Tentamen Discrete Wiskunde 1 10 april 2012, 14:00 17:00 uur



Vergelijkbare documenten
Tentamen Discrete Wiskunde

Week Hier vind je uitwerkingen van enkele opgaven uit het dictaat Grafen: Kleuren en Routeren.

TW2020 Optimalisering

Grafen. Indien de uitgraad van ieder punt 1 is, dan bevat de graaf een cykel. Indien de ingraad van ieder punt 1 is, dan bevat de graaf een cykel.

TW2020 Optimalisering

Discrete Structuren. Piter Dykstra Sietse Achterop Opleidingsinstituut Informatica en Cognitie

Discrete Wiskunde, College 12. Han Hoogeveen, Utrecht University

Discrete Structuren. Piter Dykstra Opleidingsinstituut Informatica en Cognitie

Discrete Wiskunde 2WC15, Lente Jan Draisma

Tentamen algebra 1 Woensdag 24 juni 2015, 10:00 13:00 Snelliusgebouw B1 (extra tijd), B2, B3, 312

Hebzucht loont niet altijd

Uitwerkingen eerste serie inleveropgaven

2WO12: Optimalisering in Netwerken

2WO12: Optimalisering in Netwerken

Radboud Universiteit Nijmegen

Je hebt twee uur de tijd voor het oplossen van de vraagstukken. µkw uitwerkingen. 12 juni 2015

Radboud Universiteit Nijmegen

Universiteit Utrecht Betafaculteit. Examen Discrete Wiskunde II op donderdag 6 juli 2017, uur.

Universiteit Utrecht Betafaculteit. Examen Discrete Wiskunde op donderdag 13 april 2017, uur.

Uitwerkingen Sum of Us

Lineaire algebra I (wiskundigen)

Sudoku s en Wiskunde

l e x e voor alle e E

Uitgebreide uitwerking Tentamen Complexiteit, juni 2017

Lege polygonen in een graaf.

Examen G0U13 Bewijzen en Redeneren Bachelor 1ste fase Wiskunde. vrijdag 31 januari 2014, 8:30 12:30. Auditorium L.00.07

Jordan normaalvorm. Hoofdstuk 7

Bomen. 8.8 ongerichte bomen 9.4 gerichte bomen ch 10. binaire bomen. deel 1. Negende college

Hoofdstuk 1. Afspraken en notaties

Discrete Wiskunde 2WC15, Lente Jan Draisma

Discrete Wiskunde, College 2. Han Hoogeveen, Utrecht University

Polyatheorie. Erik Verraedt

Minimum Spanning Tree

Uitwerking vierde serie inleveropgaven

Netwerkstroming. Algoritmiek

Netwerkstroming. Algoritmiek

Tentamen Topologie, Najaar 2011

Groepsacties op bomen

Z.O.Z. Radboud Universiteit Nijmegen Tentamen Analyse 1 WP001B 16 juni 2016, 12:30 15:30 (16:30)

Hoofdstuk 6. Dihedrale groepen. 6.1 Definitie

V = {a, b, c, d, e} Computernetwerken: de knopen zijn machines in het netwerk, de kanten zijn communicatiekanalen.

Examen Discrete Wiskunde donderdag 12 april, 2018

Getaltheorie I. c = c 1 = 1 c (1)

Lijst-kleuringen in de grafentheorie

Selectietoets vrijdag 9 maart 2018

Twaalfde college complexiteit. 11 mei Overzicht, MST

Lineaire Algebra en Vectorcalculus 2DN60 College 5.a Basis en dimensie

De partitieformule van Euler

(b) Formuleer het verband tussen f en U(P, f), en tussen f en L(P, f). Bewijs de eerste. (c) Geef de definitie van Riemann integreerbaarheid van f.

