Hoofdstuk 2. Week 4: Datastructuren. 2.1 Leesopdracht. 2.2 Bomen. 2.3 Definitie

Save this PDF as:
 WORD  PNG  TXT  JPG

Maat: px
Weergave met pagina beginnen:

Download "Hoofdstuk 2. Week 4: Datastructuren. 2.1 Leesopdracht. 2.2 Bomen. 2.3 Definitie"

Transcriptie

1 Hoofdstuk 2 Week 4: Datastructuren 2.1 Leesopdracht In het hoorcollege komen lijsten en bomen aan de orde. De eerste datastructuur komt in het boek in bladzijden aan de orde. In dit dictaat komt uitsluitend de theorie van bomen aan de orde. 2.2 Bomen De lineaire lijst heeft als grote bezwaar, dat doorzoeken van de lijst evenredig toeneemt met de lengte van de lijst. In een twee keer zo lange lijst moeten over het algemeen twee keer zoveel element-vergelijkingen worden gedaan. Eerder hebben we een efficiënter zoekalgoritme besproken, nl. binary search. Hiervoor is het nodig dat de gegevens geordend aanwezig zijn. Zelfs bij een geordende lijst is binary search echter onmogelijk omdat we het midden van de lijst niet zo eenvoudig kunnen vinden. We zouden graag een structuur willen hebben, die dat wel kan. Zo n structuur is er, nl. de boomstructuur (in het Engels: tree). 2.3 Definitie We kunnen de volgende definitie vinden in de literatuur: Een boom bestaat uit een (eventueel lege) verzameling gerichte verbindingen tussen tweetallen punten. Eén punt, de zg. wortel (root), heeft geen inkomende verbindingen. Vanuit de wortel is elk ander punt van de boom op precies één manier langs de gerichte verbindingen bereikbaar. Een punt zonder uitgaande verbindingen wordt wel blad (leaf ) genoemd. Een willekeurig punt een knoop (node). Evenals met lijsten het geval was, hebben we hier een recursieve structuur: wijzen we een willekeurig punt van de boom aan als wortel, dan is de onderliggende structuur 1

2 wederom een boom (en wel een subboom (subtree van de originele boom). 2.4 Binaire bomen We zullen hier alleen binaire bomen behandelen, d.w.z. dat vanuit elk punt hooguit twee verwijzingen naar subbomen mogelijk zijn. We gaan dus een class SearchTree maken. Eén van de problemen waar we binnen een object geörienteerde taal tegenaan kunnen lopen is dat we ook een lege boom als een object uit de class SearchTree willen beschouwen. Een lege boom is echter het handigst als een null referentie te beschouwen. Je kunt echter geen methods van een null referntie aanroepen. De handigste aanpak onder deze omstandigheden is om binnen de class SearchTree een private class TreeNode te maken. Deze bevat de eigenlijke boom structuur, terwijl de class SearchTree alleen de wortel van de boom (root die dus null mag zijn) bevat. Iedere method in SearchTree zal dus eerst controleren of de boom leeg is, zonodig zelf actie ondernemen om deze uitzondering te behandelen, en anders de overeenkomstige method uit de private class TreeNode aanroepen. Dit levert de volgende structuur: public class SearchTree private class TreeNode // Data fields private Object info; private TreeNode left; private TreeNode right; // Methods within TreeNode... // Data fields public TreeNode root; // Methods within SearchTree Een voorbeeld van het gebruik van een boomstructuur vinden we in het opslaan van een rekenkundige expressie. Zo kunnen we de expressie: (a b)/(c + (d e)) 2

3 root node / * + a b c - leaf d e Figuur 2.1: Binaire boom voor (a b)/(c + (d e)). in een binaire boom opslaan zoals in aangegeven in figuur 2.1. Uit de boomstructuur volgt direkt de evaluatie volgorde, zodat haakjes overbodig worden. Net als bij lijsten is het ook bij bomen verstandig om niet direct de datastuctuur te manipuleren, maar om methods te gebruiken die de structuur manipuleren. Op deze wijze is het handhaven van de integriteit (correctheid) van de datastructuur een stuk gemakkelijker. Voor bomen met rekenkundige expressies definiëren we daarom de volgende constructor public TreeNode(Object obj, TreeNode leftnode, TreeNode rightnode) info = obj; left = leftnode; right = rightnode; De bovenstaande rekenkundige expressie kunnen we nu gemakkelijk construeren met: root = new TreeNode ( "/", new TreeNode ( "*", new TreeNode( "a"), new TreeNode( "b" ) ), new TreeNode ( +, new TreeNode( "c" ), new TreeNode ( -, new TreeNode( "d" ), new TreeNode( "e" ) ) 3

4 ); ) 2.5 Doorlopen van een binaire boom Er bestaan in principe drie manieren om een boomstructuur te doorlopen: 1 ) preorder - behandel eerst de wortel en dan resp. de linker- en rechter subboom. inorder - behandel eerst de linker subboom, dan de wortel zelf en tot slot de rechter subboom. postorder - behandel eerst de linker resp. rechter subboom en pas dan de wortel. In Java kunnen we bijvoorbeeld het in preorder, inorder of postorder doorlopen van een boom beschrijven alsvolgt: public preorderdosomething ( ) info.dosomething(); if ( left!= null ) left.preorderdosomething( ); if ( right!= null ) right.preorderdosomething( ); public inorderdosomething ( ) if ( left!= null ) left.inorderdosomething( ); info.dosomething(); if ( right!= null ) right.inorderdosomething( ); 1 ) Pre- en postorder is ook te definiëren voor algemene bomen, inorder alleen voor binaire bomen 4

5 public postorderdosomething ( ) if ( left!= null ) left.postorderdosomething( ); if ( right!= null ) right.postorderdosomething( ); info.dosomething(); Indien info.dosomething bestaat uit het afdrukken van het item, ontstaat de volgende uitvoer voor de hiervoor gegeven expressieboom: preorder: / a b + c d e inorder: a b / c + d d postorder: a b / c d e + Zowel de preorder als de postorder uitvoer van deze expressie zijn zonder ambiguïteit te begrijpen. De overeenkomstige prefix, resp. postfix notatie 2 ) is dan ook zonder haakjes te gebruiken. De bij de inorder uitvoer behorende infix notatie heeft zo nu en dan haakjes nodig (of strikte prioriteitsregels) om ambiguiteit te voorkomen. De postfix notatie staat wel bekend als de omgekeerde Poolse notatie. 3 ) 2.6 Geordende lijsten Tot nog toe hebben we ons bij lijsten niet bekommerd om de volgorde van de elementen. Vaak willen we dat de elementen in een lijst in opklimmende grootte geordend zijn. We spreken dan van een geordende lijst. Voorwaarde is dat de objecten in de lijst Comparable zijn. De insert moet dan als volgt geimplementeerd worden: 2 ) Prefix-notatie: de operator voor de operanden, postfix: de operator achter de operanden en infix: de operator ertussen in (de laatste alleen voor binaire operatoren). 3 ) De notatie is bedacht door de Pool Lukasiewicz, maar wordt niet Lukasiewicz-notatie genoemd omdat de naam zo moeilijk uit te spreken en te onthouden is. 5

