Tweede Toets Datastructuren 29 juni 2016, , Educ-Γ.

Save this PDF as:
 WORD  PNG  TXT  JPG

Maat: px
Weergave met pagina beginnen:

Download "Tweede Toets Datastructuren 29 juni 2016, , Educ-Γ."

Transcriptie

1 Tweede Toets Datastructuren 29 juni 2016, , Educ-Γ. Motiveer je antwoorden kort! Zet je mobiel uit. Stel geen vragen over deze toets; als je een vraag niet duidelijk vindt, schrijf dan op hoe je de vraag interpreteert en beantwoord de vraag zoals je hem begrijpt. Cijfer: Elke vraag levert evenveel punten, nl. 3, met een totaal van 18. T2 is punten plus 1, gedeeld door 1,8. 1. Verwijderen uit gelinkte lijst: In een doubly linked list heeft elke Node een key, prev en next. In een singly linked list ontbreekt de prev. (a) Geef een methode die Node y verwijdert uit een doubly linked list. (b) Geef een methode die Node y verwijdert uit een singly linked list. (c) Moet je y meegeven als ref parameter (zowel voor (a) als voor (b))? Leg uit! Oplossing: (a) Laat de voorganger van y wijzen naar de opvolger van y, en de opvolger naar de voorganger: y.prev.next = y.next; y.next.prev = y.prev;. Uitzonderingsgevallen af te handelen: als y de eerste of laatste Node is hoeft de aapassing van y.prev danwel y.next niet maar moet je misschien een externe pointer aanpassen. (b) Om dit te kunnen doen moet je y als ref argument geven. De methodeheader is dan void DelFirst(ref Node y) en in de methode gaat het als y = y.next;. (c) Zonder ref argument kun je in de singly linked niet bij de voorganger komen. In de doubly linked list kan dat wel en heb je y niet als ref nodig. (Je kunt wel de key en next van y s opvolger naar y kopiëren: y.key = y.next.key; y.next = y.next.next;. Dit kan natuurlijk niet als y de laatste knoop is.) Beoordeling/Toelichting: Tot 3pt; 1 per deelvraag. Codes: GR = Bij (c) zeggen dat t niet nodig is, als je bij (b) de lineaire oplossing hebt: toch punt. K = Nodes selecteren op basis van Key, 0pt. L = Oplossingen die superlineaire tijd kosten (bij b), 1/2pt. R = Bij (b) geen Ref gebruikt maar wel assignatie aan y, 0pt. Nog 1/2 terug te verdienen met argumentatie bij (c) dat die wel moet. U = De Uitzonderingsgevallen aan begin en einde van de lijst hoeven er niet bij voor puntentoekenning. V = Bij (c) moet je zien dat er Verschil is in deze situaties, dus je krijgt alleen een punt als je beide goed hebt, en niet een halve punt voor een goed.

2 2. Master Theorem: Bepaal de asymptotische oplossing van deze recurrenties met de Master Theorem. (a) V (n) = 2V (n/3) + 2n. (b) W (n) = W (n/3) + 1, 5 n. (c) X(n) = 3X(n/2) + O(n n). Oplossing: (a) Hier is a = 2, b = 3 en f(n) = 2n. b log a is ln 2/ ln 3 is 0,63. De f(n) is n 1 dus weegt polynomiaal zwaarder, zodat V (n) = Θ(n). (Ook als je niet weet hoe je de log uitrekent, kun je inzien dat 3 1 = 3, 2 is minder dus de log is minder dan 1.) (b) Hier is a = 1, b = 3 en f(n) = 1, 5 n. b log a is ln 1/ ln 3 is 0. De f(n) is exponentieel dus weegt sowieso zwaarder, zodat W (n) = Θ(1, 5 n ). (c) Hier is a = 3 en b = 2 en f(n) = O(n 1,5 ). b log a is ln 3/ ln 2 is 1,58. Dit is meer dan 1,5 dus is deze term polynomiaal meer dan f(n) zodat X(n) = Θ(n 1,58... ). Beoordeling/Toelichting: Een punt per goed antwoord; geen halve punten voor goedbedoelde deelredeneringen of half goed toegepaste stellingen en gevallen. Bij (c) moet je wel echt even de log kunnen uitrekenen om te zien dat hij meer dan 1,5 is. Als je kunt bedenken dat 2 1,5 hetzelfde is als 2 2, en weet dat dit ongeveer 2,8 is, dus minder dan 3, en kunt concluderen dat de log dus meer dan 1,5 is, dan had je die log waarschijnlijk ook wel kunnen uitrekenen. M = Niet met de Master Theorem gedaan. P = Er is wel een Polynomiale factor (namelijk n 0,08.. ) tussen n 1,5 en n 1,58... T = Of je Θ of O moet antwoorden is weer een heel verhaal. Bij deze vragen was in alledrie de gevallen Θ gerechtvaardigd, maar als je O opschreef was het ook goed. V = De Vorm, bv. O(2n), is niet goed (moet O(n) zijn), 1/2pt.

3 3. MinHeap: Deze vraag gaat over een MinHeap in een 1-based array A. In A staan deze getallen: (8, 48, 31, 20, 18, 33, 35, 30, 45, 21, 20, 35). (a) Welke veranderingen vinden plaats als Heapify(2) wordt aangeroepen? (b) Vervolgens wordt key 27 toegevoegd. Zeg wat er gebeurt en geef de heap na toevoeging. (c) Welke posities in een heap met n keys hebben geen kinderen, welke hebben 1 kind en welke hebben 2 kinderen? Oplossing: (a) De key op plaats 2, 48, wisselt met zijn kleinste kind 18 op plaats 5. Dan wordt Heapify(5) aangeroepen en wisselt 48 weer met zijn kleinste kind, 20 op positie 11. Dan wordt Heapify(11) aangeroepen maar positie 11 heeft geen kinderen en er gebeurt niets meer. Heap is dus: (8, 18, 31, 20, 20, 33, 35, 30, 45, 21, 48, 35) (b) Nieuwe keys worden toegevoegd op de eerste lege plek en dan wordt Rootify aangeroepen. Dus 27 komt op plek 13, en Rootify(13) laat hem wisselen met zijn parent op plek 6, 33, want dat getal is groter. De volgende Rootify(6) laat 27 wisselen met zijn parent 31 op plek 3 want die is groter. De volgende Rootify(3) doet niets meer omdat 27 groter is dan zijn parent 8. Heap dan: (8, 18, 27, 20, 20, 31, 35, 30, 45, 21, 48, 35, 33). (c) Kinderen van knoop i zijn 2i en 2i + 1 maar deze bestaan alleen als dat kleinergelijk n is. Elke positie i < n/2 heeft twee kinderen. Alleen als n even is, bestaat er een knoop met 1 kind en dat is n/2: linkerkind is n (bestaat) en rechterkind is n + 1 (bestaat niet). Posities groter dan n/2 hebben geen kinderen. Beoordeling/Toelichting: Tot 3pt, 1 voor elke deelvraag. A = Niet Algemeen genoeg (antwoord bv alleen voor n een tweemacht), 0pt. E = Geen onderscheid Even/oneven gemaakt. T = Grens tussen 0 of 2 kinderen ligt niet bij Tweemacht. V = Bij (b) staat Vervolgens, je moet dus toevoegen na het Heapifyen uit (a).

