Lenzen. N.G. Schultheiss



Vergelijkbare documenten
LENZEN. 1. Inleiding

Hoofdstuk 4: Licht. Natuurkunde Havo 2011/2012.

3HV H2 breking.notebook October 28, 2015 H2 Licht

3HAVO Totaaloverzicht Licht

3hv h2 kortst.notebook January 08, H2 Licht

Samenvatting Natuurkunde Hoofdstuk 2 Licht. Wat moet je leren/ kunnen voor het PW H2 Licht?

Geometrische optica. Hoofdstuk Principe van Huygens. 1.2 Weerkaatsing van lichtgolven.

Licht; Elektromagnetische straling een golf Licht; een deeltje (foto-elektrisch effect). Licht; als een lichtstraal Licht beweegt met de

Wet van Snellius. 1 Lichtbreking 2 Wet van Snellius 3 Terugkaatsing van licht tegen een grensvlak

Hoofdstuk 3: Licht. Natuurkunde VWO 2011/

Basic Creative Engineering Skills

Het tekenen van lichtstralen door lenzen (constructies)

6.1 Voortplanting en weerkaatsing van licht

Optica Optica onderzoeken met de TI-nspire

6.1 Voortplanting en weerkaatsing van licht 6.2 Spiegel en spiegelbeeld

Samenvatting Natuurkunde H3 optica

Samenvatting Natuurkunde Hoofdstuk 3 Licht en Lenzen

Spiegel. Herhaling klas 2: Spiegeling. Spiegel wet: i=t Spiegelen met spiegelbeelden. NOVA 3HV - H2 (Licht) November 15, NOVA 3HV - H2 (Licht)

Aan de slag met de nieuwe leerplannen fysica 2 de graad ASO GO!

Reflectie. Om sommen met reflectie op te lossen zijn er twee mogelijkheden: 1. Met de terugkaatsingswet: hoek van inval = hoek van terugkaatsing

4.1.1 Lichtbronnen Benoem de onderstaande lichtbronnen. Opgelet, één van de figuren stelt geen lichtbron voor, welke?

Samenvatting Hoofdstuk 5. Licht 3VMBO

Lenzen. Leerplandoel. Introductie. Voorwerps brandpunts - en beeldafstand

Noorderpoort Beroepsonderwijs Stadskanaal. Reader. Lenzen. J. Kuiper. Transfer Database

hoofdstuk 5 Lenzen (inleiding).

hoofdstuk 5 Lenzen (inleiding).

Lenzen. Leerplandoel. Introductie. Voorwerps brandpunts - en beeldafstand

2.1 Cirkel en middelloodlijn [1]

Opgave 3 De hoofdas is de lijn door het midden van de lens en loodrecht op de lens.

Samenvatting Natuurkunde Hoofdstuk 5 en 6

Oefen-vt vwo4 B h6/7 licht 2007/2008. Opgaven en uitwerkingen vind je op

Om sommen met reflectie op te lossen zijn er twee mogelijkheden: 1. Met de terugkaatsingswet: hoek van inval = hoek van terugkaatsing

Deze toets bestaat uit 4 opgaven (33 punten). Gebruik eigen grafische rekenmachine en BINAS toegestaan. Veel succes! ZET JE NAAM OP DEZE

Benodigdheden Lichtkastje met één smalle spleet, half cirkelvormige schijf van perspex, blad met gradenverdeling

Telescopen. N.G. Schultheiss

Opgave 1: Constructies (6p) In figuur 1 op de bijlage staat een voorwerp (doorgetrokken pijl) links van de lens.

Tussen een lichtbron en een scherm staat een voorwerp. Daardoor ontstaat een schaduw van het voorwerp op het scherm. lichtbron

a) Bepaal door middel van een constructie de plaats van het beeld van de scherf en bepaal daaruit hoe groot Arno de scherf door de loep ziet.