6 public void insertordered( Comparable e ) ListIterator iter = this.listiterator(); while (iter.hasnext()) if ( e.compareto((comparable) iter.next()) < 0 ) if (iter.hasprevious()) iter.previous(); break; iter.add(e); Het nadeel van een geordende lijst is dat het toevoegen van een nieuw element aan de lijst wat meer rekentijd kost, maar het voordeel is dat een groot aantal bewerkingen minder tijd kosten. Bijvoorbeeld: Minimum: het zoeken van het kleinste element kan in constante tijd O N 0, immers dit element staat vooraan in de lijst. Uniek: het verwijderen van doublures, elementen die twee of meer keren voorkomen, uit de lijst kost voor ongeordende lijsten O N 2 tijd en voor geordende lijsten O N tijd. Gelijkheid: de gelijkheidstest van twee lijsten kan in orde O N tijd, voor ongeordende lijsten is minimaal O N 2 tijd nodig. 2.7 Een geordende boom In de vorige paragraaf bleek, dat zelfs met een geordende lijst geen efficiënt zoekalgoritme mogelijk is. Ook met een geordende lijst blijft een zoekalgoritme O N. We kunnen (onder bepaalde voorwaarden 4 )) laten zien, dat in een geordende boom een zoekalgoritme mogelijk is van O log N. Duizend keer zoveel elementen betekent nu log keer zoveel zoekacties. Voorwaar een hele verbetering. We zullen nu eerst definiëren, wat we onder een geordende boom zullen verstaan. 5 ) We gaan hierbij uit van de ordeningsrelatie. 4 ) Hierbij moet de boom gebalanceerd zijn. D.w.z. dat in elke knoop de subbomen hooguit één in diepte verschillen. Over balanceren van bomen zullen we hier niet spreken. We kunnen dus niet garanderen dat de zoekalgoritmen O log N zijn. 5 ) Een veel gebruikte term voor een geordende boom is search tree, zodat we kunnen zeggen dat tree search needs search trees. 6

7 Een boom heet geordend (m.b.t. ) als alle waarden in de knopen van de linkersubboom niet groter zijn dan de waarde in de wortel van t en de waarde in de wortel in niet groter is dan enige waarde van de knopen in de rechtersubboom. Bovendien zijn de linker- en rechtersubboom weer geordend. Zoeken in een boom kan nu vrij eenvoudig worden geprogrammeerd. Het algoritme vertoont enige verwantschap met binary search: ook hier wordt in elke stap het aantal te doorzoeken elementen gehalveerd, hetgeen in een O log N algoritme resulteert. De boom wordt nu vanaf de wortel doorlopen, en wel zodanig, dat in iedere knoop wordt beslist of de zoekactie in de linker- of de rechtersubboom moet worden voortgezet. Als resultaat levert searchitem een verwijzing naar de knoop waarin het gezochte element staat; echter als het element niet gevonden wordt levert searchitem de waarde null op. public static TreeNode searchitem( TreeNode tree, Comparable e ) //Pre : true //Post: searchitem = null ( searchitem.info = e ) if (tree == null) return null; // niets gevonden int test = e.compareto( (Comparable) tree.info); if (test == 0) // als e == tree.info return tree; // raak!! if (test<0) return searchitem( tree.left, e); // als e < tree.info // links zoeken return searchitem( tree.right, e); // anders rechts zoeken 2.8 Basisoperaties op binaire zoekbomen De basisoperaties op bomen verschillen niet veel van de basisoperaties op geordende lijsten. Het is zelfs verstandig om de interfacing m.b.t. bomen zo veel mogelijk gelijk te kiezen aan 7

8 de interfacing m.b.t. geordende lijsten; immers we kunnen dan bomen en lijsten gebruiken als verschillende implementaties behorende bij dezelfde interface. add - het toevoegen van een element in een binaire zoekboom. clone - het copieren van een binaire zoekboom. isempty - controle of de boom leeg is. join - het samenvoegen van twee binaire zoekbomen. remove - verwijder node uit boom. tostring - het converteren naar een string. first - het kleinste element last - grootste element Elementen toevoegen in een geordende boom kan eenvoudig worden uitgeschreven. We maken hiervoor gebruik van onderstaand schema: 1. Als de huidige boom leeg is, wordt het betreffende element als wortel in de huidige boom opgenomen. 2. Is de huidige boom niet leeg, dan wordt het probleem verplaatst naar de linker- of rechter subboom en wel: naar links, indien het wortelelement kleiner is en naar rechts, indien het wortelelement groter is dan het in te voegen element. bij gelijkheid voegen we in dit geval het element niet toe en signaleren dit door als return-waarde false te geven. 6 ) Het schema resulteert in de method add: public boolean add( Object item ) if ( isempty() ) root = new TreeNode( item ); return true; return root.addnode( item ); De recursie wordt afgehandeld door de add method binnen de private class TreeNode: 6 ) Er zijn ook andere keuzes mogelijk als element gelijk is aan het wortelelement. We kiezen hier voor een methode die gelijk is aan die in standaard classes van Java. 8

9 public boolean addnode(object item) // Voegt een element aan de binaire zoekboom toe if ( info.compareto(item) == 0 ) return false; if ( info.compareto(item) > 0 ) // item.key < root.key if ( left == null ) left = new TreeNode(item); return true; // new item added return left.addnode(item); // insert in left tree // item.key >= root.key if ( right == null ) right = new TreeNode(item); return true; // new item added return right.addnode(item); // insert in left tree Voor de implementatie van clone gebruiken we een dergelijke opsplitsing. De clone method van class SearchTree is 9

10 public SearchTree clone() SearchTree t = new SearchTree(); if (! isempty() ) t.root = root.clone(); return t; Die van class TreeNode: public TreeNode clone() TreeNode t = new TreeNode( ((Cloneable)info).clone() ); if ( left!= null ) t.left = left.clone(); if ( right!= null ) t.right = right.clone(); return t; De method join voegt alle elementen van een zoekboom aan een andere zoekboom, die als parameter wordt meegegeven. Deze method volgt ook het voorgaande patroon. In SearchTree hebben we public void join( SearchTree t ) // Combineer twee binaire zoekbomen if (!isempty() ) root.join(t); En in TreeNode: 10

11 public void join( SearchTree t ) // Combineer twee binaire zoekbomen t.insert( (Comparable) info); if ( left!= null ) left.join(t); if ( right!= null ) right.join(t); Bij de implementatie van join gebruiken we één van de mogelijke wijzen om een binaire boom te doorlopen. In ons geval hebben we gekozen voor de preorder methode; we hadden ook inorder of postorder kunnen gebruiken. De inorder methode heeft echter als bezwaar dat de boom t dan snel uit balans raakt. 2.9 Verwijderen van een knoop uit een boom Het verwijderen van een element uit een boom is minder eenvoudig dan het toevoegen. Merk op, dat toevoeging altijd plaatsvindt aan de bladeren van de boom. Een element, dat moet worden verwijderd, hoeft echter niet een blad te zijn. Het kan zich ook ergens middenin bevinden. We onderscheiden een drietal gevallen: 1. Het te verwijderen element heeft geen opvolgers: (left == null) && (right == null) 2. Het te verwijderen element heeft precies één opvolger: (left == null)!= (right == null) Met!= implementeren we de exclusief of (XOR), waarbij A!= B betekent dat A is waar of B is waar maar niet beiden. 3. Het te verwijderen element heeft twee opvolgers: (left!= null) && (right!= null) Het eerste geval is het eenvoudigst. De verwijzing wordt leeg gemaakt: result = null; en het element is verdwenen. In het tweede geval kunnen result laten wijzen naar de niet lege subboom, dus: if (right == null) 11

12 result = left; result = right; (Vergelijk met het verwijderen van een element uit een lineaire lijst.) Het derde geval is zoals gezegd lastiger. Omdat één referentie onmogelijk naar twee elementen tegelijk kan wijzen; result zou nu zowel naar left als right moeten gaan wijzen. We moeten van de twee resterende subbomen weer één boom maken. Bij dit proces moeten we ervoor zorgen dat de ordeningsrelatie tussen de knopen gehandhaafd blijft. Het gemakkelijkste gaat dit als we uitgaan van één van de twee subbomen; dientengevolge zijn er twee mogelijke oplossingen: we kiezen voor de linker subboom en hangen de rechter subboom onder de meest rechtse knoop of we kiezen voor de rechter subboom en hangen de linker subboom onder de meest linkse knoop. De eerste variant leidt tot de code: p = left; while (p.right!= null ) p=p.right; p.right := right; return left; We smeden dit alles aaneen tot één method: public TreeNode removeroot() // Verwijder het root element uit een boom TreeNode p; if (left == null) if (right == null) return null; return tree^.right; if (right == null) return left; 12