Formeel Denken 2014 Uitwerkingen Tentamen

Combinatoriek groep 2

2WO12: Optimalisering in Netwerken

Begrenzing van het aantal iteraties in het max-flow algoritme

Uitwerking tentamen Analyse van Algoritmen, 29 januari

l e x e voor alle e E

SYMMETRIEËN VAN RUIMTELIJKE FIGUREN. Prof. dr. Ronald Meester

Tentamen TI1300 en IN1305-A (Redeneren en) Logica

De enveloppenparadox

IMO-selectietoets I donderdag 2 juni 2016

Tutte Polynoom. Eline Renskers Radboud Universiteit Nijmegen Begeleider: Wieb Bosma. 20 juni 2013

Workshop DisWis, De Start 13/06/2007 Bladzijde 1 van 7. Sudoku. Sudoku

opgaven formele structuren tellen Opgave 1. Zij A een oneindige verzameling en B een eindige. Dat wil zeggen (zie pagina 6 van het dictaat): 2 a 2.

Uitwerkingen toets 9 juni 2012

Een combinatorische oplossing voor vraag 10 van de LIMO 2010

Combinatoriek groep 1

Examen Discrete Wiskunde donderdag 8 maart, 2018

Examen G0U13 Bewijzen en Redeneren Bachelor of Science Fysica en Wiskunde. vrijdag 3 februari 2012, 8:30 12:30

3. Elke lijn van een graaf draagt twee bij tot de som van alle graden.

Examen Datastructuren en Algoritmen II

Zevende college complexiteit. 7 maart Mergesort, Ondergrens sorteren (Quicksort)

Tentamen Grondslagen van de Wiskunde A Met beknopte uitwerking

Examen G0Q98 Discrete Wiskunde. 8 juni 2018

IMO-selectietoets I donderdag 1 juni 2017

Gödels theorem An Incomplete Guide to Its Use and Abuse, Hoofdstuk 3

Uitgebreide uitwerking Tentamen Complexiteit, mei 2007

IMO-selectietoets III zaterdag 3 juni 2017

Differentiequotiënten en Getallenrijen

Opmerking. TI1300 Redeneren en Logica. Met voorbeelden kun je niks bewijzen. Directe en indirecte bewijzen

Oefeningen Discrete Wiskunde - Hoofdstuk 6 - Peter Vandendriessche Fouten, opmerkingen of alternatieve methodes? me:

II.3 Equivalentierelaties en quotiënten

Bilineaire Vormen. Hoofdstuk 9

Radboud Universiteit Nijmegen

3 De stelling van Kleene

EERSTE DEELTENTAMEN ANALYSE C

Lineaire Algebra voor ST

Definitie 1.1. Een partitie van een natuurlijk getal n is een niet stijgende rij positieve natuurlijke getallen met som n

Combinatorische Algoritmen: Binary Decision Diagrams, Deel III

Tiende college algoritmiek. 2 mei Gretige algoritmen, Dijkstra

Discrete Wiskunde, College 1. Han Hoogeveen, Utrecht University

III.2 De ordening op R en ongelijkheden

Uitwerkingen toets 18 maart 2011

Datastructuren Uitwerking jan

opgaven formele structuren deterministische eindige automaten

Gaap, ja, nog een keer. In één variabele hebben we deze formule nu al een paar keer gezien:

TW2020 Optimalisering

De stelling van Borsuk. Auteurs: Michiel Tel en Merlijn Koek

Combinatoriek groep 1

Elfde college algoritmiek. 10 mei Algoritme van Dijkstra, Gretige Algoritmen

Discrete Wiskunde 2WC15, Lente Jan Draisma

De huwelijksstelling van Hall

Transcriptie:

