Daglicht. Laurens Zonneveldt. Behorend bij Verlichtingskunde, 7S630 Maart Versie 1

Save this PDF as:
 WORD  PNG  TXT  JPG

Maat: px
Weergave met pagina beginnen:

Download "Daglicht. Laurens Zonneveldt. Behorend bij Verlichtingskunde, 7S630 Maart 2008. Versie 1"

Transcriptie

1 Daglicht Laurens Zonneveldt Behorend bij Verlichtingskunde, 7S630 Maart 2008 Versie 1

2 Lijst van begrippen en symbolen albedo In klimatologie en astronomie is het diffuse reflectievermogen (ook wel albedo) van een oppervlakte de verhouding tussen de gereflecteerde en de inkomende straling. Deze verhouding hangt in de eerste plaats af van de golflengte van het licht. Zonder nadere aanduiding wordt meestal zichtbaar licht verondersteld.(wikipedia) The albedo of an object is the extent to which it diffusely reflects light from the sun. It is therefore a more specific form of the term reflectivity. Albedo is defined as the ratio of diffusely reflected to incident electromagnetic radiation. It is a unitless measure indicative of a surface's or body's diffuse reflectivity. The word is derived from Latin albedo "whiteness", in turn from albus "white". The range of possible values is from 0 (dark) to 1 (bright). (wikipedia, Engels) daglichtcoëfficiënt De totale fractie van het daglicht afkomstig van een specifiek hemelelement dat op ons meetpunt valt wordt de daglichtcoëfficiënt genoemd daglichtfactor De verhouding tussen de verlichtingssterkte in een bepaald punt op een geven vlak in de ruimte veroorzaakt door het directe en indirecte hemellicht, en de gelijktijdige verlichtingssterkte in op een horizontaal vlak in het vrije veld, beide bij een CIE geheel bewolkte hemel. Meestal uitgedrukt in percentage. fotometrisch equivalent De verhouding tussen de hoeveelheid zichtbaar licht, uitgedrukt in lumen, en de totale energie in het opvallende spectrum (uitgedrukt in Watt) wordt het fotometrisch equivalent (eng.: luminous efficacy) genoemd hemelfactor De factor tussen dat deel van de verlichtingssterkte in een bepaald punt op een gegeven vlak in de ruimte wat direct ontvangen zou worden, zonder reflecties en raamtransmissie, en de verlichting op een horizontale vrije veld situatie, beide bij een uniforme hemel. De hemelfactor of Sky factor is een puur geometrische grootheid. lichtstroom De hoeveelheid licht die per seconde door een lichtbron wordt uitgestraald, gewogen tegen de spectrale ooggevoeligheid luminantie In een zekere richting uitgestraalde lichtstroom per (0p de richting geprojecteerde) oppervlakte Asch en per ruimtehoek turbiditeit concentratie van stof in de atmosfeer. De bekendste manier om de turbiditeit te beschrijven is de methode van Linke. Vandaar dat dat een aantal hemelmodellen de Turbiditeit van Linke als parameter hebben. De turbiditeit wordt echter niet standaard gemeten en is dus niet altijd bekend. verlichtingssterkte Licht stroom per eenheid van oppervlakte die door een vlak wordt ontvangen zonneconstante De hoeveelheid stralingsenergie afkomstig van de zon die per seconde passeert door een oppervlak op de stralingsrichting van 1 m² op aarde. Door

3 meting is vastgesteld dat de zonneconstante 1367 W/m² bedraagt. Zwarte straler (Black Body) Een zwarte straler absorbeert alle electromagnetische straling (waarvan licht een onderdeel uitmaakt) die het ontvangt. Een perfect zwarte straler staat in evenwicht met zijn omgeving en zendt gemiddeld dezelfde hoeveelheid en spectrale samenstelling van straling uit die het absorbeert. De hoeveelheid uitgezonde straling is als een functie van zijn temperatuur. Kenmerkend voor een zwarte straler is dat het uitgezonden licht een continu spectrum heeft, met andere woorden dat alle frequenties/kleuren er in voorkomen zenit Punt recht boven de waarnemer

4 symbool grootheid eenheid bereik ω ruimtehoek steradiaal 0..2π α azimut hoek = hoek met het zuiden graden radialen π.. π αs azimut hoek van de zon = hoek met het zuiden, voor de middag negatief graden radialen π.. π γ hoogte boven de horizon = 90 - ζ graden radialen π/2 γs zonshoogte graden radialen π/2 ζ zenit hoek = hoek met het hoogste punt van de hemelkoepel = 90 γ graden radialen π/2 ζs zenit hoek van de zon = 90 γs graden radialen π/2 Ev verlichtingssterkte lux Evh horizontale verlichtingssterkte lux Evsh horizontale verlichtingssterkte door de zon lux Evdh horizontale diffuse verlichtingssterkte [door de hemel] lux Evs normale (= loodrecht op de richting naar de zon) verlichtingssterkte lux Ee bestralingssterkte W/m2 Eeh horizontale bestralingssterkte W/m2 Eesh horizontale bestralingssterkte door de zon W/m2 Eedh horizontale diffuse bestralingssterkte [door de hemel] W/m2 Ees normale (= loodrecht op de richting naar de zon) bestralingssterkte W/m2 ρ reflectiefactor - λ golflengte m L luminantie cd/m2 Lz Luminantie van het zenit cd/m2 σ constante van Boltzman W/(m2K4) T temperatuur K A oppervlakte m x10-8

5 prefix symbol Factor by which the unit is multiplied exa E 1,000,000,000,000,000,000 = 1018 peta P 1,000,000,000,000,000 = 1015 tera T 1,000,000,000,000 = 1012 giga G 1,000,000,000 = 109 mega M 1,000,000 = 106 kilo k 1,000 = 103 hecto h 100 = 102 deca da 10 = 101 deci d 0.1= 10-1 centi c 0.01= 10-2 milli m 0.001= 10-3 micro μ 0.000,001= 10-6 nano n 0.000,000,001= 10-9 pico p 0.000,000,000,001= femto f 0.000,000,000,000,001= alto a 0.000,000,000,000,000,001= 10-18

6 1 Inleiding: Daglicht in het lichtontwerp Om een daglichtontwerp te maken moet in de eerste plaats een beschrijving gemaakt worden van het daglichtaanbod, dat wil zeggen hoeveel daglicht er is en hoe de helderheid verdeeld is over de hemelkoepel en de gebouwde omgeving. Daarna kan door meten en of rekenen een ontwerp gemaakt en geëvalueerd worden. Allereerst gaan we na hoe het daglichtaanbod tot stand komt. Vervolgens gaan we op zoek naar methoden om het te beschrijven op een zodanige wijze dat de beschrijving bruikbaar is in het ontwerpproces. 1.1 Het zonlicht en de invloed van de atmosfeer Het daglicht zoals we dat op een bepaalde plek waarnemen komt van de zon via de atmosfeer en de gebouwde omgeving. Op die lange weg zijn er heel wat processen die de uiteindelijke daglichthoeveelheid beïnvloeden. Om te zien wat er zoal speelt en hoe dat te karakteriseren is volgen we de weg van de bron tot in een ruimte De zon De bron van al het daglicht is de zon. De zon is een ster die in alle richtingen straling uitzendt. De zon kan worden gezien als een zwarte lichaam of zwarte straler. Een zwart lichaam zendt straling uit als functie van zijn temperatuur. Niet iedere lichtbron is een zwarte straler, we zullen later zien dat er ook andere processen zijn om licht te 'maken'. Kenmerkend voor een zwarte straler is dat het uitgezonden licht een continu spectrum heeft, met andere woorden dat alle frequenties/kleuren er in voorkomen. We kennen ook lichtbronnen (bv led's) die maar licht in een kleur uitzenden, oftewel een spectrum bestaande uit een lijn / frequentie. De wet van Boltzman beschijft de energie uitgezonden door een zwarte straler: W =. A. T 4 W σ A T de hoeveelheid uitgezonden energie de constante van Boltzman (zie tabel aan het begin van dit document) de oppervlakte in m2 van het stralend oppervlak de temperatuur (in Kelvin)

7 Belangrijk hieraan is dat de hoeveelheid straling evenredig is met de 4e macht van de temperatuur. De oppervlaktetemperatuur van de zon is ongeveer 5780K zodat uit de wet van Stefan-Boltzmann volgt dat de zon ongeveer E = σt4 = x10-8 * (5780)4 =6.32x104 Watt per vierkante meter uitstraalt of een totaal van 3.86x1026 Watt voor de gehele zon. De aarde staat op een gemiddelde afstand van miljoen km van de zon, dat is 8,31 minuten met de snelheid van het licht. Van de door de zon uitgezonden straling bereikt 1367 W/m² de buitenkant van de aardse atmosfeer. Deze hoeveelheid straling die per vierkante meter per seconde, loodrecht op de richting naar de zon, de atmosfeer bereikt wordt de zonneconstante genoemd. Niet alle golflengtes van de door de zon uitgezonden straling zijn even sterk. De verschuivingswet van Wien beschrijft bij welke golflengte van het door een zwarte straler uitgezonden spectrum de maximale intensiteit te vinden is. max = b T λmax is de golflengte met de maximale intensiteit b T een constante = x10 3mK de absolute temperatuur in K Het oppervlak van de zon heeft een temperatuur van 5780 Kelvin. Daarbij hoort een maximale golflengte van: max = x10 3 mk =501x10 9 m=501 nm T Dat is de golflengte van geel-groen licht en dat is (niet geheel toevallig) de kleur waarvoor het oog het meeste gevoelig is.