13 p = left; while (p.right!= null ) p=p.right; p.right := right; return left; In de practijk willen we echter een remove-methode in class SearchTree in staat is om een node met een bepaalde inhoud te verwijderen, als die bestaat. We moeten dus een verwijzing opzoeken naar de betreffende node. Die kunnen we dan beschouwen als de root van zijn eigen subboom, en vervangen de verwijzing naar de subboom door die naar de subboom minus de wortel. In class TreeNode krijgen we dan een removenode die er als volgt uit ziet: public boolean removenode(object item) if ( info.compareto(item) > 0 ) // item.key < root.key if ( left == null ) return false; // no item removed if (left.info.compareto(item) == 0) left = left.removeroot(); return true; return left.removenode(item); // remove from left tree // item.key >= root.key if ( right == null ) return false; // no item removed 13

14 if (right.info.compareto(item) == 0) right = right.removeroot(); return true; return right.removenode(item); // remove from left tree Tot slot moet binnen de class SearchTree een method remove gemaakt worden die drie situaties aan moet kunnen: de boom is leeg: dan geven we als return-waarde false. het root-element is het gezochte element: dan roep je de removeroot method van root aan. in alle overige gevallen moet de removenode method van root aangeroepen worden We krijgen dan: public boolean remove(object target) if (isempty()) return false; if (root.info.compareto(target)==0) root = root.removeroot(); return false; return root.removenode(target); Tot slot nog een methode die de som van elementen van een boom gevuld met Integers berekent. Weer is de som natuurlijk te schrijven als de som van de linker sub-boom, plus die van de rechter, plus de waarde van het huidige element. Wel moeten we controleren of de sub-bomen leeg zijn. In TreeNode hebben we dan: 14

15 public int sumint() int sum = ((Number)info).intValue(); if (left!= null) sum += left.sumint(); if (right!= null) sum += right.sumint(); return sum; Let op dat we eerst info casten naar een Number. En alternatief is: public int sumint() return (left!= null? left.sumint() : 0 ) + (right!= null? right.sumint() : 0 ) + ((Number)info).intValue(); Dit is compacter, maar je vindt het misschien minder leesbaar. Gebruik in dat geval de eerste aanpak. In SearchTree hebben we dan de method: public int sumint() if (isempty()) return 0; return root.sumint(); 15

16 2.10 Practicum 2 Week 4: Bomen Opgave 1 (SearchTree) Opgavenaam: SearchTree In te leveren file: SearchTree.java In deze opgave gaan we een aantal methods maken die binaire zoekbomen manipuleren. We plaatsen deze methods in een class SearchTree, die grotendeels beschikbaar staat in directory ~csg112/java/practicum2. Let op dat je in iedere opgave zowel in de private class TreeNode, als in SearchTree zelf iets moet veranderen. In dezelfde directory staat ook een file met de class TreeTest waarin een main methode staat die de door jullie gemaakte methods test. Ook staan er drie test files namen.txt, kruiden.txt en namensort.txt. Deze kun je als parameter meegeven bij aanroep van TreeTest. 1. Construeer een method int size() die het aantal elementen in een binaire zoekboom oplevert ZONDER dat de class SearchTree intern extra administratie gebruikt (deze opdracht wordt namelijk bijzonder flauw als je het aantal nodes intern in de class bij laat houden). 2. Construeer methods Object first() en Object last() die het kleinste resp. grootste element van een binaire zoekboom opleveren. 3. Construeer een method int depth() die de diepte van een een binaire zoekboom bepaald. De diepte is de maximale afstand tot de wortel van enige knoop. Voor een lege boom geldt derhalve depth = Construeer een method String tostring() die alle elementen in een boom gesorteerd in een string zet, gescheiden door end-of-line characters ( \n ). Stel je hebt in de nodes van de boom de volgende strings: Nootmuskaat, Geelwortel, Dragon, Jeneverbes, Salie, Peterselie, Waterkers, dan moet de uitvoer van tostring() zijn: Dragon Geelwortel Jeneverbes Nootmuskaat Peterselie Salie Waterkers Als je alles goed hebt gedaan, en je TreeTest en SearchTree hebt vertaald, dan levert het commando java TreeTest kruiden.txt 16

17 als uitvoer Aantal elementen : 7 Diepte Boom : 3 Theoretisch optimum : 3.0 Eerste element : Dragon Laatste element : Waterkers Gesorteerde lijst : Dragon Geelwortel Jeneverbes Nootmuskaat Peterselie Salie Waterkers Vergelijk ook even de output bij gebruik van namen.txt en namensort.txt. Het bovenste stukje van de uitvoer moet eruit zien als: Aantal elementen : 31 Diepte Boom : 5 Theoretisch optimum : 5.0 Eerste element : Allard Laatste element : Zef Gesorteerde lijst :... bij namen.txt, en bij namensort.txt krijg je: Aantal elementen : 31 Diepte Boom : 31 Theoretisch optimum : 5.0 Eerste element : Allard Laatste element : Zef Gesorteerde lijst : 17

18 ... Opgave 2 (SpeedTest) Opgavenaam: SpeedTest In te leveren file: SpeedTest.txt In deze opgave verwachten we niet dat je een programma instuurt, maar dat je een kort textfile met je bevindingen instuurt. Ook als de vorige opgave niet is gelukt, is het mogelijk deze te doen. We gebruiken nl. alleen de constructor en add methods uit SearchTree. De class SearchTree implementeerd een groot aantal methods van de standaard class TreeSet. Zoek in de Java documentatie de specificatie van deze class op. Let op dat men het heeft over een red-black balanced tree implementatie. In het file SpeedTest.java in dezelfde directory als SearchTree wordt de snelheid van het toevoegen van N elementen van class Integer aan de boom getest. Vertaal class SpeedTest, en run het met de volgende commando s: java SpeedTest 5000 java SpeedTest java SpeedTest java SpeedTest Heb geduld, het duurt best lang. Vervang nu in SpeedTest alle verwijzingen naar class SearchTree door TreeSet. Vertaal SpeedTest opnieuw, en run de commando s weer. Maak een tabel met de tijden als functie van N, voor beide tree-classes. Verklaar het verschil. HINT: let op de volgorde van invoegen. Geef aan de hand van de tijden van de SearchTree class een schatting van de complexiteit in O-notatie (let op hoe de tijd veranderd bij verdubbeling van N). 18

Java Programma structuur

Java Programma structuur Java Programma structuur public class Bla // div. statements public static void main(string argv[]) // meer spul Voortgezet Prog. voor KI, week 4:11 november 2002 1 Lijsten Voorbeelden 2, 3, 5, 7, 13 Jan,

Nadere informatie

Datastructuren; (Zoek)bomen

Datastructuren; (Zoek)bomen Datastructuren; (Zoek)bomen Bomen, zoekbomen, gebalanceerde zoekbomen José Lagerberg FNWI, UvA José Lagerberg (FNWI, UvA) Datastructuren; (Zoek)bomen 1 / 50 Bomen Traversal van bomen Datastructuur van

Nadere informatie

Elementary Data Structures 3

Elementary Data Structures 3 Elementary Data Structures 3 Ferd van Odenhoven Fontys Hogeschool voor Techniek en Logistiek Venlo Software Engineering 29 september 2014 ODE/FHTBM Elementary Data Structures 3 29 september 2014 1/14 Meer

Nadere informatie

Tree traversal. Bomen zijn overal. Ferd van Odenhoven. 15 november 2011

Tree traversal. Bomen zijn overal. Ferd van Odenhoven. 15 november 2011 15 november 2011 Tree traversal Ferd van Odenhoven Fontys Hogeschool voor Techniek en Logistiek Venlo Software Engineering 15 november 2011 ODE/FHTBM Tree traversal 15 november 2011 1/22 1 ODE/FHTBM Tree

Nadere informatie

Voorbeeldtentamen Inleiding programmeren (IN1608WI), Oktober 2003, , Technische Universiteit Delft, Faculteit EWI, Afdeling 2.