4 4. ContainsValue: Christa slaat records op die een (spelers) naam en een score bevatten. Zij wil kunnen invoegen/verwijderen/zoeken op naam, en zij heeft een efficiente ZoekSc(s) nodig die de naam oplevert van een speler met score s. (a) Christa overweegt opslag in een hashtabel met de naam als key. Hoe kan zij een ZoekSc(s) uitvoeren? (b) Hoeveel tijd kost de ZoekSc bij deze opslag (noem de lengte van de hashtabel m en het aantal records n)? (c) Kan Christa haar ZoekSc(s) sneller krijgen door de records in een zoekboom op te slaan? Leg uit. Oplossing: (a) Christa moet alle records enumereren en checken of s erin zit (en kan misschien eerder termineren als ze s vindt). (b) Voor een hashtabel met m plaatsen en n keys kost dit O(n + m) tijd, dus zeg lineair. (c) Een zoekboom is voor Christa niet beter. Je kunt wel meer met de keys waarop de boom geordend is, maar zoeken op een andere waarde kan niet efficienter dan lineair. Christa zal haar boom moeten ordenen op naam en dan kost zoeken op score lineaire tijd. (Christa kan het beste bij haar verzameling records, twee hashtabellen maken: eentje waarin gehasht wordt op de key en eentje waarin gehasht wordt op value. Alle vier de operaties kunnen dan in O(1) tijd. Beoordeling/Toelichting: Tot 3pt, 1 per deelvraag. Voor de beoordeling moet wel duidelijk zijn dat je het centrale probleem snapt: dat Christa wil zoeken op een veld dat niet de key van de datastructuur is. B = Een Boom is altijd trager dan een hashtabel omdat (door de aanpassing van m aan n) de α doorgaans begrensd blijft. C = Ze moet een ContainsValue doen, ja, ok, maar hoe moet dat dan? 0pt. E = Boom Enumereert sneller omdat je de lege velden niet hebt geeft maar 1/2pt. Bij normale load factor enumereren hashtabel en boom in lineaire tijd, en Θ(n) is nog steeds heel veel. H = Uitlag hoe Hashen normaal werkt (key afbeelden op getal en in array opzoeken) Werd niet gevraagd. L = Bij begrensde Load factor α zijn n en m asymptotisch gelijk en kun je Θ(n) of Θ(m) schrijven. N = Itereren over alle Namen kan niet zomaar in een hashtabel. S = Een zoekboom (of hashtabel) met Score als key is niet goed voor Christa omdat ze daarmee geen toegang meer heeft met een naam, 0pt.

5 5. Selectie uit Boom: Gegeven is een binaire zoekboom, geaugmenteerd met het aantal keys per deelboom. Elke knoop bevat een key, deelbomen left en right, en een integer size die het aantal keys in de deelboom geeft. Geef een recursieve methode KR(node b, int k) die uit boom b het element met rang k oplevert (dwz., het op k na kleinste element; je mag aannemen dat alle keys verschillend zijn en dat 0 k < b.size geldt). De methode moet recursief zijn en de tijd moet lineair zijn in de hoogte van de boom (dus O(h)). Oplossing: Als (k == b.left.size) is de key in b de goede. Bij kleinere k moet je naar links en bij grotere naar rechts. Wel moet je er even aan denken dat je bij recursie naar rechts, de waarde van k moet verlagen. De verzameling keys in de rechterdeelboom is namelijk de hele set, minus de keys links en die in de wortel, dus de rang binnen de rechterdeelboom is b.left.size+1 kleiner dan de rang in de hele boom. Als je een truuk hebt geprogrammeerd zodat null.size automatisch 0 oplevert, ziet het er zo uit: KR(node b, int k) { if (k == b.left.size) return b.key; if (k < b.left.size) return KR(b.left, k); else return KR(b.right, k - b.left.size - 1); } Je kunt lege linkerkant ook expliciet afhandelen: erop testen en dan bij k = 0 de wortel opleveren, anders naar rechts met rang k 1. Beoordeling/Toelichting: Tot 3pt. A = Vergeten of onjuiste aanpassing van k in recursie. Incorrect algo, 2pt aftrek. B = Je moet k niet vergelijken met B.size maar met b.left.size; incorrect, aftrek 1,5pt. D = Dit is te Duur, je gebruikt tijd lineair in het aantal keys, 2pt aftrek. G = Over balancering is niets Gegeven; bij fout algoritme -2pt. K = GebruiK notatie uit de opdracht ipv nieuwe namen te verzinnen. L = Niets gezegd over Lege Linkerkant, 1/2pt aftrek. N = Het geval b == Null afhandelen is mooi, maar hoeft niet. R = Je methode is niet Recursief, 1.5pt eraf. 6. Recurrente betrekking: Los op: a 0 = 1, a 1 = 1, a n = a n 1 + 6a n 2. Oplossing: De oplossing is a n = 2 5 ( 2)n n of 2 ( 2)n +3 3 n. 5 Het Karakteristiek Polynoom is x 2 x 6 en de nulpunten hiervan zijn 2 en 3. Je verkrijgt dus de Algemene Oplossing a n = C ( 2) n + D 3 n. Invullen van de Randwaarde voor n = 0 geeft C +D = 1 en voor n = 1 geeft 2C +3D = 1. Uit die twee vergelijkingen haal je C = 2 en D = Beoordeling/Toelichting: Tot 3pt om dit perfect op te lossen. Heb je het KP met nulpunten 2 en 3, daarvoor 1pt. Heb je de vergelijkingen voor C en D opgesteld en goed opgelost, 1pt. Verdere lettercodes: C = Conclusie vergeten, 1pt. G = Je hebt de vraag niet beantwoord, we wilden een Gesloten formule voor a n.

Opgaven Abstracte Datastructuren Datastructuren, Werkgroep, 31 mei 2017.

Opgaven Abstracte Datastructuren Datastructuren, Werkgroep, 31 mei 2017. Opgaven Abstracte Datastructuren Datastructuren, Werkgroep, 31 mei 2017. Gebruik deze opgaven, naast die uit het boek, om de stof te oefenen op het werkcollege. Cijfer: Op een toets krijg je meestal zes

Nadere informatie

Tweede Toets Datastructuren 28 juni 2017, , Educ-β.

