Case Simulink. Team name: SolarMatic. Group:AM13
|
|
|
- Simona Claessens
- 10 jaren geleden
- Aantal bezoeken:
Transcriptie
1 Team name: SolarMatic Group:AM13 Team members: Thomas Deliens Michaël Op de Beeck Renaud Peeters Tom Salens Jens Sneyers Karel Winderickx Case Simulink
2 Weerstandswaarde waarbij het paneel een maximum vermogen levert. Om de weerstandwaarde te vinden, waarbij het zonnepaneel het maximum vermogen levert, maken we gebruik van Matlab en Simulink. Op Toledo konden we hier een script en een model voor terugvinden. In het script van Matlab hebben wij volgende parameters ingevuld: Figuur 1: Parameters Het simulink model dat we gebruikt hebben is het volgende: Figuur 2: Simulink model Na uitvoeren van het script (zie bijlage 1) bekomen we volgende grafieken: Figuur 3: Links: Stroom Spanningsgrafiek Rechts: Vermogen - Spanningsgrafiek
3 Aan de hand van deze grafieken kunnen we zien bij welke spanning het vermogen maximaal is. Uit de stroom spanningsgrafiek halen we dan de overeenkomstige stroom bij deze spanning. Via de wet van Ohm kunnen we dan de uiteindelijke weerstand berekenen waarbij het vermogen maximaal is. Uit de rechtse grafiek kunnen we een maximaal vermogen van 2,82 Watt aflezen en dit bij een spanning van 6,93 Volt. Uit de linkse grafiek vinden we dan dat de stroom 0,407 Ampère bedraagt. Met behulp van de wet van ohm vinden we dan: R = V I = 6,93 = 17,0 Ohm 0,41 Hieruit besluiten we dus dat het zonnepaneel een maximum vermogen levert als er een weerstand van 17,0 Ohm aan geschakeld is. Simulatie met DC- motor en zonder zonnepaneel Deze keer gaan we de simulatie uitvoeren zonder zonnepaneel, concreet wil dit zeggen dat we de irradiance nu op nul zetten. Als er geen zon op schijnt kan het paneel ook geen vermogen leveren. Ook zal het simulink model aangepast moeten worden, omdat we nu te maken hebben met een daling in het begin van het parcours. Gegeven is dat het wagentje op een hoogte van 0.25m staat en dan 2m naar beneden rolt. Dan krijgen we volgende schets: Figuur 4 Schets van de helling sin α = α = rad De hellingshoek is dus rad. Deze waarde gaan we in het Simulink model moeten brengen. Hiervoor dient enkel een klein onderdeel aangepast te worden.
4 Als er nog geen 2 meter is afgelegd dan is de hoek van de daling gelijk aan α. Deze hoek is negatief omdat de helling naar beneden is. Na twee meter verandert de switch naar een hellingshoek van nul radialen. Na de simulatie kunnen we aan de hand van de grafiek zien wanneer het wagentje tot stilstand komt en hoever hij is geraakt. Op de grafiek is te zien dat het wagentje de eerste twee meter zal versnellen doordat hij van de helling zal afrijden. Vanaf dat het rechte stuk bereikt is, vertraagt de wagen tot hij na 9.05 meter helemaal tot stilstand komt. Figuur 5: Snelheid - afstandsgrafiek
5 Simulatie van de race In dit onderdeel gaan we de race simuleren met behulp van Matlab en Simulink. Hiervoor hebben we in simulink een model gemaakt (Zie bijlage 2). In dit model kunnen we de race omstandigheden vrij nauwkeurig nabootsen en daardoor kunnen we allerhande grafieken maken waaruit we kunnen zien hoe goed of slecht onze SSV het zou doen. Deze grafiek wordt hieronder besproken. Een eerste grafiek die Matlab genereert uit de Simulink schakeling is een grafiek waarbij de gear ratio vergeleken wordt met de tijd die nodig is om het parcours af te leggen. Op deze grafiek is te zien dat het parcours het snelst wordt afgelegd met een gear ratio van 6, met in het achterhoofd houdende dat de diameter van het wiel 6 cm is. In een voorgaand Matlab bestand werd de gear ratio vastgelegd op 8,5. Op deze grafiek is te zien dat de reistijd niet echt veel toeneemt bij een gear ratio van 8,5. Dit wil zeggen dat de vorig bepaalde waarde goed berekent was en ook behouden kan blijven. Figuur 6: Reistijd - Gearratio grafiek Een volgende grafiek geeft de snelheid ten opzichte van de positie op het parcours weer. Op deze grafiek is te zien dat de wagen verder rijdt dan de 14m van het parcours. Dit komt omdat de waarden werden berekent met een tijdsinterval van 10 seconden. Verder is ook te zien dat de snelheid in het begin exponentieel toeneemt en tegen 10m begint te stagneren. Dit toont aan dat hier de topsnelheid bijna bereikt wordt. De maximale snelheid die hier bereikt wordt is 3.2 m/s. Na 10m, dus als de helling op het parcours begint, daalt de snelheid weer exponentieel tot deze stagneert op een waarde van ongeveer 2.7 m/s.