8 Deze wet zegt dus dat bij een hogere temperatuur het maximum bij een kortere golflengte komt de liggen. Da's mooi, maar hoe ziet dat er dan in de praktijk uit? Als we een voorwerp verwarmen, en dus de temperatuur op laten lopen zal het eerst gaan gloeien, met andere woorden het wordt rood. Rood licht heeft een relatief lange golflengte. Als we door gaan met verwarmen wordt het oranje, dan geel (kortere golflengte) om tot slot blauw / violet licht af te geven, de kortste golflengte uit het spectrum. Een deel van het door de zon uitgezonden spectrum kunnen we met het oog waarnemen. Dit zichtbare deel van de straling wordt licht genoemd. De verhouding tussen de hoeveelheid zichtbaar licht, uitgedrukt in lumen, en de totale energie in het opvallende spectrum (uitgedrukt in Watt) wordt het fotometrisch equivalent (eng.: luminous efficacy) genoemd. Voor de straling van de zon aan de rand van de atmosfeer geldt dat dit 98 lm/w bedraagt. Oftewel de hoeveelheid licht aan de rand van de atmosfeer is 1367x98 = lm/m2 = lux. Zoveel daglicht meten we niet aan het aardoppervlak dus onderweg in de atmosfeer gebeurt er nog van alles!

9 Figuur Spectrum van het zonlicht aan de rand van de atmosfeer. (zie ook De atmosfeer In de atmosfeer wordt de samenstelling van het spectrum van de zonnestraling en dus ook van het daglicht beïnvloed door een groot aantal fysische processen die onder te verdelen zijn in 3 categorieën: reflectie weerkaatsing van de straling verstrooiing (diffusie) het veranderen van richting van straling absorptie energie wordt opgeslagen in atomen en moleculen Al deze processen zijn golflengte afhankelijk. Het resultaat van dit alles is dat het spectrum en de richting van waaruit het daglicht ons bereikt onder invloed van de atmosfeer sterk veranderen. Buiten de atmosfeer komt het licht als een parallelle bundel uit de richting van de zon en is de rest van de hemel donker/zwart, op het licht van de sterren en de maan na. Als gevolg van de genoemde atmosferische processen zien wij op aarde een lichtgevende

10 hemelkoepel en als het niet bewolkt is komt slechts een beperkt deel van het zonlicht nog als direct licht op het aardoppervlak. Hoe spelen reflectie, diffusie en absorptie nu precies een rol? In de eerste plaats valt het op dat de lucht, ook bij afwezigheid van bewolking, niet zwart is maar blauw. Dit is het gevolg van verstrooiing van het licht aan de kleine atomen (kleiner dan de golflengte van het licht) in de atmosfeer. Vanwege de afmetingen van de atomen wordt het kortgolvige (= blauwe) licht uit de bundel van het zonlicht verstrooid Dat zie je goed bij zonsop- en ondergang als de weg van het zonlicht door de atmosfeer het langst is: het blauw is uit de bundel en het rood blijf over. Dit verschijnsel is het eerst goed beschreven door Lord Rayleigh en wordt daarom Rayleighverstrooiing genoemd. Absorptie, het opslaan van stralingsenergie in atomen en moleculen, is ook een proces dat golflengte afhankelijk is. Voor wat betreft het zichtbare deel van de straling speelt waterdamp daarin de belangrijkste rol. De hoeveelheid vocht in de lucht hetzij in dampvorm maar ook in druppelvorm (wolken) is daarom van grote invloed op het spectrum van het daglicht. Daarnaast spelen stoffen als kooldioxide (CO2), zuurstof O2 en ozon O3 een rol. In onderstaande figuur.. is te zien hoe het spectrum aan het aardoppervlak verschilt van dat aan de rand van de atmosfeer en hoe de verschillende absorpties daarin een rol spelen.

11 Tekening 1: Spectrale straling van het zonlicht, afhankelijk van de absorptie, golflengte afhankelijk Naast verlies aan intensiteit door verstrooiing en absorptie wordt ook een deel van het zonlicht gereflecteerd, zowel door atomen, moleculen en wolken in de atmosfeer als door het aardoppervlak. De reflectie van het aardoppervlak wordt ook wel albedo genoemd Omdat wolken en waterdamp in al deze processen een bepalende rol spelen is het weer, de lokale samenstelling van en de luchtbeweging in de atmosfeer natuurlijk van grote invloed De gebouwde omgeving In de gebouwde omgeving spelen factoren als afscherming van de hemel en reflecties van het opvallende daglicht een ingewikkelde rol in het daglichtaanbod Het gebouw Tot slot kunnen nog delen van het eigen gebouw van 'externe' invloed zijn op de hoeveelheid daglicht die in een ruimte komt. Uiteindelijk zijn plaats, vorm, materiaalgebruik en dergelijke van de daglichtopening en van de ruimte bepalend 2 Beschrijving van het daglichtaanbod Het is natuurlijk niet mogelijk om in detail met al de hierboven genoemde factoren rekening te houden en zo een exacte beschrijving van het zo complexe en dynamische daglichtaanbod te maken. Vandaar dat in de praktijk gebruik wordt gemaakt van empirische modellen die de waargenomen helderheidsverdeling van de hemel zo getrouw mogelijk weergeven. Daarbij is het van belang te beseffen dat dit gedaan wordt met het doel een goed ontwerp te maken. Vandaar dat deze hemelmodellen vooral die eigenschappen beschrijven die voor het ontwerp en de evaluatie ervan van belang zijn, en niet alle details (bijvoorbeeld de afzonderlijke wolk die over de hemel beweegt)

12 die uiteindelijk van secundair belang blijken te zijn. 2.1 Luminantieverdeling van de hemel Wat je uiteindelijk op het aardoppervlak waarneemt wordt bepaald door: de stand van de zon het weer (met name de bewolking) de eerder genoemde processen Absorptie Reflectie Diffusie 2.2 Beschrijven van het daglicht Positie zon: γ α De stand van de zon is voor ieder tijdstip simpel te berekenen met behulp van astronomische formules. Daarbij beschrijven we het resultaat aan de hand van twee hoeken: de zonshoogte γ Azimut α tussen 0 en 90 graden tussen 0 en 360 graden Naast de plaats van de zon is er natuurlijk ook een variatie in de helderheid van de zon. Die is afhankelijk van de weglengte van het licht door de atmosfeer en de samenstelling van de atmosfeer. In principe neemt de intensiteit van het zonlicht exponentieel af met de weglengte. 2.3 Modellen voor de helderheidsverdeling van de hemel. In vrijwel alle gevallen worden de helderheid van de zon- en de hemelluminantie afzonderlijk beschreven. Er worden dan parameters gebruikt om de werkelijke helderheid te kunnen beschrijven.

13 Er zijn verschillende manieren om dat te doen. De meest fysische modellen gaan uit van atmosferische parameters als bewolkingsgraad, concentratie van waterdamp en concentratie van stof. Deze laatste factor wordt wel turbiditeit genoemd. De bekendste manier om de turbiditeit te beschrijven is de methode van Linke. Vandaar dat dat een aantal modellen de Turbiditeit van Linke als parameter hebben. Een nadeel van deze beschrijving is dat bijvoorbeeld de turbiditeit niet standaard gemeten wordt en dus niet altijd bekend is. Daarnaast speelt het albedo, de reflectie van het aardoppervlak een rol. In de meeste gevallen ligt deze reflectiefactor tussen de 0,1 en 0,2. De meer empirische modellen maken gebruik van standaard gemeten weerparameters als bewolkingsgraad en stralingshoeveelheden. Daarbij worden een of meerdere van de volgende meetwaarden gebruikt: De globale horizontale bestralingssterkte [ Eeh ], de som van de diffuse hemelstraling en de directe zonnestraling op het horizontale [Eeh =EedhEesh]. De directe (=alleen van de zon afkomstige) horizontale bestralingssterkte [ Eesh ] De diffuse horizontale bestralingssterkte [ Eedh ] De directe normale (= loodrecht op de richting naar de zon) bestralingssterkte [ Ees ] In alle modellen wordt een beschrijving gegeven van de helderheid van de hemel in een gegeven kijkrichting. De kijkrichting wordt (net als de positie van de zon) gekarakteriseerd door 2 hoeken: de hoogte hoek γ en het azimut uitgedrukt in de hoek α Uniforme hemel De simpelste manier om de helderheid van de hemel te beschrijven is de aanname dat de hemel een overal even helder, diffuus vlak is. Waar je ook kijkt, het is constant. Deze beschrijving wordt de uniforme hemel genoemd. Is deze beschrijving realistisch? Neen want een uniforme hemelluminantie komt in de praktijk niet voor. Maar het is wel een eerste benadering voor een soort gemiddelde hemel. L, = Lz θ = hoogte hoek (0-90) α = azimut hoek (0-360) Lz = luminantie van het zenit De helderheid van ieder punt is gelijk aan de zenitluminantie. De helderheid dus is niet afhankelijk van de hoogte en niet afhankelijk van het azimut van het hemelelement. Met behulp van de uniforme hemel kun je eenvoudig de hemelfactor bepalen, een maat voor hoeveel van de hemel er vanuit een punt in een ruimte zichtbaar is. Horizontale verlichtingssterkte van een uniforme hemel: Ehor = π Lz

14 Op een vertikaal vlak valt het licht van een halve hemel: Evert = π Lz / Bewolkte hemel Worst Case situatie, komt alleen voor bij zwaar bewolkt weer. Standaard voor ontwerp en geeft de minimale daglichthoeveelheid. Daglichtkamer is gebaseerd op deze luminantieverdeling. Door hellende spiegels. Model is afkomstig van Moon en Spencer (1942): L, = L z 1 2sin 3 γ = hoogte hoek hemelelement (0-90) Lz = luminantie van het zenit Zoals uit de formule te zien is hangt de helderheid van de geheel bewolkte hemel niet af van het azimut, maar alleen van de hoogte van het hemelelement. Het zenit (sin(90)=1 en dus L= Lz) is 3 maal zo helder als de horizon (sin(0) = 0 en dus L = Lz/3) Heldere hemel Beschrijft de helderheidsverdeling van de onbewolkte en schone hemel. Zo'n strak blauwe lucht komt zelden voor in Nederland. Meestal is er teveel waterdamp in de lucht zodat de hemel gelijkmatiger en witachtig is. Het model voor de schone en droge heldere hemel is opgesteld door Richard Kittler

15 3 L, =L z cos e 0.45cos 1 e 3Z e 0.45 cos Z 0 1 e 0

16 2.3.4 Perez model voor de werkelijke hemel De modelbeschrijvingen van de helderheidsverdeling van de hemel die we tot nu toe besproken hebben komen niet of heel zelden overeen met de werkelijkheid. Om voorspellingen te kunnen doen over het energiegebruik van kunstverlichting of het optreden van hinder door daglicht is het nodig een bruikbare beschrijving te maken van de luminantieverdeling van de hemel op basis van beschikbare meetgegevens van het klimaat. Dat is een complex probleem omdat veel relevante parameters niet standaard worden gemeten en omdat de helderheidsverdeling nu eenmaal sterk en grillig varieert. Toch zijn er in het verleden vele pogingen gewaagd om tot een oplossing te komen. De meest geslaagde, en daarom tot de facto standaard verheven oplossing is die van Richard Perez [perez1993].