Tentamen Discrete Wiskunde 0 april 0, :00 7:00 uur Schrijf je naam op ieder blad dat je inlevert. Onderbouw je antwoorden, met een goede argumentatie zijn ook punten te verdienen. Veel succes! Opgave. ( punten) Gegeven zijn dertig ballen en vier dozen. De ballen zijn niet te onderscheiden maar de dozen wel, die noemen we A, B, C en D. We willen de ballen over de dozen verdelen, zodat in doos A zitten minstens 0 ballen; in dozen B en C samen zitten hoogstens 7 ballen. Op hoeveel manieren kan dit? Opgave. ( punten) Zij G een simpele graaf. Bewijs dat de volgende twee uitspraken equivalent zijn. () G is een boom. () G heeft geen gesloten paden, maar als je een nieuwe kant toevoegt tussen twee al aanwezige knopen, dan ontstaat er een gesloten pad. Opgave. ( punten) Zij a n het aantal permutaties σ S n zodat σ in de cykelnotatie alleen maar cykels van lengte en heeft. Bijvoorbeeld a =, a =, a = (namelijk alle elementen van S behalve de twee driecykels). Per definitie a 0 =. a. Laat zien dat a n voor n voldoet aan de recursierelatie a n = a n + (n )a n. b. Zij n. Bewijs met inductie dat a n >. Opgave. ( punten) a. De dihedrale groep D 5 is de symmetriegroep van een vijfhoek. Bepaal het cykel index polynoom voor de werking van D 5 op de zijden van een vijfhoek. b. We willen deze zijden kleuren met rood, groen, blauw en paars. Bepaal op hoeveel manieren dit kan, modulo de symmetrie die komt van D 5. c. Hoeveel dergelijke kleuringen zijn er (op symmetrie na), waarbij rood minstens twee keer gebruikt wordt?

Opgave 5. ( punten) In deze opgave willen we een versie van het lemma van Burnside met gewichten bewijzen. Zij X een eindige verzameling met een gewichtsfunctie w : X R. Zij G een eindige groep die werkt op X, zodat w(gx) = w(x) voor alle g G, x X. Voor een G-baan B in X is het gewicht w(b) gedefinieerd als w(x), voor een willekeurige x B. a. Laat zien dat waarbij G x de stabilisator van x is. b. Bewijs dat G-banen B w(b) = G x w(x), x B w(b) = g G x X g w(x), waarbij X g de verzameling van vaste punten van g is. Opgave 6. ( punten) a. Leid de recursierelatie voor de Bell getallen B n af. b. Zij F (x) = n=0 B nx n / de exponentiële voortbrengende functie van de Bell getallen. Laat zien dat = e x F (x). dx c. Gebruik deze gelijkheid om een gesloten formule voor F (x) te vinden. Opgave 7. (9 punten) a. Bepaal, met het algoritme van Kruskal, een minimale opspannende boom in de gewogen graaf 7 5 6 b. Zij G = (V, E, w) een gewogen simpele graaf en T een minimale opspannende boom in G. Bewijs dat het algoritme van Kruskal zo uitgevoerd kan worden, dat het de boom T oplevert.

Tentamen Discrete Wiskunde 0 april 0, :00 7:00 uur Antwoorden NB. De hieronder gegeven antwoorden zijn vaak niet de enige goede manier om tot de oplossing te komen. Zeker voor de bewijsopgaven bestaan er ook andere correcte redeneringen. Opgave. ( punten) Gegeven zijn dertig ballen en vier dozen. De ballen zijn niet te onderscheiden maar de dozen wel, die noemen we A, B, C en D. We willen de ballen over de dozen verdelen, zodat in doos A zitten minstens 0 ballen; in dozen B en C samen zitten hoogstens 7 ballen. Op hoeveel manieren kan dit? We ( moeten 0 ballen verdelen over dozen. Zonder verdere condities zou dat op ) manieren kunnen. Als we B + C fixeren op k, dan zijn er precies k + manieren om die ballen over B en C te verdelen. Tegelijkertijd zijn er 0 k + manieren om de rest over A en D te verdelen. Het aantal mogelijkheden is dus 7 ( ) 0 (k + )( k) = (k + )( k) = 77 57 0 = 65. k=0 k= Opgave. ( punten) Zij G een simpele graaf. Bewijs dat de volgende twee uitspraken equivalent zijn. () G is een boom. () G heeft geen gesloten paden, maar als je een nieuwe kant toevoegt tussen twee al aanwezige knopen, dan ontstaat er een gesloten pad. () () Per definitie heeft een boom geen gesloten paden. Voeg een nieuwe kant e = {x, y} toe aan G. Omdat een boom samenhangend is, bestaat er een pad van x naar y in G. Dit pad vormt samen met e een gesloten pad. () () We moeten alleen nog laten zien dat G samenhangend is. Kies knopen x, y in G die nog niet direct verbonden zijn, en voeg de kant e = {x, y} toe. Per aanname ontstaat een gesloten pad P, dat de kant e zeker gebruikt. Alle knopen in dit gesloten pad zijn dus ook al verbonden door een deel van het pad P \ {e}. In het bijzonder zijn x en y verbonden in G. Opgave. ( punten) Zij a n het aantal permutaties σ S n zodat σ in de cykelnotatie alleen maar cykels van lengte en heeft. Bijvoorbeeld a =, a =, a = (namelijk alle elementen van S behalve de twee driecykels). Per definitie a 0 =.

