ONTWERP VAN EEN VVUHSB SLUISDEUR. Albert Reitsema

Maat: px
Weergave met pagina beginnen:

Download "ONTWERP VAN EEN VVUHSB SLUISDEUR. Albert Reitsema"

Transcriptie

1 ONTWERP VAN EEN VVUHSB SLUISDEUR Albert Reitsema Technische Universiteit Eindhoven Architecture Building and Planning Constructief Ontwerpen Betonconstructies begeleiders: prof.dr.ir. D.A. Hordijk ing. S. de Boer ir. L.D. Molenbroek

2 TITELPAGINA Titel verslag: Ontwerpen van een vvuhsb sluisdeur m.b.v. optimalisatie algoritmen. Auteur: Studentnummer: ing. A.D. (Albert) Reitsema Opleiding: Afstudeerrichting: Leerstoel: Architecture Building and Planning Constructief Ontwerpen Betonconstructies Datum: 31 mei 2012 Pagina s: 206 Afstudeercommissie: Voorzitter: prof.dr.ir. D.A. Hordijk TU/e Interne Begeleider: ing. S.de Boer TU/e Externe begeleider: ir. L.D. Molenbroek Breijn b.v Uitgave van: Technische Universiteit Eindhoven Faculteit bouwkunde Postbus MB Eindhoven. i

3

4 The mere formulation of a problem is far more often essential than its solution, which may be merely a matter of mathematical or experimental skill. To raise new questions, new possibilities, to regard old problems from a new angle requires creative imagination and marks real advances in science. Albert Einstein

5

6 VOORWOORD Dit rapport vormt de eindscriptie van het afstudeerwerk ter afronding van de studie Architecture, Building and Planning, afstudeerrichting Structural Design, aan de Technische Universiteit Eindhoven. In dit afstuderen is onderzoek verricht naar vernieuwende mogelijkheden voor het construeren van puntdeuren in een keersluis. Deze mogelijkheden worden opgesplitst in het materiaalgebruik, en de ontwerpmethodiek van puntdeuren. Hiermee wordt beoogd de hedendaagse opvatting over waterkeringen te herzien op nieuwe inzichten en mogelijkheden. De eerste vorm van een waterkering is ontstaan in de vorm van een dam. Deze werden al vroeg door de mensheid gebouwd om het waterniveau in rivieren te doen stijgen. Hierdoor is het mogelijk geweest om grotere schepen in te zetten voor transport van goederen. Het nadeel van deze dammen is dat schepen deze niet konden overbruggen. Een rivier telde verschillende stuwen, dus erg praktisch was deze oplossing niet. Om toch een gecontroleerde omgeving te creëren, om een boot van het ene niveau naar het andere niveau te loodsen, heeft ingenieur Chiao Wei-yo, in de 10 e eeuw de schutsluis geïntroduceerd in het Groot-Chineese kanaal. In Europa heeft deze vorm van waterkeren zijn intrede in 1373 in Vreeswijk gemaakt. Hier is een kanaal uit Utrecht samengevoegd met de Lek. De eerstvolgende verbetering op de schutsluis kwam van Leonardo da Vinci, hij tekende een sluis met puntdeuren. Een sluis met iets grotere deuren die onder een hoek ten opzichte van elkaar sluiten. De punt staat steeds in de richting van het hogere gelegen deel zodat de extra waterdruk de deuren tegen elkaar dicht drukt. In 1500 werd de San Marco sluis gebouwd volgens dit systeem. Sinds het introduceren van de puntdeuren van Leonardo kwamen de meest ambitieuste projecten uit Frankrijk. In 1642 wordt: Canal de Briare voltooid met een zesdelige sluis. Deze overbrugt een hoogteverschil van ongeveer 20 meter op een korte afstand. In 1681 wordt dit verschil groter door het Canal du Midi door, naast drie kanaalbruggen en tunnel van 165 meter, op een stuk van ongeveer 50km meer dan 60 meter te dalen. Nadien zouden sluizen alleen maar groter, en in de 20 e eeuw geautomatiseerd worden. Op dit moment bevindt de grootste sluis zich in Antwerpen. Deze sluis meet 500 meter in lengte, 68 meter in de breedte en heeft een diepte van 17 meter. (Arends, 1994) Naast het toenemen van kennis over construeren, heeft ook het toenemen van materiaalkennis voor innovatie in waterkerende werken gezorgd. Waar men vroeger in staat was om houten puntdeuren te construeren, is men na de exploitatie van staal, c.a. 200 jaar geleden, in staat om hier sluisdeuren van te maken. Dit heeft voor een langere levensduur, sterkere constructies, en lichtere constructies gezorgd. In oktober 2010 heeft een nieuwe ontwikkeling zijn intrede gemaakt. In sluis 124 op IJburg te Amsterdam, is de eerste betonnen sluisdeur ter wereld geplaatst. Deze sluisdeur is vervaardigd van gewapend hogesterktebeton met hierin stalen vezels gestort. De 10cm dikke, 6.55 meter lange deuren hebben rondom een afgeschuinde rand van 35 bij 40cm. De deur weegt circa 14,5 ton en is 4,5 meter hoog. Zowel de bouwkosten als de onderhoudskosten zijn veel lager dan die van de tot dusverre toegepaste houten of stalen varianten. (Cement, 2010) Pagina 1

7 Zoals eerder vermeld, wordt is in dit afstuderen aandacht besteed aan vernieuwende mogelijkheden op het gebied van materiaalgebruik en ontwerpmethodiek. Op het gebied van materiaalgebruik wordt onderzoek gedaan naar het toepassen van vezelgewapend ultrahogesterktebeton voor een sluisdeur. Dit beton heeft ten opzichte van hogesterktebeton een nog hogere sterkte, dichtheid, slijtvastheid, en beter verwerkingseigenschappen. Hiermee is het mogelijk een lichtere, taaiere, duurzamere, en wellicht ongewapende sluisdeur te ontwerpen. Dit mede afhankelijk van de vraag of het rendabel ingezet kan worden. Inspeldend op nieuwe ontwikkelingen wordt dit afstuderen aangevuld met onderzoek doen naar de toepassing van optimalisatiealgoritmen. Deze optimalisatiealgoritmen bepalen de meest optimale verdeling van volume, voor het vinden van de meest stijve oplossing binnen een bepaald ontwerpgebied. Als onderlegger voor deze facetten is het bestaande project Sluizencomplex Sambeek en Belfeld gebruikt. In dit project wordt, door aannemer Heijmans te Rosmalen, het eerder genoemde sluizencomplex voorzien van nieuwe keerdeuren met een breedte van 9 meter, en een hoogte van 8 meter. Deze worden traditioneel uitgevoerd in constructiestaal en lenen zich uitstekend voor een vergelijkstudie waarin materiaal, en ontwerpmethodiek als parameters worden gebruikt. Het afstudeeronderzoek is in april 2011 van start gegaan met het doen van een literatuurstudie. Nu dertien maanden later is het belangrijk kort terug te blikken, en dankt te betuigen. Voor het tot stand komen van deze scriptie wil ik graag een aantal personen bedanken. Allereerst mijn interne begeleiders: prof.dr.ir. D.A.Hordijk en ing. S.de.Boer beiden van de Technische Universiteit Eindhoven (TU/e). Bedankt voor jullie tijd, energie, en het delen van kennis! Verder plaats ik een dankwoord voor mijn externe begeleider vanuit Breijn: ir. L.D.Molenbroek. Bedankt voor je tijd, kritische blik, enthousiasme, en vele contactmomenten tijdens het proces. Naast mijn afstudeercommissie wil ik ook een dankwoord plaatsen voor mijn medestudenten aan de TU/e, en directe collega s bij Breijn. Veel kennis en wijsheid heb ik opgedaan door met jullie van gedachten te wisselen. Tot slot wil ik mijn familie, vrienden, en vriendin bedanken voor de steun, interesse, en ontspanning tijdens mijn studie. ing.a.d.reitsema (Albert) 31 mei 2012.

8 Pagina 3

9

10 LEESWIJZER Deze afstudeerscriptie is een geschreven sommatie van een lange onderzoeksperiode. Om u te bedienen met een overzichtelijk en begrijpbaar verslag is deze opgedeeld in vijf delen. Ieder deel is geschreven met kennis, ervaring, en onderzoeksresultaten opgedaan in het voorafgaande deel. Uitzondering hierop is uiteraard het eerste hoofdstuk. Het is aan te bevelen om de geschreven leesvolgorde te hanteren. Ieder afzonderlijk deel in dit verslag begint met een inleidende tekst en wordt afgesloten met een samenvatting. Zo is hopelijk ieder deel leesbaar en begrijpbaar. Na het laatste deel worden een aantal woorden gewijd aan conclusies en aanbevelingen voor verder onderzoek. De bijlagen in deze scriptie zijn opgenomen in een afzonderlijk rapport Bijlagen afstudeerrapport ontwerpen van een vvuhsb sluisdeur m.b.v. optimalisatie algoritmen. Voorafgaand aan deze afstudeerscriptie is een inleidend literatuuronderzoek geschreven over vezel versterkt Ultra Hoge Sterkte Beton. Dit literatuuronderzoek is sterk gerelateerd aan deze scriptie. Bij het schrijven van dit verslag is regelmatig teruggeblikt naar het literatuuronderzoek. Voor de lezer is het daarom zeker aan te raden om dit literatuuronderzoek te lezen, voordat gestart wordt met deze scriptie. Voor het eerste hoofdstuk zijn drie inleidende delen opgenomen. Deze zijn geplaatst omdat het ontbreken hiervan kan zorgen dat de lezer de algemene context niet zal begrijpen. De voorafgaande delen hebben ieder een letter als hoofdstukaanduiding gekregen. In deel A: wordt de lezer duidelijk gemaakt wat de doelstelling van dit afstuderen is; In deel B: is een korte samenvatting over vezelgewapend ultra hoge sterkte beton gemaakt; In deel C: staat een korte inleiding over project Maasdal. Project Maasdal is een overkoepelend project waaruit de werkzaamheden aan het sluizencomplex Sambeek Belfeld voortvloeit; De overige uitgewerkte onderwerpen in deze scriptie zijn gebundeld in vijf afzonderlijke delen. De volgende verdeling is gemaakt: Deel 1: analyseren van de huidige situatie van sluizencomplex Sambeek en Belfeld; Deel 2: het ontwerpen van een sluisdeur in C53/65, een eerste aftasting; Deel 3: het ontwerpen, en zoeken naar een optimale sluisdeur in vezel versterkt Ultra Hoge Sterkte Beton. En het zoeken naar een optimale sluisdeur in C53/65 beton; In deel 4 : ontwerp van een sluisdeur in vvuhsb met behulp van optimalisatiealgoritmen in een eindige elementen omgeving; Pagina 5

11 In deel 5: vergelijken van de varianten. Na deel 5 volgt een conclusie, en worden aanbevelingen gedaan voor verder onderzoek. In dit afstudeerverslag is een citaat aangeduid door de auteur, en het jaartal tussen haken te zetten. De gehele verwijzing wordt in de bronvermelding, achterin het verslag, geplaatst. De haken die worden gebruik hebben de volgende vorm: (..)

12 Pagina 7

13

14 SAMENVATTING Al sinds de oudheid worden goederen vervoerd via waterwegen. Om een continue route over de waterwegen te creëren heeft men sluiscomplexen gebouwd zodat waterpeilen beheersbaar zijn. Gebruikelijk wordt in een sluis een waterkering van hout toegepast. Sinds de introductie van hoogovens, welke voor de massaproductie van staal heeft gezorgd, heeft men vaker waterkeringen in staal uitgevoerd. Dit omdat staal sterker en stijver is waardoor een grotere overspanning, of waterkerende hoogte mogelijk is. In 2010 heeft Amsterdam een wereldwijde primeur door het toepassen van de eerste sluisdeur in beton. Deze sluisdeur heeft een afmeting van 4.75x 6.55x 0.10 meter en weegt 13.3 ton. Het gebruikte betonmengsel is een Hoge Sterkte Beton met een C90/105 klasse. Aan het mengsel zijn stalen vezels, met een lengte van 12 mm toegevoegd voor extra ductiliteit. Uit analyse is gebleken dat zowel de bouwkosten, als de onderhoudskosten, veel lager zijn dan die van de tot dusverre toegepaste houten of stalen varianten (Cement, 2010). In dit verslag is onderzocht of stalen sluisdeuren met een afmeting van 7,9x 8,9 meter, welke in sluizencomplexen Sambeek en Belfeld worden toegepast, rendabel vervangen kunnen worden door vlakke betonnen sluisdeuren. Hierbij is gebruik gemaakt van twee soorten betonmengsels. Een conventionele normale sterkte beton met een C53/65 klasse, en een vezelversterkte Ultra Hoge Sterkte Beton. Voor de laatstgenoemde zijn in de Eurocodes, waar in Nederland mee gerekend wordt, geen bepalingen opgenomen. Om toch constructieberekeningen te maken zijn Franse aanbevelingen van de Association française de génie civil gebruikt. Ontwerpen in vezelversterkt Ultra Hoge Sterkte Beton heeft als voordeel dat het betonmengsel naast een hoge druksterkte ook goede eigenschappen met betrekking tot duurzaamheid heeft. Zo is de permeabiliteit laag, wat gunstig is voor de bescherming van de buigtrekwapening in een waterkerende constructie. Door het ontwerp van de vlakke betonnen sluisdeuren parametrisch op te zetten, is bij verschillende sluisdeurdiktes naar een optimum gezocht qua energiebehoefte. Dit optimum is 450 mm voor een C53/65 sluisdeur in combinatie met buigtrekwapening in alle richtingen. Voor de variant in vezelversterkte Ultra Hoge Sterkte Beton is een sluisdeurdikte van 200mm optimaal. Hier is alleen buigtrekwapening in de hoofdrichting, waar de grootste wapeningsmomenten optreden, toegepast. Naast het parametrisch ontwerpen van vlakke betonnen varianten is ook een ontwerp gemaakt door gebruik te maken van topological optimization. Deze ontwerpmethodiek kenmerkt zich door de toepassing van optimalisatiealgoritmen in een eindige elementen omgeving. Deze algoritmen zoeken een materiaalverdeling waarbij de verhouding tussen de traagheid en de volume optimaal is. Als alle varianten met elkaar vergeleken worden, blijkt dat de ontwerpen in vezelversterkt Ultra Hoge Sterkte Beton het minst milieubelastend zijn. Hierbij heeft de vlakke plaat een energiebehoefte van 70GJ per deur, en de variant gevonden met algoritmen 46GJ. De bestaande variant in constructiestaal is met 707GJ per sluisdeur het meest milieubelastend. Door de zestien bestaande stalen sluisdeuren in het sluizencomplex Sambeek en Belfeld te vervangen door vezelversterkte Ultra Hoge Sterkte Betonnen sluisdeuren, wordt over de levensduur van deze sluisdeur Gigajoule aan energie bespaard. Dit is equivalent aan 1036 ton CO 2. Pagina 9

15

16 SUMMARY Since ancient times, goods have been transported over waterways. To create a continuous route along these waterways, locks have been built in order to be able to manage water levels. Usually a floodgate of timber is placed in these locks. However, since the introduction of blast furnaces, which facilitated the mass production of steel, these floodgates have increasingly been built using construction steel. This is because steel is stronger and more rigid than wood, making a greater damming height possible. In 2010, Amsterdam had a world premier by applying the first floodgate in concrete. This floodgate has a size of 4.75x6.55x 0.10 meters, and weighs 13.3 tons. The concrete mixture is a High Strength Concrete with a C90/105 class. Steel fibers of 12 mm in length were added to the concrete mixture for extra ductility. Analyses show that both the cost of construction and the maintenance costs are much lower than that of the until recently widely implemented wooden or steel variants (Cement, 2010) This report investigates whether steel floodgates with dimensions of 7.9x 8.9 meters, as being used in the lock-complexes Sambeek and Belfeld, could be replaced profitably by flat concrete floodgates. Two types of concrete mixtures have been employed, namely a conventional normal strength concrete with a class C53/65, and a fiber-reinforced Ultra High Strength Concrete. For the latter, no provisions are given in the Eurocode. To be able to do structural calculations in spite of this, French recommendations from the "Association Française de Genie Civil" have been used. A design in fiberreinforced Ultra High Strength Concrete has the advantage that the concrete mixture, in addition to having a high compressive strength, also has excellent properties with regard to durability. An example of this is the low permeability, which is favorable in regards to the protection of the reinforcements in a waterproof construction. In setting up the design of the flat concrete floodgates parametrically, several different thicknesses for the floodgates were used while searching for an optimum in terms of embodied energy. This optimum is 450 mm for a C53/65 floodgate in combination with reinforcement in all directions. For the variation in fiber-reinforced Ultra High Strength Concrete, a gate thickness of 200mm is the optimum. Here only reinforcement in the main direction, where the largest moments occur, is applied. In addition to the parametric design variants of the flat concrete floodgates, another design was created making use of topological optimization. This design methodology is characterized by the application of optimization algorithms in a finite element environment. These algorithms search for a distribution of materials in which the ratio of the moment of inertia and the volume is optimal. When all variants are compared, it appears that the design of fiber-reinforced Ultra High Strength Concrete has the least environmentally detrimental impact. In this variation the flat plate has an embodied energy of 70 gigajoules (GJ) per floodgate; the variant found using algorithms has an embodied energy of 46GJ. The existing floodgate in structural steel is, at 707GJ, the most environmentally damaging. By replacing the sixteen existing steel floodgates in the locks Sambeek and Belfeld with an optimized design in fiber-reinforced Ultra High Strength Concrete, 10576GJ of energy will be saved during the floodgate s lifespan; this is equivalent to 1036 tons of CO 2. Pagina 11

17

18 AFKORTINGEN, SYMBOLEN EN EENHEDEN NSB HSB ZHSB UHSB SHSB Normale sterkte beton Hoge Sterkte Beton Zeer Hoge Sterkte Beton Ultra Hoge Sterkte Beton Super Hoge Sterkte Beton vvuhsb UHPFRC Vezelversterkt Ultra Hoge Sterkte Beton Ultra High Performance Fibre Reinforced Concrete B65 Beton met een sterkteklasse waarbij de karakteristieke betondruksterkte gelijk is aan 65 N/mm 2 C53/65 Vervangende benaming waarbij de C staat voor Concrete, en de karakteristieke cilinderdruksterkte gelijk is aan 53 N/mm 2 CO 2 Koolstofdioxide EEM Eindige Elementen Methode E Elasticiteitsmodulus in N/mm 2 σ Spanning in N/mm 2 ε Rek in mm 1 /m 1 m mm μm Meter Een millimeter is gelijk aan 10-3 meter Een micrometer is gelijk aan 10-6 meter % Procent is gelijk aan 1/100e deel Promille is gelijk aan 1/1000e deel K Kilo (10 3 ) M Mega (10 6 ) G Giga (10 9 ) J Joule N Newton W Watt UGT BGT Uiterste Grens Toestand Bruikbaarheid Grens Toestand Pagina 13

19

20 INHOUDSOPGAVE 1 ANALYSEREN HUIDIGE SITUATIE Project Sluisdeuren Sambeek Belfelt Geschiedenis sluizencomplex Sambeek/Belfeld Huidige situatie Sluiscomplex Belfeld / Sambeek Gewenste situatie Randvoorwaarden voor het onderzoek Topografie/Ruimtebeslag Hoogte waterkerende werken Scheepsstoten Inlaatschotten Randvoorwaarden met betrekking tot de steunpunten Analyseren huidige ontwerp sluisdeuren Constructief systeem Geometrie Invloed geometrie op krachtswerking Scheiden van constructief / niet constructieve delen Informatie over steunpunten/details Sommatie van eigen gewicht Energiebehoefte Herverfperiode Dikte van verflaag Soortelijk gewicht verf Levensduur Omrekenfactor naar CO Vergelijkingseenheid Berekenen embodied energie constructief ontwerp zoals bestaand Samenvatting eerste hoofdstuk Sluisdeur in conventioneel beton: een eerste afschatting Constructief ontwerp Overzicht gehanteerde normen Geometrie van de sluisdeur Mechanica schema Belastingen op sluisdeur Belasting ten gevolge van waterdruk Wind bij schutpeil Eigen gewicht bordes Personen op bordes Aanhangend ijs Belastingcombinaties Materiaalmodel en type berekening Eerste afschatting handmodel Convergentie numeriek model aantonen met verplaatsing Optredende krachten uit rekenmodel Optredend wapeningsmoment MDx Optredende wapeningsmomenten MDy Optredende dwarskrachten Optredende momenten bij 2e belastingconfiguratie Optredende momenten in de MDx+ richting Optredende momenten in de MDy+ richting Belastingmodel openen deur Sommatie van optredende momenten en dwarskrachten Doorsnedetoetsing Pagina 15