Tweede Toets Datastructuren 28 juni 2017, , Educ-β. Tweede Toets Datastructuren 28 juni 2017, 13.30 15.30, Educ-β. Motiveer je antwoorden kort! Stel geen vragen over deze toets; als je een vraag niet duidelijk vindt, schrijf dan op hoe je de vraag interpreteert

Nadere informatie

Opgaven Zoekbomen Datastructuren, 15 juni 2016, Werkgroep.

Opgaven Zoekbomen Datastructuren, 15 juni 2016, Werkgroep. Opgaven Zoekbomen Datastructuren, 15 juni 2016, Werkgroep. Gebruik deze opgaven, naast die uit het boek, om de stof te oefenen op het werkcollege. Cijfer: Op een toets krijg je meestal zes tot acht opgaven.

Nadere informatie

Opgaven Fibonacci-getallen Datastructuren, 23 juni 2017, Werkgroep.

Opgaven Fibonacci-getallen Datastructuren, 23 juni 2017, Werkgroep. Opgaven Fibonacci-getallen Datastructuren, 3 juni 017, Werkgroep Gebruik deze opgaven, naast die uit het boek, om de stof te oefenen op het werkcollege Cijfer: Op een toets krijg je meestal zes tot acht

Nadere informatie

Discrete Structuren. Piter Dykstra Opleidingsinstituut Informatica en Cognitie

Discrete Structuren. Piter Dykstra Opleidingsinstituut Informatica en Cognitie Discrete Structuren Piter Dykstra Opleidingsinstituut Informatica en Cognitie www.math.rug.nl/~piter piter@math.rug.nl 22 februari 2009 INDUCTIE & RECURSIE Paragrafen 4.3-4.6 Discrete Structuren Week 3:

Nadere informatie

Datastructuren en algoritmen voor CKI

Datastructuren en algoritmen voor CKI Datastructuren en algoritmen voor CKI Jeroen Bransen 1 2 oktober 2015 1 met dank aan Hans Bodlaender en Gerard Tel Priority queue Priority queue ADT insert(q, x): voeg element x toe aan de queue maximum(q):

Nadere informatie

Datastructuren: stapels, rijen en binaire bomen

Datastructuren: stapels, rijen en binaire bomen Programmeermethoden Datastructuren: stapels, rijen en binaire bomen week 12: 23 27 november 2015 www.liacs.leidenuniv.nl/ kosterswa/pm/ 1 Inleiding In de informatica worden Abstracte DataTypen (ADT s)

Nadere informatie

Tweede Toets Concurrency 2 februari 2017, , Educ-β.

Tweede Toets Concurrency 2 februari 2017, , Educ-β. Tweede Toets Concurrency 2 februari 2017, 8.30 10.30, Educ-β. Motiveer je antwoorden kort! Zet je mobiel uit. Stel geen vragen over deze toets; als je een vraag niet duidelijk vindt, schrijf dan op hoe

Nadere informatie

recursie Hoofdstuk 5 Studeeraanwijzingen De studielast van deze leereenheid bedraagt circa 6 uur. Terminologie

recursie Hoofdstuk 5 Studeeraanwijzingen De studielast van deze leereenheid bedraagt circa 6 uur. Terminologie Hoofdstuk 5 Recursion I N T R O D U C T I E Veel methoden die we op een datastructuur aan kunnen roepen, zullen op een recursieve wijze geïmplementeerd worden. Recursie is een techniek waarbij een vraagstuk

Nadere informatie

Inleiding Programmeren 2

Inleiding Programmeren 2 Inleiding Programmeren 2 Gertjan van Noord November 28, 2016 Stof week 3 nogmaals Zelle hoofdstuk 8 en recursie Brookshear hoofdstuk 5: Algoritmes Datastructuren: tuples Een geheel andere manier om te

Nadere informatie

Examen Datastructuren en Algoritmen II

Examen Datastructuren en Algoritmen II Tweede bachelor Informatica Academiejaar 2008 2009, eerste zittijd Examen Datastructuren en Algoritmen II Naam :.............................................................................. Lees elke

Nadere informatie

Derde college complexiteit. 7 februari Zoeken

Derde college complexiteit. 7 februari Zoeken College 3 Derde college complexiteit 7 februari 2017 Recurrente Betrekkingen Zoeken 1 Recurrente betrekkingen -1- Rij van Fibonacci: 0,1,1,2,3,5,8,13,21,... Vanaf het derde element: som van de voorgaande

Nadere informatie

Examen Datastructuren en Algoritmen II

Examen Datastructuren en Algoritmen II Tweede bachelor Informatica Academiejaar 2009 2010, eerste zittijd Examen Datastructuren en Algoritmen II Naam :.............................................................................. Lees de hele

Nadere informatie

Tentamen Programmeren in C (EE1400)

Tentamen Programmeren in C (EE1400) TU Delft Tentamen Programmeren in C (EE1400) 5 april 2012, 9.00 12.00 Faculteit EWI - Zet op elk antwoordblad je naam en studienummer. - Beantwoord alle vragen zo nauwkeurig mogelijk. - Wanneer C code

Nadere informatie

Vierde college complexiteit. 16 februari Beslissingsbomen en selectie

Vierde college complexiteit. 16 februari Beslissingsbomen en selectie Complexiteit 2016/04 College 4 Vierde college complexiteit 16 februari 2016 Beslissingsbomen en selectie 1 Complexiteit 2016/04 Zoeken: samengevat Ongeordend lineair zoeken: Θ(n) sleutelvergelijkingen

Nadere informatie

public boolean equaldates() post: returns true iff there if the list contains at least two BirthDay objects with the same daynumber

public boolean equaldates() post: returns true iff there if the list contains at least two BirthDay objects with the same daynumber Tentamen TI1310 Datastructuren en Algoritmen, 15 april 2011, 9.00-12.00 TU Delft, Faculteit EWI, Basiseenheid Software Engineering Bij het tentamen mag alleen de boeken van Goodrich en Tamassia worden

Nadere informatie

Programmeermethoden NA. Week 6: Lijsten

Programmeermethoden NA. Week 6: Lijsten Programmeermethoden NA Week 6: Lijsten Kristian Rietveld http://liacs.leidenuniv.nl/~rietveldkfd/courses/prna2016/ Getal opbouwen Stel je leest losse karakters (waaronder cijfers) en je moet daar een getal

Nadere informatie

Elementary Data Structures 3

Elementary Data Structures 3 Elementary Data Structures 3 Ferd van Odenhoven Fontys Hogeschool voor Techniek en Logistiek Venlo Software Engineering 29 september 2014 ODE/FHTBM Elementary Data Structures 3 29 september 2014 1/14 Meer

Nadere informatie

Examen Datastructuren en Algoritmen II

Examen Datastructuren en Algoritmen II Tweede bachelor Informatica Academiejaar 2008 2009, tweede zittijd Examen Datastructuren en Algoritmen II Naam :.............................................................................. Lees elke

Nadere informatie

Vierde college complexiteit. 14 februari Beslissingsbomen

Vierde college complexiteit. 14 februari Beslissingsbomen College 4 Vierde college complexiteit 14 februari 2017 Restant zoeken Beslissingsbomen 1 Binair zoeken Links := 1; Rechts := n; while Links Rechts do Midden := Links + Rechts 2 ; if X = A[Midden] then

Nadere informatie

Opgaven Stacks, Lijsten, Queues Datastructuren, Werkgroep, 2 juni 2017.