6 Figuur 7: Snelheid - Positie grafiek Op de derde grafiek wordt het koppel uitgezet te opzichte van de positie. Deze grafiek laat duidelijk zien dat wanneer de SSV vertrekt hij een maximaal koppel heeft. Naarmate de snelheid toeneemt neemt ook het toerental toe en daalt het koppel. Wanneer na 10m de helling bereikt wordt stijgt het koppel weer doordat de snelheid en dus ook het toerental vermindert. Uiteindelijk stagneert deze grafiek wanneer de maximum snelheid op de berg bereikt wordt. Dit laatste zal in de race niet gebeuren aangezien het parcours maar 14m lang is. Figuur 8: Koppel - Positie grafiek
7 De laatste grafiek toont de positie ten opzichte van de reistijd. In het begin van deze grafiek is te zien dat de positie maar weinig toeneemt met de tijd. Naarmate de snelheid stijgt wordt er meer afstand afgelegd in een kleinere tijd. Het zou logisch zijn dat na 10m een wijziging in de grafiek ontstaat omdat de SSV de helling bereikt. Maar omdat het snelheidsverschil niet echt heel groot is, is er op de grafiek maar weinig van te zien. Figuur 9: Positie - Tijd grafiek
8 Besluit Uit deze simulatie kunnen we zien hoe onze SSV het zou doen moesten we ermee gaan racen. Dit is handig om op voorhand te weten om te zien waar we eventueel nog aan kunnen werken om dit nog te verbeteren of om zelf bij andere teams te zien hoe zij het ervan af brengen en die waarden te vergelijken met de onze. Daardoor krijgen we een duidelijker beeld over hoe goed/slecht onze SSV uiteindelijk is. Maar deze conclusies moeten wel ergens genuanceerd worden aangezien er een deel van de gebruikte parameters gebaseerd zijn op berekende gokken. Ze zijn dus ergens wel correct maar nog steeds niet perfect. Het kan dus zijn dat de uiteindelijke waarden nog verschillen van de waarden die we hier hebben berekend.
9 Bijlagen Bijlage 1: clear all; close all; %%% Solar Power Ir = 800 ; % solar irradiance [W/m^2] Is = 1e-8 ; % saturation current [A] Isc = 0.37 ; % short circuit current [A] Voc = 8.15/15; % Open circuit voltage [V] Ir0 = 700; % irradiance used for measurements [W/m^2] m = 1.2; % diode quality factor %%% Motor parameters Ra =3.32 ; % Weerstand van de motor [ohm] Km = ; % Koppel Constante[Nm/A] L = ; % Termische inductantie [H] Im =4.10 ; % Rotor inertie [g*cm^2] Cm = e-5 ; % [N*m/(rad/s)] Rendement=0.84 ; %Rendenment van de motor [%] NlC = 0.021; %No load current [A] DC = 9; %DC supply [V] %%% SSV parameter mass =0.8 ; % Massa SSV [kg] Cw = 0.75; % Drag coefficient A = ; % Frontale oppervlakte SSV [m^2] rho =1.293 ; % Dichtheid van de lucht [kg/m^3] Crr =0.025 ; %Rolweerstand g=9.81 ; %%% Wheel radius r =0.02 ; % Straal van de wielen [m] %%% Track Alpha = ; %Hellingshoek result=[]; tn=[]; for ratio=4.0:0.5:15 ratio tn=[tn ratio]; % Extend vector with current ratio sim('solar_panel_model3',10); % Simulate Simulink model for 10 s [i,j]=find(yout(:,2)>14); % find when position of 14 m is achieved if isempty(i) result = [result 10]; % if not achieved take time = 10 s else result = [result tout(i(1))]; % put travel time in vector end end
10 figure(3) plot(tn,result,'*') % plot gear ratio versus travel time xlabel('gear ratio') ylabel('travel time [s]') axis([ ]); [opt,i]=min(result); % find minimal travel time ratio=tn(i); % select gear ratio corresponding to the minimal travel time % simulate once more with best gear ratio and make a few plots sim('solar_panel_model3',10); figure(4) plot(yout(:,2),yout(:,1)) xlabel('position [m]') ylabel('velocity [m/s]') figure(5) plot(tout,yout(:,2)) xlabel('time [s]') ylabel('position [m]') figure(6) plot(yout(:,2),yout(:,3)) xlabel('position [m]') ylabel('torque [Nm]')
11 Bijlage 2:
Case Simulink. Team PM 12: Joris Brankaer Arne Vanderlinden Jens Noë Carl Uydens Tom Vranckx Ben Eisenberg. 2e bac groep 11
Case Simulink Team PM 12: Joris Brankaer Arne Vanderlinden Jens Noë Carl Uydens Tom Vranckx Ben Eisenberg 2e bac groep 11 22 maart 2013 Inleiding In deze Simulink case wordt het gedrag van onze SSV gesimuleerd
Meting zonnepaneel. Voorbeeld berekening diodefactor: ( ) Als voorbeeld wordt deze formule uitgewerkt bij een spanning van 7 V en 0,76 A:
Meting zonnepaneel Om de beste overbrengingsverhouding te berekenen, moet de diodefactor van het zonnepaneel gekend zijn. Deze wordt bepaald door het zonnepaneel te schakelen aan een weerstand. Een multimeter
Case 1 en Simulink. 1. Diodefactor bepalen. I = I sc - I s (e!