17 Hij maakte een model op basis van simpele, bijna overal voorhanden zijnde klimaatgegevens. Zijn model beschrijft de hemel op basis van 5 kenmerken die de luminantieverdeling typeren, de parameters a t/m e in de volgende formule voor de verdelingsfunctie: F, =[1 ae b cos ][1 ce d e cos 2 ] De 5 distributie coëfficiënten in het Perez model hebben de volgende betekenis: a: a>0 donkere horizon; a<0 lichte horizon b: helderheidsverval nabij de horizon, oftewel het verloop van de helderheid als functie van de hoogte van het hemelelement boven de horizon c: relatieve intensiteit van het circumsolaire gebied d: breedte van circumsolair gebied e: terugverstrooid licht (0.45 in Kittler formule) De luminantie van een punt is nu te schrijven als: F, F 0, s Dit is de verhouding tussen de hemelluminantieverdeling en de bijdrage van het directe zonlicht. L=L z F(0, γ) = Verdelingsfuntie van de helderheid voor punt (element) op de hemel, waarbij θ de hoogte van het element is en γ de hoek met de zon. F, =punt element op de hemel, waarbij de hoogte van het element isen de hoek met de zon.

18 De 5 coëfficiënten zijn te schrijven als functie van de sky brightness Δ, de sky clearness ε en Ζ. sky clearness Eed Ees 1.041Z 3] Eed = 3 [ Z ] [ sky brightness =m Eed Ees 0 Ees 0=Ees sin s Z=90 s Eedh Eesh Ees0 Z m = horizontale diffuse straling = horizontale directe straling = directe normale straling = hoek tussen zonshoogte en zenit = optical air mass, in eerste benadering voor een vlakke parallelle atmosfeer is dat 1/cos(Z) 1/cos(Z) wordt ook wel de secans genoemd. (http://en.wikipedia.org/wiki/airmass) De werkelijke waarden voor de coëfficiënten a, b,c d en e komen tot stand door een fit van een lineaire functie van de vorm:

19 a=a1 a 2 Z [a3 a 4 Z ] Deze functie wordt gefit aan gemeten data. Dat is een hoop werk en levert uiteindelijk tabellen op met waarden voor alle hemelcondities. Het uiteindelijk bepalen van de hemelluminantie in een punt is dan ook werk voor de computer. Voor Radiance is er het programma gendaylit [ISE1995] 2.4 Daglichtberekeningen Nu we weten wat het aanbod is: hoe gaan we daarmee aan de slag? De opgave is nu op basis van het daglichtaanbod te bepalen waar en hoe het daglicht binnen komt. We kunnen dit op verschillende manieren doen afhankelijk van de criteria die getoetst moeten worden. Belangrijke voorbeelden zijn: de berekening van de verlichtingssterktte op de oogtaak analyse met betrekking van luminaniteverhoudingen voorkomen van hinder door direkt zonlicht Meestal berekenen we de verlichtingssterkte in een rooster op het werkvlak. Hoe een rooster gekozen moet worden staat in NEN 1891: 1994 'Binnenverlichting - Meetmethoden voor verlichtingssterkten en luminanties'. Hierin staat trouwens niet alleen alles over berekeningen, maar ook over metingen en meetinstrumenten. In de meeste binnenruimtes liggen de roosterpunten 30 cm uiteen, zowel in het horizontale als in het vertikale vlak. Een programma als Radiance biedt niet alleen de mogelijkheden om in roosterpunten te analyseren, maar ook om afbeeldingen te maken waarmee een veel gedetailleerdere analyse mogelijk wordt. Wat er dan zoal berekend kan worden is in de volgende paragrafen te vinden Hemelfactor De verhouding tussen de verlichtingssterkte in een punt op een horizontaal vlak door daglicht direkt afkomstig van een uniforme hemel tot de verlichtingssterkte van een onbelemmerde uniforme hemel.

20 Dit is een zuiver geometrische factor. Daarbij wordt dus geen rekening gehouden met de transmissie eigenschappen van het glas en ook niet met interreflecties. Ook de zon speelt hierin geen rol. De hemel factor is in feite een maat voor 'hoeveel hemel' er vanuit een punt zichtbaar is. Er geldt dat als vanuit een punt de hemel niet zichtbaar is er geen direct daglicht op valt en er dus hooguit gereflecteerd daglicht op kan vallen. Dat is vrijwel altijd te weinig voor het uitvoeren van werkzaamheden. De hemelfactor is dus een simpele en effectieve check voor de aanwezigheid van daglicht. Berekening van de hemelfactor. De bijdrage van de luminantie van een hemelelement aan de verlichtingssterkte op het horizontale vlak is: de sh= L, cos d =L, cos sin d d Horizontale verlichtingssterkte door gehele hemelkoepel 2 2 E sh= L, sin cos d d 0 0 Bijdrage van een hemelelement de = L z R d 2 R cos cos 90 R2 = L z 2 sin cos d De bijdrage aan de hemelfactor door een rechthoekige daglichtopening: 2 2 E= L z sin cos d d 1 1

21 Vertikaal raam onder uniforme hemel: b X= a SF = a b Y= c b 1 1 Y 1 [arctan arctan ] Y X Y X Y 2 Hetzelfde voor een horizontale daglichtopening: b a c X= SF = a c Y= b c 1 X Y Y X arctan arctan X 2 1 X 1 Y 1 Y Methode als het meetpunt niet tegenover de hoek van het raam ligt: I II=Raam IV III De bijdrage van het raam in een lager gelegen punt dat op een zeker afstand links van het raam ligt: De bijdrage van het raam (II) =

22 Bijdrage van het hele vlak (IIIIIIIV) bijdrage (IIV) bijdrage(iiiiv) bijdrage IV. De hemelfactor van een rechthoekige daglichtopening (benadering): Vertikaal raam Hemelfactor 30 B H2 / D(D2 H2 ) % B = breedte raam H = hoogte raam D = afstand tot het raam Horizontaal raam: Hemelfactor 120 LB / (L2 D2) % L = lengte raam Verlichtingssterkte in het vrije veld onder een uniforme hemel. Horizontale verlichtingssterkte: E= L z Vertikale verlichtingssterkte E= Lz Daglichtfactor bewolkte hemel De verhouding tussen de verlichtingssterkte in een gegeven punt in een ruimte tussen het daglicht, direct en indirect, afkomstig van een CIE bewolkte hemel en de verlichtingssterkte in het vrije veld onder diezelfde hemel. Externe reflecties, raamtransmissie en interne reflecties worden hierin wel meegenomen! De directe bijdrage van de zon speelt geen rol omdat bij geheel bewolkt weer de zon niet zichtbaar is. De luminatieverdeling van de CIE bewolkte wordt beschreven door: L = L z met: Lz θ 1 2sin 3 = luminantie van het zenit = hoogte van het hemelelement boven de horizon

23 de luminantie van de hemel hangt ook hier niet af van de horizontale (azimut) hoek. Horizontale verlichtingssterkte door een onbelemmerde CIE overcast sky: 2 1 E= L z 2 sin cos 1 2sin d = Lz 9 Het daglicht dat van een CIE bewolkte hemel door een daglichtopening een ruimte binnenvalt bestaat uit een bijdrage van het licht direct afkomstig van de de hemelkoepel en het licht dat buiten de ruimte door het aardoppervlak en gebouwen/objecten in de omgeving gereflecteerd is, de extern gereflecteerde component. Deze bijdragen tezamen vormen binnen de directe component van het daglicht: Directe component = ERC (Externally Reflected Component) hemelcomponent Vervolgens treden er binnen allerlei interreflecties op die ook een bijdrage aan de uiteindelijke verlichtingssterkte door het daglicht leveren. Dit is de indirecte component: Indirect = IRC (Internally Reflected Component) Als vuistregel geldt voor een ruimte met 'normale' reflectiefactoren dat de directe component 80 % en de indirecte component 20% van het totaal vormen (80/20 regel) Methode voor het schatten van de bijdrage van de reflectie in een ruimte. Benader de ruimte als een bol met het zelfde totale oppervlak als de ruimte en met de gemiddelde reflectiefactor (ρgem) van de vlakken van de ruimte. De gemiddelde reflectiefactor van een ruimte is de som over alle vlakken van oppervlak*reflectiefactor gedeeld door het totale oppervlak van een ruimte: i Ai gem= ρi Ai i Atot reflectiefactor van vlak i oppervlak van vlak i We beschouwen nu een bol met oppervlakte aan de binnenzijde van 4πr2 m2 De totale hoeveelheid (dag)lichtflux die op dit oppervlak valt is F lumen. Stel de gemiddelde reflectiefactor van de binnenzijde van de bol is ρ. Ρ is een dimensieloos getal tussen 0 (geen reflectie en 1 al het opvallende licht wordt gereflecteerd) De eerste reflectie is gelijk aan Fρ/4πR2 oftewel de opvallende flux maal de reflectiefactor gedeeld door het oppervlak. De totale gereflecteerde flux van de eerste reflectie is Fρ. Dit is de opvallende flux maal de reflectiefactor. Dit is de opvallende flux voor de 2e reflectie. Van de 2e reflectie komt dan terug (Fρ) ρ = Fρ2. En vervolgens van de 3e reflectie: (Fρ2) ρ = Fρ3. Zo door redenerend volgt een reeks voor het gereflecteerde licht (ditmaal geschrven per vierkante