Voorbeeldtentamen Inleiding programmeren (IN1608WI), Oktober 2003, , Technische Universiteit Delft, Faculteit EWI, Afdeling 2. Voorbeeldtentamen Inleiding programmeren (IN1608WI), Oktober 2003, 14.00-15.30, Technische Universiteit Delft, Faculteit EWI, Afdeling 2. Dit tentamen bestaat uit twee delen. Deel 1 (14.00-14.45, gesloten

Nadere informatie

Datastructuren: stapels, rijen en binaire bomen

Datastructuren: stapels, rijen en binaire bomen Programmeermethoden Datastructuren: stapels, rijen en binaire bomen week 12: 23 27 november 2015 www.liacs.leidenuniv.nl/ kosterswa/pm/ 1 Inleiding In de informatica worden Abstracte DataTypen (ADT s)

Nadere informatie

public boolean equaldates() post: returns true iff there if the list contains at least two BirthDay objects with the same daynumber

public boolean equaldates() post: returns true iff there if the list contains at least two BirthDay objects with the same daynumber Tentamen TI1310 Datastructuren en Algoritmen, 15 april 2011, 9.00-12.00 TU Delft, Faculteit EWI, Basiseenheid Software Engineering Bij het tentamen mag alleen de boeken van Goodrich en Tamassia worden

Nadere informatie

Tree traversal. Ferd van Odenhoven. 15 november Fontys Hogeschool voor Techniek en Logistiek Venlo Software Engineering. Doorlopen van bomen

Tree traversal. Ferd van Odenhoven. 15 november Fontys Hogeschool voor Techniek en Logistiek Venlo Software Engineering. Doorlopen van bomen Tree traversal Ferd van Odenhoven Fontys Hogeschool voor Techniek en Logistiek Venlo Software Engineering 15 november 2011 ODE/FHTBM Tree traversal 15 november 2011 1/22 1 ODE/FHTBM Tree traversal 15 november

Nadere informatie

Hoofdstuk 3. Week 5: Sorteren. 3.1 Inleiding

Hoofdstuk 3. Week 5: Sorteren. 3.1 Inleiding Hoofdstuk 3 Week 5: Sorteren 3.1 Inleiding Zoals al bleek in college 1 kunnen zoekalgoritmen veel sneller worden uitgevoerd, indien we weten dat de elementen in de lijst, waarin wordt gezocht, geordend

Nadere informatie

recursie Hoofdstuk 5 Studeeraanwijzingen De studielast van deze leereenheid bedraagt circa 6 uur. Terminologie

recursie Hoofdstuk 5 Studeeraanwijzingen De studielast van deze leereenheid bedraagt circa 6 uur. Terminologie Hoofdstuk 5 Recursion I N T R O D U C T I E Veel methoden die we op een datastructuur aan kunnen roepen, zullen op een recursieve wijze geïmplementeerd worden. Recursie is een techniek waarbij een vraagstuk

Nadere informatie

Opgaven Zoekbomen Datastructuren, 15 juni 2016, Werkgroep.

Opgaven Zoekbomen Datastructuren, 15 juni 2016, Werkgroep. Opgaven Zoekbomen Datastructuren, 15 juni 2016, Werkgroep. Gebruik deze opgaven, naast die uit het boek, om de stof te oefenen op het werkcollege. Cijfer: Op een toets krijg je meestal zes tot acht opgaven.

Nadere informatie

Tentamen Programmeren in C (EE1400)

Tentamen Programmeren in C (EE1400) TU Delft Tentamen Programmeren in C (EE1400) 5 april 2012, 9.00 12.00 Faculteit EWI - Zet op elk antwoordblad je naam en studienummer. - Beantwoord alle vragen zo nauwkeurig mogelijk. - Wanneer C code

Nadere informatie

Hoofdstuk 6. Geordende binaire bomen

Hoofdstuk 6. Geordende binaire bomen Hoofdstuk 6 Geordende binaire bomen Eerder bespraken we hoe gelinkte lijsten een zeer flexibele structuur geven. Het zoeken in een gelinkte lijst was echter niet optimaal, aangezien je enkel de lijst van

Nadere informatie

Modelleren en Programmeren

Modelleren en Programmeren Modelleren en Programmeren Jeroen Bransen 13 december 2013 Terugblik Fibonacci public class Fibonacci { public static void main(string[] args) { // Print het vijfde Fibonaccigetal System.out.println(fib(5));

Nadere informatie

Modelleren en Programmeren

Modelleren en Programmeren Modelleren en Programmeren Jeroen Bransen 6 december 2013 Terugblik Programma en geheugen Opdrachten Variabelen Methoden Objecten Klasse Programma en geheugen Opdrachten Variabelen zijn gegroepeerd in

Nadere informatie

Inleiding Programmeren 2

Inleiding Programmeren 2 Inleiding Programmeren 2 Gertjan van Noord November 28, 2016 Stof week 3 nogmaals Zelle hoofdstuk 8 en recursie Brookshear hoofdstuk 5: Algoritmes Datastructuren: tuples Een geheel andere manier om te

Nadere informatie

Modelleren en Programmeren

Modelleren en Programmeren Modelleren en Programmeren Jeroen Bransen 11 december 2015 Ingebouwde datastructuren Meer boomstructuren Access specifiers Gebruikersinvoer Codestijl Packages SAT-solver Ingebouwde datastructuren Ingebouwde

Nadere informatie

Tentamen Imperatief en Object-georiënteerd programmeren in Java voor CKI

Tentamen Imperatief en Object-georiënteerd programmeren in Java voor CKI Tentamen Imperatief en Object-georiënteerd programmeren in Java voor CKI Vrijdag 22 januari 2010 Toelichting Dit is een open boek tentamen. Communicatie en het gebruik van hulpmiddelen zijn niet toegestaan.

Nadere informatie

Een gelinkte lijst in C#

Een gelinkte lijst in C# Een gelinkte lijst in C# In deze tutorial ga demonstreren hoe je een gelinkte lijst kan opstellen in C#. We gaan een klasse schrijven, die een gelijkaardige functionaliteit heeft als een ArrayList, namelijk

Nadere informatie

Bomen. 8.8 ongerichte bomen 9.4 gerichte bomen ch 10. binaire bomen

Bomen. 8.8 ongerichte bomen 9.4 gerichte bomen ch 10. binaire bomen 10 Bomen 8.8 ongerichte bomen 9.4 gerichte bomen ch 10. binaire bomen 1 Baarn Hilversum Soestdijk Den Dolder voorbeelden route boom beslisboom Amersfoort Soestduinen + 5 * + 5.1 5.2 5.3 5.4 2 3 * * 2 5.3.1

Nadere informatie

Datatypes Een datatype is de sort van van een waarde van een variabele, veel gebruikte datatypes zijn: String, int, Bool, char en double.

Datatypes Een datatype is de sort van van een waarde van een variabele, veel gebruikte datatypes zijn: String, int, Bool, char en double. Algemeen C# Variabele Een variabele is een willekeurige waarde die word opgeslagen. Een variabele heeft altijd een datetype ( De soort waarde die een variabele bevat). Datatypes Een datatype is de sort

Nadere informatie

Datastructuren en Algoritmen voor CKI

Datastructuren en Algoritmen voor CKI Ω /texmf/tex/latex/uubeamer.sty-h@@k 00 /texmf/tex/latex/uubeamer.sty Datastructuren en Algoritmen voor CKI Vincent van Oostrom Clemens Grabmayer Afdeling Wijsbegeerte Hoorcollege 5 16 februari 2009 Waar

Nadere informatie

Datastructuren Programmeeropdracht 3: Expressies. 1 Expressies. Deadline. Dinsdag 8 december 23:59.