a. Laat zien dat a n voor n voldoet aan de recursierelatie a n = a n + (n )a n. b. Zij n. Bewijs met inductie dat a n >. a. Laat σ S n van dit type zijn. Als σ(n) = n, dan is τ = σ {,,n } ook van deze soort, dus voor τ zijn a n mogelijkheden. Als σ(n) = k n, dan zijn er n keuzes voor k. Voor elk van die keuzes voldoet ρ = σ {,,n}\{k,n} aan de cykelconditie voor een permutatie van n elementen. Dat levert dus (n )a n mogelijkheden. b. Merk op dat de uitspraak geldt voor n = en voor n =. Neem aan dat het klopt voor alle k < n, dan a n = (a n + (n )a n ) Opgave. ( punten) = a n + (n ) a n + (n )a n a n > (n )! + (n ) (n )! + (n ) (n )!(n )! > (n )! + (n )(n )! = a. De dihedrale groep D 5 is de symmetriegroep van een vijfhoek. Bepaal het cykel index polynoom voor de werking van D 5 op de zijden van een vijfhoek. b. We willen deze zijden kleuren met rood, groen, blauw en paars. Bepaal op hoeveel manieren dit kan, modulo de symmetrie die komt van D 5. c. Hoeveel dergelijke kleuringen zijn er (op symmetrie na), waarbij rood minstens twee keer gebruikt wordt? elementen cykeltype identiteit a. De elementen van D 5 en hun cykeltypes zijn 5. rotaties 5 5 spiegelingen, Het cykel index polynoom is Z(D 5 ; t,..., t 5 ) = 0 (t5 + t 5 + 5t t ). b. Hiervoor moeten we het cykel index polynoom evalueren in t i =. Z(D 5 ;,,,, ) = 0 (5 + + 5 ) = 6. c. We nemen de gewichten w(r) =, w(b) = w(p ) = w(g) = 0. Er geldt w(t n ) = + t n. Volgens de stelling van Polya komt het gevraagde aantal uit Z ( D 5 ; w(t), w(t ), w(t ), w(t ), w(t 5 ) ) = ( ( + t) 5 + ( + t 5 ) + 5( + t)( + t ) ) 0 = 9 + 5t + 6t + t + t + t 5. De graad correspondeert met het aantal keren rood, dus we moeten alleen de termen met graad bekijken. Dat zijn er 6 + + + = 5.

Opgave 5. ( punten) In deze opgave willen we een versie van het lemma van Burnside met gewichten bewijzen. Zij X een eindige verzameling met een gewichtsfunctie w : X R. Zij G een eindige groep die werkt op X, zodat w(gx) = w(x) voor alle g G, x X. Voor een G-baan B in X is het gewicht w(b) gedefinieerd als w(x), voor een willekeurige x B. a. Laat zien dat waarbij G x de stabilisator van x is. b. Bewijs dat G-banen B w(b) = G x w(x), x B w(b) = g G x X g w(x), waarbij X g de verzameling van vaste punten van g is. a. De banenformule zegt dat B = Gx = / G x. Daarom x B G x w(x) = x B B B w(x) = w(x) = w(x) = w(b). B b. We gaan Y = {(g, x) : g G, x X g } dubbel tellen: g G w(x) = x X g Y w(x) = x X w(x) = g G x G x w(x). Omdat elke x X in precies één baan B ligt, is de rechterkant volgens deel a. gelijk aan G x w(x) = w(b). Opgave 6. ( punten) G-banen B x B G-banen B a. Leid de recursierelatie voor de Bell getallen B n af. b. Zij F (x) = n=0 B nx n / de exponentiële voortbrengende functie van de Bell getallen. Laat zien dat = e x F (x). dx x X c. Gebruik deze gelijkheid om een gesloten formule voor F (x) te vinden. a. Het is iets handiger om naar B n+ te kijken, dit telt het aantal manieren om {,..., n, n+} te verdelen in niet-lege disjuncte deelverzamelingen. Zij Y Y d zo n partitie. Zonder verlies van algemeenheid mogen we aannemen dat n + Y d en dat Y d = n + k met 0 k n. Het aantal mogelijkheden om de k elementen