Case 1 en Simulink 1. Diodefactor bepalen Om de diodefactor te berekenen werden eerst een aantal metingen gedaan met het zonnepaneel en de DC- motor. Er werd een kring gemaakt met het zonnepaneel en een
Case Simulink EE4- Building a SSV - Team PM1 21 maart 2014
Case Simulink EE4- Building a SSV - Team PM1 21 maart 2014 Inhoudsopgave Inhoudsopgave... 1 Figurenlijst... 1 Inleiding... 2 Gedrag van het zonnepaneel gekoppeld aan een weerstand... 2 Gedrag van de DC-motor
Simulink. Deel1. Figuur 1 Model van het zonnepaneel in Simulink.
Simulink Deel1 In dit deel van het ontwerp simuleren we het gedrag van onze zonnepanneel bij weerstanden tussen 10 Ohm en 100 Ohm. Een beeld van hoe het model in Simulink is opgesteld is in figuur 1 opgenomen.
Verslag: Case 1 Team: Hyperion
Verslag: Case 1 Team: Hyperion Glenn Sommerfeld Jeroen Vandebroeck Ilias viaene Christophe Vandenhoeck Jelle Smets Tom Wellens Jan Willems Gaetan Rans 1. Zonnepaneel 1.1 Meetwaarden Om de eigenschappen
Case 1 en Case simulink
Team Venture Groep AM12 E E 4 B u i l d i n g a s s v Voorbereid voor: Marc Smeulders Voorbereid door: Anton Rauw Jasper Derden Alexander Van Kerckhoven Yassir Habboub Felix Porres Bartel Buls Datum: 22-03
De bisectie methode uitgelegd met een makkelijk voorbeeld
De Bisectie methode De bisectie methode uitgelegd met een makkelijk voorbeeld De bisectie methode is een recursieve methode om punten van een functie te gaan afschatten. Hierbij gaat men de functiewaarde
Engineering Experience 4: SSV. Jan Fransen Soroush Qanawizian Stijn Vrancken Vince Vloeberghs Yannick De Waelheyns
Engineering Experience 4: SSV Teamleden: Bert Janssens Jan Fransen Soroush Qanawizian Stijn Vrancken Vince Vloeberghs Yannick De Waelheyns 2 INHOUDSOPGAVE: 1) CONCEPTUEEL DESIGN 2) MECHANISCHE ANALYSE
Groep 13 CASE SSV DEEL 2 EE4. Bas Jan Renders Mathijs Tielens Jitse Meulenijzer Alexander Blockhuys Casper Antonio Jan Van Hemelen
Groep 13 CASE SSV DEEL 2 EE4 Bas Jan Renders Mathijs Tielens Jitse Meulenijzer Alexander Blockhuys Casper Antonio Jan Van Hemelen 0 1. Bevindingen & nieuwe Sankeydiagrammen Als we onze wagen van de helling
Case SSV Deel 2: PM3
Case SSV Deel 2: PM3 Ontwerp en bouw een SSV Adriaenssens Ben, Billiet Alexander, Crabbé Joris, Rogiers Matthias, Timmerman Willem, Van Coillie Karst Sunshark 9 mei 2014 Sunshark - 9 mei 2014 II ABSTRACT
Samenvatting snelheden en 6.1 6.3
Samenvatting snelheden en 6.1 6.3 Boekje snelheden en bewegen Een beweging kan je op verschillende manieren vastleggen: Fotograferen met tussenpozen, elke foto is een gedeelte van een beweging Stroboscopische
Vraag 1 Vraag 2 Vraag 3 Vraag 4 Vraag 5
Vraag 1 Een hoeveelheid ideaal gas is opgesloten in een vat van 1 liter bij 10 C en bij een druk van 3 bar. We vergroten het volume tot 10 liter bij 100 C. De einddruk van het gas is dan gelijk aan: a.
2011-2012 [EE4: CASE SSV]
2011-2012 Internationale Hogeschool Leuven Engineering College Groep T Sus Benoit, Zeger Boels, Sam Laermans, Joris Vandebosch, Sander Vanvuchelen, Jason Verheulpen, Raphaël Weuts, Lennert Wouters [EE4:
jaar: 1989 nummer: 17
jaar: 1989 nummer: 17 De snelheidscomponent van een deeltje voldoet aan : v x = a x t, waarin a x constant is en negatief. De plaats van het deeltje wordt voorgesteld door x. Aangenomen wordt dat x= 0
Procesverslag. Inleiding. Planning
Procesverslag Inleiding Dit verslag dient vooral om te bespreken hoe we zelf alles ervaren hebben. In het begin van ons project hebben we een hele planning gemaakt waarin staat wie welke verantwoordelijkheden
Vraag Antwoord Scores. Aan het juiste antwoord op een meerkeuzevraag wordt 1 scorepunt toegekend.
Beoordelingsmodel Aan het juiste antwoord op een meerkeuzevraag wordt scorepunt toegekend. Opgave SPECT-CT-scan B maximumscore 3 antwoord: 99 99 Mo Tc + 0 e + ( γ) of 99 99 Mo Tc + e + ( γ ) 4 43 het elektron
- KLAS 5. a) Bereken de hellingshoek met de horizontaal. (2p) Heb je bij a) geen antwoord gevonden, reken dan verder met een hellingshoek van 15.