21 2.17 Berekenen embodied energie constructief Samenvatting tweede hoofdstuk Sluisdeur met Ductal C170/200 vvuhsb Constructief ontwerp Ductal FM vvuhsb Mengsel Informatie over rekennormen vvuhsb wereldwijd Spanning-rek diagram o.b.v. AFGC/SETRA aanbevelingen Oorsprong spanning-rek diagram Spanning-rek diagram in de UGT Spanning-rek diagram in de BGT Invloed vereenvoudigen van spanning rek diagram Afleiden druksterkte uit beproeving Spanning rek diagram UHSB nader onderzocht Spanning-rek diagram wapeningsstaal Modelleren met het Multi-Layer model voor bepalen bezwijkmoment Verificatie van het multi-layer model Berekenen capaciteit van Ductal-FM doorsnede onder variabele hoogte Scheurmodel Bepalen benodigde wapening om te voldoen bij een aangepaste staafdiameter Toetsen van de rekenmodellen op stijfheid Berekenen van orthotrope platen Invoeren van een orthotrope plaat in SCIA-ENGINEER Bepalen vervorming vvuhsb sluisdeur Bepalen vervorming C53/65 met rond 16 gewapende sluisdeur Bepalen vervorming C53/65 met rond 20 gewapende sluisdeur Bepalen vervorming C53/65 met rond 25 gewapende sluisdeur Vervorming door kruip Sommatie van gevonden vervormingen bij iedere betonnen sluisdeurvariant Invloed vervorming op momentenverdeling Berekenen dwarskrachtcapaciteit Totale wapeningsbehoefte Berekenen embodied energie alle constructieve systemen Gehanteerde eenheidswaarden voor de belichaamde energie Belichaamde energie constructieve systemen Invloed van gewicht deur op energie gedurende transport Bepaling overige randvoorwaarden voor opstellen vergelijking tussen staal en beton Belichaamde energie stalen en betonnen sluisdeur uitgezet Kostprijs van alle varianten Kostprijs en belichaamde energie omzetten naar 1 constante Levensduur en onderhoud Omrekenen naar CO 2 uitstoot van iedere variant Eigen gewicht van verschillende varianten Samenvatting Eigen ontwerp sluisdeur m.b.v. optimalisatie algoritmen Optimalisatiealgoritmen Sizing optimization Material optimization Shape optimization Topological optimization Combineren ontwerpalgoritmen tot ontwerpmethodiek Potentie van topological optimization

22 4.4 Voorbeeldprojecten waar topological optimization is toegepast Optimalisatiealgortimes toegepast in de werkelijkheid Optimalisatiealgortimes toegepast in studieprojecten Fabricatieproces van niet rechtlijnige betonnen structuren Frezen van een mal Onder hoge druk beton in buizen spuiten Topologisch ontwerpen van een sluisdeur Gebruikte software Randvoorwaarden voor het modelleren Geoptimaliseerde modellen Model Model Model Topologische ontwerpen omzetten naar een praktisch model Ontwerpvoorwaarden voor het praktische model Ontwerpen met de Eindige Elementen Methode Materiaalmodel en Elementkeuze in een EEM model Ontwerpen van een realistisch model op basis van optimalisatie modellen Eerste ontwerp Tweede ontwerp Derde, definitieve ontwerp Eigen gewicht van eigen ontwerp Varianten Stalen sluisdeur D Tekening Eigen gewicht Embodied energie Levensduur Kostprijs Productiemethode Gecorrigeerde embodied energie C53/65 variant D Tekening Eigen gewicht Embodied energie Levensduur Kostprijs Productiemethode Gecorrigeerde embodied energie vvuhsb variant D Tekening Eigen gewicht Embodied energie Levensduur Kostprijs Productiemethode Gecorrigeerde embodied energie Eigen ontwerp vvuhsb D Tekening Eigen gewicht Embodied energie Levensduur Kostprijs Productiemethode Gecorrigeerde embodied energie Vergelijking tussen alle varianten Pagina 17

23 5.5.1 Vergelijking zonder extra factoren Vergelijking welke is aangevuld met corrigerende factoren Conclusie Aanbevelingen voor verder onderzoek Literatuurlijst Geschreven literatuur Digitale literatuur Lijst met aanwezige afbeeldingen Figuren Grafieken Tabellen Foto s

24 A: DOELSTELLING AFSTUDEREN Dit afstuderen richt zich in essentie op de vraag of vezelversterkt Ultra Hoge Sterkte Beton rendabel toegepast kan worden in de praktijk. Ieder constructiemateriaal heeft unieke eigenschappen die er voor zorgen dat het toegepast wordt op een eigen manier. Zo wordt constructiestaal eerder toegepast waar slankheid en stijfheid van belang zijn. Denk hierbij aan gevelkolommen, of raamwerken. Beton hiertegen is goed toepasbaar bij elementen voornamelijk op druk belast. Denk hierbij aan funderingswerken zoals palen of poeren. Hierbij moet vermeld worden dat de range van toepassing in beton de laatste decennia enorm vergroot is door het versterken (wapenen) met betonstaal, en het toepassen van voorspantechnieken, en de vergroting van kennis hierover. Hierdoor is het ook interessant geworden om elementen op buiging te betrekken in de ontwerprange. Het materiaal vvuhsb heeft tot op heden slechts in een klein deel van de markt zijn toepasbaarheid getoond. Dit door het ontbreken van normen en richtlijnen, en door gebrek aan ervaring en beproeving in de praktijk. Met dit afstuderen wordt onderzocht of het ontwerp van een te realiseren stalen sluisdeur, vervangen kan worden door een sluisdeur in vvuhsb. Hierbij wordt een tussenstap gemaakt naar conventioneel gewapend C53/65 beton. Om de mogelijkheden van vvuhsb verder te verkennen wordt, door gebruik te maken van ontwerpalgoritmen, in een eindige elementen omgeving, gezocht naar een optimale materiaalverdeling. De ontwerpmethodiek met algoritmen kenmerkt zich door toepassing van een mathematische insteek, om tot een vakwerkmodel te komen waarin geen/minimaal buiging optreedt. Door het ontbreken/reduceren van buiging zal vezel versterkt ultrahoge sterktebeton benut worden daar waar het goed in is. Namelijk het opvangen en afvoeren van drukkrachten. Waar op het gebied van stijfheid vaak afwegingen gemaakt worden tussen beton, hout, steen, glas of eventueel een kunststof, kan vvuhsb qua elasticiteitmodulus concurreren met composiet en staal. Dit is verduidelijkt in Grafiek 1. In deze grafiek is op de verticale as de elasticiteitsmodulus en op de horizontale as de bijbehorende soortelijke massa van verschillende materialen. In deze grafiek zijn de as-waarden logaritmisch opgesteld. Van een aantal materialen uit iedere groep is de verhouding uitgezet (zie legenda). Uit de groep metalen gaat het bijvoorbeeld om gietijzer, aluminium, brons, staal en titanium. In de groep composiet zijn glasvezel, carbonvezel, en kevlar uitgezet. Onder de groep hout zijn alle gangbare houtsoorten uitgezet, en de groep keramisch bevat baksteen, natuursteen, en kalkzandsteen. In de groep beton is een verloop getekend van C12/15 naar C170/200. Opvallend is dat in beton, bij een toenemende elasticiteitsmodulus, de soortelijke massa ervan nauwelijks toeneemt. In Grafiek 1 zijn twee clusters van materialen gemaakt. De eerste cluster bevat de kunststoffen, hout, steen en lage sterkte beton, en de tweede cluster de metalen, composieten en de hoger sterkte betonklassen. De tweede cluster is voornamelijk rendabel inzetbaar bij elementen waar slankheid, en stijfheid meer van belang zijn. Hier kan vvuhsb mogelijk een plaats als constructiemateriaal invullen. Pagina 19

25 Grafiek 1: Elasticiteitsmodulus tegen de soortelijke massa van materialen uitgezet.

26 B: INLEIDING VVUHSB Een beknopte samenvatting van het literatuuronderzoek Vezelversterkt Ultra Hoge Sterkte Beton is in dit hoofdstuk geplaatst. Vezel Versterkt Ultra Hoge Sterkte Beton (vvuhsb), internationaal beter bekend als Ultra High Performance Fibre Reinforced Concrete (UHPFRC), is een high-tech composiet materiaal met perspectieven door zijn verhoogde sterkte, taaiheid en duurzaamheid. Het wordt geclassificeerd in de betoncategorie met een druksterkte van 150N/mm 2 tot 200N/mm 2. Eerste veelbelovende toepassingen, veelal in de civiele sector, zijn al uitgevoerd en toonden mogelijkheden. Maar net als bij ieder materiaal in ontwikkeling, zijn nog veel vragen onbeantwoord. Zo wordt grootschalige toepassing veelal tegengehouden door het ontbreken van een internationaal erkende rekenmethode. De bestanddelen van conventioneel beton bestaan uit grind, zand, cement, toeslagmaterialen, hulpstoffen en water. Ultra hoge Sterkte Beton (UHSB) kenmerkt zich door een verkleining van de betonmatrix. Door geen grind toe te passen, en de zeer fijne stof silica fume toe te voegen is de pakking van de matrix dichter. Het vervangen van zand met een afmeting van 63 micrometer tot 2 millimeter door quartz zand met een diameter lager dan 800μm zorgt voor een nog dichtere pakking. Door een fijnere pakking neemt het aantal contactvlakken toe. Om het mengsel te laten verharden is minder water nodig. Het verminderen van de waterbehoefte gecombineerd met een fijnere betonmatrix resulteert in een minder poreus betonmengsel. In principe wordt het UHSB altijd uitgevoerd in combinatie met vezels omdat het anders een materiaal is dat bros bezwijkt. De vezels kunnen ook worden ingezet ter vervanging van de dwarskracht- of in sommige gevallen zelfs de buigtrekwapening. Een vezelpercentage van tussen de 1% en de 4% is gebruikelijk, waarbij grote vezelpercentage s (+2,5%) veelal bestaan uit een combinatie van lange, en korte vezels om macro/micro scheuren te overbruggen. Er zijn vele soorten vezels aanwezig op de markt. Stalen vezels worden het meest toegepast omdat deze een hogere trekcapaciteit heeft. Naast sterkte-eigenschappen is er nog een belangrijk aspect wat van belang is, namelijk de duurzaamheid. vvuhsb is door de dichte pakking over de gehele linie duurzamer dan conventioneel beton. Denk hierbij aan verminderde chemische invloeden, minder onderhoud, langere levensduur, minder benodigde grondstoffen bij een gelijkwaardige capaciteit, en daardoor is ook minder energie nodig bij transport en montage. Al met al kan worden gesteld dat vvuhsb een materiaal met perspectief is. Naast vele voordelen heeft het constructiemateriaal ook nadelen. Een nadeel is dat het materiaal aanzienlijk duurder is dan een conventioneel betonmengsel. Er zal dus altijd een afweging moeten worden gemaakt of het toepassen van een ander betonmengsel rendabel is. Pagina 21

27

28 C : INLEIDING PROJECT MAASDAL / SLUIZEN SAMBEEK BELFELT C1. Project Maasdal Het regent vaker en harder. Rivieren moeten steeds meer water afvoeren, maar rivieren krijgen steeds minder ruimte, ingeklemd tussen steeds hogere dijken. Terwijl achter de dijken het land daalt. Als de dijken doorbreken lopen 2 tot 4 miljoen Nederlanders gevaar. Door de rivieren meer ruimte te geven kan de waterstand bij hoogwater worden verlaagd. De kans op overstromingen wordt daardoor aanzienlijk kleiner. (www.ruimtevoorderivier.nl, 2011) Limburg heeft in de jaren negentig ook veel last ondervonden van zeer hoge waterstanden. In 1995 trad de Maas opnieuw buiten haar oevers nadat in 1993 al een keer grote delen van het Maasdal onder water waren komen te staan (Foto 1). Grootscheepse evacuatie bleek noodzakelijk, en grote materiele en emotionele schade waren het gevolg. De commissie Watersnood Maas had al in 1994 het rijk en de provincie geadviseerd over een betere hoogwaterbescherming langs de Maas. Kort na het hoogwater in 1995 stelde de regering, mede op basis van deze commissie, het Deltaplan Grote Rivieren vast, waarin werd aangekondigd 145km kaden aan te leggen in Limburg en Noord-Brabant. In combinatie met deze kaden zou door verruiming van het zomer- en winterbed van de Maas uiteindelijk een beschermingsniveau van 1:250 worden bereikt achter de kaden (deelproject Zandmaas). De kaden zijn direct na het hoogwater in 1995 aangelegd. Foto 1: Het overstromen van de Maas in In de jaren negentig zijn ook verkenningen gedaan naar modernisering van de vaarweg over de Maas, in samenhang met het Maas-Waalkanaal, het Lateraalkanaal en het Julianakanaal, kortweg de Maasroute. In Figuur 1 staat deze route geïllustreerd. Doel hiervan was om te bekijken hoe de vaarweg geschikt zou kunnen worden gemaakt voor tweebaksduwstellen, deelproject Maasroute. Dit zijn schepen met een lengte van 190 meter, een breedte van 11.4 meter en een diepgang van 3.5 meter. Na modernisering kan de Maasroute een volwaardig onderdeel worden van het Europese vaarwegnetwerk waar het deel van uitmaakt Pagina 23

29 Figuur 1: De Maasroute in de kaart van Nederland. De plannen voor verbetering van de vaarweg zijn in 1995 gecombineerd met de plannen voor de verbetering van de hoogwaterbescherming tot het project Zandmaas/Maasroute. Niet alleen richten beide plannen zich op hetzelfde gebied, ook inhoudelijk vertonen de plannen samenhang en onderlinge afhankelijkheid. De Grensmaas is het onbevaarbare deel van de Maas, dat ten noorden van Maastricht begint en stroomafwaarts loopt tot aan Roosteren. Rijkswaterstaat werkt in dit gebied aan de bescherming tegen hoogwater door de stroomgeul te verbreden en de uiterwaarden te verlagen. De rivier krijgt meer ruimte en dat zorgt bij hoogwater voor tot een meter lagere waterstanden. Tegelijkertijd levert de verruiming van de rivier een meer afwisselend landschap op. Er ontstaan natte en droge stukken, waar meer plant- en diersoorten kunnen leven dan nu. De natuur krijgt in een gebied van ongeveer 1100 hectare vrij spel om zich te ontwikkelen. (Rijkswaterstaat) C2. Project Sluizen Sambeek Belfelt De sluiscomplexen Sambeek en Belfeld zijn tegelijkertijd gebouwd, en daardoor een bijna exacte kopie van elkaar: allebei bestaan ze uit twee korte en een lange sluiskolk, plus een stuw. Opdrachtgever Rijkswaterstaat wil dat de sluizen geschikt worden gemaakt voor de bredere Vbscheepsvaart klasse. Dat betekent dat zowel bij Belfeld als Sambeek de oudste en grootste sluiskolk, de Oostsluis, van 14 naar 16 meter breedte gaat. De andere sluiskolken zijn later, in de jaren zestig, bijgebouwd. Daar hoeven alleen de bewegingswerken van de sluis, zoals de deuren, worden vervangen. In totaal zijn er zestien sluisdeuren die vervangen dienen te worden.

30 1 ANALYSEREN HUIDIGE SITUATIE In dit eerste hoofdstuk van deze afstudeerscriptie wordt een analyse uitgevoerd op het sluiscomplexen te Belfeld en Sambeek. Het doel van deze analyse is onderzoeken wat het uitgangspunt is voor dit afstudeeronderzoek. Er wordt geschreven over zowel de geschiedenis van het sluizencomplex, de huidige situatie, als de gewenste situatie. Uit deze gewenste situatie zullen randvoorwaarden voor het verdere onderzoek vloeien. Als afsluiting van dit hoofdstuk wordt een analyse uitgevoerd op het huidige ontwerp van de stalen sluisdeuren. Bij het analyseren van het huidige ontwerp van de sluisdeuren wordt onderzocht hoe het huidige constructieve ontwerp van de deuren is opgezet, en wat de consequenties hiervan zijn. 1.1 Project Sluisdeuren Sambeek Belfelt Bij het analyseren van de huidige situatie worden drie situaties beschouwd. De eerste is de geschiedenis van het complex. Hierin wordt een sommatie gegeven van alle werken die zijn verricht aan het sluizencomplex om te komen tot de huidige situatie. De tweede situatie die geanalyseerd wordt is de huidige toestand. Hier wordt beschreven wat de hoofdafmetingen zijn. Tot slot wordt vermeld wat de gewenste situatie van het sluizencomplex is. Uit de gewenste situatie zijn de gewenste wijzigingen ten opzichte van de gedateerde sluisdeuren af te leiden Geschiedenis sluizencomplex Sambeek/Belfeld De Oostsluizen te Sambeek en Belfeld zijn omstreeks het jaartal 1928 aangelegd, dit is gelijktijdig gebeurd met de aanleg van de naastgelegen stuw. Door een toename van het scheepvaartverkeer in de Maas zijn in de periode tussen 1965 en 1968 de midden- en Westsluis bijgebouwd. Deze zijn in 1968 in gebruik genomen. Door het bijbouwen van de midden- en Westsluis zijn ook de westelijke fuikconstructies van de Oostsluizen uitgebreid en of aangepast. Na de realisering van de Oostsluizen in 1928 hebben op hoofdlijnen de volgende wijzigingen/aanpassingen in de loop van de tijd plaatsgevonden. 1) Als gevolg van overstromingen in 1944 is de oostelijke wand/opbouw van het bovenhoofd van de Oostsluis te Belfeld van de vloer afgescheurd als gevolg van onderspoeling. Op het weggezakte hoofd is in 1947 een onderwaterbetonvloer gestort waarop een nieuw geprefabriceerde stalenconstructie met prefab betonnen platen is gerealiseerd; 2) Van 1965 tot 1968 zijn de midden- en Westsluis gerealiseerd; 3) In 1968 heeft bij beide Oostsluizen een renovatie van de sluiskolkwanden plaatsgevonden; 4) Tot 1994 liepen, de aan de oostzijde van de voorhavens gesitueerde, scheidingsdammen door tot aan de fuikconstructies / sluishoofden. In 1994 zijn de fuiken aan de oostzijde uitgebreid (verlengd) met verankerde stalen damwandconstructies die doorlopen tot in de scheidingsdammen; 5) In juni 2003 zijn de Oostsluizen uit bedrijf genomen vanwege de slechte bevaarbaarheid (slibbezinking) en slechte onderhoudstoestand; Pagina 25

31 6) In 2005 zijn in het kader van het project Erobs 1 in fase 1 de voedingskabels, onderverdelers en besturing vervangen; Om het sluizencomplex te visualiseren zijn foto 6 en foto 7 toegevoegd. In deze foto s zijn situatiefoto s met benaming geplaatst Huidige situatie Sluiscomplex Belfeld / Sambeek Sluiscomplex Belfeld ligt in de rivier de Maas ter hoogte van Venlo. Sluiscomplex Sambeek ligt ter hoogte van Uden. De sluizencomplexen bestaan ieder uit sluizen, een stuw, een vistrap en diverse gebouwen. De afmetingen van de Oostsluis, de zogenaamde oude sluis, bedragen voor de sluiskolk 260m x 16m. De Oostsluis beschikt over een boven-, midden- en benedenhoofd waarbij het boven- en benedenhoofd slechts een breedte van 14m hebben. De Westsluis en de middensluis hebben kolkafmetingen van 142m x 16m. Het gemiddelde verval tussen de bovenstroomse zijde (stuwpand Belfeld) en de benedenstroomse zijde (stuwpand Sambeek) van de sluizen bedraagt ca. 3,25m. Naast de drie sluizen is een stuw aanwezig ten behoefte van de peilbeheersing, een vistrap, installatiegebouwen, en een bediengebouw behoren ook tot het complex. De West- en middensluis bestaan uit een bovenhoofd en een benedenhoofd. Elk hoofd heeft twee puntdeuren. Elke deur is voorzien van vier nivelleerschuiven die per twee aan elkaar bevestigd zijn. De sluisdeuren hebben elk hun eigen deur- en schuifaandrijving met bijbehorende hydraulische installatie. Iedere sluisdeur heeft een boven-en onderdraaipunt (vrijdraaipunten). Het onderdraaipunt bestaat uit een pen met een kap op de bodem van de sluis, en een kom in de onderzijde van de sluisdeur. Het bovendraaipunt bestaat uit een halspen op de bovenzijde van de sluisdeur en een halsbeugel op de kolkmuur. De huidige deuren, bewegingswerken, en aandrijvingen naderen het einde van hun levensduur. In de linker Foto 2 is een bestaande sluisdeur in de kolk te Belfeld geplaatst. In Foto 3 is een impressie foto geplaatst van de stuw in Belfeld. Foto 2: (L) Foto van bestaande sluis in Belfeld. Foto 3: (R) Foto van bestaande stuw in Belfeld. Kolk 1 Elektronische renovatie Belfeld & Sambeek