24 meter omdat de totale flux gedeeld wordt door het totale oppervlak: F F 2 F 3 F R2 4 R 2 4 R 2 4 R 2 De reeks: 1 ρ ρ2 ρ3 ρ4 ρ5 ρ6.. heeft als som 1 1 En dus: F F 2 F 3 F R2 4 R 2 4 R 2 4 R 2 F R F = 2 4 R 1 = De conclusie is dus dat de totale fractie gereflecteerd licht gelijk is aan ρ /(1-ρ). Voor een ruimte met een gemiddelde reflectiefactor van 0.3 betekent dit dat 0.3/(1-0.3) = 0.3/0.7 = maal de oorspronkelijke verlichtingssterkte aan gereflecteerd licht erbij komt. Vuistregel: In de meeste echte ruimtes valt het invallende licht niet gelijkmatig op alle vlakken maar vooral op het onderste deel van de ruimte (het daglicht zowel als het kunstlicht komen van boven). Dat deel van de ruimte heeft meestal een lage reflectie niet alleen omdat vloerbedekking meestal niet wit is maar ook omdat het meubilair veel licht absorbeert. In de praktijk zorgt dat alles ervoor dat de verhouding direct-gereflecteerd licht meestal 80% direct en 20% gereflecteerd is. 2.5 Daglichtcoëfficiënten iedere situatie Om een berekeningsmethode te ontwikkelen die voor iedere situatie toepasbaar is stelden Tregenza en Waters in 1983 het gebruik van daglichtcoëfficiënten voor. De gedachte hierachter is als volgt. De verlichtingssterkte in de ruimte hangt in de eerste plaats af van de luminantie verdeling van de hemelkoepel. Deze luminantieverdeling kan vereenvoudigd worden tot de bedragen van een 'groot' aantal stukjes van de hemel. Hiertoe verdeelt men de hemel onder in een aantal elementen. In de praktijk worden hiervoor vaak 145 elementen gekozen, maar andere opdelingen zijn ook mogelijk. Hier gaan we uit van 145 elementen. De helderheidsverdeling van de hemel is dus op ieder moment te beschrijven als de helderheden van al die elementjes. Als we nu de verlichtingssterkte E in een meetpunt in een ruimte willen berekenen kunnen we als volgt te werk gaan. Voor dat meetpunt in een ruimte kan worden bepaald wat de bijdrage is aan de verlichtingssterkte van het licht afkomstig van een gegeven hemel elementje. Het daglicht

25 afkomstig van het hemelelementje kan voor een deel rechtstreeks door een daglichtopening op dat meetpunt vallen, een deel kan via interreflecties, zowel binnen als buiten de ruimte in dat meetpunt komen. De totale fractie van het daglicht afkomstig van een specifiek hemelelement dat op ons meetpunt valt wordt de daglichtcoëfficiënt genoemd. De daglichtcoëfficiënt houdt dus rekening met alle bouwkundige en fysische factoren. We kunnen nu voor een meetpunt alle 145 daglichtcoëfficiënten bepalen. In de praktijk kan dit alleen gebeuren met behulp van geavanceerde software als Radiance. Hoewel de methode in 1983 voorgesteld is, duurde het nog 20 jaar voordat de computers en software krachtig genoeg waren om de coëfficiënten te berekenen. De grote truc is nu dat als we eenmaal de daglichtcoëfficiënten berekend hebben het eenvoudig mogelijk is om met behulp van het luminatiemodel van Perez op ieder tijdstip en voor ieder weertype de helderheid van die 145 elementen te bepalen. Zo kan men uiteindelijk heel snel een jaar daglicht simuleren en zo het effect van allerlei maatregelen evalueren. Het programma dat hiervoor het meest geschikt is heet DAYSIM en staat ook op de LEARNIX cd met software. n E= D i S i Li i=1 Tekening 2: Verdeling van de hemelkoepel in 145 elementen volgens Tregenza en Waters. Samenvatting: \

26 Uniform Bewolkt Helder Perez Punt op hemel Hoogte Azimut Zenitluminantie Zon Zon hoogte Zon azimut Raamontwerp Grootte raam Raam oriëntatie Raam hoogte vensterbank Raam hoogte bovenrand Kentallen Hemelfactor Daglichtfactor [] Autonomie 3 Literatuurlijst 1 Literatuurlijst perez1993: R. Perez, R, Seals, J. Michalsky, All-weather model for sky luminance distribution preliminary configuratio, 1993 ISE1995:, Gendaylit,,

27 4 Literatuurlijst 1 Literatuurlijst perez1993: R. Perez, R, Seals, J. Michalsky, All-weather model for sky luminance distribution preliminary configuratio, 1993 ISE1995:, Gendaylit,,

28 1 1

Basic Creative Engineering Skills

Basic Creative Engineering Skills Fotometrie 1 Voor het beschrijven van eigenschappen en specificaties van licht en lichtbronnen bestaan gestandaardiseerde begrippen en eenheden. CIE Commission Internationale de l Eclairage 2 Vermogen

Nadere informatie

Verlichtingskunde 2009 Verlichtingskunde 2009 7S630

Verlichtingskunde 2009 Verlichtingskunde 2009 7S630 7S630 Laurens Zonneveldt Mariëlle Aarts Doel van het college Gereedschap bieden om via een doordacht PvE tot het gewenste doel te komen Opzet Hoe kom je tot eisen, wat speelt een rol Zoeken naar oplossingen

Nadere informatie

Zonnestraling. Samenvatting. Elektromagnetisme

Zonnestraling. Samenvatting. Elektromagnetisme Zonnestraling Samenvatting De Zon zendt elektromagnetische straling uit. Hierbij verplaatst energie zich via elektromagnetische golven. De golflengte van de straling hangt samen met de energie-inhoud.

Nadere informatie

Fysische modellen De Aarde zonder en met atmosfeer

Fysische modellen De Aarde zonder en met atmosfeer Fysische modellen De Aarde zonder en met atmosfeer J. Kortland Cdb, Universiteit Utrecht Inleiding Bij het ontwerpen van een computermodel van de broeikas Aarde maak je gebruik van fysische modellen. Deze

Nadere informatie

Je weet dat hoe verder je van een lamp verwijderd bent hoe minder licht je ontvangt. Een

Je weet dat hoe verder je van een lamp verwijderd bent hoe minder licht je ontvangt. Een Inhoud Het heelal... 2 Sterren... 3 Herzsprung-Russel-diagram... 4 Het spectrum van sterren... 5 Opgave: Spectraallijnen van een ster... 5 Verschuiving van spectraallijnen... 6 Opgave: dopplerverschuiving...

Nadere informatie

ZX Ronde zondag 5 oktober 2014

ZX Ronde zondag 5 oktober 2014 ZX Ronde zondag 5 oktober 2014 Verhaaltje..Tussen Watt en Lumen Dit een verhaaltje gaat over de verschillen tussen de lichtopbrengst van lichtbronnen wat aansluit op het verhaalt over licht en lichtbronnen

Nadere informatie

Inleiding Astrofysica College 3 10 oktober Ignas Snellen

Inleiding Astrofysica College 3 10 oktober Ignas Snellen Inleiding Astrofysica College 3 10 oktober 2016 15.45 17.30 Ignas Snellen Straling, energie en flux Astrofysica: licht, atomen en energie Zwartlichaamstralers (black body) Stralingswetten Een object dat

Nadere informatie

Exact Periode 5. Dictaat Licht

Exact Periode 5. Dictaat Licht Exact Periode 5 Dictaat Licht 1 1 Wat is licht? In de figuur hieronder zie je een elektromagnetische golf: een golf die bestaat uit elektrische en magnetische trillingen.(zie figuur). Licht is een elektromagnetische

Nadere informatie

In de figuur hieronder zie je een Elektromagnetische golf: een golf die bestaat uit elektrische en magnetische trillingen.(zie figuur).

In de figuur hieronder zie je een Elektromagnetische golf: een golf die bestaat uit elektrische en magnetische trillingen.(zie figuur). 2.1 Wat is licht? In de figuur hieronder zie je een Elektromagnetische golf: een golf die bestaat uit elektrische en magnetische trillingen.(zie figuur). Licht is een elektromagnetische golf. Andere voorbeelden

Nadere informatie

BELEIDSPLAN OPENBARE VERLICHTING 2013 2017 BIJLAGE 2 VERLICHTINGSTECHNIEK

BELEIDSPLAN OPENBARE VERLICHTING 2013 2017 BIJLAGE 2 VERLICHTINGSTECHNIEK BELEIDSPLAN OPENBARE VERLICHTING 2013 2017 BIJLAGE 2 VERLICHTINGSTECHNIEK INHOUDSOPGAVE 1 TECHNIEK VERLICHTING... 3 2 DAGLICHT EN KUNSTLICHT... 3 3 ENKELE TECHNISCHE BEGRIPPEN... 4 3.1 Lichtstroom... 4

Nadere informatie

Fotometrische basisgrootheden

Fotometrische basisgrootheden Fotometrische basisgrootheden 24 oktober 2013 Guy Durinck Email: guy.durinck@kuleuven.be Fotometrie en radiometrie Licht: elektromagnetische golven elektromagnetische golven transporteren energie energiestroom

Nadere informatie

Hoofdstuk 3 Gegeven: Gevraagd: Plan: Uitwerking:

Hoofdstuk 3 Gegeven: Gevraagd: Plan: Uitwerking: Hoofdtuk 3 Voor dit hoofdtuk i de volgende Engeltalige Internet module bechikbaar: Radiation general Shortwave Shortwave, daily mean Longwave radiation Net radiation 1a We bechouwen eert een chone atmofeer

Nadere informatie

10 Materie en warmte. Onderwerpen. 3.2 Temperatuur en warmte.

10 Materie en warmte. Onderwerpen. 3.2 Temperatuur en warmte. 1 Materie en warmte Onderwerpen - Temperatuur en warmte. - Verschillende temperatuurschalen - Berekening hoeveelheid warmte t.o.v. bepaalde temperatuur. - Thermische geleidbaarheid van een stof. - Warmteweerstand

Nadere informatie

EUROPESE U IE HET EUROPEES PARLEME T

EUROPESE U IE HET EUROPEES PARLEME T EUROPESE U IE HET EUROPEES PARLEME T DE RAAD Brussel, 15 december 1999 (OR. f) 99/0014 (COD) PE-CO S 3636/99 E T 239 CODEC 785 WETGEVI GSBESLUITE E A DERE I STRUME TE Betreft: Richtlijn van het Europees

Nadere informatie

TEMPERATUURSTRALING Leg uit waarom je alleen metingen kunt doen aan temperatuurstraling als je meetinstrument kouder is dan het te meten voorwerp.