Deze toets bestaat uit 4 opgaven (31 punten). Gebruik eigen grafische rekenmachine en BINAS toegestaan. Veel succes! ZET JE NAAM OP DEZE

Voorbereiding toelatingsexamen arts/tandarts. Fysica: Licht als golf en als deeltje. 4 november Brenda Casteleyn, PhD

R.T. Nadruk verboden 57

Exact periode 3.2. Recht evenredig Omgekeerd evenredig Lambert Beer Lenzen en toepassingen

Labo Fysica. Michael De Nil

Voorbereiding toelatingsexamen arts/tandarts. Fysica: Licht als golf en als deeltje. 24 juli dr. Brenda Casteleyn

1 Het midden van een lijnstuk

1 Bolle en holle lenzen

Antwoordmodel - Vlakke figuren

Basisconstructies, de werkbladen 1 Het midden van een lijnstuk

5.1 Voortplanting en weerkaatsing van licht

2 Terugkaatsing en breking

Noorderpoort Beroepsonderwijs Stadskanaal. Reader. Reflectie en breking. J. Kuiper. Transfer Database

héöéäëåéçéå=~äë=ãééíâìåçáöé=éä~~íëéå=ãéí=`~äêá= = hçéå=píìäéåë= = = = = = = =

RELATIVITEIT EINSTEINRINGEN. Naam: Klas: Datum:

De constructie van een raaklijn aan een cirkel is, op basis van deze stelling, niet zo erg moeilijk meer.

Handleiding bij geometrische optiekset

Hoofdstuk 2 De sinus van een hoek

Natuur-/scheikunde Klas men

7.1 Beeldvorming en beeldconstructie

jaar: 1994 nummer: 12

Repetitie Lenzen 3 Havo Naam: Klas: Leerstof: 1 t/m 7

UITWERKINGEN Examentraining (KeCo) SET-B HAVO5-Na

Spelen met passer en liniaal - werkboek

6.1 Voortplanting en weerkaatsing van licht 6.2 Spiegel en spiegelbeeld

Willem-Jan van der Zanden

Overal Natuurkunde 3V Uitwerkingen Hoofdstuk 6 Licht

Werkstuk Natuurkunde Breking van perspex Brekingsindex

Examen HAVO. wiskunde B (pilot) tijdvak 1 woensdag 20 mei uur

Soorten lijnen. Soorten rechten

tan c b + a c c b HOOFDSTUK 8 DRIEHOEKSMETING IN EEN RECHTHOEKIGE DRIEHOEK EXTRA OEFENINGEN

Hoe werkt een TELESCOOP?

Theorie beeldvorming - gevorderd

werkschrift driehoeken

2.5 Regelmatige veelhoeken

De vergelijking van Antoine

1 Lichtbreking. Hoofdstuk 2. Licht. Leerstof. Toepassing. 3 a Zie figuur 2. b Zie figuur 2. c Zie figuur t a bij B b bij A

Technische Universiteit Eindhoven

Uitwerkingen Hoofdstuk 25 deel vwob1,2 6. Meetkundige plaatsen.

Faculteit Technische Natuurkunde Proeftentamen OPTICA voor BMT (3D010) 8 maart 1999, 14:00-17:00 uur

Thema 3 Verrekijkers. astronomische kijker

FACULTEIT TECHNISCHE NATUURWETENSCHAPPEN. Opleiding Technische Natuurkunde TENTAMEN

Uitwerkingen Hoofdstuk 2 Licht

wiskunde B pilot havo 2015-I

Eindexamen wiskunde B vwo I

Newton 4vwo Natuurkunde Hoofdstuk 3 Lichtbeelden

6.1 Voortplanting en weerkaatsing van licht 6.2 Spiegel en spiegelbeeld

6,1. 1.3: Tabellen en diagrammen. 1.4: Meetonzekerheid. Samenvatting door een scholier 906 woorden 13 januari keer beoordeeld.

Eindexamen wiskunde B1-2 vwo 2007-II

Examen Fysica: Inleiding: Wat is fysica?

Krachten Hoofdstuk 1. Bewegingsverandering/snelheidsverandering (bijv. verandering van bewegingsrichting)

Trillingen en geluid wiskundig. 1 De sinus van een hoek 2 Uitwijking van een trilling berekenen 3 Macht en logaritme 4 Geluidsniveau en amplitude

Hoofdstuk 2 : VLAKKE FIGUREN

Extra oefenopgaven licht (1) uitwerkingen

Stevin vwo deel 1 Uitwerkingen hoofdstuk 5 Spiegels en lenzen ( ) Pagina 1 van 23

Suggesties voor demo s lenzen

Voorbereidend Wetenschappelijk Onderwijs Tijdvak 2 Woensdag 20 juni uur

Uitwerkingen. Hoofdstuk 2 Licht. Verkennen

Practicum: Je kan ernaar vissen...