32 1.1.3 Gewenste situatie De gewenste situatie is dat alle sluisdeuren (8 Sambeek + 8 Belfeld), bewegingswerken en aandrijvingen van de west- en middensluizen worden vervangen met handhaving van de civiele ombouw. Hiermee wordt invulling gegeven aan de beschikbaarheidseisen van het project Maasroute Het doel van project Maasroute is de rivier de Maas tussen Maastricht en Weurt geschikt te maken voor scheepvaartklasse Vb (Twee-bak duwvaart, 3,5 meter diepgang). Voor klasse Vb-schepen geldt volgend de CEMT-classificatie 2 een scheepslengte van 190 meter met een breedte van 11,40 meter. Hiernaast moet de vaarweg ook voldoende diep zijn. In verband met de benodigde kielspeling (de ruimte tussen de kiel van het schip en de bodem van de vaarweg) moet de diepte van de vaarweg volgens de CVB-richtlijnen 3 minimaal 1,4x de diepgang van het maatgevende schip zijn. Bij een maatgevende diepgang van 3,5 meter bedraagt de benodigde diepte van de vaarweg 4,9 meter. De eerste sluisdeuren zijn in januari 2012 vervangen door nieuwe sluisdeuren, Foto 4 en Foto 5. Het project is een multidisciplinair werk waarin de disciplines betonbouw, waterbouw, staalbouw, werktuigbouw en installatietechniek samenkomen. Eind 2013 zal het volledige werk worden opgeleverd. Foto 4: Vervoeren van nieuwe stalen sluisdeur via schip. Foto 5: Te plaats brengen en monteren van sluisdeur. 2 CEMT-classificatie = Conférence Européenne des Ministres des Transports 3 CVB-richtlijnen = Commissie Vaarweg Beheerders - richtlijnen Pagina 27

33 1.2 Randvoorwaarden voor het onderzoek In hoofdstuk 1.2 wordt ingegaan op de randvoorwaarden van dit onderzoek. Hierbij zijn waterhoogtes vastgesteld, en terminologie aan de onderdelen toegekend. Ook worden randvoorwaarden met betrekking tot waterhoogtes, steunpunten, en scheepsstoten opgesteld Topografie/Ruimtebeslag Het stuw- en sluiscomplex Belfeld vormt de overgang tussen stuwpand Roermond-Belfeld en stuwpand Belfeld-Sambeek. Ten westen van de stuw bij Belfeld liggen drie sluizen. De meest oostelijke sluis, de zogenaamde oude sluis, dient te worden omgebouwd. Het stuw- en sluiscomplex Sambeek vormt de overgang tussen stuwpand Belfeld-Sambeek en stuwpand Sambeek-Grave. Ten westen van de stuw bij Sambeek liggen drie sluizen. De meest oostelijke sluis, ook de zogenaamde oude sluis, dient te worden omgebouwd. De relevante afmetingen en niveaus van de Oostsluizen zijn vermeld in Tabel 1. Maten Belfeld Sambeek nuttige kolklengte [m] nuttige doorvaartbreedte [m] kolkbreedte [m] doorvaartbreedte bovenhoofd [m] doorvaartbreedte middenhoofd [m] doorvaartbreedte benedenhoofd [m] drempelhoogte boven [NAP + m] 8,45 5,2 drempelhoogte midden [NAP + m] 7,45 4,2 drempelhoogte beneden [NAP + m] 7,45 4,2 Deurtype punt punt waterdiepte op bovenhoofd huidig peil [m] 5,65 5,65 waterdiepte op middenhoofd huidig peil [m] 3,4 3,4 waterdiepte op benedenhoofd huidig peil [m] 3,4 3,4 niveau bovenkant bovenhoofd [NAP + m] 15 11,75 niveau bovenkant middenhoofd [NAP + m] 15 11,75 niveau bovenkant benedenhoofd [NAP + m] 15 11,75 niveau bovenkant kolk [NAP + m] 15 11,75 Tabel 1: Maten en afmetingen van de Oostsluizen. Beide sluizen bestaan uit een schutkolk, een bovenhoofd, een middenhoofd en een benedenhoofd. De nuttige schutkolklengte bedraagt 260 meter (inclusief tussenhoofd) en de schutkolkbreedte bedraagt 16 meter. Het boven- en benedenhoofd hebben een doorvaartbreedte van 14 meter. Bij de huidige streefpeilen bedraagt het verval over de sluizen circa 3,25 meter.

34 De schutsluizen worden gebruikt bij rivierafvoeren waarbij de stuw geheel of gedeeltelijk gesloten is. Het huidige streefpeil van stuwpand Belfeld bedraagt NAP + 14,10meter. Bij een rivierafvoer van circa 800 tot 900 m 3 /s of hoger is de stuw gestreken en ligt de waterstand boven het streefpeil. Bij deze hoge afvoeren, wanneer de stuw geheel geopend is, varen de schepen door de stuw. Het huidige streefpeil van stuwpand Sambeek bedraagt NAP + 10,85meter. Op Foto 6 en Foto 7 staat een overzicht met hierop alle kenmerkende delen van de sluiscomplexen, met witte tekst is de bijbehorende terminologie toegevoegd. Foto 6: Satellietfoto met hierop de topografie van sluiscomplex Belfeld. Foto 7: Satellietfoto met hierop de topografie van sluiscomplex Sambeek. Bij het vergelijken van beide foto s is te concluderen dat de sluiscomplexen een kopie van elkaar zijn. Doordat de sluiscomplexen identiek zijn is een renovatieproject als voorgeschreven interessant door de aanwezigheid van repetitie. Het in serie produceren van sluisdeuren geeft de mogelijkheid om efficiënter en dus duurzamer te construeren. Pagina 29

35 1.2.2 Hoogte waterkerende werken Naast dat de deuren vervangen worden wegens achterstallig onderhoud, is het ook zo dat deze verhoogd worden om te passen binnen plan Maasdal. In Tabel 2 zijn de oude en de nieuwe maatgevende hoogtes geplaatst. Onderscheid is gemaakt tussen het sluizencomplex Belfeld en Sambeek. Locatie Hoogte oud Hoogte nieuw Belfeld Deuren 14,5 15 (14,10+0,90) 4 Sluishoofden 15 15,6 Kolk, sluisplateau 15 15,6 Sambeek Deuren 11,42 11,90 (11,10+0,80) 4 Sluishoofden 11,75 12,6 Kolk, sluisplateau 11,75 12,6 Tabel 2: Oude en nieuwe maatgevende hoogtes. In Figuur 2 wordt inzicht gegeven over het verloop van het streefpeil over de Maas. De afvoer van water uit hoger gelegen wateren naar lager gelegen wateren gaat stapsgewijs. Hierbij is het streefpeil 5 aangegeven ten opzichte van het NAP 6 Figuur 2: Illustratie met verloop van het streefpeil over de Maas. 4 Stuwpeil (de waterstand, boven de stuw) + waterstandvariaties/windopzet/translatiegolven 0,30 meter + windgolven/scheepsgolven 0,50 meter / 0,60 meter (inclusief reflectie). 5 Streefpeil is het peil dat pas ontstaat in toestand van rust (als er geen stroming meer is). 6 NAP = Normaal Amsterdams Peil

36 1.2.3 Scheepsstoten Als randvoorwaarde in dit onderzoek is opgenomen dat een sluisdeur een scheepsstoot niet kan incasseren. Uit berekening volgt, dat als de rekenregel in de ROBK6 7 art gebruikt wordt om de stootbelasting te bepalen, dusdanige momenten optreden dat deze niet opgenomen worden. Het gevolg is dat lokaal bezwijken optreedt. In bijlage 1 is een berekening van optredende momenten ten gevolge van scheepsstoten geplaatst. Een beheersmaatregel voor het bezwijken van de sluisdeur door scheepsstoten is het aanbrengen van een ketting tussen de kolkwanden. Deze ketting zakt bij het doorvoeren van een schip door de kolk Inlaatschotten Inlaatschotten (of ringkettingen) worden in het verdere onderzoek in eerste instantie op exact dezelfde positie aangehouden als in de bestaande situatie. Hierdoor wordt gegarandeerd dat de nivelleercapaciteit gelijkwaardig is. Ook is de verzwakking in de sluisdeur, bij gelijke positie, evenwaardig. Bij een eigen ontwerp worden de nivelleeropeningen zodanig geplaatst dat de nivelleercapaciteit evenwaardig aan het originele ontwerp is Randvoorwaarden met betrekking tot de steunpunten De Steunpunten van de sluisdeur kenmerken zich door een ondertaats en een bovenhals. Hier wordt verder in dit verslag op ingegaan. In de rekenmodellen is de veerstijfheid van de kolk meegenomen en voor iedere situatie gelijk. In bijlage 2 is de veerstijfheid van de kolk berekend. In dit onderzoek is voor ieder ontwerp van een sluisdeur de steunpunten gelijk. Hierbij is in staal een schoen ontworpen om de krachten in te leiden in de ondertaats. Er wordt aangenomen dat in ieder ontwerp deze schoen dezelfde dimensies heeft. Ook wordt er vanuit gegaan dat de schoen in iedere situatie sterk genoeg is. Eventuele lastige detailberekeningen worden hiermee voorkomen. Een onderbouwing van deze keuze is dat de grote van de steunpunten op de volume-inhouden, en daarbij behorende vergelijkingsgrootheden, relatief verwaarloosbaar is ten opzichte van het totaalvolume. 1.3 Analyseren huidige ontwerp sluisdeuren In dit gedeelte wordt een constructieve analyse uitgevoerd op de sluisdeuren zoals deze hedendaags gebouwd worden. Door de aannemer worden de bestaande stalen sluisdeuren vervangen door nieuwe stalen sluisdeuren. Er wordt in dit hoofdstuk onder ander onderscheid gemaakt tussen drie groepen. De eerste groep is voor de constructieve elementen (hoofddraagconstructie). De tweede groep voor de secundaire dragende elementen, en de derde groep is de tertiaire groep waarin niet constructieve elementen worden geplaatst. 7 Richtlijnen voor het Ontwerpen van Betonnen Kunstwerken. Pagina 31

37 1.3.1 Constructief systeem Het constructieve systeem van de stalen sluisdeur kenmerkt zicht door een dunne, waterdichte, stalen voorplaat die verbonden is door een raster van verticale liggers met een open stalen achterplaat. In de achterplaat zijn dusdanig sparingen aangebracht dat er torsieverbanden zijn ontstaan. Deze torsieverbanden verhinderen torderen van de sluisdeur. De voorplaat van de sluisdeur is continue en waterdicht. Op deze voorplaat zijn stalen lipjes en U-profielen aangebracht om voorhout en zijhout te plaatsen. De houten delen zorgen door overbrengen van geconcentreerde krachten. Het raster van profielen tussen de voor- en achterplaat bestaat uit kleinere liggers en grote liggers. De grote liggers vormen het hoofdraster, en de kleinere liggers zijn aangebracht om lokaal bezwijken van voorplaat te voorkomen. De hoofdliggers hebben een hoogte van 800mm. Dit zorgt ervoor dat de totale dikte van de sluisdeur +/- 825mm is (incl. voor en achterplaat). In Figuur 3 is een afbeelding geplaatst van de complete stalen sluisdeur. Figuur 3: Complete sluisdeur; links de voorzijde, rechts de achterzijde. Op de sluisdeur is een bordes aangebracht. Dit bordes bestaat uit railingen bevestigd tegen aan een bordesplaat die via een onderconstructie zijn belasting verticaal op de sluisdeur afdraagt. In de voorplaat van de sluisdeur zijn inlaatschotten aangebracht (ringkettingen). Deze inlaatschotten geven het sluiscomplex de mogelijkheid om via openstelling van deze schotten het waterpeil in de kolk te nivelleren. In totaal zijn er vier inlaatschotten geplaatst. Deze zijn aan de onderzijde van de sluisdeur geplaatst omdat hier de waterdruk groter is, en hierdoor nivelleren beter gaat. In totaal zijn vier openingen geplaatst, dit omdat het creëren van twee, of zelfs één opening een dusdanig grote verzwakking met zich meebrengt dat lokaal bezwijken, van de sluisdeur door instabiel worden van de achterliggende liggers, een gevaar vormt. De inlaatschotten hebben een breedte van 2910mm bij een hoogte van 950, en 850mm. Op de voorplaat, voor de inlaatschotten, zijn stalen golfbrekers geplaatst. Deze golfbrekers hebben de functie om inkomend water te breken, en hierdoor te voorkomen dat deze turbulent wordt. Het gevaar van niet turbulent water is dat het lokaal grote krachten kan veroorzaken door zijn stroomrichting. De golfbrekers zijn opgebouwd uit kleinere U-profielen. In Figuur 4 is meer detail gelegd op de inlaatschotten met bijbehorende constructieve elementen.

38 Hydraulische beweegbare stangen Doorkoppeling stangen Inlaatschot Voorzijde Achterzijde Figuur 4: Sluisdeur met detail gelegd op de inlaatschotten. Kenmerkend voor de inlaatschotten is dat deze aangedreven worden door middel van hydraulisch gestuurde stangen. Deze hydraulisch gestuurde stangen worden beschermd door een half ronde buis. De inlaatschotten worden door deze besturing allen tegelijk geopend bij nivelleren. In bijlage 3 is een overzicht geplaatst waarin de sluisdeur systematisch wordt uitgekleed. Hierin wordt per illustratie een gedeelte van de sluisdeur verwijderd, waardoor aan het einde van de compositie een goed overzicht is van de daadwerkelijke draagconstructie en hoe deze tot stand is gekomen Geometrie. De afmeting van de sluisdeur is 8900mm x 7990 mm x 825mm (bxhxd). Hierbij staan de puntdeuren onder een hoek van 18 graden tegen elkaar aan. (8450/2816 = 1:3). Zie figuur 5. Figuur 5: Geometrie van de bestaande sluisdeuren. Pagina 33

39 1.3.3 Invloed geometrie op krachtswerking. In de literatuur (Rijkswaterstaat, Ontwerpen van schutsluizen, 2000) wordt veelal geschreven dat de verhouding 1:3 leidt tot een sluisdeur waarin de krachtswerking optimaal is. Dit gegeven wordt veelal niet, of slecht, onderbouwd. Om na te gaan wat het effect is van de sluithoek van een sluisdeur is een rekenmodel opgesteld waarin hiermee gevarieerd wordt. Gekozen is om te beginnen met een hoek van 45 graden (1:1) en deze af te laten nemen met 5 graden, tot een sluithoek van 5 graden. Hierbij wordt per situatie opgesomd wat de optredende normaalkracht en moment is. In Figuur 6 is aangegeven hoe het rekenmodel is opgesteld. Figuur 6: Rekenmodel voor bepaling optredende krachten onder variabele sluithoek. Gebleken is dat de optimale sluithoek inderdaad 1:3 bedraagt, onderbouwd kan worden. In grafiek 2 is op de verticale as het optredend moment geplaatst, tegenover op de horizontale lijn de sluithoek. Hierbij is, op de verticale as, het 2 e orde moment opgeteld bij het 1 e orde moment. Het 2 e orde moment is gevonden door de vervorming te vermenigvuldigen met de optredende normaalkracht. Hierbij is een vervorming van 1:125 van de overspanning verondersteld. In Grafiek 2 is met een blauwe lijn de verhouding tussen het optredend moment en de sluithoek geplaatst. Een minimaal optredend moment wordt behaald bij een sluithoek van 30 graden. Echter neemt de verlenging van de sluisdeur (dus ook materiaalgebruik) bij een grotere hoek toe. Deze verhouding is aangeduid met een rode lijn (in meters op de verticale as). Een snijpunt ontstaat bij een hoek van 22 graden. Afhankelijk van de situatie (stijfheid deur vervorming 2 e orde effect) is het waarschijnlijk dat een sluithoek van 1:3 optimaal is. Grafiek 2: Resultaat onderzoek sluithoek op optredend moment.

40 1.3.4 Scheiden van constructief / niet constructieve delen In dit hoofdstuk wordt onderscheid gemaakt tussen de drie, eerder genoemde, constructieve groepen. Het doel van deze scheiding is om voor alle constructieve elementen een kader te creëren. Dit kader geeft aan hoeveel materiaal effectief gebruikt is om de weerstand te bieden aan de optredende krachten. De niet constructieve elementen worden, in verdere vergelijkingen, in dit verslag buiten beschouwing gelaten. Dit omdat deze verondersteld worden in iedere ontwerp gelijk te zijn. Als voorbeeld zullen hydraulische systemen, voor de nivellering, niet wijzigen in volume bij een verandering van constructief systeem. Dit mits de randvoorwaarde dat de positie van de inlaatschuiven vast ligt. In Tabel 3 is onderscheid gemaakt tussen alle elementen. Hierbij zijn deze verdeeld in de groepen: hoofddraagconstructie, secundaire constructie en de tertiaire constructie. De groep secundaire constructie is niet direct dragend, maar aangebracht als lokale versteviging. Hoofddraagconstructie Secundaire constructie tertiaire Onderdeel Volume Oppervlakte Volume Oppervlakte groep Voorplaat 0, ,79 Achterplaat 0,724 72,45 Grote verticale liggers 0, ,68 Randversteviging 0,194 21,87 Uitlaatschotten 0,11 10,2 Kleine verticale liggers 0,131 30,25 Inlaatschotten 0,44 52,93 Plooiverstevigers 0,03 20,49 Bevestigingswerk uitlaatschijf x Voor, - Zijhout x Lipjes en U-profielen x Golfbrekers x Hijsankers Totaal 2, ,92 0, ,74 x Tabel 3: Volume/oppervlakte eenheden behorend bij een stalen sluisdeur. De hijsankers, golfbrekers, lipjes en U-profielen op de voorplaat, het voor- en zijhout en het bevestigingswerk voor de uitlaatschuif is in de tertiaire groep geplaatst. Dit omdat al deze onderdelen op dezelfde wijze worden aangebracht in een constructief ontwerp in beton, en dus geen invloed uitoefenen in een vergelijking tussen constructief ontwerpen met verschillende materialen. Het totale, uitgeklede volume van de stalen sluisdeur, is gelijk aan 3,231m 3, hierbij is de totale oppervlakte gelijk aan 437,66m 2. De oppervlakte van de stalen deur is van belang voor het te verven oppervlakte. In Grafiek 3 is de materiaalverdeling, zoals deze in de vorige tabel Is opgezet, geïllustreerd. Hieruit is af te lezen welke onderdelen van de stalen sluisdeur veel materiaal bevatten. Pagina 35

41 Grafiek 3: Materiaalverdeling stalen sluisdeur Informatie over steunpunten/details Zoals eerder vermeld bestaan de steunpunten, in zowel Sambeek en Belfeld, uit een ondertaats aan de onderzijde, en een halsbeugel aan de bovenzijde. Om dit te verduidelijken zijn foto s 8 t/m 12 toegevoegd. (Rijkswaterstaat, Ontwerpen van schutsluizen, 2000) Foto 8: (L) Halspen van de puntdeur van Middensluis. Foto 9: (R) Halsbeugel van de puntdeur van de tweede sluisdeur te Lith. Foto 10: (L) Taats van de puntdeur van Middensluis te IJmuiden. Foto 11: (R) Taatskom van de puntdeur van Middensluis te IJmuiden.