van {,..., n + } \ Y d te kiezen is ( n k). De overige verzamelingen Y,, Y d vormen een partitie van die k elementen, wat op B k manieren kan. Hieruit volgt de recursierelatie B n+ = n ( n k=0 k) Bk. (Hetzelfde bewijs met een andere boekhouding levert de relatie uit het hoorcollege: B n = n ( n i= i ) Bn i.) b. Uit de definities volgt direct dat dx = n= B n x n (n )! = n=0 B n+ x n. Aan de andere kant e x F (x) = ( n=0 x n )( n=0 B n x n ) = n n=0 m=0 B m x n m!(n m)! = Volgens deel a zijn deze twee uitdrukkingen gelijk. c. We kunnen de differentiaalvergelijking omvormen tot n n=0 m=0 ( n ) m Bm x n. d log F (x) = F (x) = ex dx = d(e x ). Dit primitiveren levert log F (x) = e x + c met c R, ofwel F (x) = exp(e x + c). Omdat F (0) = geldt c = en F (x) = exp(e x ). Opgave 7. (9 punten) a. Bepaal, met het algoritme van Kruskal, een minimale opspannende boom in de gewogen graaf 7 5 6 b. Zij G = (V, E, w) een gewogen simpele graaf en T een minimale opspannende boom in G. Bewijs dat het algoritme van Kruskal zo uitgevoerd kan worden, dat het de boom T oplevert. a. Hieronder een mogelijkheid, waarbij de kanten in alfabetische volgorde gekozen worden.

b c a e d f Een variant op het algoritme van Kruskal eist dat in elke tussenstap de graaf bestaat uit een grote samenhangscomponent en aantal geïsoleerde punten. Volgens die versie moet de volgorde van de kanten d en e omgekeerd worden. b. Dit is wat moeilijker als je de alternatieve versie van het algoritme van Kruskal neemt. Het volgende bewijs werkt voor beide versies van het algoritme. Pas het algoritme toe op T. Dit levert een opspannende boom van T, die uiteraard T zelf is. Het geeft ons ook een ordening van de kanten van T, zeg e, e,..., e n als er n knopen zijn. Claim: Op deze manier kunnen de kanten van G gekozen worden volgens het algoritme van Kruskal. Stel niet. Dan is er een minimale i zodat na i stappen niet e i gekozen mag worden. Zij f = {x, y} een kant die dan wel gekozen mag worden. Omdat e i geen cykel creëert in T i T, moet wel w(f) < w(e i ). Aangezien T een opspannende boom van G is, bestaat er een pad P in T tussen x en y. De kanten van P liggen niet allemaal in {e,..., e i }, want dan zou f niet gekozen mogen worden. Dus er is een e k P met k i. Merk op dat de eindpunten van e k verbonden worden door het pad P \ {e k }. Bekijk nu T := ( V, {f, e,..., e n } \ {e k } ). De eindpunten van e k zijn verbonden in T en de rest was al verbonden omdat T samen hing, dus T is samenhangend. Verder heeft T precies n kanten, dus volgens een stelling uit het hoorcollege is T een boom. Tenslotte geldt w(t ) = w(t ) + w(f) w(e k ) < w(t ). Dit is in tegenspraak met de minimaliteit van T, wat de claim bewijst. Met het algoritme van Kruskal is het dus mogelijk om alleen maar kanten van T te kiezen. Het resultaat is dan een opspannende boom die bevat is in T, wat alleen maar kan als het T zelf is. 5