Datastructuren Programmeeropdracht 3: Expressies. 1 Expressies. Deadline. Dinsdag 8 december 23:59. Datastructuren 2015 Programmeeropdracht 3: Expressies Deadline. Dinsdag 8 december 23:59. Inleiding. Deze opdracht is losjes gebaseerd op Opdracht 5.13.2 in het boek van Drozdek. U wordt gevraagd expressies

Nadere informatie

Voortgezet Prog. voor KI

Voortgezet Prog. voor KI Voortgezet Prog. voor KI Docent: Michael Wilkinson IWI 142 tel. 050-3638140 (secr. 3633939) Frank Brokken RC 352 tel. 050-3633688 Voorkennis: Inleiding Programmeren voor KI (nieuwe stijl) Stof: Practicum

Nadere informatie

Practicumopgave 3: SAT-solver

Practicumopgave 3: SAT-solver Practicumopgave 3: SAT-solver Modelleren en Programmeren 2015/2016 Deadline: donderdag 7 januari 2016, 23:59 Introductie In het vak Inleiding Logica is onder andere de propositielogica behandeld. Veel

Nadere informatie

Datastructuren en algoritmen voor CKI

Datastructuren en algoritmen voor CKI Datastructuren en algoritmen voor CKI Jeroen Bransen 1 14 oktober 2015 1 met dank aan Hans Bodlaender en Gerard Tel Willekeurig gebouwde zoekbomen Willekeurig gebouwde zoekbomen Hoogte van zoekboom met

Nadere informatie

Tentamen Object Georiënteerd Programmeren TI1200 30 januari 2013, 9.00-12.00 Afdeling SCT, Faculteit EWI, TU Delft

Tentamen Object Georiënteerd Programmeren TI1200 30 januari 2013, 9.00-12.00 Afdeling SCT, Faculteit EWI, TU Delft Tentamen Object Georiënteerd Programmeren TI1200 30 januari 2013, 9.00-12.00 Afdeling SCT, Faculteit EWI, TU Delft Bij dit tentamen mag je geen gebruik maken van hulpmiddelen zoals boek of slides. Dit

Nadere informatie

Zelftest Inleiding Programmeren

Zelftest Inleiding Programmeren Zelftest Inleiding Programmeren Document: n0824test.fm 22/01/2013 ABIS Training & Consulting P.O. Box 220 B-3000 Leuven Belgium TRAINING & CONSULTING INLEIDING BIJ DE ZELFTEST INLEIDING PROGRAMMEREN Deze

Nadere informatie

TECHNISCHE UNrVERSITElT DELFT Faculteit Elektrotechniek, Wiskunde en Informatica

TECHNISCHE UNrVERSITElT DELFT Faculteit Elektrotechniek, Wiskunde en Informatica TECHNISCHE UNrVERSITElT DELFT Faculteit Elektrotechniek, Wiskunde en Informatica TWl(0)9O Inleiding Programmeren Tentamen 16 maart 2017, 9:00-12:00 uur Normering: Opgave 1 t/m 3 ieder 6 punten. Score:

Nadere informatie

Programmeermethoden. Recursie. Walter Kosters. week 11: november kosterswa/pm/

Programmeermethoden. Recursie. Walter Kosters. week 11: november kosterswa/pm/ Programmeermethoden Recursie Walter Kosters week 11: 20 24 november 2017 www.liacs.leidenuniv.nl/ kosterswa/pm/ 1 Vierde programmeeropgave 1 De Grote getallen programmeren we als volgt: week 1: pointerpracticum,

Nadere informatie

Dynamisch Programmeren. Het Rugzakprobleem

Dynamisch Programmeren. Het Rugzakprobleem INLEIDING Dynamisch Programmeren 1 Dynamisch Programmeren Section Page Inleiding................................................. 1 1 Oplossing................................................ 2 2 Subprobleem.............................................

Nadere informatie

Tentamen in2705 Software Engineering

Tentamen in2705 Software Engineering Tentamen in2705 Software Engineering Voorbeeld (bijna tweemaal te groot) U mag meenemen naar dit tentamen: Lethbridge, afdrukken PPT slides, afdrukken handouts. 1. De TU wil een nieuw systeem ontwikkelen

Nadere informatie

HOOFDSTUK 3. Imperatief programmeren. 3.1 Stapsgewijs programmeren. 3.2 If Then Else. Module 4 Programmeren

HOOFDSTUK 3. Imperatief programmeren. 3.1 Stapsgewijs programmeren. 3.2 If Then Else. Module 4 Programmeren HOOFDSTUK 3 3.1 Stapsgewijs programmeren De programmeertalen die tot nu toe genoemd zijn, zijn imperatieve of procedurele programmeertalen. is het stapsgewijs in code omschrijven wat een programma moet

Nadere informatie

Programmeermethoden. Recursie. week 11: november kosterswa/pm/

Programmeermethoden. Recursie. week 11: november kosterswa/pm/ Programmeermethoden Recursie week 11: 21 25 november 2016 www.liacs.leidenuniv.nl/ kosterswa/pm/ 1 Pointers Derde programmeeropgave 1 Het spel Gomoku programmeren we als volgt: week 1: pointerpracticum,

Nadere informatie

Het minimale aantal sleutels op niveau h is derhalve

Het minimale aantal sleutels op niveau h is derhalve 1 (a) In een B-boom van orde m bevat de wortel minimaal 1 sleutel en maximaal m 1 sleutels De andere knopen bevatten minimaal m 1 sleutels en maximaal m 1 sleutels (b) In een B-boom van orde 5 bevat elke

Nadere informatie

Stacks and queues. Hoofdstuk 6

Stacks and queues. Hoofdstuk 6 Hoofdstuk 6 Stacks and queues I N T R O D U C T I E In dit hoofdstuk worden drie datastructuren stack, queue en deque behandeld. Om deze datastructuren te implementeren, worden onder andere arrays en linked

Nadere informatie

Programmeren in Java les 3

Programmeren in Java les 3 4 september 2015 Deze les korte herhaling vorige week loops methodes Variabelen Soorten variabelen in Java: integer: een geheel getal, bijv. 1,2,3,4 float: een gebroken getal, bijv. 3.1415 double: een

Nadere informatie

Tentamen Imperatief Programmeren

Tentamen Imperatief Programmeren Tentamen Imperatief Programmeren Maandag 22 oktober 2001 Toelichting Dit is een open boek tentamen, d.w.z. het cursusboek mag gebruikt worden. N.B.: Het tentamen is individueel: voor het maken van de opgaven

Nadere informatie

Universiteit van Amsterdam FNWI. Voorbeeld van tussentoets Inleiding programmeren

Universiteit van Amsterdam FNWI. Voorbeeld van tussentoets Inleiding programmeren Universiteit van Amsterdam FNWI Voorbeeld van tussentoets Inleiding programmeren Opgave 1: Wat is de uitvoer van dit programma? public class Opgave { static int i = 0 ; static int j = 1 ; int i = 1 ; int

Nadere informatie

Vierde college complexiteit. 14 februari Beslissingsbomen

Vierde college complexiteit. 14 februari Beslissingsbomen College 4 Vierde college complexiteit 14 februari 2017 Restant zoeken Beslissingsbomen 1 Binair zoeken Links := 1; Rechts := n; while Links Rechts do Midden := Links + Rechts 2 ; if X = A[Midden] then

Nadere informatie

TENTAMEN Programmeren 1 VOORBEELDUITWERKING

TENTAMEN Programmeren 1 VOORBEELDUITWERKING TENTAMEN Programmeren 1 vakcode: 213500 datum: 10 juli 2004 tijd: 9:00-12:30 uur VOORBEELDUITWERKING Algemeen Bij dit tentamen mag gebruik worden gemaakt van het boek van Niño/Hosch, en van de handleiding

Nadere informatie

Datastructuren. Analyse van algoritmen. José Lagerberg. FNWI, UvA. José Lagerberg (FNWI, UvA) Datastructuren 1 / 46

Datastructuren. Analyse van algoritmen. José Lagerberg. FNWI, UvA. José Lagerberg (FNWI, UvA) Datastructuren 1 / 46 Datastructuren Analyse van algoritmen José Lagerberg FNWI, UvA José Lagerberg (FNWI, UvA) Datastructuren 1 / 46 Datastructuren en Algoritmen Datastructuren, 6 ECTS eerstejaars Bachelor INF Datastructuren,

Nadere informatie

Tweede Toets Datastructuren 29 juni 2016, , Educ-Γ.