42 1.3.6 Sommatie van eigen gewicht Om naderhand een uitspraak te doen over de invloed van het gewicht van een variant, is voor iedere variant een opsomming nodig. Voor berekening van de stalen variant wordt een soortelijke massa van 7850kg/m3 aangehouden voor staal. Hierdoor komt het gewicht van de sluisdeur, zoals deze is opgesomd in Tabel 3, (hoofddraagconstructie en secundaire constructie), uit op kg. Afgerond is dit gelijk aan 25,4 ton. 1.4 Energiebehoefte Zoals in het literatuuronderzoek (Reitsema, 2011) aan bod is gekomen, kunnen constructies vergeleken worden op basis van de energiebehoefte tijdens de gehele levenscyclus. Hiervoor is de term embodied energy ofwel belichaamde energie geïntroduceerd. De belichaamde energie wordt gedefinieerd als de som van de energie input (brandstoffen/energie, materialen, human resources enz.) die in het werk werd gebruikt om een product te maken; dit vanaf het moment van de winning en raffinage van de materialen, transport, fabricage, montage, installatie, demontage, en uiteindelijk de afbraak en/ of ontbinding. De belichaamde energie methode is een boekhoudkundige methode die tot doel heeft het vinden van de totale som van de energie die nodig is voor een hele levenscyclus van het product. (Wikipedia) Deze methode biedt mogelijkheden om de constructiemethoden in deze scriptie naast elkaar te leggen en een vergelijking op te stellen voor de energiebehoefte. Aangezien duurzaamheid hedendaags goed in de picture staat, is de embodied energie een goede term om een stalen sluisdeur te vergelijken met een betonnen variant, op het gebied van duurzaamheid. Een berekening naar embodied energie vereist dat de inhoud van alle volume-elementen bekend is. De eenheid van embodied energie is GJ/m 3 waarin GJ gelijk staat aan Giga-joule 8 (Giga=10^9) Herverfperiode Het maken van vergelijkingen is altijd gebonden aan aangenomen parameters. Voor het berekenen van de embodied energie, behorend bij de constructieve elementen van de sluisdeur, is het nodig om een herverfperiode te definiëren. De herverfperiode is het tijdsbestek waarin de sluisdeur opnieuw dient te worden geverfd. Hiervoor is een niet onderbouwde, maar wel realistische tijd van 15 jaar aangehouden Dikte van verflaag Evenals de herverfperiode moet een dikte van de verflaag gedefinieerd worden om de inhoud van het verf te benaderen. Hier is een realistische waarde voor aangenomen dat 8 vierkante meter met 1 liter verf behandeld kan worden Soortelijk gewicht verf Het soortelijk gewicht van verf wordt in dit verslag vastgesteld op 1,6 g/cm3 bij 20 graden Celsius. 8 De joule is gedefinieerd als de energie die nodig is om een object te verplaatsen met een kracht van 1 newton over een afstand van 1 meter. Pagina 37

43 1.4.4 Levensduur De levensduur is de enige parameter die geen vaste waarde heeft. In eerste instantie zal deze parameter op 100 jaar worden gehouden. Nadien kan er met deze parameter worden gevarieerd opdat er een evenwichtssituatie ontstaat. Uit deze evenwichtssituatie kan een betrouwbaarheid van de ingevoerde parameter worden afgeleid Omrekenfactor naar CO2 Om de berekening van volume naar embodied energy een tastbaardere wending te geven, wordt de eenheid Giga-Joule omgezet naar een CO 2 uitstoot in ton. De uitstoot in CO 2 zal vervolgens omgezet kunnen worden naar een bewegingsenergie. Het omzetten van GJ naar CO 2 is echter niet eenvoudig. Dit omdat verschillende soorten energie (olie, wind, zonne-energie, kernenergie enz.) verschillende hoeveelheden koolstofdioxide uitstoten. De werkelijke uitstoot in CO 2 is dus sterk afhankelijk van de brandstof die de energie levert. De Australische regering heeft om dit probleem op te lossen een wereldwijd gemiddelde van ton CO 2 = 1 GJ opgesteld. (Wikipedia) Vergelijkingseenheid Om de vergelijking op duurzaamheid minder abstract te maken, en tastbaardere gegevens te creëren, wordt in dit verslag een omrekening gemaakt van ton CO 2 (voortvloeiend uit GJ) naar autokilometers. Er is bekend hoeveel CO 2 een gemiddelde auto uitstoot, dus kan er omgerekend worden naar een afstand die met een gemiddelde auto afgelegd wordt om een evenredige uitstoot te produceren. De gemiddelde CO 2 uitstoot van een nieuw verkochte personenauto in 2009 is 147gr/km. (Natuur en Millieu) Berekenen embodied energie constructief ontwerp zoals bestaand Met alle informatie kan een berekening van de embodied worden bepaald voor de stalen sluisdeur. Hierbij worden de brongetallen gehanteerd zoals deze zijn opgesomd in Tabel 4. (Reitsema, 2011) Materiaal E.E (MJ/kg) E.E (MJ/m 3 ) Staal 0% recl. 32, Staal 25% recl. 25, Staal 50% recl. 18, Staal 75% recl. 11, Staal 100% recl. 4, Verf 0,0904 x Tabel 4: Brongetallen embodied energy staal, gerecycled staal, en verf. Verschillende mogelijkheden zijn, met betrekking tot het percentage gerecycled staal, gesommeerd. Hierbij moet in acht worden genomen dat het niet altijd bekend is of gerecycled staal geleverd wordt of niet. Kwaliteitsverschil treedt niet op, dus het is geheel aan de fabrikant hoe het recyclingbeleid is. In de komende vergelijking worden daarom verschillende mogelijkheden beschouwd op basis van het eerder berekende volume van de constructieve elementen in de stalen sluisdeur. Hedendaags is 30% van het geproduceerde staal, gerecycled staal. (Bouwen met staal)

44 In Tabel 5 en Tabel 6 is berekend wat de belichaamde energie is, met als input de waarden zoals deze zijn opgesomd in Tabel 3. Hierbij is onderscheid gemaakt in de belichaamde energie voor alle stalen elementen, en een belichaamde energie voor de elementen die geverfd worden. Bij het bepalen van de belichaamde energie voor elementen uitgevoerd in staal zijn er 5 scenario s berekend. Bij ieder scenario wordt gevarieerd met de hoeveelheid gerecycled staal. Onderdeel Volume Eh Massa Eh R:0% R:25% R:50% R:75% R:100% Eh Voorplaat 0,736 m kg GJ Achterplaat 0,724 m kg GJ Grote verticale liggers 0,866 m kg GJ Randversteviging 0,194 m kg GJ Uitlaatschotten 0,11 m kg GJ Kleine verticale liggers 0,131 m kg GJ Inlaatschotten 0,44 m kg GJ Plooiverstevigers 0,03 m kg GJ Totaal Embodied e. 3,231 m kg GJ Tabel 5: Opsomming belichaamde energie per constructiedeel. Factor Onderdeel Oppervlakte Eh Inhoud Eh Massa Eh R:verf Eh Eh (15 jr) Voorplaat 124,79 m 2 15,6 liter 25,0 kg 2,3 GJ 15,0 GJ Achterplaat 72,45 m 2 9,1 liter 14,5 kg 1,3 GJ 8,7 GJ Grote verticale liggers 104,68 m 2 13,1 liter 20,9 kg 1,9 GJ 12,6 GJ Randversteviging 21,87 m 2 2,7 liter 4,4 kg 0,4 GJ 2,6 GJ Uitlaatschotten 10,2 m 2 1,3 liter 2,0 kg 0,2 GJ 1,2 GJ Kleine verticale liggers 30,25 m 2 3,8 liter 6,1 kg 0,5 GJ 3,6 GJ Inlaatschotten 52,93 m 2 6,6 liter 10,6 kg 1,0 GJ 6,4 GJ Plooiverstevigers 20,49 m 2 2,6 liter 4,1 kg 0,4 GJ 2,5 GJ Totaal Embodied e. 437,66 m 2 54,7 liter 87,5 kg 7,9 GJ 52,8 GJ Tabel 6: Opsomming belichaamde energie per constructiedeel tgv het verven. In de berekening getoond in Tabel 6 is in de één na laatste kolom een factor (100/15)= 6,66 gebruikt om het verven van de stalen delen over de komende 100 jaar in rekening te brengen. Deze levensduur van 100 jaar vindt zijn oorsprong in de veiligheidsfactoren die zijn gebruikt om de stalen sluisdeur te toetsen op sterkte, stijfheid, en stabiliteit. Nu bekend is wat de belichaamde energie van de stalen elementen is, en de belichaamde energie van het verven ervan bekend is, worden deze waarden gesommeerd om een totaal te vormen. Dit overzicht staat in grafiek 4 en zal een vergelijkeenheid vormen voor de ontwerpen in beton. Pagina 39

45 Grafiek 4: Belichaamde energie stalen sluisdeur onder variabele recyclepercentages. In grafiek 5 is het equivalent van de belichaamde energie in ton CO 2 berekenend Ton CO2 Giga - Joules Grafiek 5: Belichaamde energie stalen sluisdeuren omgerekend naar uitstoot in ton CO 2. De stalen sluisdeur, zoals die heden vervangen gaat worden, heeft een belichaamde energie van 812 GJ, bij 0% recycling. Omgerekend is dit 79,5 ton CO 2. Hier moet nog een aandeel bijgerekend worden voor het eens in de vijftien jaar verven van de deur, gedurende 100 jaar lang. De totale belichaamde energie van de sluisdeur zonder een aandeel gerecycled staal komt op een waarde van 864,8 GJ wat gelijk is aan 84,7 ton CO 2. Als de vergelijkingseenheid, de gemiddelde nieuwe personenwagen uit 2009 legt een afstand van ( 84700kg / 0,147kg) km. af om dezelfde uitstoot te produceren. Alle eenheden zijn berekend voor een enkele sluisdeur.

46 1.5 Samenvatting eerste hoofdstuk Nu zowel de scope van het project, de randvoorwaarden, en de stalen sluisdeur zijn geanalyseerd wordt een samenvatting van het eerste hoofdstuk gegeven. Uit inspecties en analyses is gebleken dat sluiscomplex Sambeek/Belfeld verjaard is. Daarom worden de sluisdeuren van de Oost, - middensluizen gerenoveerd. In totaal gaat het om 16 stalen sluisdeuren die vervangen worden. Om de renovatie van de sluisdeuren binnen plan Maasdal te laten vallen, wordt de kerende hoogte van de sluisdeuren verhoogd ten opzichte van de oude sluisdeuren. Sluiscomplex Belfeld en Sambeek zijn een kopie van elkaar. Hierdoor is serie productie van de 16 sluisdeuren mogelijk. Gebleken uit een rekenmodel is dat aanvaring op de sluisdeur onherroepelijk tot dusdanig vervormen, en wellicht tot lokaal bezwijken leidt, dat deze bijzondere belasting niet wordt meegenomen in verder onderzoek. In de literatuur wordt vermeldt dat een sluithoek van 1:3 optimaal is. Dit is met een simpel mechanica model onderzocht. Uit de relatie tussen materiaal, sluithoek, en krachtswerking volgt dat een sluithoek van 1:3 inderdaad optimaal is. Dit is nuttige informatie voor het maken van een eigen ontwerp in hoofdstuk vier. Het volume van de constructieve delen van de stalen sluisdeur is 3,2 m 3. Het volumegewicht is 25,3 ton. Het grootste volume van de sluisdeur bevindt zich in de voor/achterplaat, en de liggers die deze met elkaar koppelen. De embodied energie van de stalen sluisdeur is, bij 0% recycling, is 864,8 GJ. Pagina 41

47 2 SLUISDEUR IN CONVENTIONEEL BETON: EEN EERSTE AFSCHATTING In dit hoofdstuk wordt de sluisdeur, zoals in hoofdstuk één geanalyseerd is, fictief vervangen door een sluisdeur deur in beton. Deze deur in beton wordt uitgevoerd in een betonsterkteklasse C53/65, ofwel het oude B65. Door deze stap wordt een eerste afschatting gemaakt voor een mogelijke dikte met daarbij behorende wapeningsverdeling. Er wordt dus onderzocht of het überhaupt mogelijk is om een sluisdeur te dimensioneren op sterkte. Stijfheid wordt vooralsnog buiten beschouwing gelaten. 2.1 Constructief ontwerp Het constructief ontwerp van de sluisdeur in conventioneel beton, met een sterkteklasse van C53/65, kenmerkt zich door de geometrie in overeenstemming met die van een rechthoekige plaat. In het ontwerp van de betonnen plaat, met een breedte van 8,9 meter en een hoogte van 7,99 meter, zijn een viertal inlaatopeningen geplaatst. Deze openingen zijn evenredig qua positie en afmeting aan de openingen bij het constructief systeem in staal. De openingen dienen ter nivellering van het waterpeil. Indien gewenst kan het waterpeil genivelleerd worden door het open en dichtstellen van de inlaatplaten achter de openingen. Deze inlaatplaten zijn hydraulisch gestuurd. Bij het constructief ontwerpen van de betonnen deur zijn alleen constructieve elementen beschouwd, de overige toevoegingen qua positie en geometrie aangenomen als bij het constructief ontwerp in staal. Bij deze toevoegingen valt te denken aan hydraulische systemen/ het bordes met onderliggende draagconstructie / Voorhout / Golfbrekers e.d. 2.2 Overzicht gehanteerde normen. In dit afstuderen is gekozen om zo veel mogelijk met de Eurocodes te rekenen. De Eurocodes zijn bij begin van het afstuderen, en schrijven van dit hoofdstuk nog niet van kracht. Voor het berekenen van de sluisdeuren in conventioneel beton zijn de volgende normen gehanteerd: EN Deel 1-1: Algemene regels en regels voor gebouwen; NEN 6702 Belastingen en Vervormingen; Eisen aan looppaden over keermiddelen;

48 2.3 Geometrie van de sluisdeur Om inzicht te krijgen in de vorm van een betonnen sluisdeur is een isometrische impressie geplaatst in Figuur 7. Naast het constructieve gedeelte zijn ook het bordes, het voorhout, en de golfbrekers getekend. Deze delen zijn qua positie en afmeting evenredig aan de stalen sluisdeur. Figuur 7: Isometrische tekening van de sluisdeur in beton met hierin ook bordes ed. 2.4 Mechanica schema. In het eindige elementen programma SCIA-ENGINEER zijn berekeningen uitgevoerd om de maatgevende momenten t.g.v. de belastingen te vinden. In Figuur 8 is het mechanicaschema voor de plaatberekening geplaatst. In dit rekenmodel is de plaat gekanteld ten opzichte van de werkelijkheid. Aan de linker kant van de plaat is een star steunpunt in de z-richting (in figuur naar onderen) geplaatst. Dit steunpunt ontstaat door het zijhout. In de x-richting (naar links in de figuur) is een steunpunt met veerstijfheid aangebracht. Deze veerstijfheid vloeit voort uit de vervorming van de kolk ten gevolge van de normaalkracht in de deur. Aan de onderkant van de sluisdeur is een starre oplegging in de z-richting aangebracht welke de oplegging tegen de drempel in het model meeneemt. Aan de rechter kant van de sluisdeur is een ondersteuning onder een hoek aangebracht, deze ondersteuning is gemaakt om de aansluiting tegen de andere sluisdeur in het model aan te brengen. Om deze lijnondersteuning te creëren zijn er een reeks knopen gemaakt waarop ondersteuning onder een hoek is aangebracht. Tot op heden is het niet mogelijk om in SCIA een lijnondersteuning te roteren. Het eigen gewicht van de sluisdeur is automatisch bepaald, en in de Y-vector aangebracht. Pagina 43

49 x z y Figuur 8: Mechnica model ingevoerd in SCIA-ENGINEER. 2.5 Belastingen op sluisdeur Om de betonnen sluisdeur doorrekenen is het nodig om de maatgevende belastingen te kennen. In dit hoofdstuk wordt een opsomming van deze gegeven. Ook worden de groottes van de optredende momenten opgesomd. In een volgend hoofdstuk wordt getekend hoe deze krachten zijn aangebracht. De belastingen die op de sluisdeur zijn aangebracht stroken zo veel mogelijk met de belastingen die de constructeur van de stalen sluisdeur heeft gebruikt. Hierdoor is de uiteindelijke vergelijking zo nauwkeurig mogelijk Belasting ten gevolge van waterdruk Bij het opstellen van de rekenmodellen zijn twee situaties voor de waterdruk benaderd. Situatie één is bij een maximaal verval, en situatie twee is bij het schutpeil. Het schutpeil is de waterstand waarbij geschut mag worden. Diverse sluizen schutten niet wanneer de waterstand bij één van de deuren, boven en/of onder een bepaald peil komt Waterdruk ten gevolge van maximaal verval In Tabel 7 is berekend wat het maximale verval is bij de sluis in Belfeld. Het maximale verval in Sambeek is bijna gelijkwaardig. Tabel 7: Bepalen maximaal verval Belfeld.

50 Het maximale verval treedt op wanneer de kolk aan een zijde vol is gelopen en hierbij niet gestuwd wordt. In Figuur 9 is schematisch een doorsnede getekend over de kolk. Hierbij is in het blauw de waterlijn aangegeven, dit is uitvergroot naar een belastingmodel in Figuur 10. In dit belastingmodel is tevens de situatie, zoals deze voordoet in Sambeek, getekend. In Sambeek is de waterkerende hoogte lager, bij een hoger waterpeil aan de achterzijde van de sluisdeur. Figuur 9: Doorsnede sluis met aangegeven waterlijn. Figuur 10: Maximaal verval bij zowel situatie Belfeld als situatie Sambeek. Om te voorkomen dat twee rekenmodellen opgesteld moeten worden om maatgevende momenten te vinden, worden een vereenvoudiging aangebracht. Deze houdt in dat de maximale waterstand, aan de hoogwaterzijde, van situatie Belfeld, gecombineerd wordt met de laagwaterstand van Sambeek. Op deze manier wordt verzekerd dat de sluisdeur voldoet aan beide situaties, en zo dus repetitie mogelijk blijft voor alle sluisdeuren. De waterdruk welke op de inlaatschotten staan wordt afgedragen aan de randen hiervan. In het rekenmodel is een lijnlast aangebracht op deze randen. Deze lijnlast is gevonden door de belasting op de inlaatschotten, middels de vloeilijnentheorie, te verdelen over de randen. Pagina 45

51 Figuur 11: Maximaal verval aangebracht op het rekenmodel Schutpeil Het schutpeil is de waterstand waarbij gestut mag worden. Bij deze situatie is de waterstand aan de hoge kant lager dan het maximaal verval. Bij de lage water zijde is de waterstand hoger dan bij de situatie van het maximale verval. De situatie van het schutpeil kan een groter moment in de sluisdeur opleveren dan het maximaal verval. Daarom is ook dit belastingmodel meegenomen in de berekening, en net zoals het maximaal, een maximale situatie van beide als model opgesteld. Figuur 12: Schutpeil bij zowel situatie Belfeld als situatie Sambeek Wind bij maximaal verval De windbelasting waarmee gerekend wordt, bij een maximaal verval, bestaat uit windzuiging aan de lage waterzijde. Hier wordt een windformfactor van 0,4 voor gebruikt om de stuwdruk mee te vermenigvuldigen. De stuwdruk is bepaald in gebied 3 in een onbebouwde omgeving bij een hoogte van vijf meter. prep = Cdim * Cindex * pw prep = 1 * 0,4 * 0,55 = 0,22 kn/m 2

52 2.5.2 Wind bij schutpeil Bij de waterstand gelijk aan het schutpeil is het naast een windzuiging ook mogelijk dat er winddruk optreedt. Hiervoor is een windvormfactor van 0,8 opgenomen. prep = Cdim * Cindex * pw prep = 1 * 0,8 * 0,55 = 0,44 kn/m Eigen gewicht bordes Het eigen gewicht van het bordes is een verticale belasting van 1.0 kn/m 1 die als volgt is opgebouwd: Leuningregels 6st x 0,04 kn/m 1 = 0,24 kn/m 1 Leuningstijlen (2st x 1m 1 x 0,05 kn/m 1 ) / 3m (h.o.h) = 0,03 kn/m 1 UNP-profielen 2st x0,15 kn/m 1 = 0,30kN/m 1 Roostervloer 0,30kN/m 2 x 1,4m 2 = 0,42 kn/m Personen op bordes Conform Eisen aan looppaden over keermiddelen artikel tabel 9 categorie d geldt dat een gelijkmatig verdeelde belasting van 3.0 kn/m1 aangebracht dient te worden Aanhangend ijs Wanneer het water in de kolk bevriest kan het voorkomen dat er ijs aan de deur gaat hangen (Rijkswaterstaat, Ontwerpen van schutsluizen, 2000). Hiervoor is een belasting aangehouden van 0,05 kn/m 2 verticaal. Aan weerzijden van de sluisdeur kan ijs hangen, dit resulteert dus in een belasting van 0,10 kn/m 2. In Figuur 13 is geïllustreerd hoe aanhangend ijs is aangebracht in het rekenmodel. Figuur 13: Aanhangend ijs aangebracht in rekenmodel. Pagina 47

53 2.6 Belastingcombinaties Vier belastingcombinaties zijn opgesteld, hiervan zijn er twee in de UGT en twee in de BGT. De opgestelde combinaties en bijbehorende veiligheidsfactoren zijn opgesomd in Figuur 14. Belastingcombinaties UGT1 UGT2 BGT1 BGT2 BG1: Eigen gewicht 1,2 1,2 1 1 BG2: Maximaal verval 1,25 x 1 x BG3: Personen op bordes 1,2 1,2 1 1 BG4: Eigen gewicht bordes 1,5 1,2 1 1 BG5: Wind bij schutpeil x 1,5 x 1 BG6: Aanhangend ijs 1,5 1,5 1 1 BG7: Schutpeil x 1,25 x 1 BG8: Wind bij maximaal verval 1,5 x 1 x Figuur 14: Opsomming belastingcombinaties met veiligheidsfactoren. 2.7 Materiaalmodel en type berekening De berekening uitgevoerd in SCIA is een fysisch en geometrisch lineaire berekening. Hierbij is isotoop materiaalgedrag verondersteld, en een elasticiteitsmodules in rekeningen gebracht van 38500MPa met een Poisson 9 verhouding van 0.2. De ingevoerde SCIA-gegevens zijn in bijlage 4 geplaatst 2.8 Eerste afschatting handmodel Om de uitkomsten van het eindige elementen model te verifiëren is een versimpelde handberekening gemaakt. Hierbij is gebruik gemaakt van de methode Marcus (D.vandePitte, 1979). Berekend is een driezijdig opgelegde plaat met een afmeting van b=9000mm, h=8000mm. Het model dat gebruikt wordt verschilt van het werkelijke model. Dit omdat de inlaatschotten, en de ondersteuning aan de zijde waar de sluisdeur door de tegenliggende sluisdeur wordt gesteund, niet handmatig in rekening worden gebracht. Deze eerste afschatting is dus een ruwe afschatting, waarbij in acht genomen wordt dat de uitkomst van het eindige elementen model af kan wijken van het handmodel. In beide richtingen van de plaat (x,y) wordt een functie voor de doorbuiging opgesteld, daarna wordt aan de hand van deze functies bepaald welke richting het meest stijf is. Vervolgens wordt een factor berekend waarmee de momentensom wordt gereduceerd. Dit gaat als volgt: Optredende maximale doorbuiging in de x-richting bij ligger op twee steunpunten: (snede horizontaal) Optredende doorbuiging in de y-richting bij een ingeklemde kolom: (snede verticaal) 9 De Poisson-factor is een materiaalconstante die beschrijft hoe een materiaal reageert op een trek- of drukbelasting, namelijk welke rek er loodrecht op de trekrichting ontstaat. (dwarscontractie).