Opgaven Stacks, Lijsten, Queues Datastructuren, Werkgroep, 2 juni 2017. Opgaven Stacks, Lijsten, Queues Datastructuren, Werkgroep, 2 juni 2017. Gebruik deze opgaven, naast die uit het boek, om de stof te oefenen op het werkcollege. Cijfer: Op een toets krijg je meestal zes

Nadere informatie

2 Recurrente betrekkingen

2 Recurrente betrekkingen WIS2 1 2 Recurrente betrekkingen 2.1 Fibonacci De getallen van Fibonacci Fibonacci (= Leonardo van Pisa), 1202: Bereken het aantal paren konijnen na één jaar, als 1. er na 1 maand 1 paar pasgeboren konijnen

Nadere informatie

Examen Datastructuren en Algoritmen II

Examen Datastructuren en Algoritmen II Tweede bachelor Informatica Academiejaar 2006 2007, tweede zittijd Examen Datastructuren en Algoritmen II Naam :.............................................................................. 1. Verzamelingen:

Nadere informatie

Opgaven Binair Zoeken en Invarianten Datastructuren, 4 mei 2016, Werkgroep.

Opgaven Binair Zoeken en Invarianten Datastructuren, 4 mei 2016, Werkgroep. Opgaven Binair Zoeken en Invarianten Datastructuren, 4 mei 2016, Werkgroep. Gebruik deze opgaven, naast die uit het boek, om de stof te oefenen op het werkcollege. Cijfer: Op een toets krijg je meestal

Nadere informatie

Oefeningen voor de oefeningenles. Oefening 1

Oefeningen voor de oefeningenles. Oefening 1 Oefeningen voor de oefeningenles Oefening 1 Gegeven een arbitraire binaire zoekboom T met n toppen en een (andere of gelijke) binaire zoekboom T die ook n sleutels bevat. Beschrijf een algoritme dat in

Nadere informatie

Eerste Huiswerk Algoritmiek 18 februari 2015, uitwisselen, WerkCollege.

Eerste Huiswerk Algoritmiek 18 februari 2015, uitwisselen, WerkCollege. Eerste Huiswerk Algoritmiek 18 februari 2015, uitwisselen, WerkCollege. Kijk een huiswerkset na met een team van twee, voorzie de uitwerking van commentaar en becijfering, en neem de nagekeken set mee

Nadere informatie

Algoritmen, Datastructuren en Complexiteit ( en ) Uitwerkingen

Algoritmen, Datastructuren en Complexiteit ( en ) Uitwerkingen Universiteit Twente 2009-2010/2 Afdeling Informatica, Faculteit EWI Tentamen dinsdag 19 januari 2010, 8.45-12.15 Algoritmen, Datastructuren en Complexiteit (214020 en 214025) Uitwerkingen Bij dit tentamen

Nadere informatie

Programmeermethoden. Recursie. week 11: november kosterswa/pm/

Programmeermethoden. Recursie. week 11: november kosterswa/pm/ Programmeermethoden Recursie week 11: 21 25 november 2016 www.liacs.leidenuniv.nl/ kosterswa/pm/ 1 Pointers Derde programmeeropgave 1 Het spel Gomoku programmeren we als volgt: week 1: pointerpracticum,

Nadere informatie

4EE11 Project Programmeren voor W. College 3, 2008 2009, Blok D Tom Verhoeff, Software Engineering & Technology, TU/e

4EE11 Project Programmeren voor W. College 3, 2008 2009, Blok D Tom Verhoeff, Software Engineering & Technology, TU/e 4EE11 Project Programmeren voor W College 3, 2008 2009, Blok D Tom Verhoeff, Software Engineering & Technology, TU/e 1 Onderwerpen Grotere programma s ontwerpen/maken Datastructuren en algoritmes 2 Evolutie,

Nadere informatie

Zevende college complexiteit. 17 maart Ondergrens sorteren, Quicksort

Zevende college complexiteit. 17 maart Ondergrens sorteren, Quicksort College 7 Zevende college complexiteit 17 maart 2008 Ondergrens sorteren, Quicksort 1 Sorteren We bekijken sorteeralgoritmen gebaseerd op het doen van vergelijkingen van de vorm A[i] < A[j]. Aannames:

Nadere informatie

Stacks and queues. Hoofdstuk 6

Stacks and queues. Hoofdstuk 6 Hoofdstuk 6 Stacks and queues I N T R O D U C T I E In dit hoofdstuk worden drie datastructuren stack, queue en deque behandeld. Om deze datastructuren te implementeren, worden onder andere arrays en linked

Nadere informatie

Vijfde college complexiteit. 21 februari Selectie Toernooimethode Adversary argument

Vijfde college complexiteit. 21 februari Selectie Toernooimethode Adversary argument Complexiteit 2017/05 College 5 Vijfde college complexiteit 21 februari 2017 Selectie Toernooimethode Adversary argument 1 Complexiteit 2017/05 Opgave 28 Gegeven twee oplopend gesorteerde even lange rijen

Nadere informatie

Examen Programmeren 2e Bachelor Elektrotechniek en Computerwetenschappen Faculteit Ingenieurswetenschappen Academiejaar juni 2011

Examen Programmeren 2e Bachelor Elektrotechniek en Computerwetenschappen Faculteit Ingenieurswetenschappen Academiejaar juni 2011 Examen Programmeren 2e Bachelor Elektrotechniek en Computerwetenschappen Faculteit Ingenieurswetenschappen Academiejaar 2010-2011 21 juni 2011 **BELANGRIJK** 1. Lees eerst de volledige opgave (inclusief

Nadere informatie

Java Programma structuur

Java Programma structuur Java Programma structuur public class Bla // div. statements public static void main(string argv[]) // meer spul Voortgezet Prog. voor KI, week 4:11 november 2002 1 Lijsten Voorbeelden 2, 3, 5, 7, 13 Jan,

Nadere informatie

Datastructuren; (Zoek)bomen

Datastructuren; (Zoek)bomen Datastructuren; (Zoek)bomen Bomen, zoekbomen, gebalanceerde zoekbomen José Lagerberg FNWI, UvA José Lagerberg (FNWI, UvA) Datastructuren; (Zoek)bomen 1 / 50 Bomen Traversal van bomen Datastructuur van

Nadere informatie

Divide & Conquer: Verdeel en Heers. Algoritmiek

Divide & Conquer: Verdeel en Heers. Algoritmiek Divide & Conquer: Verdeel en Heers Algoritmiek Algoritmische technieken Trucs; methoden; paradigma s voor het ontwerp van algoritmen Gezien: Dynamisch Programmeren Hierna: Greedy Vandaag: Divide & Conquer