TEMPERATUURSTRALING Leg uit waarom je alleen metingen kunt doen aan temperatuurstraling als je meetinstrument kouder is dan het te meten voorwerp. strofysica TEMPERTUURSTRLING Leg uit waarom je alleen metingen kunt doen aan temperatuurstraling als je meetinstrument kouder is dan het te meten voorwerp. Uitwerking: ls het meetapparaat zelf een hogere

Nadere informatie

Broeikas Aarde: een leefbare temperatuur

Broeikas Aarde: een leefbare temperatuur Computerondersteund modelleren Natuurkunde Broeikas Aarde: een leefbare temperatuur Universiteit Utrecht Cd Centrum voor Didactiek van Wiskunde en Natuurwetenschappen Computerondersteund modelleren Natuurkunde

Nadere informatie

Infrarood temperatuurmeten:

Infrarood temperatuurmeten: Infrarood temperatuurmeten: Special: 2 Kleuren of Ratio Pyrometer Straling, convectie en geleiding: Met een infrarood temperatuurmeter of pyrometer meten we de straling of Radiation van een object. De

Nadere informatie

Kleurperceptie en kleur meten

Kleurperceptie en kleur meten Kleurperceptie en kleur meten het berekenen van kleurpunten in het CIELab systeem 1 Inleiding Dagelijks zien we om ons heen allerlei objecten die een kleur hebben. Kleurwaarneming is belangrijk voor ons

Nadere informatie

Kleurtemperatuur en aanpassing door middel van Filters

Kleurtemperatuur en aanpassing door middel van Filters Kleurtemperatuur en aanpassing door middel van Filters Eenheid: graden K (Kelvin) Kelvin (K) Definitie: Het 1/273,16e deel van de temperatuur, bepaald door het tripelpunt van water. Standaardeenheid van

Nadere informatie

HOOFDSTUK 2: ZONLICHT, KENMERKEN EN BESCHIKBAARHEID

HOOFDSTUK 2: ZONLICHT, KENMERKEN EN BESCHIKBAARHEID HOOFDSTUK 2: ZONLICHT, KENMERKEN EN BESCHIKBAARHEID 2.1. BASISEIGENSCHAPPEN VAN ZONLICHT...22 2.2. BESCHIKBAARHEID VAN ZONLICHT...25 2.2.1. Definities...25 2.2.2. Opsplitsing van globale in directe en

Nadere informatie

LED. begrippen kleur levensduur rendement besparing

LED. begrippen kleur levensduur rendement besparing LED begrippen kleur levensduur rendement besparing LED begrippen kleur levensduur rendement besparing De laatste jaren heeft led een enorme groei gemaakt, in zowel de techniek als op het gebied van verkoop.

Nadere informatie

Tentamen Optica. 19 februari 2008, 14:00 uur tot 17:00 uur

Tentamen Optica. 19 februari 2008, 14:00 uur tot 17:00 uur Tentamen Optica 19 februari 2008, 14:00 uur tot 17:00 uur Zet je naam en studierichting bovenaan elk vel dat je gebruikt. Lees de 8 opgaven eerst eens door. De opgaven kunnen in willekeurige volgorde gemaakt

Nadere informatie

Energiebalans aarde: systeemgrens

Energiebalans aarde: systeemgrens Energiebalans aarde: systeemgrens Aarde Atmosfeer Energiebalans Boekhouden: wat gaat er door de systeemgrens? Wat zijn de uitgaande stromen? Wat zijn de ingaande stromen? Is er accumulatie? De aarde: Energie-instroom

Nadere informatie

Exact Periode 5 Niveau 3. Dictaat Licht

Exact Periode 5 Niveau 3. Dictaat Licht Exact Periode 5 Niveau 3 Dictaat Licht 1 1 Wat is licht? In de figuur hieronder zie je een elektromagnetische golf: een golf die bestaat uit elektrische en magnetische trillingen.(zie figuur). Licht is

Nadere informatie

Lichtverstrooiing en lichtgeleiding

Lichtverstrooiing en lichtgeleiding Lichtverstrooiing en lichtgeleiding Materiaal: Uitvoering: Zaklamp Laserpointer Laserwaterpas Doorzichtige plastic fles Doorzichtig bakje Melk Boortje Lichtverstrooiing: Neem een doorzichtig plastic bakje

Nadere informatie

Uitwerkingen 1. Opgave 1 Bij mist wordt het licht door de waterdruppeltjes weerkaatst. Opgave 2 Groter Kleiner. Opgave 3

Uitwerkingen 1. Opgave 1 Bij mist wordt het licht door de waterdruppeltjes weerkaatst. Opgave 2 Groter Kleiner. Opgave 3 Uitwerkingen 1 Opgave 1 Bij mist wordt het licht door de waterdruppeltjes weerkaatst. Opgave 2 Groter Kleiner Opgave 3 Opgave 4 Licht, steeds donkerder (bij halfschaduw), donker (kernschaduw), steeds lichter

Nadere informatie

Kennisplatform OV Module 1 november 2011. Kennisplatform OV. Module 1 november 2011. Netbeheer - Techniek 1 Opleiding en Training

Kennisplatform OV Module 1 november 2011. Kennisplatform OV. Module 1 november 2011. Netbeheer - Techniek 1 Opleiding en Training Kennisplatform OV Module 1 november 2011 Netbeheer - Techniek 1 INHOUD 1. Inleiding... 3 1.1 Definitie van openbare verlichting... 3 1.2 De functies van openbare verlichting... 4 1.2.1 Bevorderen verkeersveiligheid...

Nadere informatie

σ = 1 λ 3,00 μm is: 3,00 x 10-4 cm σ = 1 cm / 3,00 x 10-4 cm= 3,33 10 3 cm -1

σ = 1 λ 3,00 μm is: 3,00 x 10-4 cm σ = 1 cm / 3,00 x 10-4 cm= 3,33 10 3 cm -1 Hoofdstuk 7 Analytische spectrometrie bladzijde 1 Opgave 1 Oranje en groen licht vallen op een prisma (onder dezelfde hoek en in dezelfde richting). Welke kleur wordt het sterkst gebroken? Hoe korter de

Nadere informatie

2.1 Wat is licht? 2.2 Fotonen

2.1 Wat is licht? 2.2 Fotonen 2.1 Wat is licht? In de figuur hieronder zie je een Elektromagnetische golf: een golf die bestaat uit elektrische en magnetische trillingen.(zie figuur). Licht is een elektromagnetische golf. Andere voorbeelden

Nadere informatie

toelatingsexamen-geneeskunde.be

toelatingsexamen-geneeskunde.be Fysica juli 2009 Laatste update: 31/07/2009. Vragen gebaseerd op het ingangsexamen juli 2009. Vraag 1 Een landingsbaan is 500 lang. Een vliegtuig heeft de volledige lengte van de startbaan nodig om op

Nadere informatie

Daglicht en scheidingsconstructies

Daglicht en scheidingsconstructies Daglicht en scheidingsconstructies tijdelijk dictaat voor 'licht' - bouwfysisch ontwerpen 2 - november 2008 Inhoud 1. Inleiding 1 2. Het gebruik van ramen in ruimtes over de eeuwen heen 2 3. Daglicht 4

Nadere informatie

Bescherming van je lichaam tegen UV licht

Bescherming van je lichaam tegen UV licht Bescherming van je lichaam tegen UV licht Document LC16002 Dr Jan H. Lichtenbelt Haren (GN) 2016. 1 Inleiding We hebben zonlicht nodig. Zonlicht voelt lekker warm en behaaglijk aan en het maakt ook nog

Nadere informatie

Copyright. B.L.W. Visser bv. Infrarood temperatuurmeten: Special: 2 Kleuren of Ratio Pyrometer. Straling, convectie en geleiding:

Copyright. B.L.W. Visser bv. Infrarood temperatuurmeten: Special: 2 Kleuren of Ratio Pyrometer. Straling, convectie en geleiding: Infrarood temperatuurmeten: Special: 2 Kleuren of Ratio Pyrometer Straling, convectie en geleiding: Emissiviteit: De stralingsenergie van een object bestaat uit zijn eigen stralingsenergie, de gereflecteerde

Nadere informatie

Glas en zonwering. Eigenschappen en functies van glas. Lichtperceptie. Zonnestralen. Samenstelling van de zonnestralen. Spectrofotometrische

Glas en zonwering. Eigenschappen en functies van glas. Lichtperceptie. Zonnestralen. Samenstelling van de zonnestralen. Spectrofotometrische Zonnestralen Samenstelling van de zonnestralen Zonnestralen die de aarde bereiken zijn samengesteld uit ongeveer 3% ultraviolette stralen (UV), 55% infraroodstralen (IR) en 42% zichtbaar licht. Deze drie

Nadere informatie

Blinds. Fysische eigenschappen. igt Blinds. UV beschermende lamellen tussen 2- of 3- voudige beglazing. Powered by Ropaco. igt Inglass Technologies BV

Blinds. Fysische eigenschappen. igt Blinds. UV beschermende lamellen tussen 2- of 3- voudige beglazing. Powered by Ropaco. igt Inglass Technologies BV Blinds Powered by Ropaco UV beschermende lamellen tussen 2- of 3- voudige beglazing Fysische eigenschappen igt Blinds igt Inglass Technologies BV Januari / 2012 Fysische eigenschappen igt Blinds 1 Inleiding

Nadere informatie

JANNEKE SCHENK. Over de REGENBOOG. Regenbogen en andere lichtverschijnselen aan de hemel, natuurkundig verklaard voor iedereen

JANNEKE SCHENK. Over de REGENBOOG. Regenbogen en andere lichtverschijnselen aan de hemel, natuurkundig verklaard voor iedereen JANNEKE SCHENK Over de REGENBOOG Regenbogen en andere lichtverschijnselen aan de hemel, natuurkundig verklaard voor iedereen inhoud 6 13 69 99 121 129 137 147 177 195 215 286 288 Inleiding Meten aan de

Nadere informatie

Inleiding Astrofysica College 2 15 september 2014 13.45 15.30. Ignas Snellen

Inleiding Astrofysica College 2 15 september 2014 13.45 15.30. Ignas Snellen Inleiding Astrofysica College 2 15 september 2014 13.45 15.30 Ignas Snellen Samenvatting College 1 Behandelde onderwerpen: Sterrenbeelden; dierenriem; planeten; prehistorische sterrenkunde; geocentrische

Nadere informatie

Indien er bij 2 objecten sprake is van een temperatuurverschil, is er sprake van warmteoverdracht.

