Sterrenkunde Ruimte en tijd (6)

Vergelijkbare documenten
Sterrenkunde Ruimte en tijd (3)

(a) Noem twee eigenschappen die quarks en leptonen met elkaar gemeen hebben.

13 Zonnestelsel en heelal

(a) Noem twee eigenschappen die quarks en leptonen met elkaar gemeen hebben.

Evolutie van Zon en Sterren

sterren en sterevolutie

Werkstuk ANW Supernova's

Schoolexamen Moderne Natuurkunde

Inleiding Astrofysica college 6

De energievallei van de nucliden als nieuw didactisch concept

Samenvatting PMN. Golf en deeltje.

Sterren en sterevolutie Edwin Mathlener

Einstein (6) v(=3/4c) + u(=1/2c) = 5/4c en... dat kan niet!

Schoolexamen Moderne Natuurkunde

De Zon. N.G. Schultheiss

5.6. Boekverslag door K woorden 22 december keer beoordeeld

STERREN EN MELKWEGSTELSELS

1 Leerlingproject: Kosmische straling 28 februari 2002

Majorana Neutrino s en Donkere Materie

Quantummechanica en Relativiteitsleer bij kosmische straling

1 Atoom- en kernfysica TS VRS-D/MR vj Mieke Blaauw

Samenvatting Natuurkunde Ioniserende straling

Sterrenstof. OnzeWereld, Ons Heelal

Neutrinos sneller dan het licht?

Wetenschappelijke Nascholing Deel 3: En wat met de overige 96%?

De bouwstenen van het heelal Aart Heijboer

Schoolexamen Moderne Natuurkunde

Waar is al dat lithium naartoe? Claude Doom

Sterren en sterevolutie Edwin Mathlener

Aarde Onze Speciale Woonplaats

5,5. Samenvatting door een scholier 1429 woorden 13 juli keer beoordeeld. Natuurkunde

Van Zonnestelsel tot Ontstaan Heelal Leeuwarden, jan-april Leven van Sterren. Paul Wesselius, 11 maart Leven van sterren, HOVO 1

KERNEN & DEELTJES VWO

Uitwerkingen opgaven hoofdstuk 5

Stabiliteit van atoomkernen

De Fysica van Sterren. Instituut voor Sterrenkunde

Hoofdstuk 9: Radioactiviteit

Evolutie van sterren

HOVO cursus Kosmologie

Schoolexamen Moderne Natuurkunde

Uitwerking Opgave Zonnestelsel 2005/2006: 1. 1 Het Zonnestelsel en de Zon. 1.1 Het Barycentrum van het Zonnestelsel

Afstanden in de astrofysica

Alfastraling bestaat uit positieve heliumkernen (2 protonen en 2 neutronen) met veel energie. Wordt gestopt door een blad papier.

H2: Het standaardmodel

Praktische opdracht ANW Sterren

Wetenschappelijke Begrippen

Materie bouwstenen van het heelal FEW 2009

6.1 de evolutie van sterren

Radioactiviteit werd ontdekt in 1898 door de Franse natuurkundige Henri Becquerel.

Samenvatting Natuurkunde Hoofdstuk 7 + zonnestelsel en heelal

Basisscheikunde voor het hbo ISBN e druk Uitgeverij Syntax media

21/05/ Natuurlijke en kunstmatige radioactiviteit Soorten radioactieve straling en transmutatieregels. (blijft onveranderd)

Newtoniaanse kosmologie De kosmische achtergrondstraling Liddle Ch Het vroege heelal Liddle Ch. 11

Samenvatting Scheikunde Hoofdstuk 1 + 2

Inleiding stralingsfysica

Overzicht (voorlopig) Vandaag: Frank Verbunt Het heelal Nijmegen 2015

Een mooi moment is er rond een honderdduizendste van een seconde. Ja het Universum is nog piepjong. Op dat moment is de temperatuur zover gedaald dat

De correcte bewering aankruisen: WAAR FOUT

Schoolexamen Moderne Natuurkunde

Het Quantummechanisch Heelal. prof.dr. Paul Groot Afdeling Sterrenkunde, IMAPP Radboud Universiteit Nijmegen

Inleiding Astrofysica College 8 9 november Ignas Snellen

Radioactiviteit en Kernfysica. Inhoud:

Nederlandse samenvatting

Schoolexamen Moderne Natuurkunde

Newtoniaanse kosmologie 5

Werkstuk Nederlands De Ruimte werkstuk

Detectie van kosmische straling

Samenvatting Scheikunde Scheikunde Chemie overal H1 3 vwo

1 Uit welke deeltjes is de kern van een atoom opgebouwd? Protonen en neutronen.

Kernenergie. FEW cursus: Uitdagingen. Jo van den Brand 6 december 2010

Thermische Fysica 2 - TF2 Statistische Fysica en Sterevolutie

Waarvan is het heelal gemaakt? Hoe is het allemaal begonnen?

gelijk aan het aantal protonen in de kern. hebben allemaal hetzelfde aantal protonen in de kern.

natuurkunde 1,2 Compex

De levensloop van sterren.

Ik doe mijn spreekbeurt over de ruimte omdat ik het een interessant onderwerp vind en ik er graag meer over wilde weten.

Evolutie van Sterren. Hertzsprung-Russell Diagram. Generated by Foxit PDF Creator Foxit Software For evaluation only.

Praktische opdracht ANW De levensloop van een ster

2.1 Elementaire deeltjes

De meest revolutionaire momenten belicht, de momenten waarin iets gebeurde waardoor nieuwe dingen ontstonden.

Alles om je heen is opgebouwd uit atomen. En elk atoom is weer bestaat uit protonen, elektronen en neutronen.

Hoofdstuk 5 Straling. Gemaakt als toevoeging op methode Natuurkunde Overal

Uitwerkingen. T2: Verbranden en Ontleden, De snelheid van een reactie en Verbindingen en elementen

Exact Periode 7 Radioactiviteit Druk

Gevaar uit de ruimte

2 Van 1 liter vloeistof wordt door koken 1000 liter damp gemaakt.

Werkstuk Scheikunde Astrochemie

E p m. De voorspelling van antimaterie. Paul Dirac voorspelde het bestaan van het positron in 1928

EEN ONTDEKKINGSREIS NAAR HET ALLERKLEINSTE EN ALLERGROOTSTE

Hoofdstuk 5 Straling. Gemaakt als toevoeging op methode Natuurkunde Overal

Samenvatting H5 straling Natuurkunde

Kosmische regen op Groningen

Een deels bestaande PowerPointpresentatie voor de cursus in de aandacht gebracht cq bewerkt door:

H7+8 kort les.notebook June 05, 2018

Opgave 4 Het atoomnummer is het aantal protonen in de kern. Het massagetal is het aantal protonen plus het aantal neutronen in de kern.

Begripsvragen: Radioactiviteit

7.1 Het deeltjesmodel

Samenvatting Scheikunde Hoofdstuk 1

Transcriptie:

Sterrenkunde Ruimte en tijd () Om het geheugen op te frissen, even een korte inhoud van het voorafgaande: Ruim tien miljard jaar geleden werd het heelal geboren uit een enorme explosie van protonen, neutronen, elektronen en neutrino s, allen met hun antideeltjes, én fotonen. De dichtheid op t (tijd) = bedroeg ongeveer. kg per mm 3 (!) en begon vanaf dat moment met een onvoorstelbare snelheid uiteen te spatten (de zgn. Big Bang of oerknal). Al na / sec, waren de antiprotonen en antineutronen door annihilatie verdwenen en na sec, waren ook de positronen (de antideeltjes van de elektronen) weggeannihileerd. Op elke. protonen, neutronen en elektronen was er nog net één van elk overgebleven. Na sec. werd er uit protonen en neutronen één heliumkern gevormd: het e element (na waterstof) was geboren (zie Vesta 3, Pagina 5)! Na 3 minuten waren alle vrije neutronen verdwenen en is de samenstelling van het heelal: protonen, He-kernen, elektronen en (. voudig) fotonen. Pas na 7. jaar gebeurde er weer iets wezenlijks: door de steeds verder gaande uitdijing, koelde het heelal af van 3 miljard graden tot 3 K (Kelvin). Nu konden de elektronen zich met de protonen en de He-kernen verenigen tot atomen. Door plaatselijke verdichtingen balden deze atomen zich samen tot proto-sterren. Hierbij vielen de atomen met toenemende snelheid naar het (massa)middelpunt van de ster in wording, waarbij gravitatie-energie werd omgezet in kinetische energie Door dit proces steeg de temperatuur weer tot boven de 3K en vielen de atomen weer uit elkaar in kernen en elektronen. tenslotte werd in de kern van de ster de temperatuur zó hoog ( miljoen graden), dat mede door de grote dichtheid er een kernfusie kon plaatsvinden, enwel: H He + e + ( positronen) + ν ( neutrino' s) Dit proces is in feite ingewikkelder, zie bijlage, fig. Aan de bovenstaande (totaal)reactie, hebben wij op Aarde in feite ons bestaan (mede) te danken. Deze reactie veroorzaakt de enorme energie-uitstraling van de Zon, inmiddels al gedurende 5 miljard jaar; en de Zon zal dat zeker nog wel eens zo lang volhouden. Wat er daarna gaat gebeuren, zien we dan wel weer... Het helium, aanwezig in de Zon (daarnaar ook genoemd: Helios = Zon), is dus voor een deel reeds enkele minuten na het ontstaan van het heelal gevormd. Maar voor een deel óók pas na bovenstaande reactie. Tòch zijn er nog maar elementen: waterstof en helium. Tot dusver waren we gekomen. Het grote probleem bij de vorming van nieuwe kernen is, dat deze niet stabiel zijn; d.w.z. ze spatten zeer snel weer uit elkaar, waardoor er alleen nog maar elastische botsingen plaatsvinden tussen protonen en heliumkernen met elkaar of onderling. 3