NATUURKUNDE - KLAS 5 PROEFWERK H6 22-12-10 Het proefwerk bestaat uit 3 opgaven met in totaal 31 punten. Gebruik van BINAS en grafische rekenmachine is toegestaan. Opgave 1: De helling af (16p) Een wielrenner
RBEID 16/5/2011. Een rond voorwerp met een massa van 3,5 kg hangt stil aan twee touwtjes (zie bijlage figuur 2).
HOOFDSTUK OOFDSTUK 4: K NATUURKUNDE KLAS 4 4: KRACHT EN ARBEID RBEID 16/5/2011 Totaal te behalen: 33 punten. Gebruik eigen grafische rekenmachine en BINAS toegestaan. Opgave 0: Bereken op je rekenmachine
VAK: natuurkunde KLAS: Havo 4 DATUM: 20 juni 2013. TIJD: 10.10 11.50 uur TOETS: T1 STOF: Hfd 1 t/m 4. Opmerkingen voor surveillant XXXXXXXXXXXXXXXXXXX
VAK: natuurkunde KLAS: Havo 4 DATUM: 20 juni 2013 TIJD: 10.10 11.50 uur TOETS: T1 STOF: Hfd 1 t/m 4 Toegestane hulpmiddelen: Binas + (gr) rekenmachine Bijlagen: 2 blz Opmerkingen voor surveillant XXXXXXXXXXXXXXXXXXX
=0.327W Dit verlies komt overeen met een verlies van ongeveer 6.8%. =0.688W Dit verlies komt overeen met een verlies van ongeveer 14.33%.
Sankey-diagram Er wordt vertrokken van een beginsituatie waarbij er zonne-energie invalt op het. Het vermogen dat hierbij verkregen wordt kan aan de hand van het piekvermogen van het zonnepaneel (1000W/m²)
Case SSV: Part 1 EE4- Building a SSV
Case SSV: Part 1 EE4- Building a SSV Quentin Cant Hendrik Celis Tom Keuleneer Wouter Segers Christoph Van Winkel Koen Verniers Team PM1 Coach: Goethals Pauwel 21 maart 2014 Inhoudsopgave Inhoudsopgave...
Eindexamen natuurkunde pilot havo 2010 - I
Eindexamen natuurkunde pilot havo 00 - I Beoordelingsmodel Aan het juiste antwoord op een meerkeuzevraag worden twee punten toegekend. Opgave Eliica maximumscore uitkomst: De actieradius is 3, 0 km. de
EE 4: Samenwerkingscontract
EE 4: Samenwerkingscontract Door team UmiToy (groep 201 team 1) Inleiding: Dit document bevat het huidige plan van aanpak en kan eventueel na gezamenlijk overleg bijgewerkt worden in functie van de doelstellingen.
Eindexamen natuurkunde 1-2 vwo 2004-II
Opgave 2 Fietskar Lees het artikel. artikel Fietskar duwt fiets Het is de omgekeerde wereld: normaal trekt een fietser zijn bagagekarretje voort, maar de fietskar die hiernaast te zien is, duwt de fiets.
toelatingsexamen-geneeskunde.be
Fysica juli 2009 Laatste update: 31/07/2009. Vragen gebaseerd op het ingangsexamen juli 2009. Vraag 1 Een landingsbaan is 500 lang. Een vliegtuig heeft de volledige lengte van de startbaan nodig om op
TWEEDE RONDE NATUURKUNDE OLYMPIADE 2014 TOETS 1. 23 APRIL 2014 10.30 12.30 uur
TWEEDE RONDE NATUURKUNDE OLYMPIADE 2014 TOETS 1 23 APRIL 2014 10.30 12.30 uur 1 RONDDRAAIENDE MASSA 5pt Een massa zit aan een uiteinde van een touw. De massa ligt op een wrijvingloos oppervlak waar het
PROJECT 1: Kinematics of a four-bar mechanism
KINEMATICA EN DYNAMICA VAN MECHANISMEN PROJECT 1: Kinematics of a four-bar mechanism Lien De Dijn en Celine Carbonez 3 e bachelor in de Ingenieurswetenschappen: Werktuigkunde-Elektrotechniek Prof. Dr.