Tweede Toets Datastructuren 29 juni 2016, , Educ-Γ. Tweede Toets Datastructuren 29 juni 2016, 13.30 15.30, Educ-Γ. Motiveer je antwoorden kort! Zet je mobiel uit. Stel geen vragen over deze toets; als je een vraag niet duidelijk vindt, schrijf dan op hoe

Nadere informatie

EE1400: Programmeren in C BSc. EE, 1e jaar, , 4e college

EE1400: Programmeren in C BSc. EE, 1e jaar, , 4e college EE1400: Programmeren in C BSc. EE, 1e jaar, 2012-2013, 4e college Arjan van Genderen, Computer Engineering 11-12-2012 Delft University of Technology Challenge the future Mededelingen Voortgangstoets: Woensdagmiddag

Nadere informatie

public boolean egualdates() post: returns true i f f there i f the l i s t contains at least two BirthDay objects with the same daynumber

public boolean egualdates() post: returns true i f f there i f the l i s t contains at least two BirthDay objects with the same daynumber Tentamen TI1310 Datastructuren en Algoritmen, 15 april 2011, 9.00-12.00 TU Delft, Faculteit EWI, Basiseenheid Software Engineering Bij het tentamen mag alleen de boeken van Goodrich en Tamassia worden

Nadere informatie

Over binaire beslissingsdiagrammen naar Donald E. Knuth s The Art of Computer Programming, Volume 4

Over binaire beslissingsdiagrammen naar Donald E. Knuth s The Art of Computer Programming, Volume 4 Over binaire beslissingsdiagrammen naar Donald E. Knuth s The Art of Computer Programming, Volume 4 Jonathan K. Vis 1 Inleiding (blz. 70 72) In dit essay behandelen we bladzijden 70 75 van Donald E. Knuth

Nadere informatie

Programmeermethoden NA. Week 6: Lijsten

Programmeermethoden NA. Week 6: Lijsten Programmeermethoden NA Week 6: Lijsten Kristian Rietveld http://liacs.leidenuniv.nl/~rietveldkfd/courses/prna2016/ Getal opbouwen Stel je leest losse karakters (waaronder cijfers) en je moet daar een getal

Nadere informatie

Tentamen Objectgeorienteerd Programmeren TI februari Afdeling ST Faculteit EWI TU Delft

Tentamen Objectgeorienteerd Programmeren TI februari Afdeling ST Faculteit EWI TU Delft I ' Tentamen Objectgeorienteerd Programmeren TI 1200 1 februari 2012 9.00-12.00 Afdeling ST Faculteit EWI TU Delft Bij dit tentamen mag je geen gebruik maken van hulpmiddelen zoals boek of slides. Dit

Nadere informatie

Examen Programmeren 2e Bachelor Elektrotechniek en Computerwetenschappen Faculteit Ingenieurswetenschappen Academiejaar juni, 2010

Examen Programmeren 2e Bachelor Elektrotechniek en Computerwetenschappen Faculteit Ingenieurswetenschappen Academiejaar juni, 2010 Examen Programmeren 2e Bachelor Elektrotechniek en Computerwetenschappen Faculteit Ingenieurswetenschappen Academiejaar 2009-2010 16 juni, 2010 **BELANGRIJK** 1. Lees eerst de volledige opgave (inclusief

Nadere informatie

Algoritmen, Datastructuren en Complexiteit ( en ) Uitwerkingen

Algoritmen, Datastructuren en Complexiteit ( en ) Uitwerkingen Universiteit Twente 2009-2010/2 Afdeling Informatica, Faculteit EWI Tentamen dinsdag 19 januari 2010, 8.45-12.15 Algoritmen, Datastructuren en Complexiteit (214020 en 214025) Uitwerkingen Bij dit tentamen

Nadere informatie

voegtoe: eerst methode bevat gebruiken, alleen toevoegen als bevat() false is

voegtoe: eerst methode bevat gebruiken, alleen toevoegen als bevat() false is PROEF-Tentamen Inleiding programmeren (IN1608WI), X januari 2010, 9.00-11.00, Technische Universiteit Delft, Faculteit EWI, Afdeling 2. Open boek tentamen: bij het tentamen mag alleen gebruik worden gemaakt

Nadere informatie

Tweede Toets Datastructuren 28 juni 2017, , Educ-β.

Tweede Toets Datastructuren 28 juni 2017, , Educ-β. Tweede Toets Datastructuren 28 juni 2017, 13.30 15.30, Educ-β. Motiveer je antwoorden kort! Stel geen vragen over deze toets; als je een vraag niet duidelijk vindt, schrijf dan op hoe je de vraag interpreteert

Nadere informatie

software constructie recursieve datastructuren college 15 5 stappen plan ontwerpen de software bestaat uiteindelijk uit datatypen functies

software constructie recursieve datastructuren college 15 5 stappen plan ontwerpen de software bestaat uiteindelijk uit datatypen functies software constructie recursieve datastructuren college 15 software engineering highlights 1 de software bestaat uiteindelijk uit datatypen functies verbindingen geven gebruik aan main is de top van het

Nadere informatie

definities recursieve datastructuren college 13 plaatjes soorten Graph = ( V, E ) V vertices, nodes, objecten, knopen, punten

definities recursieve datastructuren college 13 plaatjes soorten Graph = ( V, E ) V vertices, nodes, objecten, knopen, punten recursieve datastructuren college graphs definities Graph = ( V, E ) V vertices, nodes, objecten, knopen, punten E edges, arcs, kanten, pijlen, lijnen verbinding tussen knopen Voorbeelden steden en verbindingswegen

Nadere informatie

2 Recurrente betrekkingen

2 Recurrente betrekkingen WIS2 1 2 Recurrente betrekkingen 2.1 Fibonacci De getallen van Fibonacci Fibonacci (= Leonardo van Pisa), 1202: Bereken het aantal paren konijnen na één jaar, als 1. er na 1 maand 1 paar pasgeboren konijnen

Nadere informatie

Als een PSD selecties bevat, deelt de lijn van het programma zich op met de verschillende antwoorden op het vraagstuk.

Als een PSD selecties bevat, deelt de lijn van het programma zich op met de verschillende antwoorden op het vraagstuk. HOOFDSTUK 3 3.1 Stapsgewijs programmeren In de vorige hoofdstukken zijn programmeertalen beschreven die imperatief zijn. is het stapsgewijs in code omschrijven wat een programma moet doen, net als een

Nadere informatie

APPLICATIEBOUW 3E COLLEGE: OBJECT GEORIËNTEERD PROGRAMMEREN, METHODEN, PARAMETERS, SCOPE VAN VARIABELEN. Onderdeel van SmartProducts

APPLICATIEBOUW 3E COLLEGE: OBJECT GEORIËNTEERD PROGRAMMEREN, METHODEN, PARAMETERS, SCOPE VAN VARIABELEN. Onderdeel van SmartProducts APPLICATIEBOUW 3E COLLEGE: OBJECT GEORIËNTEERD PROGRAMMEREN, METHODEN, PARAMETERS, SCOPE VAN VARIABELEN Onderdeel van SmartProducts INHOUD COLLEGE 3 Scope van variabelen {3.9} Class ontwerpen en maken,

Nadere informatie

Javascript oefenblad 1

Javascript oefenblad 1 Leer de basis van Javascript. Javascript oefenblad 1 Niels van Velzen Javascript oefenblad 1 Pagina 2 Inleiding Javascript is niet altijd even makkelijk. Vooral aan het begin is het even wennen hoe de

Nadere informatie

Tentamen Object Georiënteerd Programmeren TI1206 29 oktober 2014, 9.00-11.00 Afdeling SCT, Faculteit EWI, TU Delft

Tentamen Object Georiënteerd Programmeren TI1206 29 oktober 2014, 9.00-11.00 Afdeling SCT, Faculteit EWI, TU Delft Tentamen Object Georiënteerd Programmeren TI1206 29 oktober 2014, 9.00-11.00 Afdeling SCT, Faculteit EWI, TU Delft Bij dit tentamen mag je geen gebruik maken van hulpmiddelen zoals boek of slides. Digitale