Indien er bij 2 objecten sprake is van een temperatuurverschil, is er sprake van warmteoverdracht. Indien er bij 2 objecten sprake is van een temperatuurverschil, is er sprake van warmteoverdracht. Indien er bij 2 objecten sprake is van een temperatuurverschil, is er sprake van warmteoverdracht. Warmteoverdracht

Nadere informatie

Luxerna Power TL deg 6000K

Luxerna Power TL deg 6000K Luxerna Power TL1200 120deg 6000K Pagina 1 van 17 Samenvatting meetgegevens parameter meting lamp opmerking Kleurtemperatuur 7156 K Felwit. Gemeten recht onder de lamp. Lichtsterkte I v 697 Cd Stralingshoek

Nadere informatie

Daidalos bouwfysisch ingenieursbureau

Daidalos bouwfysisch ingenieursbureau Invloed van zonwering op de daglichttoetreding in kantoren project: studie van de invloed van een zonwering het visueel comfort in kantoren in samenwerking met Amber Imaging (programmatuur interface) opdrachtgever:

Nadere informatie

Trillingen en geluid wiskundig

Trillingen en geluid wiskundig Trillingen en geluid wiskundig 1 De sinus van een hoek 2 Radialen 3 Uitwijking van een harmonische trilling 4 Macht en logaritme 5 Geluidsniveau en amplitude 1 De sinus van een hoek Sinus van een hoek

Nadere informatie

Opleiding 2013 Duurzaam Gebouw

Opleiding 2013 Duurzaam Gebouw Opleiding 2013 Duurzaam Gebouw Gezondheid en comfort Leefmilieu Brussel ZORGEN VOOR VISUEEL COMFORT Magali BODART UCL Architecture & Climat 7 maart 2013 Opleiding tot stand gebracht door de Stadswinkel

Nadere informatie

Examen Inleiding Atmosfeer 8 mei 2014 EXAMEN INLEIDING ATMOSFEER. 8 mei 2014, 13:30-16:30 uur

Examen Inleiding Atmosfeer 8 mei 2014 EXAMEN INLEIDING ATMOSFEER. 8 mei 2014, 13:30-16:30 uur EXAMEN INLEIDING ATMOSFEER 8 mei 2014, 13:30-16:30 uur E E R S T D I T L E Z E N!! 1. Vermeld duidelijk je NAAM en REGISTRATIENUMMER in de linkerbovenhoek van elk in te leveren foliovel (de foliovellen

Nadere informatie

Leds Light The World BV LED tube 120cm WW

Leds Light The World BV LED tube 120cm WW Leds Light The World LED tube 120cm WW Pagina 1 van 1 parameter Lampmeetrapport 1 juli 2009 voor Leds Light The World Samenvatting meetgegevens meting lamp opmerking Kleurtemperatuur 3315 K Warmwit (tegen

Nadere informatie

Domein A: Inzicht en handelen

Domein A: Inzicht en handelen Tussendoelen wiskunde onderbouw vo vmbo Preambule Domein A is een overkoepeld domein dat altijd in combinatie met de andere domeinen wordt toegepast (of getoetst). In domein A wordt benoemd: Vaktaal: het

Nadere informatie

Welkom. Kennisplatform OV. 10 januari 2014

Welkom. Kennisplatform OV. 10 januari 2014 Welkom Kennisplatform OV 10 januari 2014 Overzicht Algemeen Wat is licht? Gedrag op voorwerpen Fotometrische grootheden Installatie 2 Basisprincipes OV - V4.1 Wat is openbare verlichting? Criteria Verlichtingsinstallatie

Nadere informatie

Tentamen Warmte-overdracht

Tentamen Warmte-overdracht Tentamen Warmte-overdracht vakcode: 4B680 datum: 21 juni 2010 tijd: 14.00-17.00 uur LET OP Er zijn in totaal 4 opgaven waarvan de eerste opgave bestaat uit losse vragen. Alle opgaven tellen even zwaar

Nadere informatie

* Je kunt natuurlijk ook foto s van de lucht maken met de gedraaide zonnebril voor de lens.

* Je kunt natuurlijk ook foto s van de lucht maken met de gedraaide zonnebril voor de lens. Licht in de lucht Proeven met polarisatie Gerard Stout Nodig: * digitale camera * polaroid zonnebril * zonnige dag Licht lijkt heel gewoon. Je merkt het nauwelijks op. Pas als het donker is, mis je licht

Nadere informatie

Inleiding tot de natuurkunde

Inleiding tot de natuurkunde OBC Inleiding tot de Natuurkunde 01-09-2009 W.Tomassen Pagina 1 Inhoud Hoofdstuk 1 Rekenen.... 3 Hoofdstuk 2 Grootheden... 5 Hoofdstuk 3 Eenheden.... 7 Hoofdstuk 4 Evenredig.... 10 Inleiding... 10 Uitleg...

Nadere informatie

Examen HAVO. wiskunde B1,2. tijdvak 2 woensdag 18 juni 13.30-16.30. Bij dit examen hoort een uitwerkbijlage.

Examen HAVO. wiskunde B1,2. tijdvak 2 woensdag 18 juni 13.30-16.30. Bij dit examen hoort een uitwerkbijlage. Examen HAVO 008 tijdvak woensdag 18 juni 13.30-16.30 wiskunde B1, Bij dit examen hoort een uitwerkbijlage. it examen bestaat uit 18 vragen. Voor dit examen zijn maximaal 81 punten te behalen. Voor elk

Nadere informatie

Natuur-/scheikunde Klas men

Natuur-/scheikunde Klas men Natuur-/scheikunde Klas 1 2015-2016 men 1 Wat zie ik? Over fotonen. Je ziet pas iets (voorwerp, plant of dier) wanneer er lichtdeeltjes afkomstig van dat voorwerp je oog bereiken. Die lichtdeeltjes noemen

Nadere informatie

Inhoud. Eenheden... 2 Omrekenen van eenheden I... 4 Omrekenen van eenheden II... 9 Omrekenen van eenheden III... 10

Inhoud. Eenheden... 2 Omrekenen van eenheden I... 4 Omrekenen van eenheden II... 9 Omrekenen van eenheden III... 10 Inhoud Eenheden... 2 Omrekenen van eenheden I... 4 Omrekenen van eenheden II... 9 Omrekenen van eenheden III... 10 1/10 Eenheden Iedere grootheid heeft zijn eigen eenheid. Vaak zijn er meerdere eenheden

Nadere informatie

TENTAMEN. x 2 x 3. x x2. cos( x y) cos ( x) cos( y) + sin( x) sin( y) d dx arcsin( x)

TENTAMEN. x 2 x 3. x x2. cos( x y) cos ( x) cos( y) + sin( x) sin( y) d dx arcsin( x) FACULTEIT TECHNISCHE NATUURWETENSCHAPPEN Opleiding Technische Natuurkunde Kenmerk: 46055907/VGr/KGr Vak : Inleiding Optica (4602) Datum : 29 januari 200 Tijd : 3:45 uur 7.5 uur TENTAMEN Indien U een onderdeel

Nadere informatie

Bouwfysica. Verlichting. Onderwerpen. hoofdstuk 4 Bouwfysica. Begrippen. Kunstlicht. Daglicht. Straatverlichting. Cauberg-Huygen BV 1

Bouwfysica. Verlichting. Onderwerpen. hoofdstuk 4 Bouwfysica. Begrippen. Kunstlicht. Daglicht. Straatverlichting. Cauberg-Huygen BV 1 Bouwfysica Verlichting hoofdstuk 4 Bouwfysica 1 Onderwerpen Begrippen Kunstlicht Daglicht Straatverlichting Cauberg-Huygen BV 1 Begrippen zonlicht / daglicht 3 Begrippen kleuren zichtbaar licht 4 Cauberg-Huygen

Nadere informatie

Eindronde Natuurkunde Olympiade 2015 theorietoets deel 1

Eindronde Natuurkunde Olympiade 2015 theorietoets deel 1 Eindronde Natuurkunde Olympiade 2015 theorietoets deel 1 Opgave 1 Botsend blokje (5p) Een blok met een massa van 10 kg glijdt over een glad oppervlak. Hoek D botst tegen een klein vastzittend blokje S

Nadere informatie

XXX INTERNATIONALE NATUURKUNDE OLYMPIADE LEICESTER, GROOT BRITANNIË PRACTICUM-TOETS

XXX INTERNATIONALE NATUURKUNDE OLYMPIADE LEICESTER, GROOT BRITANNIË PRACTICUM-TOETS XXX INTERNATIONALE NATUURKUNDE OLYMPIADE LEICESTER, GROOT BRITANNIË PRACTICUM-TOETS 12 juli 2000 72 --- 13 de internationale olympiade De magnetische schijf 2,5 uur Geef in dit experiment een schatting

Nadere informatie

Hertentamen Optica. 20 maart 2007. Zet je naam, studentennummer en studierichting bovenaan elk vel dat je gebruikt. Lees de 6 opgaven eerst eens door.