Een kogel die van een helling afrolt, ondervindt een constante versnelling. Deze versnelling kan berekend worden met de formule:
Voorbeeldmeetrapport (eenparig versnelde beweging stopwatch en meetlat) Eenparig versnelde beweging stopwatch en meetlat. Doel van de proef Een kogel die van een helling afrolt, voert een eenparig versnelde
Jeroen Berwaers Steven Boeckx Laurens De Meyere Maarten Derveaux Tristan Geeraert Iris Minten. 2 e bac groep PM2
Jeroen Berwaers Steven Boeckx Laurens De Meyere Maarten Derveaux Tristan Geeraert Iris Minten 2 e bac groep PM2 21 maart 2014 Geschreven in opdracht van Punch Powertrain Solar Team 21 maart 2014 Jeroen
Opgaven elektrische machines ACE 2013
Opgaven elektrische machines ACE 2013 1a. Geef de relatie tussen koppel en stroom bij een gelijkstroommachine 1b. Geef de relatie tussen hoeksnelheid en geïnduceerde spanning van een gelijkstroommachine
Arbeid, vermogen en rendement
Arbeid, vermogen en rendement Formules Arbeid Arbeid is een maat van het werk dat geleverd wordt door een krachtbron om een voorwerp te verplaatsen. Als een kracht een verplaatsing tot gevolg heeft dan
jaar: 1990 nummer: 06
jaar: 1990 nummer: 06 In een wagentje zweeft een ballon aan een koord en hangt een metalen kogel via een touw aan het dak (zie figuur). Het wagentje versnelt in de richting en in de zin aangegeven door
Fysica. Indien dezelfde kracht werkt op een voorwerp met massa m 1 + m 2, is de versnelling van dat voorwerp gelijk aan: <A> 18,0 m/s 2.
Vraag 1 Beschouw volgende situatie nabij het aardoppervlak. Een blok met massa m 1 is via een touw verbonden met een ander blok met massa m 2 (zie figuur). Het blok met massa m 1 schuift over een helling
J De centrale draait (met de gegevens) gedurende één jaar. Het gemiddelde vermogen van de centrale kan dan berekend worden:
Uitwerking examen Natuurkunde1 HAVO 00 (1 e tijdvak) Opgave 1 Itaipu 1. De verbruikte elektrische energie kan worden omgerekend in oules: 17 = 9,3 kwh( = 9,3 3, ) = 3,3 De centrale draait (met de gegevens)
Eindexamen natuurkunde 1-2 havo 2000-I
- + - + Eindexamen natuurkunde -2 havo 2000-I 4 Antwoordmodel Opgave LEDs voorbeelden van schakelschema s: 50 Ω V LED A 50 Ω A V LED Als slechts één meter juist is geschakeld: punt. 2 uitkomst: R = 45
HAVO & VHBO 1995 Natuurkunde tijdvak 1
2 2 1 uitkomst: 1,2 10 2 W 1 gebruik van P = I 2 R 3 3 2 uitkomst: 2,9 10 2 A 1 gebruik van P p = P s 1 gebruik van P = VI 3 3 3 uitkomst: 2,5 h 1 berekenen laadvermogen 1 gebruik van U = Pt 2 2 4 uitkomst:
Leerstof: Hoofdstukken 1, 2, 4, 9 en 10. Hulpmiddelen: Niet grafische rekenmachine, binas 6 de druk. Let op dat je alle vragen beantwoordt.
Oefentoets Schoolexamen 5 Vwo Natuurkunde Leerstof: Hoofdstukken 1, 2, 4, 9 en 10 Tijdsduur: Versie: A Vragen: Punten: Hulpmiddelen: Niet grafische rekenmachine, binas 6 de druk Opmerking: Let op dat je
Space Experience Curaçao
Space Experience Curaçao PTA T1 Natuurkunde SUCCES Gebruik onbeschreven BINAS en (grafische) rekenmachine toegestaan. De K.L.M. heeft onlangs aangekondigd, in samenwerking met Xcor Aerospace, ruimte-toerisme
Examen HAVO. natuurkunde 1
natuurkunde 1 Examen HAVO Hoger Algemeen Voortgezet Onderwijs Tijdvak 1 Dinsdag 24 mei 13.30 16.30 uur 20 05 Voor dit examen zijn maximaal 76 punten te behalen; het examen bestaat uit 25 vragen. Voor elk
Eindrapport. Jeffrey Gijbels Joke Decubber Louis Ghesquiere Olivier Vranken Rens Vanderheyden Stijn Martens Yanick Van Hoeymissen Vince Vloeberghs
Eindrapport Jeffrey Gijbels Joke Decubber Louis Ghesquiere Olivier Vranken Rens Vanderheyden Stijn Martens Yanick Van Hoeymissen Vince Vloeberghs Helios Racing Team Pagina 2 Voorwoord Dit project kadert
Uitwerkingen opgaven hoofdstuk 4
Uitwerkingen opgaven hoofdstuk 4 4.1 De eerste wet van Newton Opgave 7 Opgave 8 a F zw = m g = 45 9,81 = 4,4 10 N b De zwaartekracht werkt verticaal. Er is geen verticale beweging. Er moet dus een tweede
Oefenopgaven versnelling, kracht, arbeid. Werk netjes en nauwkeurig. Geef altijd berekeningen met Gegeven Gevraagd Formule Berekening Antwoord
Oefenopgaven versnelling, kracht, arbeid Werk netjes en nauwkeurig. Geef altijd berekeningen met Gegeven Gevraagd Formule Berekening Antwoord Noteer bij je antwoord de juiste eenheid. s = v * t s = afstand
Naam: examennummer:.
Naam: examennummer:. Geef de uitwerking van de opgaven steeds op de lege zijde rechts naast de opgave. Geef duidelijk de onderdelen aan. De vragen moeten op de stencils beantwoord worden. Lever geen andere
Plan Van Aanpak. Aanleiding. Goedkeuring en bijstelling. Projectbeschrijving
Plan Van Aanpak Aanleiding Dit PVA werd opgesteld op vraag van Peter Slaets. De laatstgenoemde zou willen dat wij, Lightspeed, een Small Solar Vehicle (SSV) ontwerpen en bouwen, rekening houdend met een
Probeer de vragen bij Verkennen zo goed mogelijk te beantwoorden.