Eindexamen wiskunde B1-2 vwo 2004-II

2 Lijnen en hoeken. De lijn

Hoofdstuk 6 : Projectie en Stelling van Thales

Transcriptie:

Lenzen N.G. Schultheiss Inleiding Deze module volgt op de module Spiegels. Deze module wordt vervolgd met de module Telescopen of de module Lenzen maken. Uiteindelijk kun je met de opgedane kennis een telescoop bouwen, de werking verklaren of de telescoop als meetinstrument toepassen. Je hebt voor deze module een passer, geodriehoek, potlood, papier en gum nodig. Hieronder volgt een korte samenvatting van de kennis die je al beheerst. Je kunt de lenzenwet f = b + v toepassen om een brandpuntafstand f, een voorwerpafstand v of een beeldafstand b uit te rekenen als de andere twee grootheden gegeven zijn. Je kunt de formule voor vergroting, N = b v = beeld grootte voorwerpgrootte, gebruiken om met drie gegeven grootheden de vierde grootheid uit te rekenen. Je weet bijvoorbeeld b, v en de beeld grootte. Je kunt de voorwer p grootte uitrekenen. Je kunt het beeld van een voorwerp construeren met de drie bijzondere constructiestralen. Een lichtstraal door het midden van een lens gaat rechtdoor. Een lichtstraal die voor de lens evenwijdig aan de hoofdas gaat, gaat na de lens door het brandpunt achter de lens. Een lichtstraal die voor de lens door het brandpunt gaat, gaat na de lens evenwijdig aan de hoofdas. v b L f f Eerste bijzondere lichtstraal Tweede bijzondere lichtstraal Derde bijzondere lichtstraal F Hoofdas F O Lens B Figuur.: De lensconstructie met drie bijzondere stralen HiSPARC

2 Zoals te zien is, worden de punten met een hoofdletter geschreven en de afstanden met een kleine letter. O: Optisch middelpunt (Het midden van de lens). F: Focus of brandpunt. L: Lichtpunt, het voorwerp straalt bij ieder lichtpunt licht uit. B: Beeldpunt. 2 De werking van een lens Lenzen werken doordat licht en materie op elkaar inwerken. Als er geen materie is, beweegt het licht met de lichtsnelheid c. Tegenwoordig definieert men de eenheid [m] uit de lichtsnelheid in vacuum en geldt c = 299792458m/s exact. Het zal duidelijk zijn dat licht alleen door doorzichtige materie gaat. De lichtsnelheid neemt dan echter altijd af. Het licht gaat in water ongeveer met 3 4 van de lichtsnelheid, in glas is de snelheid ongeveer 2 3 van de lichtsnelheid. Omdat het licht een kleinere snelheid krijgt, zal de lichtstraal breken. Opdracht : In de module Spiegels hebben we kennisgemaakt met het Huygens-principe. Leg uit wat er gebeurt als we de afstand tussen de golffronten in luchtledig (zonder materie) en water vergelijken. A B C Lucht Water D Figuur 2.: Breking aan een lucht / water oppervlak In figuur 2. zijn twee driehoeken te zien: ABC en BCD. Het is direct duidelijk dat het lijnstuk (BC) in beide driehoeken zit. We weten al dat het golffront loodrecht op de golfstraal staat: BAC = BDC = 90. In 676 stelde Ole Rømer de lichtsnelheid vast op 225 000 km/s. Hij vond deze snelheid door de tijden te vergelijken, waarop de maan Io van Jupiter achter Jupiter (eclips) tevoorschijn komt (dit is beschreven op wikipedia).

3 Opdracht 2: Leg uit hoe je de waarde van sin( ABC) kunt bepalen. Opdracht 3: Leg uit hoe je de waarde van sin( BCD) kunt bepalen. Opdracht 4: Toon aan dat de onderstaande formule geldt: sin( ABC) sin( BCD) = (AC) (BD) Opdracht 5: Leg uit dat de verhouding (AC) (BD) gelijk is aan de verhouding van de lichtsnelheden. De verhouding van de lichtsnelheden wordt in dit geval de brekingsindex N lucht water genoemd. Opdracht 6: Toon aan dat de hoeken ABC en BCD gelijk zijn aan de hoek van inval i (tussen de invallende straal en de normaal) en de hoek van breking r (tussen de gebroken straal en de normaal). Opdracht 7: Verklaar de onderstaande formule 2 : N = sin(i) sin(r) 3 De constructie voor breking aan vlakke en bolvormige oppervlakken Het tekenen van alle golffronten en golfstralen is een omslachtige klus. We gebruiken daarom twee constructies waarmee we de breking aan vlakke en bolvormige oppervlakken kunnen bepalen. We kunnen de lichtstraal (ray) daarmee volgen, deze techniek heet raytracing. 2 Deze formule is in Nederland bekend onder de naam: De wet van Snellius. Hij is vernoemd naar Willibrord Snell van Royen, die een dergelijk relatie voor het eerst wiskundig opschreef. Deze schrijfwijze is echter door René Descartes geformuleerd, in Frankrijk is dit dus de wet van Descartes.