54 Nu kunnen de doorbuigingen aan elkaar gelijkgesteld worden: Opm: De berekende belasting (qx,qy) is het gemiddelde van de vrije belasting uit het maximale verval. Hieraan kan een factor worden ontleend die de stijfheidsverschillen aangeeft: Waarna de optredende momenten in beide richtingen van de plaat worden benaderd: 2.9 Convergentie numeriek model aantonen met verplaatsing Willen we zeker weten dat de oplossing van een EEM berekening convergent is, dan moet deze voldoen aan de convergentie eisen. Door het uitzetten de gevonden doorbuiging tegen een toegepaste netfijnheid, wordt bepaald in welke mate de gekozen netfijnheid convergent is. Vaak treedt in bij netverfijning monotone convergentie op. In Figuur 15 is een monotone convergentie geïllustreerd, de verhouding tussen de verplaatsing en de netijfijnheid kan worden beschreven met een tweedegraads polynoom. Pagina 49

55 Figuur 15: Monotone convergentie in enkele eindige elementen berekening. Naast het aantonen van convergentie is het van belang dat op plaatsen waar hoge spanningsconcentraties optreden gekozen wordt voor een verfijnd net, om de krachten hier goed in te leiden. Het is mogelijk dat op de posities waar het net verfijnd is singulier gedrag optreedt. In Figuur 16 is een test gedaan op convergentie voor het ingevoerde mechanicamodel. Hierin is op de y-as de doorbuiging in mm (positief) gegeven. Op de horizontale x-as zijn het aantal gebruikte elementen geplaatst. Vanaf 200 elementen of meer is de afwijking naar een convergent model slechts klein. Figuur 16: Aantonen convergentie mechanicamodel in SCIA. Een netfijnheid van 0,1meter wordt voor het gehele model aangehouden. Dit omdat uit de convergentietest is gebleken dat deze netfijnheid voldoende fijn is. Het rekenen met deze netfijnheid kost relatief weinig rekentijd (30sec.). In Figuur 17 is een uitvoer van het rekennet geplaatst. Bij de oplegranden van het model is gekozen voor een netverfijning naar 0,05meter. Ook is bij de hoeken van de nivilleeropeningen en de steunpunten een verfijning gemaakt.

56 Figuur 17: Toegepaste netfijnheid in eindige elementen rekenmodel Optredende krachten uit rekenmodel In SCIA-ENGINEER bestaat de keuze om buigende momenten, of wapeningsmomenten op te vragen. Het verschil tussen buigende moment en het wapeningsmoment is het absolute wringmoment. In Figuur 18 wordt dit duidelijk gemaakt. Het wringmoment is aan de plaatranden het groots. Het buigend moment is dikwijls in het midden van de plaat maximaal. In de gearceerde grafiek, in het twee plaatje, is de absolute waarde van het wringend moment per lengte gesommeerd met het buigend moment, dit levert het wapeningsmoment op. (C.S.Kleinman, 2006) Figuur 18: Schematisatie van buigende en wringende momenten in plaat. Pagina 51

57 Optredend wapeningsmoment MDx- Het optredend wapeningsmoment in de x richting is maximaal 3091 knm, hier spreken we echter over singulier gedrag in de eindig elementen berekening. Het werkelijke optredende wapeningsmoment in de X- richting is 320kNm. Dit moment treedt op in het lichtgele gedeelte. Lokaal wordt dit maximale wapeningsmoment bijvoorbeeld tussen de inlaatschotten licht overschreden. De keuze wordt gemaakt daar wapening bij te leggen. Dit omdat het niet rendabel is om de gehele plaat af te wapenen op het hoogste optredende wapeningsmoment. Figuur 19: Wapeningsmomenten in de MDx- richting. Om het verloop van de wapeningsmomenten, in de maatgevende strook, beter naar voren te halen zijn twee sneden over de plaat gemaakt. Deze twee sneden zijn in Figuur 20 geïllustreerd. In deze sneden komt naar voren dat het maximale wapeningsmoment 320kNm is. Aan de plaatrand loopt het zelfs op naar 405kNm, hier gaat bijlegwapening gelegd worden. Figuur 20: Snede waar het grootste moment optreedt in de plaat.

58 Om inzicht te krijgen in posities waar wapening bijgelegd moet worden is een plot gemaakt (Figuur 21) waarbij de legendawaarde van 320kNm als maximum aan is gehouden. Hieruit volgt dat alle waarden hoger dan 320kNm een donkerrode contour krijgen. Deze plaatsen hebben meer wapening nodig dan wat standaard gelegd gaat worden. Figuur 21: Posities waar wapening bijgelegd moet worden Optredende wapeningsmomenten MDy- Evenals de x-richting treden ook momenten op in de y-richting. In Figuur 22 is een plot met deze momenten geplaatst. Figuur 22: Optredende wapeningsmomenten in de MDy- richting. Pagina 53

59 In Figuur 23 is een snede over de plaat gemaakt om te achterhalen hoe groot de wapeningsmomenten zijn. In deze snede is een wapeningsmoment van 106 knm maximaal. 106 Figuur 23: Snede waar het grootste moment optreedt in de plaat. Om te achterhalen waar bijlegwapening gelegd moet worden is een plot (Figuur 24) gemaakt met hierin in het donkerrood aangegeven waar de momenten hoger zijn dan 106kNm. Figuur 24: Posities waar bijlegwapening benodigd is.

60 De posities waar bijlegwapening gelegd moet worden is bekend. Er wordt verondersteld dat op deze posities tot een moment van 320kNm moet worden bijgelegd. In Figuur 25 staat waar bijlegwapening niet meer voldoet. Hier treedt veelal singulier gedrag op. Figuur 25: Posities waar bijlegwapening benodigd is Optredende dwarskrachten Ook de optredende dwarskrachten worden uit het rekenmodel gehaald. De waarde die opgevraagd wordt is de hoofd-grootheid qmax;b. Figuur 26: Optredende dwarskracht aan de rand van de plaat. Pagina 55

61 2.13 Optredende momenten bij 2e belastingconfiguratie. Naast de belastingconfiguratie met hierin een maatgevende waterdruk aangevuld met overige belastingen, bestaat ook een belastingconfiguratie waarbij de sluisdeur zijn eigen gewicht, ten gevolge van transport, op moet kunnen nemen. Hierbij wordt als uitgangspunt gehanteerd dat de plaat bevestigd wordt aan vier hoekpunten voordat er gehesen wordt, dit is de meest negatieve situatie. Naast het eigen gewicht van de plaat is het eigen gewicht (1kN/m 1 ) van het bordes aangebracht. Deze hangt bij transport aan de plaat. Bijbehorend mechanicamodel is getekend in Figuur 27. Figuur 27: Belastingmodel waarin het eigen gewicht van de plaat als belasting optreedt. De optredende momenten in dit belastinggeval zijn afhankelijk van het eigen gewicht van de plaat. Een plaatdikte van 450mm is aangehouden, dit omdat deze dikte een bovengrens gaat vormen voor de doorsnedeberekeningen. Het eigen gewicht is bij een dikte van 450mm 9,6kN/m Optredende momenten in de MDx+ richting In de x-richting zijn de optredende momenten begrensd tot een waarde van 213 knm. Er zijn lokaal velden waar deze waarde overschreden wordt. Echter is dit niet maatgevend voor de gehele plaat. In Figuur 28 zijn de optredende momenten getoond. Figuur 28: Optredende momenten in de MDx+ richting.

62 De lokale velden waarin een wapeningsmoment van 213kNm overschreden wordt zijn in Figuur 29 wederom donkerrood gemarkeerd. Figuur 29: Lokale velden waarin het overschrijding plaatsvindt Optredende momenten in de MDy+ richting In de y-richting is een moment van 168kNm gekozen als representatief voor de grootste oppervlakte van de plaat. Figuur 30 illustreert de optredende momenten in deze richting. Figuur 30: Optredende momenten in de MDy+ richting. Pagina 57

63 Evenals bij eerdere berekeningen is ook in Figuur 31 de overschrijdingszone gemarkeerd. Hier moet wederom bijlegwapening worden aangebracht. Figuur 31: Lokale velden waarin bijlegwapening moet worden gerekend Belastingmodel openen deur Ten gevolge van het openen van de deur treden ook momenten in deze op. Omdat aan beide zijden van de sluisdeur het waterpeil gelijk hoog is, levert dit bij stilstand geen momenten op. Wel ontstaat momenten, aan de uiteinden van de sluisdeur, ten gevolge van welving in het water bij openen. Uit berekening is gebleken dat deze optredende momenten slechts klein zijn. Daarom wordt dit belastingmodel verwaarloosd Sommatie van optredende momenten en dwarskrachten Om een duidelijk overzicht van alle optredende momenten in de UGT te hebben is Tabel 8 gemaakt. De wapeningsmomenten in de BGT zijn, met uitzondering van de veiligheidsfactoren, op dezelfde manier als de UGT berekend en worden later opgesomd. MDx- MDy- MDx+ MDy+ qmax,b Globaal UGT 320 knm 106 knm 213 knm 168 knm 150 kn Lokaal max. UGT 380 knm 225 knm 220 knm 210 knm 325 kn Tabel 8: Optredende wapeningsmomenten en dwarskrachten.

64 2.16 Doorsnedetoetsing. Nu bekend is hoe groot de optredende momenten en dwarskrachten zijn, worden doorsnedetoetsing gemaakt. Het doel van deze doorsnedetoetsing is het achterhalen of de doorsnede gewapend kan worden. Met de doorsnedeberekening wordt onderzocht of het überhaupt mogelijk is om een C53/65 te bouwen. De doorsnedetoetsing is gedaan op basis van de rekenregels voorgeschreven in de Eurocode 2. Hierbij wordt op basis van evenwicht in de doorsnede gezocht naar het bezwijkmoment. De aangehouden dekking op de buigtrekwapening is 50mm. Deze is bepaald op basis van de minimum dekking op basis van milieuomstandigheden met een toeslag voor uitvoeringstolleranties. De gehanteerde Milieuklasse is hierbij XS3 (Wisselend nat en droog) en heeft betrekking op corrosie ingeleid door chloriden. In bijlage 5 is de berekening hiervan toegevoegd. De doorsnedetoetsingen worden allen met een spreadsheet (eigen werk) uitgevoerd. Alleen het resultaat hiervan wordt in dit verslag getoond. In bijlage 6 zijn de doorsnedetoetsingen geplaatst. Als resultaat van de doorsnedetoetsing is een plaatdikte van 430mm gekomen. Indien voor een slankere plaat gekozen wordt is zal dit lijden tot een dusdanige wapeningsverdeling dat de staafafstand, rotatiecapaciteit, of scheurwijdte niet voldoet. In Tabel 9 is opgesomd wat de wapeningsbehoefte per snede is bij het afwapenen van een plaat met een dikte van 430mm. Hierbij wordt voldaan aan zowel de sterkte als de scheurwijdte eis. MDx- MDy- MDx+ MDy+ qmax,b Buigtrekwap. Ø Ø Ø Ø boven en onder As (mm 2 /m) Mu 461 knm 179 knm 250 knm 179 knm 394kN Bijlegwap. niet nodig Ø niet nodig Ø beugels Ø As MU x 250 knm x 250 knm 748kN Tabel 9: Wapeningbehoefte per snede bij een plaatdikte van 430mm. Uit de berekening van de benodigde wapening per snede, zoals hierboven is opgesomd, kan worden bepaald hoeveel wapening in totaal in de plaat aanwezig moet zijn. Hierbij wordt onderscheid gemaakt in de bijlegwapening, en standaard wapening. Laag Lengte staaf Aantal staven m3/m1 m3 reductie netto MDx- 8900mm 59st 0, , , , Mdy- 7990mm 46st 0, , , ,06743 MDx+ 8900mm 59st 0, , , , Mdy+ 7990mm 46st 0, , , ,06743 Sub. Buigtrekwapening 0, Tabel 10: Subtotale behoefte aan buigtrekwapening. Pagina 59

65 De hoeveelheid bijlegwapening is door praktische redenen verhoudingsgewijs bepaald. De bijlegwapening is bepaald door de oppervlakte van de gehele plaat te reduceren tot de benodigde oppervlakte waar bijlegwapening nodig is. In Tabel 11 is een overzicht van benodigde bijlegwapening geplaatst. Laag Lengte Aantal staven m3/m1 m3 reductie netto MDy- Bijleg , , % 0, ,04327 Mdy+ Bijleg , , % 0, ,05061 Tabel 11: Totale aanwezigheid aan bijlegwapening. Uit de doorsnedeberekening volgt dat de aangenomen buigtrekwapening, in combinatie met de 430mm dikke doorsnede, voldoende is om optredende wapeningsmomenten op te nemen. Om de berekening compleet te maken is het nodig om ook de haarspelden en beugels, die nodig zijn voor opnemen van de schuifspanningen, mee te rekenen. Uit doorsnedetoetsing is gebleken dat de aanwezige buigtrekwapening in combinatie met de dikte van het element (430mm) voldoende schuifspanning op kan nemen. De schuifspanning die opgenomen kan worden is 394kN/m 1. Uit berekening blijkt dat deze capaciteit niet overschreden wordt aan de plaatrand. Slechts ter plaatse van de randen bij de inlaatschotten wordt deze overschreden met een waarde van 450kN/m 1. Om de randen te versterkten wordt gekozen om hier beugels aan te brengen met een diameter van 16mm 1 bij een hart op hart afstand van 200mm. Dit levert een dwarskrachtcapaciteit van 748kN/m 1 op. Om de wapeningskorf goed dicht te wapenen is gekozen om aan de plaatranden haarspelden toe te passen met een diameter van 10mm en een staafafstand gelijk aan de afstand van de aansluitende buigtrekwapening. In tabel 12 is de totale hoeveelheid aan beugels en haarspelden geplaatst. Soort Lengte Diameter Plaatrand aantal Inhoud Haarspelden 1269mm 10mm 33,78m1 99 st 0, Beugels 2400mm 16mm 9,9m1 50 0, Tabel 12: Benodigde hoeveelheid haarspelden en beugels. In Tabel 13, en Grafiek 6, is uitgedrukt hoe de wapeningsverdeling zich verhoudt in alle richtingen. Ook is aangegeven hoeveel wapening benodigd is voor het opnemen van momenten, en schuifspanningen. De grootste hoeveelheid wapening is nodig om de doorsnede te laten voldoen in de Mdx- richting. Dit is logisch, aangezien hier de grootste momenten optreden.

66 MDx- 0, Mdy- 0,06743 MDx+ 0, Mdy+ 0,06743 MDy- Bijleg 0, MDy+ Bijleg 0, Haarspelden 0, Beugels 0, Totaal 0, Tabel 13: Totale benodigde wapeningshoeveelheid. Grafiek 6: Benodigde wapeningshoeveelheid. In figuur 32is een illustratie geplaatst waarin de gehele wapeningskorf is geplaatst. In deze illustratie zijn overlappingslengtes, beenlengte van de haarspelden, en andere praktische benodigdheden meegenomen. Uit deze 3D-wapeningstekening zijn de hoeveelheden uit Tabel 13 en Grafiek 6 ontleend. Nivilleeropening Figuur 32: De wapeningskorf zoals berekend in 3d uitgetekend. Pagina 61

67 2.17 Berekenen embodied energie constructief Met alle informatie bepaald in hoofdstuk 2, kan een berekening van de embodied energie worden bepaald. Hierbij worden de brongetallen gehanteerd zoals deze zijn opgesomd in Tabel 14. E.E E.E Materiaal (MJ/kg) (MJ/m 3 ) C53/65 beton 0, Wapeningsstaal 12, Tabel 14: Aangehouden eenheden embodied energie. Doorgerekend heeft het betonaandeel van de sluisdeur een eigen gewicht van (volume inlaatschotten wapening) = ( 31,99m 3 4,19 m 3 0,60 m 3 ) *24 = 652 kn = 65,2 ton. Het wapeningaandeel heeft een eigen gewicht van 0,605 * 78,5 = 47,49 kn = 4,75 ton. Het totale gewicht van de sluisdeur is dus: 69,95 ton. De totale belichaamde energie van het de betonnen sluisdeur bestaat uit een component beton, en een component wapeningsstaal. Het betonaandeel zorgt voor een belichaamde energie van 48,9 GJ. Het aandeel van het wapeningsstaal is 60,46 GJ. De totale belichaamde energie komt uit op een waarde van 109 GJ. Omgerekend is dit gelijk aan 10,7 ton CO 2. Als de vergelijkingseenheid, de gemiddelde nieuwe personenwagen uit 2009, wordt gebruikt levert dit een afgelegde afstand op van: 10734kg / 0,147kg = km. Alle eenheden zijn berekend voor een enkele sluisdeur. Een belangrijk gegeven is dat dit hoofdstuk slechts bedoeld is voor een eerste afschatting. Een rekenmodel is opgezet en getoetst om inzicht te krijgen in de haalbaarheid voor verder onderzoek. Gebleken is dat een betonnen sluisdeur op sterkte kan voldoen, stijfheid is echter geheel buiten beschouwing gebleven. Afsluitend wordt in het volgende hoofdstuk een samenvatting gegeven van hoofdstuk twee Samenvatting tweede hoofdstuk. De geometrie van de stalen sluisdeur is vervangen door een gelijkwaardige geometrie uitgevoerd in beton; De inlaatschotten zijn op dezelfde positie aangehouden als in het constructief ontwerp van de stalen sluisdeur;