1 Formules gebruiken Verkennen www.math4all.nl MAThADORE-basic HAVO/VWO 4/5/6 VWO wi-b Werken met formules Formules gebruiken Inleiding Verkennen Probeer de vragen bij Verkennen zo goed mogelijk te beantwoorden.
Een model voor een lift
Een model voor een lift 2 de Leergang Wiskunde schooljaar 213/14 2 Inhoudsopgave Achtergrondinformatie... 4 Inleiding... 5 Model 1, oriëntatie... 7 Model 1... 9 Model 2, oriëntatie... 11 Model 2... 13
Eindexamen vwo natuurkunde pilot 2012 - I
Eindexamen vwo natuurkunde pilot 0 - I Opgave Lichtpracticum maximumscore De buis is aan beide kanten afgesloten om licht van buitenaf te voorkomen. maximumscore 4 De weerstanden verhouden zich als de
Eindexamen havo natuurkunde pilot 2013-I
Eindexamen havo natuurkunde pilot 203-I Beoordelingsmodel Opgave Radontherapie maximumscore 2 Uit de figuur blijkt dat door het verval een kern ontstaat met twee protonen en in totaal vier nucleonen minder
Studenten van de elektronica afdeling van het VTI testen de vorig jaar gebouwde Savonius windturbine uit.
Studenten van de elektronica afdeling van het VTI testen de vorig jaar gebouwde Savonius windturbine uit. VTI Aalst: een school van techniek en toegepaste wetenschappen. De Beer Gino, http://users.telenet.be/laboee/
ALGEMEEN 1. De luchtdruk op aarde is ongeveer gelijk aan. A 1mbar. B 1 N/m 2. C 13,6 cm kwikdruk. D 100 kpa.
LGEMEEN 1 De luchtdruk op aarde is ongeveer gelijk aan 1mbar. B 1 N/m 2. C 13,6 cm kwikdruk. D 100 kpa. 5 Van een bi-metaal maakt men een thermometer door het aan de ene kant vast te klemmen en aan de
Construeren III: opdracht B Groep B Docent: Bert Broeren
Construeren III: opdracht B Groep B Docent: Bert Broeren Vermogen gebruiker Om er achter te komen hoeveel vermogen de persoon kan leveren tijdens het vluchten op de vluchtvoertuig is er gekeken naar een
Eindexamen natuurkunde vwo II
Eindexamen natuurkunde vwo 00 - II Beoordelingsmodel Opgave Sopraansaxofoon maximumscore 4 uitkomst: F d = 7, N voorbeeld van een bepaling: Er geldt: Fr z z= Fr d d. Opmeten in de figuur levert: rz =,7
Eindrapport EE4. Green Solar Car. Leuven Engineering College
Leuven Engineering College Green Solar Car Eindrapport EE4 Engineering Experience 4 Academiejaar 2010-2011 2 de studiefase industriële wetenschappen Team GSC Wouter Aerts Tine Deckers Michael De Wachter
Eindexamen natuurkunde 1 havo 2005-I
Opgave 1 Nieuwe bestralingsmethode Lees onderstaand artikel. artikel Sinds kort experimenteert men met een nieuwe methode om tumoren te behandelen. Aan een patiënt wordt borium-10 toegediend. Deze stof
Tentamen Inleiding Meten en Modelleren 8C120-2011 6 april 2011, 09:00-12:00
Tentamen Inleiding Meten en Modelleren 8C20-20 6 april 20 09:00-2:00 Dit tentamen bestaat uit 4 opgaven. Indien u een opgave niet kunt maken geeft u dan aan hoe u de opgave zou maken. Dat kan een deel
Eindexamen natuurkunde 1 havo 2003-II
Eindexamen natuurkunde havo 00-II Opgave Visby-lens Maximumscore 4 uitkomst: n =,5 De invalshoek i 54 en de brekingshoek r. sin i Bij lichtbreking geldt: n. sin r sin54 0,809 Hieruit volgt dat n, 5. sin
a tegen 1/(1+0,2*(R/r)^2)
Kegelproefje Een proefje met het laten rollen van een dubbele kegel (met bodemstraal R) over een iets schuinstaande rails, leek me wel aardig om te doen. Twee uur verder met meten en doen: Kom ik op een
Plan van aanpak.