Nadere informatie

Bouwstenen voor PSE. Datatypes en Datastructuren

Bouwstenen voor PSE. Datatypes en Datastructuren Bouwstenen voor PSE Datatypes en Datastructuren Definitie Datatype Klasse van dataobjecten tesamen met operaties om ze te construeren, te manipuleren en te verwijderen. Een datatype omvat een specificatie

Nadere informatie

Algoritmen, Datastructuren en Complexiteit (214020/5)

Algoritmen, Datastructuren en Complexiteit (214020/5) Universiteit Twente Semester 2005/1 Afdeling Informatica 2 e huiswerkserie 13 december 2005 Algoritmen, Datastructuren en Complexiteit (214020/5) De deadline voor het inleveren van deze huiswerkserie (bij

Nadere informatie

Combinatoriek groep 1

Combinatoriek groep 1 Combinatoriek groep 1 Recursie Trainingsdag 3, 2 april 2009 Getallenrijen We kunnen een rij getallen a 0, a 1, a 2,... op twee manieren definiëren: direct of recursief. Een directe formule geeft a n in

Nadere informatie

Hoofdstuk 9. Hashing

Hoofdstuk 9. Hashing Hoofdstuk 9 Hashing Het zoeken in een verzameling van één object is in deze cursus al verschillende malen aan bod gekomen. In hoofdstuk 2 werd uitgelegd hoe men een object kan zoeken in een array die veel

Nadere informatie

De doorsnede van twee verzamelingen vinden

De doorsnede van twee verzamelingen vinden De doorsnede van twee verzamelingen vinden Daniel von Asmuth Inleiding Dit artikel probeert enkele algoritmen te vergelijken om de doorsnede van twee verzamelingen of rijen van getallen te vinden. In een

Nadere informatie

Datastructuren. Analyse van algoritmen. José Lagerberg. FNWI, UvA. José Lagerberg (FNWI, UvA) Datastructuren 1 / 46

Datastructuren. Analyse van algoritmen. José Lagerberg. FNWI, UvA. José Lagerberg (FNWI, UvA) Datastructuren 1 / 46 Datastructuren Analyse van algoritmen José Lagerberg FNWI, UvA José Lagerberg (FNWI, UvA) Datastructuren 1 / 46 Datastructuren en Algoritmen Datastructuren, 6 ECTS eerstejaars Bachelor INF Datastructuren,

Nadere informatie

Eerste deeltoets Algoritmiek 4 maart 2015, , Educ-β.

Eerste deeltoets Algoritmiek 4 maart 2015, , Educ-β. Eerste deeltoets Algoritmiek 4 maart 2015, 8.30 10.30, Educ-β. Motiveer je antwoorden kort! Zet je mobiel uit. Stel geen vragen over deze toets; als je een vraag niet duidelijk vindt, schrijf dan op hoe

Nadere informatie

10 Meer over functies

10 Meer over functies 10 Meer over functies In hoofdstuk 5 hebben we functies uitgebreid bestudeerd. In dit hoofdstuk bekijken we drie andere aspecten van functies: recursieve functies dat wil zeggen, functies die zichzelf

Nadere informatie

Bomen. 8.8 ongerichte bomen 9.4 gerichte bomen ch 10. binaire bomen

Bomen. 8.8 ongerichte bomen 9.4 gerichte bomen ch 10. binaire bomen 10 Bomen 8.8 ongerichte bomen 9.4 gerichte bomen ch 10. binaire bomen 1 Baarn Hilversum Soestdijk Den Dolder voorbeelden route boom beslisboom Amersfoort Soestduinen + 5 * + 5.1 5.2 5.3 5.4 2 3 * * 2 5.3.1

Nadere informatie

8. Complexiteit van algoritmen:

8. Complexiteit van algoritmen: 8. Complexiteit van algoritmen: Voorbeeld: Een gevaarlijk spel 1 Spelboom voor het wespenspel 2 8.1 Complexiteit 4 8.2 NP-problemen 6 8.3 De oplossing 7 8.4 Een vuistregel 8 In dit hoofdstuk wordt het

Nadere informatie

Een eenvoudig algoritme om permutaties te genereren

Een eenvoudig algoritme om permutaties te genereren Een eenvoudig algoritme om permutaties te genereren Daniel von Asmuth Inleiding Er zijn in de vakliteratuur verschillende manieren beschreven om alle permutaties van een verzameling te generen. De methoden

Nadere informatie

Modelleren en Programmeren

Modelleren en Programmeren Modelleren en Programmeren Jeroen Bransen 13 december 2013 Terugblik Fibonacci public class Fibonacci { public static void main(string[] args) { // Print het vijfde Fibonaccigetal System.out.println(fib(5));

Nadere informatie

Datastructuren en Algoritmen voor CKI

Datastructuren en Algoritmen voor CKI Ω /texmf/tex/latex/uubeamer.sty-h@@k 00 /texmf/tex/latex/uubeamer.sty Datastructuren en Algoritmen voor CKI Vincent van Oostrom Clemens Grabmayer Afdeling Wijsbegeerte Hoorcollege 5 16 februari 2009 Waar

Nadere informatie

Discrete Structuren. Piter Dykstra Sietse Achterop Opleidingsinstituut Informatica en Cognitie

Discrete Structuren. Piter Dykstra Sietse Achterop Opleidingsinstituut Informatica en Cognitie Discrete Structuren Piter Dykstra Sietse Achterop Opleidingsinstituut Informatica en Cognitie www.math.rug.nl/~piter piter@math.rug.nl 3 maart 2008 GRAFEN & BOMEN Paragrafen 6.1-6.4 Discrete Structuren

Nadere informatie

Datastructuren en algoritmen voor CKI

Datastructuren en algoritmen voor CKI Datastructuren en algoritmen voor CKI Jeroen Bransen 1 14 oktober 2015 1 met dank aan Hans Bodlaender en Gerard Tel Willekeurig gebouwde zoekbomen Willekeurig gebouwde zoekbomen Hoogte van zoekboom met

Nadere informatie

Kortste Paden. Algoritmiek

Kortste Paden. Algoritmiek Kortste Paden Toepassingen Kevin Bacon getal Six degrees of separation Heeft een netwerk de small-world eigenschap? TomTom / Google Maps 2 Kortste paden Gerichte graaf G=(N,A), en een lengte L(v,w) voor

Nadere informatie

Lineaire data structuren. Doorlopen van een lijst

Lineaire data structuren. Doorlopen van een lijst Lineaire data structuren array: vast aantal data items die aaneensluitend gestockeerd zijn de elementen zijn bereikbaar via een index lijst: een aantal individuele elementen die met elkaar gelinkt zijn