68 De maatgevende belasting is de waterdruk ten gevolge van het maximaal verval. Hierbij is een maatgevende combinatie gemaakt die de situatie in Belfeld en Sambeek dekt; Het rekenmodel, in het FEM pakket SCIA-ENGINEER, is opgebouwd uit een plaat met aan de zijde van de kolk een ondersteuning in twee richtingen. Aan de onderzijde van de plaat is een ondersteuning geplaatst die de onderaanslag representeert en aan de andere zijkant een ondersteuning die de andere puntdeur voorstelt; Uit handberekening volgt dat de optredende momenten in een driezijdig opgelegde plaat gelijk zijn aan mx=198,4 knm, en my = 153,0 knm; Er is onderzoek gedaan naar de convergentie-eis van het rekenmodel, gebleken is dat bij toepassing van een netfijnheid van 0,1 meter convergentie goed wordt benaderd; Twee belastingmodellen zijn gedefinieerd. Het eerste belastingmodel is met maximaal verval of schutpeil in combinatie met wind en belasting uit het bordes. Het tweede belastingmodel is een model voortvloeiend uit de transportbelasting; Onderscheid is gemaakt in een BGT en een UGT situatie in het rekenmodel. In de BGT situatie zijn alle veiligheidsfactoren gelijk gesteld aan 1.0; De optredende UGT wapeningsmomenten zijn in de MDx- richting 320kNm en in de MDyrichting 106 knm. In de MDx+ richting 213 knm en in de MDy+ richting 168 knm. Deze waarden stroken slecht met de handberekening wat er op duidt dat de nivelleeropeningen en de randondersteuning onder een hoek grote invloed op de krachtswerking hebben; Een plaatdikte van 430mm in, combinatie met gangbare buigtrekwapening, is voldoende sterk om de optredende momenten en dwarskrachten op te nemen; In de MDx- richting is de meeste wapening nodig om de sluisdeur af te wapenen. 40% van het geheel is in deze richting benodigd; Het totale eigen gewicht van de betonnen sluisdeur is 70 ton; Een belichaamde energie van 109 GJ is benodigd om de sluisdeur zoals in dit hoofdstuk is omschreven te laten voldoen op sterkte; De werkelijkheid is dat de sluisdeur, zoals in dit hoofdstuk omschreven is, niet ingezet kan worden omdat de stijfheid, en daaraan gerelateerde vervorming, niet berekend zijn. Een referentiekader is gecreëerd voor het volgende hoofdstuk waarbij vervorming wel een rol gaat spelen; Pagina 63

69 3 SLUISDEUR MET DUCTAL C170/200 VVUHSB In dit hoofdstuk wordt ingegaan op het ontwerp van een vvuhsb sluisdeur. Om inzicht te krijgen in het gedrag bij belasten van vvuhsb elementen is een rekenmodel opgesteld. Dit rekenmodel noemt men een Multi-Layer model, en is in staat om een M-K diagram op te stellen bij variërende parameters. Het opgestelde rekenmodel is tevens voorzien van een mogelijkheid tot invoeren van buigtrekwapening wanneer de vezelversterking niet voldoende is om een uitwendig moment op te kunnen nemen. Er wordt getracht om na dit hoofdstuk een conclusie te kunnen trekken of het zinvol is om vvuhsb, bij een zelfde constructief systeem als toegepast in Hoofdstuk 2, toe te passen. 3.1 Constructief ontwerp De toegepaste geometrie voor het ontwerp in vvuhsb is exact hetzelfde als het ontwerp zoals in C53/65 uit hoofdstuk twee. Hierdoor zijn alle uitwendige krachten en momenten gelijk aan elkaar en een goede basis voor een vergelijking. Het is misschien voordehand liggender om een constructief ontwerp te maken gebaseerd op een samenhang van vvuhsb-en liggers/profielen gekoppeld aan een waterkerende plaat. Hier is niet voor gekozen. Gekozen is om te rekenen met een vlakke plaat als waterkerend werk. 3.2 Ductal FM vvuhsb Mengsel In de loop der jaren zijn er meerdere fabrikanten met een vvuhsb mengsel op de markt gekomen. Zo heeft VINCI-VICAT het merk BCV (Beton Compisite Vicat) op de markt gebracht. EIFFAGE-SIKA heeft het meer bekende BSI-Ceracem (Beton Special Industriel) ontworpen. En zo heeft BOUYGUEG- LAFARGE-RHODIA 10 het bekende Ductal op de markt gebracht. Ductal is een beton dat goed vloeibaar is en zonder trillen gestort kan worden. Er zijn twee hoofdsoorten Ductal: type FM 11 en type FO 12. In Ductal-FM worden stalen vezels toegepast, in Ductal-FO worden polypropyleen vezels toegepast. Zoals in het literatuuronderzoek (Reitsema, 2011) vermeld staat worden polypropyleen vezels aan een mengsel toegevoegd om brandwerendheid redenen. In Tabel 15 is de samenstelling van het Ductal-FM mengsel geplaatst. (Ductal Lafarge) C35/45 Ductal FM Cement Silicafume (vulstof) Zand 0-2mm Grind Quartzpoeder Staalvezels (2,15%) Water/cementratio 0,4 0,2 Kg/m 3 Tabel 15: Samenstelling Ductal FM in vergelijking tot C35/ Lafarge, Bouygues en Rhodia, zijn 3 Franse producenten die 20 jaar geleden krachten hebben gebundeld. 11 FM = Fibre metallic 12 FO = Fibre organic

70 In dit afstudeerverslag wordt gerekend met het type Ductal-FM, Formulae 3GM2. In bijlage 7 is een productblad opgenomen met hierin de specificaties van het mengsel. In Tabel 16 is een indicatie van de belangrijkste eigenschappen gesommeerd. (Ductal Lafarge) Eigenschap Indicatiewaarde druksterkte Mpa buigtreksterkte Mpa E-modulus Gpa dichtheid 2,5 g/cm3 capillaire porositeit (>10um) met warmtebehandeling 0,5-0,7% zonder warmtebehandeling 1,2-1,6% totale porositeit met warmtebehandeling 1,9-2,8% zonder warmtebehandeling 4,0-6,0% Tabel 16: Eigenschappen beschouwde vvuhsb mengsel. 3.3 Informatie over rekennormen vvuhsb wereldwijd Er zijn talrijke studies uitgevoerd op vvuhsb, dit in verschillende landen over de hele wereld. Dit heeft geresulteerd in vele gepubliceerde rapporten en papers met aanbevelingen voor het ontwerp en de constructieve berekeningen. In Frankrijk is in januari 2002 een interne aanbeveling voor Bétons fibrés à ultra-hautes performances (Association Française de Génie Civil, 2002) ofwel vvuhsb opgesteld en gepubliceerd door AFGC 13 /SETRA 14. Deze aanbevelingen zijn gebaseerd op het gebruik van elementen gebouwd met Ductal. In Japan werd een rapport opgesteld door de JSCE 15. In Australië werd een aanbevelingsrapport specifiek voor Ductal opgesteld door de UNSW 16. In de Verenigde Staten is door de FHWA 17 The Material Property Characterization of Ultra-High Performance Concrete gepubliceerd. Natuurlijk bevatten de vele publicaties overeenkomsten, maar van een echte eenduidigheid in uitgangspunten, benaderingswijze, en resultaten is geen sprake. Opvallend is wel dat in de aanbevelingen opgesteld door JSCE & UNSW, regelmatig wordt verwezen naar de aanbevelingen opgesteld door AFGC/SETRA. Ze zijn daarmee indirect ook toegespitst op het gebruik van vvuhsb met het merk Ductal. Gekozen is om het constructief ontwerp in vvuhsb te toetsen door gebruik te maken van de aanbevelingen opgesteld door de AFGC/SETRA. Waar nodig worden de aanbevelingen aangevuld met rekenregels uit de Eurocode l'association Française du Génie 14 Secrétaire technique du groupe 15 Japan Society of Civil Engineers 16 University of New South Wales 17 Federal Highways Administration Pagina 65

71 3.4 Spanning-rek diagram o.b.v. AFGC/SETRA aanbevelingen In de volgende paragraven wordt het spanning-rek diagram zoals vermeld staat in de Bétons fibrés à ultra-hautes performances ofwel Ultra High Performance Fibre-Reinforced Concretes uitgelegd en onderzocht Oorsprong spanning-rek diagram De basis voor de berekening van een snede belast op buiging wordt gevormd door de σ-ε diagrammen beschreven in de AFGC/SETRA. Hierin wordt zowel in de BGT als in de UGT onderscheid gemaakt in een Strain hardening law als een Strain softening law. In dit onderzoek wordt gerekend met de eigenschappen volgens de Strain hardening law, -ofwel verstevigingsgedrag. De oorsprong van deze keuze vindt zich in de eigenschappen van het betonmengel Ductal-FM met 2,15% vezels opgegeven volgens de fabrikant. Volgens die is de optredende spanning bij een optredende scheurwijdte van 0.3mm groter dan de spanning waarop het beton begint te scheuren. Dus treed: Strain hardening op Spanning-rek diagram in de UGT In artikel 6.3 Ultimate limit states is een σ-ε diagram opgenomen voor de ULS, ofwel de UGT. Hierbij wordt in artikel vermeld dat de volgende fundamentele aannames zijn gemaakt om dit σ-ε diagram te laten gelden: Vlakke doorsneden blijven vlak; Optredende spanningen in de ongescheurde doorsnede zijn evenredig afleidbaar aan de optredende rekken. Een geïdealiseerd σ-ε diagram waarin verstevigingsgedrag optreedt, staat als Figuur 33 vermeld: Figuur 33: Spanning rek diagram vvuhsb in de UGT.

72 Hierin is: σbcu =( 0,85/Υbf ) * fcj fcj = Karakteristieke cilinderdruksterkte = 200N/mm2 113,3N/mm 2 =( 0,85/1,5) * 200 σu1% = σ (w1%) / (K * Υbf) Wordt later in het verslag behandeld ftj = karakteristieke treksterkte = 8 N/mm2 ftj / Υbf 5,33 = 8/1,5 σbtu = σ (w03) / (K * Υbf) K = vezeloriëntatiefactor = 1,25 σbtu = 12 / (1,25 * 1,5) σbtu = 6,4 N/mm2 εe = ftj / (Υbf Eij )) 0, = 8 / (1,5 * 48227) ε03 = (W03 / lc ) + (ftj / (Υbf Eij )) 450/h + 0, 11058=0,3 / (2/3h) + 8 / (1,5 * 48227) ε1% = (W1% / lc ) + (ftj / (Υbf *Eij )) wordt nader benaderd εlim = lf / 4lc 4874/h =13*1000 / 4 *(2/3h) εbc = σbc / (Eij )) 2,35 = 113,3/ (48227)) εu = 3 promille Pagina 67

73 3.4.3 Spanning-rek diagram in de BGT In artikel 6.1 Serviceability limit states is een σ-ε diagram opgenomen voor de SLS, wat gelijk is aan de Nederlandse BGT ofwel Bruikbaarheidstoestand. Een geïdealiseerd σ-ε diagram waarin verstevigingsgedrag optreedt, staat als Figuur 34 vermeld: Figuur 34: Spanning rek diagram vvuhsb in de BGT. In het spanning-rek diagram zoals getekend worden de spanningen, en bijbehorende rekken berekend worden met onderstaande formules. σbc = 0,6 fcj fcj = Karakteristieke cilinderdruksterkte = 200N/mm2 120N/mm 2 = 0,6 * 200N/mm 2 σ1% = σ (w1%) / K wordt nader benaderd ftj = karakteristieke treksterkte = 8N/mm2 σbt = σ (w03) / K 9,6 = 12/1,25 εlim = lf / 4lc 4874/h =13*1000 / 4 *(2/3h) ε1% = (W1% / lc ) + (ftj / Eij ) wordt nader benaderd ε03 = (W03 / lc ) + (ftj / Eij ) (450/h) * 0,110 = (0,3/ (2/3)h ) + (8/ 48227) εe = ftj / (Υbf Eij )) 0, = 8 / (1,5 * 48227) εbc = 2,35 profile

74 3.5 Invloed vereenvoudigen van spanning rek diagram In figuur 33 en figuur 34 staan in de spanning-rek relaties een blauwe lijn getekend. Deze is toegevoegd om het feit dat indien εu1% groter is dan εlim, de lijn in het diagram van ε0.3% rechtstreeks verloopt naar εlim. Dit is het geval bij het gekozen mengsel. Zoals aangegeven in de opgesomde formules op de vorige pagina is εu1% gerelateerd aan w1%. De waarde van w1% heeft volgens art.6.1 een waarde van 0,01 H waarin H = de hoogte van het proefstuk. Volgens art behoort bij het bepalen van de treksterkte van een vvuhsb mengsel beproeving gedaan op een cilinder met een afmeting gerelateerd aan de vezellengte. De vezellengte is in het geval van Ductal-FT 13mm. Conform de aanbeveling moet een proefstuk (cilinder) gebruikt worden met een afmeting van 70x70x280mm. Met dit gegeven kan dus de waarde van ε1% bepaald worden indien ook de hoogte (h) van het element bekend is. De oorsprong van het relateren van de hoogte van het proefstuk aan εu1% in de spanning-rek relatie kan uitgelegd worden aan de hand van Figuur 35. In dit figuur wordt een betonnen staaf belast op een trekkracht. Hierbij kan een spanning-verplaatsing diagram getekend worden dat is opgebouwd uit een relatie die ontstaat door het vervormen van het beton, en een relatie die ontstaat door de opening van de scheur die zal ontstaan. Indien de meetlengte verlengd wordt zal er een grotere vervorming ontstaan ten gevolge van de verlenging in het beton. Hierdoor is het van belang geweest om de parameter hoogte van het proefstuk, wat direct gelinkt is aan de meetlengte te relateren aan εu1%. In Figuur 35 is het principe van de trekstaaf geïllustreerd. (Hordijk, 1991) Figuur 35: Betonnen staaf belast op trek. Om de invloed van de hoogte van het proefstuk verder te verduidelijken is Grafiek 7 toegevoegd. Hierin is getekend wat de invloed is van het veranderen van de meetlengte op het ontstaan van de spanning-verplaatsing relatie. (Hordijk, 1991) Pagina 69

75 Grafiek 7: Effect verandering meetlengte in betonnen trekstaaf op spanning-verplaatsing diagram. Om te bepalen of de waarde van ε1% de waarde van εlim overschrijdt, en dus een rechte lijn getrokken trekken in het spanning-rek diagram geoorloofd is, wordt een parameterstudie uitgevoerd. In deze parameterstudie is gevarieerd met de elementhoogte waar de proefstukhoogte, en de vezellengte gelijk blijven. De elementhoogte komt terug in de term lc = 2/3h. Uit dit onderzoek kan geconcludeerd worden hoe groot de toelaatbare rek in de twee beschreven punten is bij variëren van de elementhoogte. Het resultaat van de parameterstudie is getoond in Grafiek 8.. Grafiek 8: Parameterstudie naar εlim > ε1%. In Grafiek 8 staat de horizontale as gelijk aan de hoogte van het element. De verticale as staat gelijk aan de rek in promille. In de grafiek staat de rode lijn voor de waarde van ε1% en de blauwe lijn staat voor gevonden verhouding van εlim. Te concluderen uit het parameteronderzoek is dat bij de huidige configuratie van het mengsel de waarde van ε1% consequent boven εlim blijft. Dit betekent dat een

76 rechte lijn trekken van εu0,3 naar εlim niet rechtvaardig is. Echter het verschil is van minimale grootte. Daarom is de keuze gemaakt om veel reken/programmeerwerk te besparen omdat het verschil in resultaat minimaal is. Kortom: Er wordt consequent met een rechte lijn van ε0,3% naar εlim gerekend, zie Figuur 36. Figuur 36: Consequent afknotten van spanning-rek diagram. 3.6 Afleiden druksterkte uit beproeving De rekenwaarde van de druksterkte in het spanning-rek diagram is tijdens de BGT: 120 N/mm 2 en in de UGT 113,3 N/mm 2. Deze waarden ontlenen zich aan de druksterkte van het mengsel. In Grafiek 9 is het resultaat van een cilinderdrukproef op het Ductal FM mengsel gegeven (Ductal Lafarge). Hieruit is te concluderen dat de maximale cilinderdruksterkte 200N/mm 2 is. Deze waarde wordt bereikt aan het einde van de elastische tak. De conclusie hieruit is dat de werkelijke cilinderdruksterkte dus hoger is dan de indicatiewaarde opgegeven door de fabrikant. Grafiek 9: Cilinderdruksterke Ductal-FM. Pagina 71

77 3.7 Spanning rek diagram UHSB nader onderzocht In hoofdstuk 3.4 zijn σ-ε diagrammen voor de BGT en de UGT afgeleid. Uit deze afleiding is te concluderen dat het σ-ε diagram mede afhangt van de vezellengte, en de hoogte van het element. Uit de invloed van de hoogte van het element op de bezwijkrek aan de trekzijde volgt dat een hoog element, verhoudingsgewijs minder sterk is dan een laag element. Dit wordt geïllustreerd in Grafiek 10. In deze grafiek is de doorsnedecapaciteit van een balk met een breedte van 1000mm en een hoogte variërend van 350 tot 450mm berekend. Hierbij is gebruik gemaakt van het multi-layer model, dit model wordt in het volgende hoofdstuk uitgebreid besproken. De blauwe punten in de grafiek zijn gebaseerd op een εlim die afhankelijk is van de hoogte van het element. Dus naarmate de hoogte toeneemt, neemt de waarde van εlim af. De rode punten in de grafiek gebaseerd op een εlim die een zelfde waarde behoudt, en gelijk is aan de maximale rek gevonden bij een hoogte van 350mm. In Grafiek 10 komt duidelijk naar voren dat in relatieve zin, een hoog element minder sterk is dan een laag element. Grafiek 10: Vergelijking variabel spanning-rek diagram tegen vast spanning rek diagram. 3.8 Spanning-rek diagram wapeningsstaal Om een element een verhoogde buigtrekcapaciteit te geven kan het nodig zijn om deze te versterken met wapeningsstaal. In dit verslag wordt de spanning-rek relatie voor wapeningsstaal gebruikt zoals deze in de Eurocode 2 staat omschreven. In Grafiek 11 staat deze spanning-rek relatie getekend. Volgens de Eurocode mag met dit diagram op twee manieren gerekend worden. De eerste manier is een bilineaire relatie waar zonder versterking gerekend wordt, en de maximale rek niet gecontroleerd hoeft te worden. Deze methode staat in Grafiek 11 aangegeven met een blauwe lijn. De tweede methode is een relatie waar gebruik wordt gemaakt van een versteviging in de plastische fase. Hierbij wordt de maximale spanning in het staal verhoogd van 435N/mm 2 naar 470N/mm 2. Voorwaarde voor dit model is dat de optredende rek in het betonstaal is gelimiteerd, en gecontroleerd moet worden aan een maximale rek van 5%. In dit onderzoek wordt gerekend met een vloeispanning van 470N/mm 2.