4 Invallend licht 2 Normaal 3 5 4 Lucht Glas 7 6 Gebroken licht 8 Figuur 3.: De breking aan een plat vlak In figuur 3. zijn diverse getallen gegeven. Deze geven aan welke procedure gevolgd wordt:. Teken het oppervlak tussen beide materialen, hier lucht en glas. 2. Teken de invallende lichtstraal. 3. Teken de normaal bij het snijpunt van de invallende lichtstraal en het oppervlak. Uiteraard staat de normaal loodrecht op het oppervlak. 4. Teken een cirkel met als middelpunt het snijpunt, hier geldt bijvoorbeeld r =,5 cm. 5. Teken een tweede concentrische cirkel waarvan de straal N maal groter is dan de straal van de eerste cirkel, hier geldt bijvoorbeeld r = 2,25 cm. 6. Trek de invallende lichtstraal (gestippeld) door. 7. Trek een lijn (gestippeld) evenwijdig aan de hoofdas door de cirkel (4) en de lijn (6). 8. Trek de gebroken lichtstraal van het midden door het snijpunt van de cirkel (5) en de lijn (7). Opdracht 8: Een lichtstraal valt met een hoek i = 25 op een diamant met N lucht diamant = 2.47. Construeer de gebroken lichtstraal. Bij de constructie aan een bolvormig oppervlak hebben we drie cirkels nodig.

5 4 6 7 Invallende straal 3 5 8 Hoofdas Oppervlak 2 Figuur 3.2: De breking aan een bol oppervlak In figuur 3.2 zijn diverse getallen gegeven. Deze geven aan welke procedure gevolgd wordt:. Teken de hoofdas. 2. Teken het bolvormig oppervlak. Let op dat je het middelpunt van de cirkel vastlegt. (Hier geldt r = 3,6cm). 3. Teken de invallende lichtstraal. 4. Teken een hulpcirkel. De straal hiervan is de brekingsindex keer zo groot als de straal van het oppervlak. (Hier geldt r = 4,8cm). 5. Teken een hulpcirkel. De straal hiervan is de brekingsindex keer zo klein als de straal van het oppervlak. (Hier geldt r = 2,7cm). 6. Trek de invallende lichtstraal door naar de buitenste cirkel (4). 7. Trek een lijn van dit snijpunt naar het midden van de cirkel. 8. Trek de gebroken straal door het snijpunt van de cirkel (5) en de lijn (7). Soms hoeven we niet precies te weten hoe de lichtstraal loopt maar willen we wel voorspellen welke brandpuntsafstand een lens heeft. Dit kan met de lenzenmakersformule: f = (N )( r r 2 )

6 Let op, de afspraak is dat alle afstanden naar rechts positief zijn en naar links negatief zijn. Bij een lens met twee bollekanten (biconvex) is de straal r (van oppervlak naar middelpunt) positief en de straal r 2 (ook van oppervlak naar middelpunt) negatief. Als we de maten en de brekingsindex van een lens kennen, kunnen we de brandpuntsafstand uitrekenen. Een lens met r = 0,0cm, r 2 = 5,0cm en N lens =.50 geeft de volgende brandpuntsafstand: f = (.50 )( 0.0 0.050 ) = (0.50)(0 + 20) f f = 5 f = 5/m = 6,7cm r 2 r Figuur 3.3: Een lens Opdracht 9: Bereken de brandpuntsafstand van een planconvex lens met r = en r 2 = 4,0cm. De voorkant is dus plat en de achterkant is bol. De brekingsindex N = 2,0. Opdracht 0: Controleer je berekening met een constructie voor twee evenwijdig aan de hoofdas lopende invallende stralen. Neem deze op,0cm en 2,0cm van de hoofdas. Opdracht : Krijg je met de constructie een goed brandpunt, wat is de brandpuntsafstand? Als je nauwkeurig met een scherp potlood hebt gewerkt, krijg je toch geen scherp brandpunt. Deze lensfout noemt men sferische abberatie.