Nadere informatie

Combinatoriek groep 2

Combinatoriek groep 2 Combinatoriek groep 2 Recursie Trainingsdag 3, 2 april 2009 Homogene lineaire recurrente betrekkingen We kunnen een rij getallen a 0, a 1, a 2,... op twee manieren definiëren: direct of recursief. Een

Nadere informatie

Zevende college complexiteit. 7 maart Mergesort, Ondergrens sorteren (Quicksort)

Zevende college complexiteit. 7 maart Mergesort, Ondergrens sorteren (Quicksort) College 7 Zevende college complexiteit 7 maart 2017 Mergesort, Ondergrens sorteren (Quicksort) 1 Inversies Definitie: een inversie van de permutatie A[1],A[2],...,A[n] is een paar (A[i],A[j]) waarvoor

Nadere informatie

Hoofdstuk 8: Algoritmen en Complexiteit

Hoofdstuk 8: Algoritmen en Complexiteit Hoofdstuk 8: Algoritmen en Complexiteit Vandaag: Hoe meten we de performance van algoritmen? Waar ligt de grens tussen een goed en een slecht algoritme? 22 oktober 2014 1 Vandaag: Hoe meten we de performance

Nadere informatie

1 Inleiding in Functioneel Programmeren

1 Inleiding in Functioneel Programmeren 1 Inleiding in Functioneel Programmeren door Elroy Jumpertz 1.1 Inleiding Aangezien Informatica een populaire minor is voor wiskundestudenten, leek het mij nuttig om een stukje te schrijven over een onderwerp

Nadere informatie

Discrete Structuren. Piter Dykstra Opleidingsinstituut Informatica en Cognitie

Discrete Structuren. Piter Dykstra Opleidingsinstituut Informatica en Cognitie Discrete Structuren Piter Dykstra Opleidingsinstituut Informatica en Cognitie www.math.rug.nl/~piter piter@math.rug.nl 23 februari 2009 GRAFEN & BOMEN Paragrafen 6.1-6.4 Discrete Structuren Week 3 en 4:

Nadere informatie

1 Complexiteit. of benadering en snel

1 Complexiteit. of benadering en snel 1 Complexiteit Het college van vandaag gaat over complexiteit van algoritmes. In het boek hoort hier hoofdstuk 8.1-8.5 bij. Bij complexiteitstheorie is de belangrijkste kernvraag: Hoe goed is een algoritme?

Nadere informatie

1 Recurrente betrekkingen

1 Recurrente betrekkingen WIS1 1 1 Recurrente betrekkingen 1.1 De torens van Hanoi De torens van Hanoi Edouard Lucas, 1884: Gegeven 3 pinnen en 64 schijven van verschillende grootte. Startsituatie: 64 op linkerpin, geordend naar

Nadere informatie

(On)Doenlijke problemen

(On)Doenlijke problemen Fundamentele Informatica In3 005 Deel 2 College 1 Cees Witteveen Parallelle en Gedistribueerde Systemen Faculteit Informatie Technologie en Systemen Overzicht Inleiding - Relatie Deel 1 en Deel 2 - Doenlijke

Nadere informatie

Dynamisch Programmeren III. Algoritmiek

Dynamisch Programmeren III. Algoritmiek Dynamisch Programmeren III Vandaag Dynamisch programmeren met wat lastiger voorbeelden: Handelsreiziger Longest common subsequence Optimale zoekbomen Knapsack 2 - DP2 Handelsreiziger Een handelsreiziger

Nadere informatie

Schriftelijk tentamen Datastructuren Woe 5 jan uur Met uitwerkingen

Schriftelijk tentamen Datastructuren Woe 5 jan uur Met uitwerkingen Schriftelijk tentamen Datastructuren Woe 5 jan 2011 14-17 uur Met uitwerkingen 1.a. Geef een compacte definitie van wat er bij Datastructuren verstaan wordt onder een Abstract Data Type (ADT). b. Werk

Nadere informatie

Algoritmen, Datastructuren en Complexiteit (214020/5)

Algoritmen, Datastructuren en Complexiteit (214020/5) Universiteit Twente Semester 2006/1 Afdeling Informatica 2 e huiswerkserie 10 januari 2007 Uitwerking Algoritmen, Datastructuren en Complexiteit (214020/5) Er zijn 4 opgaven. Er zijn 90 punten te behalen.

Nadere informatie

Grafen. Indien de uitgraad van ieder punt 1 is, dan bevat de graaf een cykel. Indien de ingraad van ieder punt 1 is, dan bevat de graaf een cykel.

Grafen. Indien de uitgraad van ieder punt 1 is, dan bevat de graaf een cykel. Indien de ingraad van ieder punt 1 is, dan bevat de graaf een cykel. Grafen Grafen Een graaf bestaat uit een verzameling punten (ook wel knopen, of in het engels vertices genoemd) en een verzameling kanten (edges) of pijlen (arcs), waarbij de kanten en pijlen tussen twee

Nadere informatie

Computationale Intelligentie Dirk Thierens

Computationale Intelligentie Dirk Thierens Computationale Intelligentie Dirk Thierens Organisatie Onderwijsvormen: Docent: Topic: Collegemateriaal: Boek: Beoordeling: hoorcollege, practicum, werkcollege Dirk Thierens Deel : Zoekalgoritmen Toets

Nadere informatie

Hoofdstuk 2. Week 4: Datastructuren. 2.1 Leesopdracht. 2.2 Bomen. 2.3 Definitie

Hoofdstuk 2. Week 4: Datastructuren. 2.1 Leesopdracht. 2.2 Bomen. 2.3 Definitie Hoofdstuk 2 Week 4: Datastructuren 2.1 Leesopdracht In het hoorcollege komen lijsten en bomen aan de orde. De eerste datastructuur komt in het boek in bladzijden 317-333 aan de orde. In dit dictaat komt

Nadere informatie

V = {a, b, c, d, e} Computernetwerken: de knopen zijn machines in het netwerk, de kanten zijn communicatiekanalen.

V = {a, b, c, d, e} Computernetwerken: de knopen zijn machines in het netwerk, de kanten zijn communicatiekanalen. WIS14 1 14 Grafen 14.1 Grafen Gerichte grafen Voor een verzameling V is een binaire relatie op V een verzameling geordende paren van elementen van V. Voorbeeld: een binaire relatie op N is de relatie KleinerDan,

Nadere informatie

De volgende opgave gaat over de B-bomen van het college, waar sleutels zowel in de bladeren als ook in de interne knopen opgeslagen worden.

De volgende opgave gaat over de B-bomen van het college, waar sleutels zowel in de bladeren als ook in de interne knopen opgeslagen worden. . a) Een Fibonacci boom (niet te verwarren met een Fibonacci queue) van hoogte h is een AVL-boom van hoogte h met zo weinig mogelijk knopen. i. Geefvoorh =,,,,eenfibonacciboomvanhoogteh(eenboombestaande

Nadere informatie

Algoritmes en Priemgetallen. Hoe maak je een sleutelpaar voor RSA?