78 Grafiek 11: Spanning-rek relatie van wapeningstaal. 3.9 Modelleren met het Multi-Layer model voor bepalen bezwijkmoment Om het bezwijkmoment van een betonnen element op buiging te bepalen wordt normaliter gezocht naar een maximale evenwichtssituatie. Bij deze evenwichtssituatie geldt dat de som van alle horizontale krachten in de doorsnede gelijk is aan 0kN. Bij optreden van inwendig evenwicht kan iedere optredende kracht vermenigvuldigd worden met zijn afstand tot neutrale lijn (koppel) om het maximale toelaatbare inwendige moment te vinden. Bij een gewapend element uit conventioneel beton, waarbij de trekcapaciteit van het beton verwaarloosd wordt, kan het grootste inwendige moment worden opgenomen als het betonstaal zijn maximale rek behaald. Hierdoor kan een rekenmodel worden opgesteld waarbij met de verhouding drukkracht = trekkracht, de hoogte van de drukzone kan worden berekend. Met de hoogte van de drukzone kan voor zowel de trekkracht als de drukkracht, de koppel, en daarmee het bijbehorende maximale inwendige moment worden berekend. Bij vvuhsb kan het zojuist beschreven rekenmodel niet worden toegepast. Dit omdat bij vvuhsb de trekcapaciteit niet verwaarloosd kan worden. Het aandeel van de vezels op de trekcapaciteit is namelijk te groot om te verwaarlozen. Grafiek 12 is een element met een breedte van 1000mm, en een variabele hoogte te zien wat de invloed is van het verwaarlozen van de trekcapaciteit van vezels in een op buiging belaste doorsnede. Hierbij is er gevarieerd met de elementhoogte. In iedere doorsnede is trekwapening met een hoeveelheid van As: 1963mm 2 (4r25), met een dekking van d=50 mm toegepast. Pagina 73

79 Grafiek 12: Vergelijking bezwijkmoment vvuhsb element met/zonder vezelaandeel. De vezels leveren in een op buiging belaste doorsnede een aanzienlijke bijdrage op de capaciteit hiervan. Hierdoor is het van belang een rekenmodel op te stellen, en te gebruiken, die dit effect meeneemt. Dit kan met een Multi-Layer Model. Een multi-layer model is gebaseerd op drie principes. Figuur 37 demonstreert het eerste principe van het multi-layer model. Het laat zien dat een balk is opgedeeld in twee helften, die verbonden zijn door veren. Iedere veer representeert een smalle laag. De hoogte van de balk kan opgedeeld worden in een voorgedefinieerd aantal lagen, in het gebruikte model is gekozen voor een opdeling in 1000 lagen. Naarmate meer lagen worden gebruikt, is de uitkomst exacter. Er wordt over de gehele hoogte van de balk een lineair elastische rekverdeling aangenomen. Dit houdt in dat het rekverloop over de hoogte beschreven kan worden met 2 onafhankelijke parameters. Deze zijn de hoogte van de betondrukzone (Xu), en de rek aan of de bovenzijde van de balk (εb) of de rek aan de onderzijde van de balk (εo). Figuur 37: Eerste basisprincipe van het multi-layer model. (Hordijk, 1991) Het tweede principe is geplaatst in Figuur 38. Voor iedere veer kan de rek worden bepaald door de gemiddelde rek in de laag te bepalen. Hieruit volgt dat in iedere laag de bijbehorende spanning kan worden bepaald door een relatie aan te leggen met het geldende spanning-rek diagram. Door in

80 iedere laag de optredende spanning te bepalen kan, indien een evenwicht in alle horizontale krachten (som horizontale krachten is nul) ontstaat, een inwendig moment worden bepaald. Figuur 38: Tweede basisprincipe van het multi-layer model. (Hordijk, 1991) Het derde basisprincipe, zoals geschematiseerd in Figuur 39, is dat voor iedere verhouding van ε b en Xu waarin een evenwichtssituatie optreedt, een inwendig opneembaar moment kan worden bepaald. Met deze gegevens kan een diagram worden opgesteld waarin de rek aan de boven/onderzijde tegen het inwendig opneembaar moment kan worden uitgezet. Hieruit kan door middel van de relaties als hieronder omschreven een M-K diagram worden opgesteld. Uit het M-K diagram kan het bezwijkgedrag worden afgeleid: K=M/EI K= ε b / Xu I = 1/12 * b * h 3 Figuur 39: Derde basisprincipe van het multi-layer model. (Hordijk, 1991) Pagina 75

81 Het multi-layer model is geprogrammeerd in Microsoft Excel met toevoeging van Visual Basis programmacode. Het multi-layer model is zo geprogrammeerd dat de eerste variabele, de rek aan bovenzijde (εb ), verloopt van een waarde van 0,1 promille naar 3 promille met stappen van 0,1 promille rek. Bij iedere stap wordt de hoogte van de drukzone gevarieerd van 0mm tot 600mm met een stapgrootte van 5mm. Dit houdt dus in dat er bij iedere configuratie van een ingevoerd element ((3/0,1)*(600/5)) = 3600 situaties worden beschouwd waarin 30 evenwichtstoestanden optreden. Bij iedere evenwichtstoestand wordt deze wegeschreven en toegevoegd aan het M-εb diagram. In Grafiek 13 is de relatie M- εb beschreven. In Grafiek 14 is deze relatie omgezet naar een M-K diagram. In Grafiek 13 is een groene lijn toegevoegd die op de verticale as de hoogte van de drukzone (Xu) in mm laat zien. De zwarte gestippelde lijn is een regressieanalyse uitgedrukt als een tweede graad polynoom welke illustreert hoe het bezwijkgedrag verloopt, met bijgevoegd het R- Kwadraat. Uit deze regressieanalyse wordt geen data ontleend, het is slechts ter indicatie. Voor het verkrijgen van een M-Kappa diagram zijn de gegevens met de constitutieve mechanica regels omgeschreven. Grafiek 13: (L) M-ε b diagram uitvoer. Grafiek 14: (R) M-K diagram uitvoer. Een exactere benadering, dan geprogrammeerd is, zou kunnen worden gemaakt door Xu te laten variëren met 1mm. Dit is echter niet mogelijk in de huidige configuratie doordat het schrijfbereik (capaciteit) van Visual Basics dit niet toelaat. De consequentie hiervan is dat er bij een evenwichtstoestand een maximale afwijking kan ontstaan van Xu =2,5 mm (5mm/ 2). Door het niet exact kunnen vinden van de hoogte van de drukzone is de som van de horizontale krachten (som H) zelden gelijk aan 0. Deze afwijking is in Grafiek 13 toegevoegd met een doorgetrokken rode lijn. Deze rode lijn staat voor de som van de horizontale krachten met een waarde op de verticale as in kn. Deze afwijking behoorlijk lijkt in de grafiek behoorlijk op te lopen, schijn bedriegt echter. Een afwijking van 75 kn ziet er redelijk dramatisch uit, echter als nagegaan wordt wat de invloed van deze afwijking op het moment is, zal dit zeer zelden groter zijn dan 3%.

82 Het multi-layer model is een verplaatsing gestuurd rekenmodel. Doordat het verplaatsing gestuurd is zal er naast het bezwijkmoment ook het verdere bezwijkgedrag zichtbaar worden. In laboratoriumproeven wordt vaak ook verplaatsing gestuurd beproefd. In Figuur 40 is het verschil uitgezet tussen een kracht gestuurd, en een verplaatsing gestuurde beproeving. Hierbij is een staaf op trek belast. Bij situatie a is een kracht gestuurde beproeving uitgevoerd, en bij situatie b een verplaatsing gestuurde beproeving. Figuur 40: Verschil kracht gestuurd en verplaatsing gestuurde beproeving. (Hordijk, 1991) 3.10 Verificatie van het multi-layer model Om meerdere berekeningen uit te kunnen voeren met het multi-layer model is het van belang om het model te verifiëren. De verificatie wordt gedaan op door een gewapend balk door te rekenen. De verificatie wordt uitgevoerd door een vergelijking op te stellen tussen het multi-layer model, een numeriek model in ANSYS, en een handberekening. Het verifiëren met een numeriek model in ANSYS heeft als voordeel dat deze ingezet kan worden in hoofdstuk 4 waarbij een eigen ontwerp in vvuhsb gerealiseerd gaat worden. In dit hoofdstuk wordt verder geen aandacht besteed aan de opzet van het numeriek model in ANSYS. Dit wordt in hoofdstuk 4 gedaan Gegevens voor verificatie: Spanning-rek relatie: UGT, volgens Grafiek 15 Hoogte element: 500 mm Breedte element: 300 mm Buigtrekwapening: As: 4 staven rond 20 = 1256mm 2 (dekking = 50mm) Uitvoer Multi-layer model. De uitvoer van het multi-layer model is in Grafiek 16 en grafiek 17 geplaatst. Pagina 77

83 Grafiek 15: Gebruikte spanning-rek relatie. Grafiek 16: (L) Uitvoer multi-layer model. Grafiek 17: (R) Krachten in iedere laag. In het multi-layer model is de maximale capaciteit van de balk bereikt bij een rek aan de bovenzijde (parameter 1) van 1,2 promille, bij een Xu (parameter 2, groene lijn) van 120mm. De capaciteit van de balk is 379 knm (blauwe lijn). De afwijking in de som der horizontale krachten blijft beperkt. In grafiek 17 zijn de krachten in iedere sectie van de doorsnede opgesomd bij iedere evenwichtstoestand. Er zijn 3 lijnen uitgezet, deze zijn de som van de horizontale kracht in de drukzone (paars), de buigtrekwapening (bruin/oranje), en de horizontale trekkracht die het vezelbeton opneemt (blauw). Bij het oplopen van de rek in de drukzone wordt er evenwicht wordt gevonden door zowel het opnemen van trekkracht in het vezelbeton als trekkracht in het wapeningsstaal. Bij een rek aan bovenzijde van 1 promille gaat de wapening vloeien. Hierna kan er weinig meer kracht worden opgenomen. Bij een oplopende rekverdeling kan het vezelbeton, in de trekzijde, steeds minder kracht opnemen. Dit is waar te nemen door het afnemen van de blauwe lijn in grafiek Numeriek model in Ansys In Grafiek 18 is de curve, gevonden met het multi-layer model, uitgezet tegen numeriek werk in ANSYS. Het ANSYS model is geschreven met fysisch niet lineaire materiaalmodellen. De wapening is toegevoegd aan het rekenmodel door een link element in de nodes (knopen) te koppelen aan de mesh van het beton model. De uitvoer van Ansys is kracht gestuurd. Hierdoor kan er na bezwijken (niet convergent worden van de potentiele energie) geen evenwicht meer gevonden worden.

84 Grafiek 18: Vergelijking multi-layer model en uitvoer Ansys model. Te concluderen is dat de bezwijkcapaciteit van beide rekenmodellen met elkaar overeenkomt. Ook de bezwijkcurve is vergelijkbaar. De bezwijkcapaciteit met het Ansys model is 388kNm. Hierbij gedraagt het numerieke model in Ansys zich minder plastisch. Dit is echter sterk afhankelijk van het aantal gebruikte elementen. Uiteraard zijn er meerdere vergelijkingen gemaakt om het multi-layer model te vergelijken met Ansys. Deze zijn echter niet toegevoegd in dit verslag. In hoofdstuk 4 wordt er meer aandacht besteed aan numerieke modellen in Ansys Handberekening De verificatie met een handberekening wordt uitgevoerd door toepassing van de evenwichtsmethode, waar de krachten in iedere sectie worden berekend doormiddel van de rekverdeling. De rekverdeling wordt bepaald door enerzijds de vaste parameter εb van 1,2 promille (gelijk aan max. in multi-layer). Anderzijds wordt de rekverdeling, evenals de krachten in iedere laag en het opneembaar moment bepaald door Xu. Hieruit volgt dat de vergelijking van het evenwicht wordt opgesteld met als variabele Xu, zodat deze uit de vergelijking opgelost kan worden met als voorwaarde dat de som van de krachten 0 is. Een handberekening wordt uitgevoerd waarbij gebruik is gemaakt van een Excel-oplosser om tot een oplossing te komen. In deze handberekening worden de gebruikte formules als naslagwerk geplaatst. In deze handberekening is onderscheid gemaakt in drie delen in de trekzone. Deel 1 is de elastische capaciteit van het beton, deel 2 is de capaciteit tussen het scheuren van het beton en bezwijken van vezels, en het laatste deel drie is de overgebleven plastische zone in de trekzone. Pagina 79

85 Doorsnede ε-verdeling spanning-verdeling Figuur 41: Overzicht van handverificatiemodel. Berekening van de kracht in de drukzone Nb = ((ε b/1000)*e)*b*1/2*xu Nb = ((1,3/1000)*48227)*0,3*0,5*Xu Berekening van de trekkracht in het wapeningsstaal Ns = ((((((h/xu)-((((h/xu)+ ε b)/h)*d)- εs)/( εpl s- ε s))*δ(σ,pl- σ,el)+ σ,el) *(1/2Ø*1/2Ø*π*aantal staven))/1000 Ns = ((((((500/Xu)-((((500/Xu)+1,3)/500)*60)-2,175)/(50-2,175))*35)+435) *(10*10*3,1415*4))/1000 Berekening in de trekkracht in zone 1 (zie Figuur 42) Nvb1 = (εe/(( ε b+(h/xu)))*h)*b*(ftj/ybf) Nvb1 = (0,11058/((1,3+(500/Xu)))*500)*0,3*(8/1,5) Berekening in de trekkracht in zone 2.1 (zie Figuur 42) Nvb2,1 = (((450/h)/((ε b+(h/xu))))*h)*b*(ftj/ybf) Nvb2,1 = (((450/500)/((1,3+(500/Xu))))*500)*b*(8/1,5) Berekening in de trekkracht in zone 2.2 (zie Figuur 42) Nvb2,2 = (((450/h)/((ε b+(h/xu))))*h)*b*(((ftj/ybf)+((σ(wo3)/(k*ybf)/2)/2 Nvb2,2 = (((450/500)/((1,3+(500/Xu))))*500)*0,3*((5,33+6,4)/2)/2

86 Berekening in de trekkracht in zone 3 (zie Figuur 42) Nvb3 = ((((h/xu)+ ε b)- ε b-(450/h)- ε e)/(( ε b)+(h/xu))*h)*b*( ((σ(wo3)/(k*ybf))+( ((σ(wo3)/(k*ybf))- ((((h/xu)))-(450/h))*(((4875/h)-(450/h))/((σ(wo3)/(k*ybf)))))/2 Nvb3 = ((((500/Xu)+1,3)-1,3-(450/500)-0,11058)/((1,3)+(500/Xu))*h)*b*(6,4+(6,4-((((500/Xu)))- (450/500))*(((4875/500)-(450/500))/6,4)))/2 Formule voor het evenwicht Vervolgens geldt dat: (Nb = Ns + Nvb1 + Nvb2,1 + Nvb2,2 + Nvb3) = 0 Xu oplossen uit de vergelijking Hieruit kan worden afgeleid dat: Xu =119,82mm. OPM: In de huidige configuratie is de spanning in het staal ongelijk aan de rek vermenigvuldigd met elasticiteitsmodules omdat de elastische grens overschreden is bij de aanwezige rek. Het betonstaal vervormd plastisch tot een rek van 5% met daarbij een spanning van 470N/mm 2. Indien de rek in het staal lager is dan de elastische grens dient dit aangepast te worden. Zone 1 Zone 2.1 Zone 2.2 Zone 3 Figuur 42: Gebruikte zones voor bepalen van de trekkracht in het beton. In tabel Tabel 17 is een opsomming gemaakt van de gevonden krachten, per laag, in het multi-layer model en bij de handberkening. Hierbij is ook een afwijking van de kracht bepaald van het multi-layer model ten opzicht van de handberekening. Multi-layer Handberekening Afwijking Xu ,8 0,15% Nb ,5 1,36% Ns -547,99-547,9 0,02% Nvb -619,4-578,6 6,58% Tabel 17: Overzicht van de gevonden krachten in iedere laag. Pagina 81

87 Om te bepalen hoe groot inwendig moment is, moet de kracht in iedere laag vermenigvuldigd worden met de afstand tot de neutrale lijn. De afstand van de neutrale lijn tot het zwaartepunt van de zone waaruit de kracht is berekend volgt uit: Zwaartepunt van de drukzone Zwaartepunt, Nb = (2/3)*Xu Zwaartepunt, Nb = (2/3)*119,82 Zwaartepunt van het wapeningsstaal Zwaartepunt, Ns = (h-d-xu) Zwaartepunt, Ns = ( ,82) Zwaartepunt van zone 1 Zwaartepunt, Nvb1 = ((εe/(ε b+(h/xu)))*h)*(2/3) Zwaartepunt, Nvb1 = ((0,11058/(1,3+(500/119,82)))*500)*(2/3) Zwaartepunt van zone 2.1 Zwaartepunt, Nvb2.1 = (((εu0,3/(ε b+(h/xu)))*h)*1/2)+((εe/(ε b+(h/xu)))*h) Zwaartepunt, Nvb2.1 = (((1,01/(1,3+(500/11982)))*500)*0,5)+((0,11058/(1,3+(500/119,82)))*500) Zwaartepunt van zone 2.2 Zwaartepunt, Nvb2.2 = (((εu0,3/(ε b+(h/xu)))*h)*(2/3))+((εe/(ε b+(h/xu)))*h) Zwaartepunt, Nvb2.2 = (((1,01/(1,3+(500/119,82)))*500)*(2/3))+((0,11058/(1,3+(500/119,82)))*500) Zwaartepunt van zone 3 Zwaartepunt, Nvb3 = h Xu - Z, Nvb1 2*Z, Nvb2.1 Zwaartepunt, Nvb3 = ,82 - Z, Nvb1 2 * Z, Nvb 2.1 Na het vermenigvuldigen van de kracht in iedere laag met het zwaartepunt is in Tabel 18 een opsomming gemaakt van het moment wat dit oplevert, hierbij is een Xu van 119,8mm gebruikt. Multi-layer Hand. Afw. met muti-l ANSYS Afw. Met multi-l M(Nb) 91,36 90,0-1,51% - - M(Ns) 175,36 175,4 0,03% - - M(Nvb) 112,53 105,1-7,06% - - Mu (knm) 379,24 370,5-2,30% 388 2,3 % Tabel 18: Vergelijking uitkomst rekenmodellen vvuhsb. In Tabel 19 en bijbehorend Grafiek 19 is onderscheid gemaakt in de bijdrage van iedere zone op het opneembaar moment volgens de handberekening. Het aandeel van laag Nvb1 is slechts minimaal bij de huidige configuratie.

88 Het aandeel van deze laag kan niet zondermeer verwaarloosd worden in verdere berekeningen. Bij zeer slanke elementen, of elementen zonder buigtrekwapening, zal het aandeel van de laag Nvb1 toenemen. Handberekening M(Nb) 90,00 knm M(Ns) 175,4 knm M(Nvb1) 0,11 knm M(Nvb2) 12,58 knm M(Nvb3) 92,43 knm Grafiek 19: (R)De verdeling van het momentaandeel aandeel per laag. Tabel 19: (L)Opsomming van het momentaandeel in iedere laag volgends handberekening Verklaring van de afwijking tussen handberekening en multi-layer model. Een verschil is waarneembaar tussen een handberekening, een multi-layer model, en een Ansys model. In eerste instantie is het belangrijk te weten waarom er verschil optreed tussen een handberekening welke exact is, en een multi-layer model: 1. Opsplitsen spanning-rek diagram in 1500 punten Het spanning-rek diagram zoals gedefinieerd in het multi-layer model is opgedeeld in 1500 punten. Wanneer een rekverdeling bepaald is, zal de optredende rek in een laag worden gemached met een van de 1500 punten. Kortom, bij de bepaling van de spanning kan een discrepantie met de werkelijkheid optreden. 2. Opstellen van het aantal lagen (1000) Het multi-layer model zoals opgesteld bestaat uit een maximum van 1000 lagen. Indien de constructiehoogte echter lager is zal het aantal lagen in het model gelijk zijn aan de hoogte van het element in mm. De werkelijkheid wordt benaderd bij een oneindig aantal lagen. Naarmate de elementhoogte kleiner is zal de afwijking toenemen. 3. Xu laten itereren met een waarde van 5mm. Doordat er met een hoogte van 5mm geïtereerd wordt met Xu zal er niet altijd een evenwichtstoestand optreden. Het effect hiervan is in een vorig hoofdstuk besproken. Pagina 83

89 3.11 Berekenen capaciteit van Ductal-FM doorsnede onder variabele hoogte Nu met het geverifieerde multi-layer model een doorsnedecapaciteit bepaald kan worden, en bepaald is welke beperkingen hierbij aanwezig zijn, kan een variantstudie worden opgezet. De variantstudie die in dit subhoofdstuk uitgevoerd wordt houdt in dat gevarieerd wordt in geometrie van de sluisdeur zodat de capaciteit in de UGT gelijk blijft (Mu=Md). Door het variëren met de plaatdikte van de sluisdeur is het nodig om ook de toegepaste buigtrekwapening aan te passen om voldoende capaciteit te behalen. Door deze 2 parameters kan een optimum gevonden worden in toegepast materiaal om een veilig en betrouwbaar ontwerp te realiseren. Hierbij moet vermeld worden dat gestreefd wordt naar een zo evenredig mogelijke vergelijking waarin voor ieder constructiemateriaal een optimum weerspiegeld kan worden. De keuze is gemaakt om de dikte van het vvuhsb element te variëren van 175mm, waarbij onevenredig veel buigtrekwapening toegepast moet worden naar een elementdikte van 450mm waarbij geen buigtrekwapening nodig is. Bij elementen waar het nodig is om buigtrekwapening toe te voegen, is gekozen om de diameter hiervan constant te houden. Deze is vastgezet op een staaf met een diameter van 16mm. De staafafstand is variabel. Door de keuze van een contante staafdiameter is de dekking/inwendige arm in ieder model gelijk. Voor de sluisdeur zijn alle richtingen getoetst waarbij in het vorige hoofdstuk optredende moment zijn gevonden. Hiermee wordt bedoeld, de richtingen Mx-,My-,Mx+ en My+. Kortom: Een variantstudie is gedaan waarbij de elementhoogte + bijbehorende buigtrekwapening varieert om te voldoen aan de optredende uitwendige momenten gevonden in Hoofdstuk 2. Het doel hierbij is het vinden van een optimale verdeling in materiaal waarmee voldaan wordt aan de sterkte van de sluisdeur. Na de uitgevoerde analyse is gebleken dat de doorsnedecapaciteit (UGT) van een ongewapende plaat voldoende is om de optredende momenten in de MDy-,MDx+ en MDy+, resp. (213-,168-,106kNm) op te nemen zonder buigtrekwapening bij de doorsnede toe te voegen. Echter in de MDxrichting (320kNm) is wel buigtrekwapening nodig om het optredende moment op te nemen. De relatie tussen de dikte van de sluisdeur en de benodigde buigtrekwapening is geïllustreerd in Grafiek 20. Hierin is te zien dat op de verticale as de dikte van de doorsnede is geplaatst. Deze varieert van 450mm naar 175mm. Bij een dikte van 450mm tot 350mm is geen buigtrekwapening nodig. Bij een dikte van 350mm tot 175mm is wel buigtrekwapening nodig. Een trentlijn is toegevoegd om de relatie tussen dikte en benodigde buigtrekwapening te leggen. Een dikte van 150mm is praktisch niet meer mogelijk, doordat bij doorzetten van de trentlijn zoveel buigtrekwapening aan de doorsnede toegevoegd moet worden dat het praktisch niet maakbaar is. Daarom is gekozen niet verder te gaan dan een dikte van 175mm. Het spanning-rek diagram wat gebruikt is voor het berekenen van de doorsnedecapaciteit is voor iedere berekening gecorrigeerd op de hoogte van het element.