Een voorbeeld van zo n instabiele kernvorming: He-kernen kunnen botsen en een Be vormen: He Be Be is de aanduiding voor het instabiele (isotopische) beryllium. De gemiddelde levensduur (halveringstijd) is - seconden! Dat is gewoon onvoorstelbaar: deze tijdsduur is, als vergeleken met sec, evenveel als sec. vergeleken met miljoen jaar... Toch zijner sterren met zóveel massa en dus met zó n compacte hete kern, -bestaande uit bijna louter helium- dat vóórdat deze Be-kern uiteenspat, er een botsing plaatsvindt tussen deze Be kern met een He kern. Be + He C (ons vertrouwde stabiele koolstof) en zo is dan eindelijk, na erg veel moeite een derde element gevormd. Hieronder volgen enige kernfusies (in enigszins chronologische volgorde), waaruit de vorming van verschillende nieuwe elementen zal blijken. a) C + He O b) O S c) O + He Ne d) C Mg Ook zijn er kernreacties mogelijk, waarbij tevens losse protonen en neutronen ontstaan: e) C Mg + n f ) C Na + p g) O P + p 3 Deze protonen en neutronen kunnen nu op hun beurt weer ingevangen worden door kernen en vormen zo weer nieuwe elementen of isotopen hiervan: h) C + n C i) C + n C 3 3 3 5 3 5 Sommige gevormde kernen zijn echter niet stabiel en vallen (net zoals Be) na korte of langere tijd weer uiteen. Deze kernen noemen we radioactief (zie bijlage ). Hierbij kan bijvoorbeeld een neutron omgezet worden in een proton én een neutron, welke de kern (met grote snelheid) zal verlaten (een zgn. straler). Een voorbeeld hiervan: C N + e 7 Oppervlakkig zouden we nu kunnen denken, dat al deze kernreacties tegelijkertijd in dezelfde ruimte van een ster kunnen plaatsvinden. De werkelijkheid is echter veel ingewikkelder (zie bijlage 3). Op bovenbeschreven wijze kunnen door botsingen dus diverse kernen gevormd worden, echter met een bepaalde grens.