Algoritmes en Priemgetallen. Hoe maak je een sleutelpaar voor RSA? Algoritmes en Priemgetallen Hoe maak je een sleutelpaar voor RSA? Het recept van RSA Kies p q priemgetallen en bepaal N = pq Kies e Z N (publieke sleutel) Bepaal d e 1 mod φ N (privésleutel) x ed x kφ

Nadere informatie

software constructie recursieve datastructuren college 15 5 stappen plan ontwerpen de software bestaat uiteindelijk uit datatypen functies

software constructie recursieve datastructuren college 15 5 stappen plan ontwerpen de software bestaat uiteindelijk uit datatypen functies software constructie recursieve datastructuren college 15 software engineering highlights 1 de software bestaat uiteindelijk uit datatypen functies verbindingen geven gebruik aan main is de top van het

Nadere informatie

Als een PSD selecties bevat, deelt de lijn van het programma zich op met de verschillende antwoorden op het vraagstuk.

Als een PSD selecties bevat, deelt de lijn van het programma zich op met de verschillende antwoorden op het vraagstuk. HOOFDSTUK 3 3.1 Stapsgewijs programmeren In de vorige hoofdstukken zijn programmeertalen beschreven die imperatief zijn. is het stapsgewijs in code omschrijven wat een programma moet doen, net als een

Nadere informatie

Indexen.

Indexen. Indexen joost.vennekens@kuleuven.be Probleem Snel gegevens terugvinden Gegevens moeten netjes geordend zijn Manier waarop hangt af van gebruik Sequentieel Gesorteerde gegevens, die in volgorde overlopen

Nadere informatie

Examen Algoritmen en Datastructuren III

Examen Algoritmen en Datastructuren III Derde bachelor Informatica Academiejaar 2006 2007, tweede zittijd Examen Algoritmen en Datastructuren III Naam :.............................................................................. 1. (2 pt)

Nadere informatie

Practicumopgave 3: SAT-solver

Practicumopgave 3: SAT-solver Practicumopgave 3: SAT-solver Modelleren en Programmeren 2015/2016 Deadline: donderdag 7 januari 2016, 23:59 Introductie In het vak Inleiding Logica is onder andere de propositielogica behandeld. Veel

Nadere informatie

Tree traversal. Bomen zijn overal. Ferd van Odenhoven. 15 november 2011

Tree traversal. Bomen zijn overal. Ferd van Odenhoven. 15 november 2011 15 november 2011 Tree traversal Ferd van Odenhoven Fontys Hogeschool voor Techniek en Logistiek Venlo Software Engineering 15 november 2011 ODE/FHTBM Tree traversal 15 november 2011 1/22 1 ODE/FHTBM Tree

Nadere informatie

Tijd is geen goede maatstaf, want is afhankelijk van computer waarop algoritme wordt gedraaid.

Tijd is geen goede maatstaf, want is afhankelijk van computer waarop algoritme wordt gedraaid. Complexiteit of efficiëntie van algoritmen Hoe meet je deze? Tijd is geen goede maatstaf, want is afhankelijk van computer waarop algoritme wordt gedraaid. Een betere maatstaf is het aantal berekeningsstappen

Nadere informatie

3. Structuren in de taal

3. Structuren in de taal 3. Structuren in de taal In dit hoofdstuk behandelen we de belangrijkst econtrolestructuren die in de algoritmiek gebruikt worden. Dit zijn o.a. de opeenvolging, selectie en lussen (herhaling). Vóór we

Nadere informatie

[14] Functies. Volg mee via 14_Functies-1.py. We beginnen met een eenvoudig voorbeeldje:

[14] Functies. Volg mee via 14_Functies-1.py. We beginnen met een eenvoudig voorbeeldje: [14] Functies Een goede programmeur doet altijd zijn best om zoveel mogelijk aan hergebruik van code te doen. Je probeert in je programma code te gebruiken die iemand anders heeft gemaakt, of code die

Nadere informatie

Hoofdstuk 7: Werken met arrays

Hoofdstuk 7: Werken met arrays Programmeren in Microsoft Visual Basic 6.0, lessenserie voor het voortgezet onderwijs HAVO/VWO David Lans, Emmauscollege, Marnix Gymnasium Rotterdam, januari 2004 Hoofdstuk 7: Werken met arrays 7.0 Leerdoel

Nadere informatie

Bijzondere getallen. Oneindig (als getal) TomVerhoeff. Technische Universiteit Eindhoven Faculteit Wiskunde en Informatica

Bijzondere getallen. Oneindig (als getal) TomVerhoeff. Technische Universiteit Eindhoven Faculteit Wiskunde en Informatica Bijzondere getallen Oneindig (als getal) TomVerhoeff Technische Universiteit Eindhoven Faculteit Wiskunde en Informatica T.Verhoeff@TUE.NL http://www.win.tue.nl/~wstomv/ Oneindig ... Oneindig 2 Top tien

Nadere informatie

Oneindig in Wiskunde & Informatica. Lezing in de reeks Oneindig 3 oktober 2007 / Studium Generale TU Delft. Tom Verhoeff

Oneindig in Wiskunde & Informatica. Lezing in de reeks Oneindig 3 oktober 2007 / Studium Generale TU Delft. Tom Verhoeff Oneindig in Wiskunde & Informatica Lezing in de reeks Oneindig 3 oktober 2007 / Studium Generale TU Delft Tom Verhoeff Technische Universiteit Eindhoven Faculteit Wiskunde & Informatica http://www.win.tue.nl/~wstomv/

Nadere informatie

Een gelinkte lijst in C#

Een gelinkte lijst in C# Een gelinkte lijst in C# In deze tutorial ga demonstreren hoe je een gelinkte lijst kan opstellen in C#. We gaan een klasse schrijven, die een gelijkaardige functionaliteit heeft als een ArrayList, namelijk

Nadere informatie

Tentamen in2705 Software Engineering

Tentamen in2705 Software Engineering Tentamen in2705 Software Engineering Voorbeeld (bijna tweemaal te groot) U mag meenemen naar dit tentamen: Lethbridge, afdrukken PPT slides, afdrukken handouts. 1. De TU wil een nieuw systeem ontwikkelen

Nadere informatie

Tweede Huiswerk Security 26 of 28 oktober, 11.00, Nabespreken op Werkcollege.