Hertentamen Optica. 20 maart 2007. Zet je naam, studentennummer en studierichting bovenaan elk vel dat je gebruikt. Lees de 6 opgaven eerst eens door. Hertentamen Optica 20 maart 2007 Zet je naam, studentennummer en studierichting bovenaan elk vel dat je gebruikt. Lees de 6 opgaven eerst eens door. Opgave 1 Slechts eenmaal heeft God de natuurwetten blijvend

Nadere informatie

Inleiding tot de natuurkunde

Inleiding tot de natuurkunde OBC Inleiding tot de Natuurkunde 01-08-2010 W.Tomassen Pagina 1 Hoofdstuk 1 : Hoe haal ik hoge cijfers. 1. Maak van elke paragraaf een samenvatting. (Titels, vet/schuin gedrukte tekst, opsommingen en plaatsjes.)

Nadere informatie

Tentamen Warmte-overdracht

Tentamen Warmte-overdracht Tentamen Warmte-overdracht vakcode: 4B680 datum: 20 juni 2011 tijd: 14.00-17.00 uur LET OP Er zijn in totaal 4 opgaven waarvan de eerste opgave bestaat uit losse vragen. Alle opgaven tellen even zwaar

Nadere informatie

Tekstboek. VMBO-T Leerjaar 1 en 2

Tekstboek. VMBO-T Leerjaar 1 en 2 Tekstboek VMBO-T Leerjaar 1 en 2 JHB Pastoor 2015 Arnhem 1 Inhoudsopgave i-nask Tekstboek VMBO-T Leerjaar 1 en 2 Hoofdstuk 1 Licht 1.1 Licht Zien 3 1.2 Licht en Kleur 5 1.3 Schaduw 10 1.4 Spiegels 15 Hoofdstuk

Nadere informatie

5 10 20 50 100 200 500 Nederland 1% 1% 20% 62% 11% 2% 3% Europa 1% 4% 44% 36% 12% 2% 1%

5 10 20 50 100 200 500 Nederland 1% 1% 20% 62% 11% 2% 3% Europa 1% 4% 44% 36% 12% 2% 1% Valse euro s In de tabel hieronder kun je aflezen hoe de aantallen in beslag genomen vervalsingen in het jaar 2006 zijn verdeeld over de verschillende biljetten in Nederland en Europa. 5 10 20 50 100 200

Nadere informatie

Examen VWO. wiskunde B (pilot) tijdvak 2 donderdag 23 juni 13:30-16:30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO. wiskunde B (pilot) tijdvak 2 donderdag 23 juni 13:30-16:30 uur. Bij dit examen hoort een uitwerkbijlage. Eamen VW 016 tijdvak donderdag 3 juni 13:30-16:30 uur wiskunde B (pilot) Bij dit eamen hoort een uitwerkbijlage. Dit eamen bestaat uit 16 vragen. Voor dit eamen zijn maimaal 81 punten te behalen. Voor

Nadere informatie

Examen VMBO-GL en TL. wiskunde CSE GL en TL. tijdvak 2 dinsdag 21 juni uur. Bij dit examen hoort een uitwerkbijlage.

Examen VMBO-GL en TL. wiskunde CSE GL en TL. tijdvak 2 dinsdag 21 juni uur. Bij dit examen hoort een uitwerkbijlage. Examen VMBO-GL en TL 2011 tijdvak 2 dinsdag 21 juni 13.30-15.30 uur wiskunde CSE GL en TL Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 25 vragen. Voor dit examen zijn maximaal 75 punten

Nadere informatie

Eindexamen wiskunde B1-2 havo 2008-II

Eindexamen wiskunde B1-2 havo 2008-II Koffiekan Bij het zetten van koffie wordt soms een koffiezetapparaat gebruikt. eze opgave gaat over een koffiezetapparaat waarbij de koffiekan, zonder het handvat en de bovenrand, de vorm heeft van een

Nadere informatie

Licht en planten (onder glas)

Licht en planten (onder glas) Licht en planten (onder glas) Tom Dueck, Wageningen UR Glastuinbouw Masterclass workshop, 17 april 2008 Inhoud Licht en straling Stuurlicht LEDs Diffuus Licht Zonlichtspectrum Straling Golflengte Opmerking

Nadere informatie

Lampmeetrapport 17 maart 2009 voor Lioris. Lioris Tubo 23. Pagina 1 van 16

Lampmeetrapport 17 maart 2009 voor Lioris. Lioris Tubo 23. Pagina 1 van 16 Lioris Tubo 23 Pagina 1 van 16 Samenvatting meetgegevens parameter meting lamp opmerking Kleurtemperatuur 5939 K Felwit. Lichtsterkte I v 617 Cd Tevens is als extra meting de verlichtingssterkte gemeten

Nadere informatie

Lichtmeting aan LED verlichting

Lichtmeting aan LED verlichting Lichtmeting aan LED verlichting Tristimulus versus Spectrale Instrumenten Theo Duncker LED Lampen 1 Watt 2 Chromatische analyse Groen Oranje/ Geel Rood Blauw 3 Gekleurde LED s Relatieve Schaal 468 nm 515

Nadere informatie

Spectroscopie. ... de kunst van het lichtlezen... Karolien Lefever. u gebracht door. Instituut voor Sterrenkunde, K.U. Leuven

Spectroscopie. ... de kunst van het lichtlezen... Karolien Lefever. u gebracht door. Instituut voor Sterrenkunde, K.U. Leuven Spectroscopie... de kunst van het lichtlezen... u gebracht door Instituut voor Sterrenkunde, K.U. Leuven Spectroscopie en kunst... Het kleurenpalet van het elektromagnetisch spectrum... Het fingerspitzengefühl

Nadere informatie

Uitwerkingen tentamen Optica

Uitwerkingen tentamen Optica Uitwerkingen tentamen Optica 18 februari 2005 Opgave 1 2 y x 2 = 1 a 2 2 y t 2 (1) a) De eenheid van a moet zijn m/s, zoals te zien aan de vergelijking. a = v is de snelheid waarmee de golf zich voortbeweegt.

Nadere informatie

Led It Light - MR-PL E27 WW 2.5W

Led It Light - MR-PL E27 WW 2.5W Led It Light - MR-PL E27 WW 2.5W Pagina 1 van 13 Samenvatting meetgegevens parameter meting lamp opmerking Kleurtemperatuur 2563 K Diep warmwit. Lichtsterkte I v 11 Cd Stralingshoek 248 deg Vermogen P

Nadere informatie

Nederlandse samenvatting

Nederlandse samenvatting Nederlandse samenvatting 9.1 De hemel Wanneer s nachts naar een onbewolkte hemel wordt gekeken is het eerste wat opvalt de vele fonkelende sterren. Met wat geluk kan ook de melkweg worden gezien als een

Nadere informatie

Naam: Klas: Toets Eenvoudige interferentie- en diffractiepatronen VWO (versie A)

Naam: Klas: Toets Eenvoudige interferentie- en diffractiepatronen VWO (versie A) Naam: Klas: Toets Eenvoudige interferentie- en diffractiepatronen VWO (versie A) Opgave 1 Twee kleine luidsprekers L 1 en L hebben een onderlinge afstand van d = 1,40 m. Zie de figuur hiernaast (niet op

Nadere informatie

MONITORING OPSTELLING

MONITORING OPSTELLING MONITORING OPSTELLING De meters hangen aan de zijkant van een woonboot in Utrecht. Utrecht ligt in het midden van het land en is een stad van 300.000 inwoners. De locatie is aangegeven op een DSMP kaart

Nadere informatie

T1 Wat is licht? FIG. 3 Zo teken je een lichtstraal. De pijl geeft de richting van het licht aan.

T1 Wat is licht? FIG. 3 Zo teken je een lichtstraal. De pijl geeft de richting van het licht aan. T1 Wat is licht? Lichtbron, lichtstraal en lichtsnelheid Licht ontstaat in een lichtbron. Een aantal bekende lichtbronnen zijn: de zon en de sterren; verschillende soorten lampen (figuur 1); vuur, maar

Nadere informatie

De diverse somsoorten bij Fysica

De diverse somsoorten bij Fysica De diverse somsoorten bij Fysica 1 liter zout water weegt 1,03 kilo 1 liter zoet water weegt 1,00 kilo 1 meter zout water levert 0,1 bar druk op 1 meter zoet water levert 0,097 bar druk op Belangrijk:

Nadere informatie

Meten is weten, dat geldt ook voor het vakgebied natuurkunde. Om te meten gebruik je hulpmiddelen, zoals timers, thermometers, linialen en sensoren.

Meten is weten, dat geldt ook voor het vakgebied natuurkunde. Om te meten gebruik je hulpmiddelen, zoals timers, thermometers, linialen en sensoren. 1 Meten en verwerken 1.1 Meten Meten is weten, dat geldt ook voor het vakgebied natuurkunde. Om te meten gebruik je hulpmiddelen, zoals timers, thermometers, linialen en sensoren. Grootheden/eenheden Een

Nadere informatie

FORMULERING VAN DE THEORETISCHE ZONNE-INSTRALING OP ZONNEPANELEN. < In ontwikkeling >

FORMULERING VAN DE THEORETISCHE ZONNE-INSTRALING OP ZONNEPANELEN. < In ontwikkeling > FORMULERG VA DE THEORETCHE OE-TRALG OP OEPAELE < n ontwikkeling > Wageningen, 5 september 004 Door R.C. Ott LEDG: onnepanelen vormen een belangrijke energiebron voor zowel het huishouden als de industrie.