Doordat er steeds massaverlies (dus energiewinst) optreedt bij deze kernreacties (exotherm), kunnen geen grotere kernen gevormd worden dan zoals: 5 Fe 5 3 Tóch bestaan deze kernen: denk aan lood Pb en uraan U. Hoe deze elementen gevormd zijn, zullen we de volgende keer bespreken. Jb. Kuyt. Bijlage : Voor kernreacties gelden drie behoudswetten. ) De wet van behoud van baryongetal. Baryonen zijn zware elementairdeeltjes, zoals protonen en neutronen. De som per deeltje hiervan noemt men het massagetal en staat links boven het symbool, bijvoorbeeld: He De He-kern bevat baryonen ( protonen en neutronen). ) De wet van behoud van lading. De lading van een proton = +, van een elektron en van een neutron. Antideeltjes hebben een tegengestelde lading t.o.v. hun deeltjes. De lading van een positron (het antideeltje van een elektron) is dus +. Deze lading wordt aangegeven door een getal links onder het symbool: He De lading is dus +. 3) De wet van behoud van het leptongetal. Elektronen en neutrino s zijn leptonen. Het leptongetal van een elektron is. Ontstaan nu bij een kernreactie bijv.. positronen, dan moeten daarbij dus ook (anti)neutrino s ontstaan. Leptonen hebben een tegengesteld leptongetal t.o.v. hun antideeltje. De totaalreactie: H He + e + ν bestaat in feite uit meerdere reacties, die (uiteraard) na elkaar verlopen: H D + e dan: H D He + dus: + 3 3 He He e Bijlage : Atomen waarvan de kernen een gelijk aantal protonen bevatten, zijn chemisch identiek en behoren dan ook tot hetzelfde element. Is het aantal neutronen echter verschillend, dus hebben ze een verschillende massa, dan noemt men deze atomen (en hun kernen) isotopen van elkaar. Een voorbeeld van atomen die isotopen van elkaar zijn: 3 He en He Atomen van eenzelfde element, kunnen dus onderling verschillen in massagetal. 5

Chemisch mag dat géén verschil zijn, fysisch zéker wel! Sommige isotopen zijn stabiel, anderen weer niet. Niet-stabiele isotopen zijn te verdelen in twee groepen: De alpha-stralers, welke een alpha-deeltje uitzenden (is een He-kern) en de bèta stralers, welke een bèta-deeltje uitzenden (is een elektron). Voorbeeld van een alpha-straler: Ra Rn + He Voorbeeld van een bèta-straler: C N + e 7 Bijlage 3: Ontwikkelingen in de ster-kern. Bij de geboorte gaan zich, in de protoster, grote hoeveelheden waterstof en helium samenballen (door de zwaartekracht). Tenslotte worden in het inwendige, temperatuur en druk zó hoog, dat zich uit het waterstof (in veel grotere hoeveelheden aanwezig) nieuw helium gaat vormen. De hierbij ontwikkelde energie straalt de ster o.a. uit in de vorm van licht (fase ). Dan ontstaat er een evenwichtstoestand, waarbij samentrekking door gravitatie en uitzetting door warmte-ontwikkeling elkaar opheffen. Tenslotte resteert in het sterinwendige, alleen nog helium (alle waterstof is opgebrand ), waardoor de kern weer verder kan ineenstorten. De warmte-ontwikkeling neemt dan zó toe, dat de waterstof buiten de kern weer helium kan vormen. De ster bestaat nu uit drie schillen (Fase ). De kern blijft krimpen, terwijl het volume van de mantel sterk toeneemt (door fusie van waterstof tot helium: bij de minder zware sterren is de zwaartekracht niet voldoende om dit tegen te gaan). De ster blaast zich tenslotte op tot een Rode Reus met een relatief koel oppervlak en een zeer hete, dichte kern met een stijgende temperatuur. Het einde komt, wanneer de mantel wordt afgestoten tot een zgn. planetaire nevel. De sterkern wordt na verloop van tijd een Witte Dwerg en tenslotte een Zwarte Dwerg (niet te verwarren met een Zwart Gat!). Deze levensloop geldt dus voor vrij licht sterren, zoals de Zon, die nooit zelf nieuwe elementen zullen produceren. Zwaardere sterren (massa 3x of meer dan die van de Zon) volgen een andere levensloop: Druk en temperatuur in de helium-kern worden hier zó groot, dat koolstof (C) gevormd kan worden (fase 3). Hierdoor wordt de helium-concentratie zó klein, dat deze reactie stopt en de schil ( mantel ) weer ineenstort (fase ). Wéér wordt de temperatuur verhoogd en uit helium en koolstof vormt zich zuurstof en daaruit weer neon (fase 5). Tenslotte stoppen ook deze reacties (het helium is nu ècht op) zodat ook deze schil ineenstort (fase ). De temperatuur loop weer op, waardoor uit koolstof, magnesium, natrium etc. gevormd kunnen worden (fase 7).

Het verhaal wordt bijna eentonig... In deze fase bestaat een dergelijke ster dus uit acht schillen, waarin afwisselend wel en niet reacties optreden (zie figuur ). Dit proces gaat door, totdat de energieontwikkeling leidt tot een moment van fatale instabiliteit: de buitenlagen kunnen dan exploderen en er ontstaat (mogelijk) een supernova. 7