Plan van aanpak 1. Inleiding Dit plan van aanpak werd opgesteld naar aanleiding van het vak Engineering Experience IV. Hierbij moet elk team een Small Solar Vehicle (SSV) ontwerpen en bouwen rekening houdend
koper hout water Als de bovenkant van het blokje hout zich net aan het wateroppervlak bevindt, is de massa van het blokje koper gelijk aan:
Fysica Vraag 1 Een blokje koper ligt bovenop een blokje hout (massa mhout = 0,60 kg ; dichtheid ρhout = 0,60 10³ kg.m -3 ). Het blokje hout drijft in water. koper hout water Als de bovenkant van het blokje
Hoofdstuk 3 Kracht en beweging. Gemaakt als toevoeging op methode Natuurkunde Overal
Hoofdstuk 3 Kracht en beweging Gemaakt als toevoeging op methode Natuurkunde Overal 3.1 Soorten krachten Twee soorten grootheden Scalars - Grootte - Eenheid Vectoren - Grootte - Eenheid - Richting Bijvoorbeeld:
Elektro-magnetisme Q B Q A
Elektro-magnetisme 1. Een lading QA =4Q bevindt zich in de buurt van een tweede lading QB = Q. In welk punt zal de resulterende kracht op een kleine positieve lading QC gelijk zijn aan nul? X O P Y
Materialen in de elektronica Verslag Practicum 1
Materialen in de elektronica Verslag Practicum 1 Academiejaar 2014-2015 Groep 2 Sander Cornelis Stijn Cuyvers In dit practicum zullen we de diëlektrische eigenschappen van een vloeibaar kristal bepalen.
natuurkunde havo 2018-I
Aan het juiste antwoord op een meerkeuzevraag wordt scorepunt toegekend. Scheepsradar maximumscore uitkomst: s =,9 0 4 m Elektromagnetische golven bewegen met de lichtsnelheid. De afstand die 8 4 het signaal
Eindexamen natuurkunde havo I
Beoordelingsmodel Opgave Eliica maximumscore uitkomst: De actieradius is 3, 0 km. de energie van de accu's De actieradius is gelijk aan. het energieverbruik per km 55 Hieruit volgt dat de actieradius 3,
Eindexamen vwo natuurkunde 2013-I
Eindexamen vwo natuurkunde 03-I Beoordelingsmodel Opgave Sprint maximumscore De snelheid is constant omdat het (s,t)-diagram (vanaf 4 seconde) een rechte lijn is. De snelheid is gelijk aan de helling van
Hoofdstuk 3 Kracht en beweging. Gemaakt als toevoeging op methode Natuurkunde Overal
Hoofdstuk 3 Kracht en beweging Gemaakt als toevoeging op methode Natuurkunde Overal 3.1 Soorten krachten Twee soorten grootheden Scalars - Grootte - Eenheid Vectoren - Grootte - Eenheid - Richting Bijvoorbeeld:
Het Geheim van Wielrennen. De natuurkunde van het fietsen
Het Geheim van Wielrennen De natuurkunde van het fietsen Tot nu toe hebben we het in onze artikelen voor TriPro vooral gehad over het vermogen van onze menselijke motor. We hebben gezien dat ons vermogen
Onderzoek werking T-verter.
Onderzoek werking T-verter. De Beer Gino Page 1 02/10/2007 Inhoudstabel: 1. Doelstellingen. 2. Benodigd materiaal. 3. Bespreking van de frequentieregelaar. 4. Instellingen en gebruik van de frequentieregelaar.
www. Fysica 1997-1 Vraag 1 Een herdershond moet een kudde schapen, die over haar totale lengte steeds 50 meter lang blijft, naar een 800 meter verderop gelegen schuur brengen. Door steeds van de kop van
Auteur(s): Harry Oonk Titel: In de afdaling Jaargang: 10 Jaartal: 1992 Nummer: 2 Oorspronkelijke paginanummers: 67-76
Auteur(s): Harry Oonk Titel: In de afdaling Jaargang: 10 Jaartal: 1992 Nummer: 2 Oorspronkelijke paginanummers: 67-76 Deze online uitgave mag, onder duidelijke bronvermelding, vrij gebruikt worden voor
Elektrische energie en elektrisch vermogen
Elektrische energie en elektrisch vermogen Grootheid Symbool Eenheid Lading Q C: Coulomb Spanning U V: Volt Stroomsterkte I A: Ampère Energie E J: Joule Weerstand R Ω: Ohm Spanning: noodzakelijk om lading
TECHNISCHE UNIVERSITEIT DELFT Faculteit der Civiele Techniek en Geowetenschappen
TECHNISCHE UNIVERSITEIT DELFT Faculteit der Civiele Techniek en Geowetenschappen TENTAMEN CTB1210 DYNAMICA en MODELVORMING d.d. 28 januari 2015 van 9:00-12:00 uur Let op: Voor de antwoorden op de conceptuele
Uitwerkingen van de opgaven in Basisboek Natuurkunde
opgave (blz 4) Uitwerkingen van de opgaven in Basisboek Natuurkunde De zwaarte-energie wordt gegeven door de formule W zwaarte = m g h In de opgave is de massa m = 0(kg) en de energie W zwaarte = 270(Joule)
Krachten (4VWO) www.betales.nl
www.betales.nl Grootheden Scalairen Vectoren - Grootte - Eenheid - Grootte - Eenheid - Richting Bv: m = 987 kg x = 10m (x = plaats) V = 3L Bv: F = 17N s = Δx (verplaatsing) v = 2km/h Krachten optellen
We kunnen nu met deze kabel de spanning meten door de kabel parallel te schakelen op bv het LEGO zonnepaneel, de LEGO condensator of de LEGO motor.