Tweede Huiswerk Security 26 of 28 oktober, 11.00, Nabespreken op Werkcollege. Tweede Huiswerk Security 26 of 28 oktober, 11.00, Nabespreken op Werkcollege. Kijk het huiswerk van je collega s na en schrijf de namen van de nakijkers linksboven en het totaalcijfer rechts onder de namen

Nadere informatie

Uitwerkingen Tweede deeltentamen Imperatief programmeren Vrijdag 15 oktober 2010, 11.00-13.00 uur

Uitwerkingen Tweede deeltentamen Imperatief programmeren Vrijdag 15 oktober 2010, 11.00-13.00 uur Uitwerkingen Tweede deeltentamen Imperatief programmeren Vrijdag 15 oktober 2010, 11.00-13.00 uur 1. (2 punten per deelvraag) Deze opgave bestaat uit een aantal tekstvragen. Houd het antwoord kort: een

Nadere informatie

Tiende college algoritmiek. 13/21 april Gretige Algoritmen Algoritme van Dijkstra

Tiende college algoritmiek. 13/21 april Gretige Algoritmen Algoritme van Dijkstra Algoritmiek 017/Gretige Algoritmen Tiende college algoritmiek 13/1 april 017 Gretige Algoritmen Algoritme van Dijkstra 1 Algoritmiek 017/Gretige Algoritmen Muntenprobleem Gegeven onbeperkt veel munten

Nadere informatie

Uitwerkingen Mei 2012. Eindexamen VWO Wiskunde C. Nederlands Mathematisch Instituut Voor Onderwijs en Onderzoek

Uitwerkingen Mei 2012. Eindexamen VWO Wiskunde C. Nederlands Mathematisch Instituut Voor Onderwijs en Onderzoek Uitwerkingen Mei 2012 Eindexamen VWO Wiskunde C Nederlands Mathematisch Instituut Voor Onderwijs en Onderzoek I Tjing Opgave 1. Het aantal hoofdstukken in de I Tjing correspondeert met het totale aantal

Nadere informatie

Opgave 1. (4 punten) Inleiding: Vraag: Hints: (maximaal 2 bonuspunten) Tentamen Algoritmiek voor Biologen

Opgave 1. (4 punten) Inleiding: Vraag: Hints: (maximaal 2 bonuspunten) Tentamen Algoritmiek voor Biologen Opgave 1. (4 punten) Elk jaar verliest een boom al z'n bladeren. Een boom begint op dag D met B bladeren. Op de eerste dag is voor elk blad dat aan de boom zit de kans op afvallen 0.03. Voor elke volgende

Nadere informatie

compileren & interpreteren - compileren: vertalen (omzetten) - interpreteren: vertolken

compileren & interpreteren - compileren: vertalen (omzetten) - interpreteren: vertolken compileren & interpreteren - compileren: vertalen (omzetten) - interpreteren: vertolken - belangrijkste punten: - ontleden van de programmatekst - bijhouden van de datastructuren Data Structuren en Algoritmen

Nadere informatie

REEKS I. Zaterdag 6 november 2010, 9u

REEKS I. Zaterdag 6 november 2010, 9u TEST INFORMATICA 1STE BACHELOR IN DE INGENIEURSWETENSCHAPPEN - ACADEMIEJAAR 2010-2011 REEKS I Zaterdag 6 november 2010, 9u NAAM :... VRAAG 1: MINSTENS [5 PUNTEN] Schrijf een methode minstens(), met twee

Nadere informatie

Hoofdstuk 2. Iteratie, Recursie en Inductie. 2.1 Fibonacci getallen

Hoofdstuk 2. Iteratie, Recursie en Inductie. 2.1 Fibonacci getallen Hoofdstuk 2 Iteratie, Recursie en Inductie SCHAUM 1.8: Mathematical Induction, ook 11.3 SCHAUM 3.6: Recursively Defined Functions Er zijn slechts enkele passages in SCHAUM aan het belangrijke begrip recursie

Nadere informatie

Vraag 1 (2 punten) (iii) Een lees-opdracht van virtueel adres 2148 seg 0, offset 2148 - idem

Vraag 1 (2 punten) (iii) Een lees-opdracht van virtueel adres 2148 seg 0, offset 2148 - idem Tentamen A2 (deel b) 24-06-2004 Geef (liefst beknopte en heldere) motivatie bij je antwoorden; dus niet enkel ja of nee antwoorden, maar ook waarom. Geef van berekeningen niet alleen het eindresultaat,

Nadere informatie

Lineaire algebra I (wiskundigen)

Lineaire algebra I (wiskundigen) Lineaire algebra I (wiskundigen) Toets, donderdag 22 oktober, 2009 Oplossingen (1) Zij V het vlak in R 3 door de punten P 1 = (1, 2, 1), P 2 = (0, 1, 1) en P 3 = ( 1, 1, 3). (a) Geef een parametrisatie

Nadere informatie

Programmeertechnieken

Programmeertechnieken Aanvulling op Programmeren Radboud Universiteit Nijmegen 10 December 2012 1 Omschrijving Linked lists Implementatie Boomstructuren 2 Recursie De rij van Fibonacci Het driehoekprobleem 3 Het substitutiecijfer

Nadere informatie

Universiteit Utrecht Faculteit Wiskunde en Informatica. Examen Optimalisering op maandag 18 april 2005, uur.

Universiteit Utrecht Faculteit Wiskunde en Informatica. Examen Optimalisering op maandag 18 april 2005, uur. Universiteit Utrecht Faculteit Wiskunde en Informatica Examen Optimalisering op maandag 18 april 2005, 9.00-12.00 uur. De opgaven dienen duidelijk uitgewerkt te zijn en netjes ingeleverd te worden. Schrijf

Nadere informatie

TW2020 Optimalisering

TW2020 Optimalisering TW2020 Optimalisering Hoorcollege 8 Leo van Iersel Technische Universiteit Delft 2 november 2016 Leo van Iersel (TUD) TW2020 Optimalisering 2 november 2016 1 / 28 Minimum Opspannende Boom (Minimum Spanning

Nadere informatie

Gegevens invullen in HOOFDLETTERS en LEESBAAR, aub. Belgische Olympiades in de Informatica (duur : maximum 1u15 )

Gegevens invullen in HOOFDLETTERS en LEESBAAR, aub. Belgische Olympiades in de Informatica (duur : maximum 1u15 ) OI 2010 Finale 12 Mei 2010 Gegevens invullen in HOOFDLETTERS en LEESBAAR, aub VOORNAAM :....................................................... NAAM :..............................................................

Nadere informatie

Tweede Toets Security 2 november 2015, , Educ-α.

Tweede Toets Security 2 november 2015, , Educ-α. Tweede Toets Security 2 november 2015, 8.30 10.30, Educ-α. Motiveer je antwoorden kort! Zet je mobiel uit. Stel geen vragen over deze toets; als je een vraag niet duidelijk vindt, schrijf dan op hoe je

Nadere informatie

colleges recursieve datastructuren college 9 prioriteit van operatoren prioriteit in recursive descent parser

colleges recursieve datastructuren college 9 prioriteit van operatoren prioriteit in recursive descent parser colleges recursieve datastructuren college 9 interpreteren: waarde van bomen bepalen transformeren: vorm van bomen veranderen parseren herkennen van expressie in de tekst herkennen van functies onderwerp

Nadere informatie