Nadere informatie

Lab Webdesign: Javascript 3 maart 2008

Lab Webdesign: Javascript 3 maart 2008 H5: OPERATORS In dit hoofdstuk zullen we het hebben over de operators (of ook wel: operatoren) in JavaScript waarmee allerlei rekenkundige en logische bewerkingen kunnen worden uitgevoerd. Daarbij zullen

Nadere informatie

Tentamen Objectgeorienteerd Programmeren IN1205 Voorbeeld

Tentamen Objectgeorienteerd Programmeren IN1205 Voorbeeld Tentamen Objectgeorienteerd Programmeren IN1205 Voorbeeld Afdeling ST Faculteit EWI TU Delft Bij dit tentamen mag u gebruik maken van: Barnes, Object-Oriented Programming with Java en de Notitie Algoritmiek

Nadere informatie

Lineaire data structuren. Doorlopen van een lijst

Lineaire data structuren. Doorlopen van een lijst Lineaire data structuren array: vast aantal data items die aaneensluitend gestockeerd zijn de elementen zijn bereikbaar via een index lijst: een aantal individuele elementen die met elkaar gelinkt zijn

Nadere informatie

IMP Uitwerking week 13

IMP Uitwerking week 13 IMP Uitwerking week 13 Opgave 1 Nee. Anders moet bijvoorbeeld een venster applicatie een subklasse zijn van zowel Frame en WindowListener. Als de applicatie ook een button of een menu heeft, dan moet het

Nadere informatie

Gegevens invullen in HOOFDLETTERS en LEESBAAR, aub. Belgische Olympiades in de Informatica (duur : maximum 1u15 )

Gegevens invullen in HOOFDLETTERS en LEESBAAR, aub. Belgische Olympiades in de Informatica (duur : maximum 1u15 ) OI 2010 Finale 12 Mei 2010 Gegevens invullen in HOOFDLETTERS en LEESBAAR, aub VOORNAAM :....................................................... NAAM :..............................................................

Nadere informatie

Examen Datastructuren en Algoritmen II

Examen Datastructuren en Algoritmen II Tweede bachelor Informatica Academiejaar 2008 2009, eerste zittijd Examen Datastructuren en Algoritmen II Naam :.............................................................................. Lees elke

Nadere informatie

Zelftest Programmeren in Java

Zelftest Programmeren in Java Zelftest Programmeren in Java Document: n0883test.fm 22/01/2013 ABIS Training & Consulting P.O. Box 220 B-3000 Leuven Belgium TRAINING & CONSULTING INLEIDING BIJ DE ZELFTEST PROGRAMMEREN IN JAVA Deze test

Nadere informatie

Datastructuren en algoritmen

Datastructuren en algoritmen Datastructuren en algoritmen Doelstelling Datastructures + algorithms = programs Boek van Niklaus Wirth: bedenker Pascal en Modula Datastructuur: structuur om informatie op te slaan Algoritme: voorschrift

Nadere informatie

Tentamen Inleiding Programmeren (IN1608WI), duur van de toets 2 uur Technische Universiteit Delft, Faculteit EWI, Afdeling 2.

Tentamen Inleiding Programmeren (IN1608WI), duur van de toets 2 uur Technische Universiteit Delft, Faculteit EWI, Afdeling 2. Tentamen Inleiding Programmeren (IN1608WI), duur van de toets 2 uur Technische Universiteit Delft, Faculteit EWI, Afdeling 2. Gesloten boek examen: er mag geen gebruik worden gemaakt van het studieboek.

Nadere informatie

Uitwerking Aanvullend tentamen Imperatief programmeren Woensdag 24 december 2014, 13.30 15.30 uur

Uitwerking Aanvullend tentamen Imperatief programmeren Woensdag 24 december 2014, 13.30 15.30 uur Uitwerking Aanvullend tentamen Imperatief programmeren Woensdag 24 december 2014, 13.30 15.30 uur 1. deze opgave telt voor 30% van het totaal. Schrijf een compleet programma, dat door de gebruiker vanaf

Nadere informatie

Syntax- (compile), runtime- en logische fouten Binaire operatoren

Syntax- (compile), runtime- en logische fouten Binaire operatoren Inhoud Syntax- (compile), runtime- en logische fouten Binaire operatoren Operaties op numerieke datatypen Evaluatie van expressies, bindingssterkte Assignment operaties en short-cut operatoren Controle

Nadere informatie

De volgende opgave gaat over de B-bomen van het college, waar sleutels zowel in de bladeren als ook in de interne knopen opgeslagen worden.

De volgende opgave gaat over de B-bomen van het college, waar sleutels zowel in de bladeren als ook in de interne knopen opgeslagen worden. . a) Een Fibonacci boom (niet te verwarren met een Fibonacci queue) van hoogte h is een AVL-boom van hoogte h met zo weinig mogelijk knopen. i. Geefvoorh =,,,,eenfibonacciboomvanhoogteh(eenboombestaande

Nadere informatie

Programmeren A. Genetisch Programma voor het Partitie Probleem. begeleiding:

Programmeren A. Genetisch Programma voor het Partitie Probleem. begeleiding: Programmeren A Genetisch Programma voor het Partitie Probleem begeleiding: Inleiding Het Partitie Probleem luidt als volgt: Gegeven een verzameling van n positieve integers, vindt twee disjuncte deelverzamelingen

Nadere informatie

NAAM: Programmeren 1 Examen 29/08/2012

NAAM: Programmeren 1 Examen 29/08/2012 Programmeren 29 augustus 202 Prof. T. Schrijvers Instructies Schrijf al je antwoorden op deze vragenbladen (op de plaats die daarvoor is voorzien). Geef ook je kladbladen af. Bij heel wat vragen moet je

Nadere informatie

4EE11 Project Programmeren voor W. College 3, 2008 2009, Blok D Tom Verhoeff, Software Engineering & Technology, TU/e

4EE11 Project Programmeren voor W. College 3, 2008 2009, Blok D Tom Verhoeff, Software Engineering & Technology, TU/e 4EE11 Project Programmeren voor W College 3, 2008 2009, Blok D Tom Verhoeff, Software Engineering & Technology, TU/e 1 Onderwerpen Grotere programma s ontwerpen/maken Datastructuren en algoritmes 2 Evolutie,

Nadere informatie

http://www.liacs.nl/home/kosters/java/

http://www.liacs.nl/home/kosters/java/ sheets Programmeren 1 Java college 2, Walter Kosters De sheets zijn gebaseerd op de hoofdstukken 2 tot en met 6 van: D. Bell en M. Parr, Java voor studenten, Prentice Hall, 2002 http://www.liacs.nl/home/kosters/java/

Nadere informatie

Recursie. public static int faculteit( int n ){ // Deze functie berekent n! // pre: n = N en n >= 0 // post: faculteit = N!

Recursie. public static int faculteit( int n ){ // Deze functie berekent n! // pre: n = N en n >= 0 // post: faculteit = N! Recursie Faculteit: in de wiskunde: n! is gedefiniëerd als: 0! = 1 n! = n (n 1)! in Java: public static int faculteit( int n ) // Deze functie berekent n! // pre: n = N en n >= 0 // post: faculteit = N!

Nadere informatie

1 Recurrente betrekkingen

1 Recurrente betrekkingen WIS1 1 1 Recurrente betrekkingen 1.1 De torens van Hanoi De torens van Hanoi Edouard Lucas, 1884: Gegeven 3 pinnen en 64 schijven van verschillende grootte. Startsituatie: 64 op linkerpin, geordend naar

Nadere informatie

NAAM: Programmeren 1 Examen 21/01/2011

NAAM: Programmeren 1 Examen 21/01/2011 Programmeren 1 21 januari 2011 Prof. T. Schrijvers Instructies Schrijf al je antwoorden op deze vragenbladen (op de plaats die daarvoor is voorzien). Geef ook je kladbladen af. Bij heel wat vragen moet

Nadere informatie

Indexen.