Nadere informatie

ZONSVERDUISTERING TURKIJE OP 29 MAART 2006

ZONSVERDUISTERING TURKIJE OP 29 MAART 2006 ZONSVERDUISTERING TURKIJE OP 29 MAART 2006 METING VERSUS BELEVING Janneke van der Weerd BSc., TU/e, unit BPS, Eindhoven Remy Wenmaekers MSc., Level Acoustics BV, Eindhoven Prof. dr. ir. M.H. de Wit, TU/e,

Nadere informatie

D h = d i. In deze opgave wordt de relatie tussen hoekmaat en afstand uitgerekend in een vlak expanderend heelal.

D h = d i. In deze opgave wordt de relatie tussen hoekmaat en afstand uitgerekend in een vlak expanderend heelal. 12 De hoekafstand In een vlak, statisch, niet expanderend heelal kan men voor een object met afmeting d op grote afstand D (zodat D d) de hoek i berekenen waaronder men het object aan de hemel ziet. Deze

Nadere informatie

NBN EN 12464-1 en de interpretatie van lichtstudies

NBN EN 12464-1 en de interpretatie van lichtstudies NBN EN 12464-1 en de interpretatie van lichtstudies Wouter Ryckaert Wouter.Ryckaert@kuleuven.be 09 265 87 13 24 oktober 2013 Belgische Vereniging voor Arbeidshygiëne Belgian Ergonomics Society Verlichtingsontwerp

Nadere informatie

BK Interieur Renderen Workshop 6 Technisch Ontwerp en Informatica

BK Interieur Renderen Workshop 6 Technisch Ontwerp en Informatica BK4070 - Licht In de computer moeten we het licht zoals het werkt in de echte wereld benaderen en kunnen controleren. Om die reden is het licht gesplitst in een aantal effecten die samen een goede benadering

Nadere informatie

Introductie VSL Meten aan verlichting. Dutch Metrology Institute Oktober 2017 Kees-Peter Geluk

Introductie VSL Meten aan verlichting. Dutch Metrology Institute Oktober 2017 Kees-Peter Geluk Introductie VSL Meten aan verlichting Dutch Metrology Institute Oktober 2017 Kees-Peter Geluk Inhoudsopgave VSL algemeen VSL optica Meten aan verlichting 2-11-2017 2 VSL Algemeen VSL is een privaat bedrijf

Nadere informatie

Faculteit Biomedische Technologie Tentamen OPTICA (8N040) 16 augustus 2012, 9:00-12:00 uur

Faculteit Biomedische Technologie Tentamen OPTICA (8N040) 16 augustus 2012, 9:00-12:00 uur Faculteit Biomedische Technologie Tentamen OPTICA (8N040) 16 augustus 2012, 9:00-12:00 uur Opmerkingen: 1) Lijsten met de punten toegekend door de corrector worden op OASE gepubliceerd. De antwoorden van

Nadere informatie

Natuurwetten »NIEUWE NATUURKUNDE VWO6 »UITWERKINGEN. a. = b. = = c. = = = d. = = Boorplatform naar links, Dan afstand = = Kabel is dan dus uitgerekt!

Natuurwetten »NIEUWE NATUURKUNDE VWO6 »UITWERKINGEN. a. = b. = = c. = = = d. = = Boorplatform naar links, Dan afstand = = Kabel is dan dus uitgerekt! »NIEUWE NATUURKUNDE VWO6 Natuurwetten»UITWERKINGEN HOOFDSTUK 1 - MODELLEN 1. a. A F shorizontaal F s vraag 1a C 40m Pythagoras: B Met gelijkvormigheid driehoeken vind je veerconstante (BINAS 35A-4 ) C

Nadere informatie

Keuzeopdracht natuurkunde voor 5/6vwo

Keuzeopdracht natuurkunde voor 5/6vwo Exoplaneten Keuzeopdracht natuurkunde voor 5/6vwo Een verdiepende keuzeopdracht over het waarnemen van exoplaneten Voorkennis: gravitatiekracht, cirkelbanen, spectra (afhankelijk van keuze) Inleiding Al

Nadere informatie

Technische Universiteit Eindhoven

Technische Universiteit Eindhoven Technische Universiteit Eindhoven Tentamen: Golven en Optica (3BB40) Datum: 24 november 2006 N.B.: Dit tentamen bestaat uit 4 vraagstukken en 5 pagina s met formules (LET OP, formulebladen zijn gewijzigd!!).

Nadere informatie

In het internationale eenhedenstelsel, ook wel SI, staan er negen basisgrootheden met bijbehorende grondeenheden. Dit is BINAS tabel 3A.

In het internationale eenhedenstelsel, ook wel SI, staan er negen basisgrootheden met bijbehorende grondeenheden. Dit is BINAS tabel 3A. Grootheden en eenheden Kwalitatieve en kwantitatieve waarnemingen Een kwalitatieve waarneming is wanneer je meet zonder bijvoorbeeld een meetlat. Je ziet dat een paard hoger is dan een muis. Een kwantitatieve

Nadere informatie

Actie Groenlicht Luxerna Power TL600

Actie Groenlicht Luxerna Power TL600 Actie Groenlicht Luxerna Power TL600 Pagina 1 van 1 Samenvatting meetgegevens parameter meting lamp opmerking Kleurtemperatuur 6661 K Felwit. Lichtsterkte I v 365 Cd Stralingshoek 91 deg Vermogen P 9.9

Nadere informatie

Nederlandse samenvatting

Nederlandse samenvatting Nederlandse samenvatting Spiraalstelsels Het heelal wordt bevolkt door sterrenstelsels die elk uit miljarden sterren bestaan. Er zijn verschillende soorten sterrenstelsels. In het huidige heelal zien we

Nadere informatie

Uitwerkingen Tentamen Optica

Uitwerkingen Tentamen Optica Uitwerkingen Tentamen Optica Datum van het tentamen: 19 februari 2008 Opgave 1 a) Het hoekoplossend vermogen van een lens (of een holle spiegel) is direct gerelateerd aan het Fraunhofer diffractiepatroon

Nadere informatie

Creative Lighting Solutions Façade IP65 6xTF WW Medium Frosted

Creative Lighting Solutions Façade IP65 6xTF WW Medium Frosted Creative Lighting Solutions Façade IP65 6xTF WW Medium Frosted Pagina 1 van 16 Samenvatting meetgegevens parameter meting lamp opmerking Kleurtemperatuur 3117 K Warmwit. Lichtsterkte I v 1294 Cd Gemeten

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN

TECHNISCHE UNIVERSITEIT EINDHOVEN TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Technische Natuurkunde Tentamen Golven & Optica 3AA70 Dinsdag 23 juni 2009 van 14.00 tot 17.00 uur Dit tentamen bestaat uit 4 vraagstukken en 5 pagina s met

Nadere informatie

Astrofysica. Ontstaan En Levensloop Van Sterren

Astrofysica. Ontstaan En Levensloop Van Sterren Astrofysica Ontstaan En Levensloop Van Sterren 1 Astrofysica 9 avonden Deeltjestheorie als rode draad Energie van sterren Helderheden Straling en spectrografie HR diagram Diameters en massa 2 Astrofysica

Nadere informatie

Schriftelijk examen 2e Ba Biologie Fysica: elektromagnetisme 2011-2012

Schriftelijk examen 2e Ba Biologie Fysica: elektromagnetisme 2011-2012 - Biologie Schriftelijk examen 2e Ba Biologie 2011-2012 Naam en studierichting: Aantal afgegeven bladen, deze opgaven niet meegerekend: Gebruik voor elke nieuwe vraag een nieuw blad. Zet op elk blad de

Nadere informatie

Eindexamen havo wiskunde B I

Eindexamen havo wiskunde B I Vliegende parkieten De wetenschapper Vance Tucker heeft onderzocht hoeveel energie een parkiet verbruikt bij het vliegen met verschillende snelheden. Uit zijn onderzoek blijkt dat de hoeveelheid energie

Nadere informatie

Schriftelijk examen: theorie en oefeningen Fysica: elektromagnetisme

Schriftelijk examen: theorie en oefeningen Fysica: elektromagnetisme Schriftelijk examen: theorie en oefeningen 2010-2011 Naam en studierichting: Aantal afgegeven bladen, dit blad niet meegerekend: Gebruik voor elke nieuwe vraag een nieuw blad. Zet op elk blad de vermelding

Nadere informatie

Statistiek voor Natuurkunde Opgavenserie 4: Lineaire regressie

Statistiek voor Natuurkunde Opgavenserie 4: Lineaire regressie Statistiek voor Natuurkunde Opgavenserie 4: Lineaire regressie Inleveren: Uiterlijk 15 februari voor 16.00 in mijn postvakje Afspraken Overleg is toegestaan, maar iedereen levert zijn eigen werk in. Overschrijven

Nadere informatie

TWEEDE RONDE NATUURKUNDE OLYMPIADE 2014 TOETS 1. 23 APRIL 2014 10.30 12.30 uur

TWEEDE RONDE NATUURKUNDE OLYMPIADE 2014 TOETS 1. 23 APRIL 2014 10.30 12.30 uur TWEEDE RONDE NATUURKUNDE OLYMPIADE 2014 TOETS 1 23 APRIL 2014 10.30 12.30 uur 1 RONDDRAAIENDE MASSA 5pt Een massa zit aan een uiteinde van een touw. De massa ligt op een wrijvingloos oppervlak waar het

Nadere informatie

Basisvaardigheden - Inhoud

Basisvaardigheden - Inhoud Baivaardigheden - Inhoud 1. Inleiding 2. Grootheden en eenheden. Significantie 4. Practicum meten 5. Formule en driehoeken 6. Vuitregel 7. Diagrammen 8. Oefentoet Hoe werkt de Natuurkunde? Natuurkunde

Nadere informatie

1 f T De eenheid van trillingstijd is (s). De eenheid van frequentie is (Hz).

1 f T De eenheid van trillingstijd is (s). De eenheid van frequentie is (Hz). 1. 1 Wat is een trilling? Een trilling is een beweging die steeds wordt herhaald. Bijvoorbeeld een massa m dat aan een veer hangt. In rust bevindt m zich in de evenwichtsstand. Als m beweegt noemen we

Nadere informatie