0)) f 1 0) voor alle y R. We concluderen dat er een d R is, onafhankelijk van y, zodat f y) = y+d voor alle y R. Dus elke f A is van de vorm fx) = x + d met d een constante. Er geldt dan f x fx) ) = f x x + d) ) = f d) = d + d = 0.