Indexen. Indexen joost.vennekens@kuleuven.be Probleem Snel gegevens terugvinden Gegevens moeten netjes geordend zijn Manier waarop hangt af van gebruik Sequentieel Gesorteerde gegevens, die in volgorde overlopen

Nadere informatie

Overerving & Polymorfisme

Overerving & Polymorfisme Overerving & Polymorfisme Overerving Sommige klassen zijn speciaal geval van andere klasse Docent is een speciaal geval van werknemer, dwz. elke docent is ook werknemer Functionaliteit van docent = functionaliteit

Nadere informatie

compileren & interpreteren - compileren: vertalen (omzetten) - interpreteren: vertolken

compileren & interpreteren - compileren: vertalen (omzetten) - interpreteren: vertolken compileren & interpreteren - compileren: vertalen (omzetten) - interpreteren: vertolken - belangrijkste punten: - ontleden van de programmatekst - bijhouden van de datastructuren Data Structuren en Algoritmen

Nadere informatie

start -> id (k (f c s) (g s c)) -> k (f c s) (g s c) -> f c s -> s c

start -> id (k (f c s) (g s c)) -> k (f c s) (g s c) -> f c s -> s c Een Minimaal Formalisme om te Programmeren We hebben gezien dat Turing machines beschouwd kunnen worden als universele computers. D.w.z. dat iedere berekening met natuurlijke getallen die met een computer

Nadere informatie

MEER OVER BINAIRE ZOEK BOMEN EN VARIANTEN

MEER OVER BINAIRE ZOEK BOMEN EN VARIANTEN MEER OVER BINAIRE ZOEK BOMEN EN VARIANTEN 1 Dr. D.P. Huijsmans 5e college 2 okt 2013 Universiteit Leiden, LIACS (HER)BALANCEREN VAN BST Hoe goed is de balans binnen een boom? Hoe karakteriseren we een

Nadere informatie

Inleiding tot Func.oneel Programmeren les 3

Inleiding tot Func.oneel Programmeren les 3 Inleiding tot Func.oneel Programmeren les 3 Kris Luyten, Jo Vermeulen {kris.luyten,jo.vermeulen}@uhasselt.be Exper.secentrum voor Digitale Media Universiteit Hasselt Currying Currying: een func.e met meerdere

Nadere informatie

MEER OVER BINAIRE ZOEK BOMEN EN VARIANTEN

MEER OVER BINAIRE ZOEK BOMEN EN VARIANTEN MEER OVER BINAIRE ZOEK BOMEN EN VARIANTEN 1 Dr. D.P. Huijsmans 10 okt 2012 Universiteit Leiden, LIACS (HER)BALANCEREN VAN BST Hoe goed is de balans binnen een boom? Hoe karakteriseren we een optimale balans?

Nadere informatie

Modelleren en Programmeren

Modelleren en Programmeren Modelleren en Programmeren Jeroen Bransen 13 november 2015 Expressies Functies Ingebouwde functies Variabelenbereik Inleveropgave 1 Terugblik Programma is een lijst van opdrachten Terugblik Programma is

Nadere informatie

Opdracht 7a. Applicatiebouw 2014/2015

Opdracht 7a. Applicatiebouw 2014/2015 Applicatiebouw 2014/2015 Opdracht 7a Inhoud Applicatiebouw op dag 7 College In het college wordt oa. overerving behandeld, waarmee je uit een bestaande klasse een nieuwe andere klasse kan maken. Ook zijn

Nadere informatie

29 november 2012 Hashing. Een tijd-ruimte afweging Hashfuncties

29 november 2012 Hashing. Een tijd-ruimte afweging Hashfuncties Hashing Ferd van Odenhoven Fontys Hogeschool voor Techniek en Logistiek Venlo Software Engineering 29 november 2012 ODE/FHTBM Hashing 29 november 2012 1/30 Hashing Een typisch gebruik van de implementatie

Nadere informatie

Handleiding JCreator. Inhoud. Een Workspace en een eerste project maken

Handleiding JCreator. Inhoud. Een Workspace en een eerste project maken Handleiding JCreator Inhoud Een Workspace en een eerste project maken Een tweede project maken De editor van JCreator Aanpassen van de basis-directory Documentatie over klassen en methoden van de JDK Bestand

Nadere informatie

Informatica. Objectgeörienteerd leren programmeren. Van de theorie met BlueJ tot een spelletje met Greenfoot... Bert Van den Abbeele

Informatica. Objectgeörienteerd leren programmeren. Van de theorie met BlueJ tot een spelletje met Greenfoot... Bert Van den Abbeele Informatica Objectgeörienteerd leren programmeren Van de theorie met BlueJ tot een spelletje met Greenfoot... Bert Van den Abbeele http://creativecommons.org/licenses/by-nc-nd/3.0/legalcode Objectgeörienteerd

Nadere informatie

Computationale Intelligentie Dirk Thierens

Computationale Intelligentie Dirk Thierens Computationale Intelligentie Dirk Thierens Organisatie Onderwijsvormen: Docent: Topic: Collegemateriaal: Boek: Beoordeling: hoorcollege, practicum, werkcollege Dirk Thierens Deel : Zoekalgoritmen Toets

Nadere informatie

Vakgroep CW KAHO Sint-Lieven

Vakgroep CW KAHO Sint-Lieven Vakgroep CW KAHO Sint-Lieven Objecten Programmeren voor de Sport: Een inleiding tot JAVA objecten Wetenschapsweek 20 November 2012 Tony Wauters en Tim Vermeulen tony.wauters@kahosl.be en tim.vermeulen@kahosl.be

Nadere informatie

Wat is FP? The Haskell School of Expression. Functies. Types 1+1=2. Iedere expressie (en waarde) heeft een type.

Wat is FP? The Haskell School of Expression. Functies. Types 1+1=2. Iedere expressie (en waarde) heeft een type. Wat is FP? The Haskell School of Expression Functioneel Programmeren Een andere manier om tegen programmeren aan te kijken Gebaseerd op het uitrekenen van expressies 1+1=2 Eenvoudig maar krachtig (modulair,

Nadere informatie

Programmeren (1) Examen NAAM:

Programmeren (1) Examen NAAM: Schrijf al je antwoorden op deze vragenbladen (op de plaats die daarvoor is voorzien) en geef zowel klad als net af. Bij heel wat vragen moet je zelf Java-code schrijven. Hou dit kort en bondig. Je hoeft

Nadere informatie

Java. Basissyllabus. Egon Pas

Java. Basissyllabus. Egon Pas Java Basissyllabus Egon Pas 2011 BeanPole bvba Gasmeterlaan 92-9000 Gent BTW BE 472.902.516 Tel: + 32 9 224 42 17 Fax: + 32 9 223 62 88 www.beanpole.be info@beanpole.be 1 Programmeren 1.1 Hoe werkt een

Nadere informatie

1 Inleiding in Functioneel Programmeren

1 Inleiding in Functioneel Programmeren 1 Inleiding in Functioneel Programmeren door Elroy Jumpertz 1.1 Inleiding Aangezien Informatica een populaire minor is voor wiskundestudenten, leek het mij nuttig om een stukje te schrijven over een onderwerp

Nadere informatie

17 Operaties op bits. 17.1 Bitoperatoren en bitexpressies

17 Operaties op bits. 17.1 Bitoperatoren en bitexpressies 17 Operaties op bits In hoofdstuk 1 is gezegd dat C oorspronkelijk bedoeld was als systeemprogrammeertaal om het besturingssysteem UNIX te implementeren. Bij dit soort toepassingen komt het voor dat afzonderlijke

Nadere informatie

Een topprogrammeur in het OO programmeren is Graig Larman. Hij bedacht de volgende zin:

Een topprogrammeur in het OO programmeren is Graig Larman. Hij bedacht de volgende zin: Java Les 2 Theorie Beslissingen Algemeen Net als in het dagelijks leven worden in software programma s beslissingen genomen, naast het toekennen van waarden aan variabelen zijn beslissingen één van de

Nadere informatie