Metingen met LEGO zonnepaneel en condensator In mei zullen we LEGO autootjes een circuit laten afleggen waarbij we gebruik maken van groene energie. Ik heb gekozen om zonne-energie te gebruiken en omdat
Deeltoets II E&M & juni 2016 Velden en elektromagnetisme
E&M Boller, Offerhaus, Dhallé Deeltoets II E&M 201300164 & 201300183 13 juni 2016 Velden en elektromagnetisme Aanwijzingen Voor de toets zijn 2 uren beschikbaar. Vul op alle ingeleverde vellen uw naam
natuurkunde havo 2015-II
natuurkunde havo 05-II Aan het juiste antwoord op een meerkeuzevraag wordt scorepunt toegekend. Vleugel maimumscore antwoord: vier knopen en drie buiken, afwisselend afstand KB = afstand BK B maimumscore,70
Eindexamen havo natuurkunde pilot I
Eindexamen havo natuurkunde pilot - I Opgave Sprong op de maan maximumscore uitkomst:,43 m (met een marge van,3 m) voorbeeld van een bepaling: Als Young loskomt van de grond is zijn zwaartepunt op een
BIOFYSICA: Toets I.4. Dynamica: Oplossing
1 ste jaar Bachelor BIOMEDISCHE WETENSCHAPPEN Academiejaar 006-007 BIOFYSICA: Toets I.4. Dynamica: Oplossing 1 Opgave 1 Een blokje met massa 0, kg heeft onder aan een vlakke helling een snelheid van 7,
voorbeeld van een berekening: Uit de definitie volgt dat de ontvangen stralingsdosis gelijk is aan E m,
Eindexamen natuurkunde havo 2005-I 4 Beoordelingsmodel Opgave Nieuwe bestralingsmethode Maximumscore antwoord: 0 7 5 0 B + n Li + per juist getal Maximumscore 2 uitkomst: D 2, 0 Gy of 2, 0 J/kg voorbeeld
In een U-vormige buis bevinden zich drie verschillende, niet mengbare vloeistoffen met dichtheden ρ1, ρ2 en ρ3. De hoogte h1 = 10 cm en h3 = 15 cm.
Fysica Vraag 1 In een U-vormige buis bevinden zich drie verschillende, niet mengbare vloeistoffen met dichtheden ρ1, ρ2 en ρ3. De hoogte h1 = 1 cm en h3 = 15 cm. De dichtheid ρ3 wordt gegeven door:
Opgave 1 Millenniumbrug
Aan het juiste antwoord op een meerkeuzevraag wordt scorepunt toegekend. Opgave Millenniumbrug maximumscore antwoord: resonantie maximumscore uitkomst: v =, 6 0 m s voorbeeld van een berekening: Er geldt:
Op een veer van 10 N/m wordt een kracht van 0,55 N uitgeoefend. Hoeveel is de veer langer geworden hierdoor?
Oplossingsmodellen bij vraagstukken (uit de Did. en ped. berichten 2010-2011) Derde jaar Gegeven, gevraagd, oplossing, antwoord Op een veer van 10 N/m wordt een kracht van 0,55 N uitgeoefend. Hoeveel is
Eindexamen havo natuurkunde II
Eindexamen havo natuurkunde 0 - II Opgave Parasaurolophus maximumscore antwoord: resonantie maximumscore voorbeeld van een berekening: Voor de grondtoon bij een halfgesloten pijp geldt dat de lengte van
Q l = 23ste Vlaamse Fysica Olympiade. R s. ρ water = 1, kg/m 3 ( ϑ = 4 C ) Eerste ronde - 23ste Vlaamse Fysica Olympiade 1
Eerste ronde - 3ste Vlaamse Fysica Olympiade 3ste Vlaamse Fysica Olympiade Eerste ronde. De eerste ronde van deze Vlaamse Fysica Olympiade bestaat uit 5 vragen met vier mogelijke antwoorden. Er is telkens
Hoofdstuk 1. Elektrische weerstand
Hoofdstuk 1. Elektrische weerstand Alle materialen hebben elektrische weerstand. Soms is de weerstand laag en gaat elektrische stroom er gemakkelijk door. In andere gevallen is de weerstand hoog. Deze
Eindexamen natuurkunde 1 havo 2000-I
- + - + Eindexamen natuurkunde havo 2000-I 4 Antwoordmodel Opgave LEDs voorbeelden van schakelschema s: 50 Ω V LED A 50 Ω A V LED Als slechts één meter juist is geschakeld: punt. Maximumscore 2 2 voorbeeld
De hoogte tijd grafiek is ook gegeven. d. Bepaal met deze grafiek de grootste snelheid van de vuurpijl.
et1-stof Havo4: havo4 A: hoofdstuk 1 t/m 4 Deze opgaven en uitwerkingen vind je op www.agtijmensen.nl Bij het et krijg je in 1 minuten ongeveer deelvragen. Oefen-examentoets et-1 havo 4 1/11 1. Een lancering.
Uitwerkingen VWO deel 1 H2 (t/m par. 2.5)
Uitwerkingen VWO deel 1 H2 (t/m par. 2.5) 2.1 Inleiding 1. a) Warmte b) Magnetische Energie c) Bewegingsenergie en Warmte d) Licht (stralingsenergie) en warmte e) Stralingsenergie 2. a) Spanning (Volt),