90 Grafiek 20: Benodigde buigtrekwapening in de Mdx- richting om te voldoen aan Md=320kNm Bezwijkmoment van C53/65 met multi-layer model Nu berekend is hoeveel buigtrekwapening bij een variërende dikte van de sluisdeur in vvuhsb nodig is, kan deze vergeleken worden met een sluisdeur in C53/65. Hieruit zal het effect van toepassen van vezelbeton kunnen blijken. Om een evenredige vergelijking te maken is gekozen om ook de bezwijkcapaciteit van de constructie, zoals deze in hoofdstuk 2 berekend is, met een C53/65 mengsel te benaderen met het multi-layer model. Hierbij wordt gerekend dat het beton enige trekcapaciteit heeft (bijna verwaarloosbaar, maar wel meegenomen). Door deze stap te zetten wordt er met zekerheid een vergelijking tussen beide constructiematerialen opgesteld die zo nauwkeurig mogelijk is. In het gebruikte model, is de spanning-rek relatie van het betonstaal onveranderd. De spanning-rek relatie van het gebruikte C53/65 mengsel is geïllustreerd in Grafiek 21. Met het multi-layer model is onderzocht hoeveel wapening nodig is in de betonnen plaat om te voldoen aan de optredende momenten in de richtingen zoals gedefinieerd in hoofdstuk 2. Hierbij is, net zoals bij het vvuhsb mengsel, gebruikt gemaakt van buigtrekwapening met een diameter van 16mm. Door deze keuze is de afstand van neutrale lijn tot hartlijn bij iedere variatie gelijk. Grafiek 21: Werkelijke spanning-rek relatie C53/65 beton zoals gebruik in multi-layer model. Pagina 85

91 In Grafiek 22 is de uitkomst is van de parameterstudie met een mengsel van C53/65 beton geplaatst. De resultaten zijn in iedere richting apart uitgezet. In de richtingen waar grotere uitwendige momenten optreden is meer buigtrekwapening nodig. Bij het bereiken van een elementhoogte van 275mm is gekozen om deze niet verder te verlagen omdat dan onevenredig veel wapening toegepast dient te worden. In de praktijk kan dit niet weggewapend worden. Grafiek 22: Uitkomst parameteronderzoek benodigde buigtrekwapening in C53/65 sluisdeur. Uit Sommatie van alle benodigde buigtrekwapening, voor zowel de sluisdeur in vvuhsb, als in C53/65, is Grafiek 23 gegenereerd. In deze grafiek is met een blauwe lijn aangegeven hoeveel buigtrekwapening nodig is, bij een variabele plaatdikte, als er een vvuhsb mengsel wordt gebruikt. In het rood is dezelfde reeks opgemaakt voor het C53/65 mengsel. Hierbij is voor de MDy- en de MDy+ richting een toeslag over de buigtrekwapening berekend voor de bijlegwapening. Deze toeslag is verhoudingsgewijs even groot als gebleken in hoofdstuk 2. Deze toeslagen zijn voor MDy- 64% en voor MDy+ 50,7% Grafiek 23: Benodigde buigtrekwapening in vvuhsb en C53/65 bij variërende elementdikte.

92 Uit Grafiek 23 is te concluderen dat aanzienlijk meer buigtrekwapening in een C53/65 plaat nodig is om te voldoen op sterkte. Het verschil in buigtrekwapening, en het gevolg hiervan, wordt aan het einde van dit hoofdstuk berekend in een vergelijking tussen beide constructiematerialen. Let wel: deze vergelijking is tot dusver slechts opgesteld om te voldoen aan sterkte. De scheurwijdte evenals de stijfheid van de sluisdeuren in beton gaan nog berekenend worden Scheurmodel Nu bekend is hoeveel buigtrekwapening onder variërende hoogte bij een variabel betonmengsel (C53/65/Ductal-FM) nodig is, wordt de optredende scheurwijdte berekend. Uit de Eurocode 2 is bekend dat een scheurwijdte van 0,3mm maximaal toelaatbaar is onder klimaatklasse XS3 (wisselend nat en droog). Om de scheurwijdte te berekenen wordt gebruik gemaakt van de formules gegeven in Eurocode 2 artikel 7.3. In de Eurocode wordt de mogelijkheid geboden om de scheurwijdte te toetsen zonder en met directe berekening. De toetsing zonder directe berekening (EC2 art 7.3.3) heeft betrekking op het toetsen van de staafafstand en/of de staafdiameter. Minstens een van beide moet voldoen aan een grenswaarde. De te hanteren grenswaarden worden ontleend aan tabellen. Om met de tabelwaarden te kunnen rekenen zijn aannames gedaan met betrekking tot de betondekking op de langswapening, de betontreksterkte op het moment van scheuren, de aanhechteigenschappen van het betonstaal, de belastingssituatie en de verhouding tussen de nuttige en de totale hoogte van de betondoorsnede. Kortom, te veel aannames om te gebruiken in deze vergelijkstudie. Afgezien van de indirecte toetsing met de twee tabellen, is het ook mogelijk de scheurwijdte te berekenen (Ec2 art ). De scheurwijdte wk wordt dan berekend uit de maximale scheurafstand sr,max en het verschil tussen de gemiddelde staalrek en de gemiddelde betonrek tussen de scheuren (Ec2:art (1):vgl (7.8) geeft: Wk = sr;max * (εsm εcm) Het verschil tussen de gemiddelde staal- en betonrek mag worden berekend uit Ec2:vgl (7.9) De maximale scheurafstand volgt uit sr;max is (scheurafstand) Sr:max = 2/3 h (volgens Franse aanbeveling) In de Franse aanbevelingen worden geen verdere gegevens vermeld over het berekenen van de scheurwijdte. De keuze is gemaakt om sr:max te implementeren in de rekenregels opgesteld in de Eurocode 2. Hiermee wordt een bovengrens voor de scheurwijdte bepaald. Immers de positieve Pagina 87

93 bijdrage van de vezels die actief zijn na het scheuren van beton, en door het opnemen van spanning zorgen voor een verminderde scheurwijdte. Dit positieve effect wordt achterwege gelaten wegens ontbreken van rekenmethodiek. Naast het hebben van een scheurmodel is het nodig om het multi-layer model ook met een BGT spanning-rek relatie uit te voeren op iedere variatie. Met deze uitkomst (M-K diagram) kan worden bepaald wat de optredende staalspanning is bij het optredende BGT-Moment. In Grafiek 24 is de berekende scheurwijdte voor vvuhsb gezet. Grafiek 24: Berekende scheurwijdte van de vvuhsb variant. De berekende scheurwijdte voor sluisdeur, met het vvuhsb mengsel, is gedaan op de wapeningsconfiguratie die met de berekening op sterkte is bepaald. Uit de berekening blijkt dat bij iedere berekende plaatdikte de scheurwijdte voldoet aan de gestelde eis van 0,3mm. In Grafiek 25 is, op evenredige wijze, de optredende scheurwijdte in de BGT berekend voor het C53/65 mengsel. Het verschil in de berekeningswijze t.o.v. vvuhsb is dat bij het C53/65 mengsel de scheurafstand (sr;max) berekend is door de formule uit de Eurocode, i.p.v. 2/3*h zoals gebruikt is bij het vvuhsb mengsel. In Grafiek 25 is de scheurwijdte in mm op de y-as uitgezet voor het C53/65 mengsel. Voor iedere dikte van de sluisdeur is de scheurwijdte per richting berekend. Uit berekening kan geconcludeerd worden dat de sluisdeur in C53/65 niet voldoet op scheurwijdte. Immers voor iedere berekende configuratie is de scheurwijdte groter dan 0.3mm. Om wel te voldoen aan de scheurwijdte wordt de keuze gemaakt om de wapening in de C53/65 plaat aan te passen naar een rond 20 staaf. Hierbij is de staafafstand zo te variëren dat wel voldaan wordt aan de scheurwijdte. Samenvattend voldoet de C53/65 plaat dus op sterkte zoals deze tot dusver is gewapend. Echter is er extra wapening nodig om te voldoen aan de scheurwijdte.

94 Grafiek 25: Optredende scheurwijdte in alle richtingen bij een C53/65 mengsel Bepalen benodigde wapening om te voldoen bij een aangepaste staafdiameter Om te voldoen aan eis de dat de optredende scheurwijdte minder is dan 0,3mm is een parameterstudie uitgevoerd waarbij de diameter van de staaf is aangepast naar 20mm. Door het aanpassen van de staafdiameter, en als voorwaarde dat de optredende scheurwijdte minder is dan 0,3mm bij iedere plaatdikte, is een bijbehorende hoeveelheid buigtrekwapening berekend. Deze hoeveelheid buigtrekwapening is in Grafiek 26 bijgeplaatst met de groene punten. Bij deze stap is eveneens de benodigde bijlegwapening berekend als een factor over de nominale buigtrekwapening. In Grafiek 26 is te zien dat de wapeningsbehoefte bij een model dat voldoet op zowel sterkte als scheurwijdte is toegenomen. Hierbij is op te merken dat een plaatdikte van 275mm in C53/65 zeer moeilijk af te wapenen is door de grote hoeveelheid wapening. Grafiek 26: Parameterstudie met voorwaarde van 0,3mm scheurwijdte toegevoegd aan geheel. Pagina 89

95 Nu berekend is hoeveel buigtrekwapening in de doorsnede toegevoegd moet worden om zowel op sterkte als op scheurwijdte te voldoen kan een berekening voor de stijfheid gemaakt worden Toetsen van de rekenmodellen op stijfheid Door de stijfheid in de parameterstudie te betrekken kan uiteindelijk geconcludeerd worden wat de wapeningsbehoefte is bij een model wat daadwerkelijk gebouwd kan worden. Om de vervorming van de gewapende sluisdeur te kunnen berekenen is het nodig om een model op te stellen waarbij orthotroop materiaalgedrag ingevoerd kan worden. In dit model moeten twee stijfheden worden ingevoerd; een voor de x, - en een voor de y-richting. Deze stijfheden zijn uitgedrukt in enkele elasticiteitsmodules welke berekend kan worden uit de M-K diagrammen, welke uit het multi-layer model zijn gekomen. In Figuur 43 is getoond hoe een Elasticiteitsmodules uit het M-K diagram berekend wordt. Figuur 43: Elasticiteitsmodulus berekenen uit M-K diagram. In de linker grafiek is een uitdraai getoond van het multi-layer model. Hierin staat met een rode lijn de UGT-relatie getekend en in groene lijn de BGT relatie. In de rechter grafiek is te zien dat deze BGT relatie is omgezet naar een M-K diagram. In dit M-K diagram is een lineaire rode lijn getekend van het nulpunt naar het punt waarbij een moment van 260kNm (BGT) gekruist wordt. Uit deze rode lijn kan berekend worden wat de stijfheid van de gewapende sluisdeur is bij het optredende BGT moment Berekenen van orthotrope platen Om een orthotrope plaat te berekenen is eerst onderzoek gedaan naar de wijze waarop dit gedaan kan worden. Er is een verificatiemodel opgesteld om gevoel, en vertrouwen, met het doorrekenen van orthotrope platen te krijgen. Eerst wordt uitgelegd wat orthotropie is, vervolgens wordt een theoretische achtergrond over platen gegeven, en tot slot is een verificatiemodel opgesteld. Een materiaal is orthotroop wanneer de materiaaleigenschappen anders zijn in twee of drie onderling loodrechte richtingen. Een voorbeeld hiervan is hout, dat langs de nerf andere eigenschappen heeft dan dwars op de nerf. Er zijn twee soorten orthotropie te onderscheiden:

96 1 fysieke orthotropie, veroorzaakt door het bestaan van verschillende elasticiteitsmoduli in x- en y-richting; dit is een werkelijke eigenschap van het materiaal en een gevolg van de aangewende productietechnologie; (meerdere lagen, hout, enz.) 2 technische of vorm-orthotropie van geribde platen / wanden. Het berekenen van een orthotrope plaat kan handmatig niet/nauwelijks gedaan worden. Wel kan een orthotrope plaat in een E.E.M omgeving zoals in het programma SCIA-ENGINEER berekend worden. Hierbij wordt de gebruiker gevraagd om een aantal factoren in te voeren welke niet altijd eenduidig zijn Theoretische achtergrond Beschouwen we een situatie als geschetst in Figuur 44, waarbij een plaat met een continue dikte getekend is, dan kan de vervorming van een strip uit deze beschreven worden met een functie die een cilindrische vorm weergeeft. Om de vervorming van deze strip te bepalen kan een vergelijking gelijkwaardig aan die van de vervorming van een balk worden opgesteld. Wanneer er geen voorspanning in de plaat is aangebracht bevindt de neutrale lijn zich in het midden van deze plaat. Hierbij is de kromming van de plaat bij belasting gelijk aan d 2 w / dx 2. De verlenging van een vezel met een afstand z vanaf de neutrale lijn is gelijk aan z * d 2 w / dx 2. Gebruikmakend van de wet van Hooke kunnen de verlengingen als volgt geschreven worden in termen van normaalspanningen: Hierin is E de elasticiteitsmodulus en v de Poisson ratio. De rek in de y richting is omwille van het niet vervormen in de y-richting van de strip gelijk aan 0. Hieruit volgt dat: Figuur 44: Een strip uit een plaat met een continue dikte; Doorsnede van dezelfde plaat. Pagina 91

97 Nu de uitdrukking voor de buigspanning in de x richting bekend is kan het buigend moment in de strip bepaald worden door integratie over de hoogte. Hierbij wordt veelal de notatie D geïntroduceerd: Waarin bij een plaatgeometrie de factor D gebruikt wordt om een stijfheid te definiëren wordt bij balkgeometrie EI gebruikt. (Timoshenko, 1959) Invoeren van een orthotrope plaat in SCIA-ENGINEER Om een orthotrope plaat in SCIA door te rekenen is invoer van een aantal parameters nodig. De parameters die in het programma worden ingevoerd worden aan de hand van fysische constanten als volgt berekend:

98 Opstellen verificatiemodel Om te controleren hoe de berekende waarden ingevoerd dienen te worden is een verificatiemodel opgesteld. In dit model is een vierzijdig opgelegde plaat met een afmeting van 14x14x0,2 meter geplaatst met een elasticiteitsmodules in de x-richting van E1=38500N/mm 2 ; in de y-richting is de elasticiteitsmodules E2 = 100 N/mm 2. Op deze plaat is een gelijkmatige belasting geplaatst van 1kN/m 2. Wanneer deze plaat berekend wordt, zal moeten blijken dat de plaat alleen afdraagt in de x- richting omdat de plaat zeer slap is in de y-richting. De volgende waarden zijn berekend en ingevoerd: Nu bekend is welke Stijfheden ingevoerd moeten worden kan het verificatiemodel uitgevoerd worden. De uitvoer van de berekening is in Figuur 45 en Figuur 46 geplaatst. Pagina 93

99 Figuur 45: Optredende momenten in de mx-richting. Figuur 46: Optredende momenten in de my-richting. Te zien is dat in het buigend moment in de x-richting gelijk is aan 24,34 knm. Dit is vergelijkbaar met de momentensom volgend uit 0,125*1*14 2 = 24,5 knm (1/8ql 2 ). Geconcludeerd wordt dat de waarden juist zijn ingevoerd.

100 Bepalen vervorming vvuhsb sluisdeur In dit hoofdstuk wordt de vervorming van de vvuhsb sluisdeur bepaald. Hierbij moet in acht worden genomen dat een bovengrens van de vervorming benaderd wordt. Dit omdat de stijfheid in beide richtingen bepaald is uit de maatgevende doorsnede. Dit betekent dat bijvoorbeeld bij de randen de plaat stijver is omdat deze daar niet gescheurd is. In Tabel 20 zijn de stijfheden gesommeerd die gevonden zijn uit het M-K diagram uit de parameterstudie voor de vvuhsb sluisdeur. h Ex Ey Tabel 20: Gevonden stijfheden in Mx, My richting. De stijfheden zoals gevonden kunnen geverifieerd worden door de maximale stijfheid uit het ingevoerde spanning-rek diagram te halen. In Figuur 47 is het spanning-rek diagram geplaatst van vvuhsb in de BGT. De bijbehorende maximale stijfheid is ook berekend. E1 = 120 / 0,00235 = 51063N/mm 2 E1 = 8 / 0, = 72398N/mm 2 E1 E1 Figuur 47: Spanning-rekdiagram vvuhsb in de BGT waaruit maximale stijfheden zijn ontleent. Te concluderen is dat, als een vvuhsb element in de BGT lineair elastisch belast wordt, de elasticiteitsmodules (afhankelijk van de ligging van de neutrale lijn) ergens tussen de 51063N/mm 2 en 72398N/mm 2 ligt. Dit komt duidelijk terug in Tabel 20 waarin te zien dat voornamelijk de dikkere elementen een stijfheid hebben die gelimiteerd is aan de max. In Grafiek 27 is getoond wat de bovengrens doorbuiging is van de orthotrope vvuhsb sluisdeur. Pagina 95

101 Grafiek 27: Doorbuiging vvuhsb sluisdeur onder variërende deurdikte Bepalen vervorming C53/65 met rond 16 gewapende sluisdeur In dit hoofdstuk wordt de vervorming van de C53/65 met rond 16 wapening berekend. Al bekend is dat deze sluisdeur niet op scheurwijdte voldoet Gevonden stijfheden in beide richtingen In Tabel 21 zijn de stijfheden gesommeerd die gevonden zijn uit de M-K diagrammen. h Ex Ey Tabel 21: Gevonden stijfheden in beide richtingen van de C53/65 sluisdeur In Grafiek 28 is de vervorming van de sluisdeur met een C53/65 mengsel uitgezet.

102 Grafiek 28: Vervorming gewapende C53/65 betonplaat onder variabele dikte. Duidelijk is dat de vervorming van de sluisdeur in C53/65 beton, welke wel op sterkte en niet op scheurvorming voldoet, veel vervormt Bepalen vervorming C53/65 met rond 20 gewapende sluisdeur In dit hoofdstuk wordt de vervorming van de sluisdeur met een C53/65 mengsel gecombineerd met rond 20 wapening berekend. Al bekend is dat deze sluisdeur wel op scheurwijdte voldoet Gevonden stijfheden in beide richtingen In Tabel 22 zijn de stijfheden gesommeerd die gevonden zijn uit de M-K diagrammen. h Ex Ey Tabel 22: Gevonden stijfheden in beide richtingen van de C53/65 rond 20 gewapende sluisdeur. Pagina 97

103 In Grafiek 29 is de vervorming van de sluisdeur met een C53/65 mengsel uitgezet. Grafiek 29: Vervorming van C53/65 sluisdeur met rond 20 wapening Bepalen vervorming C53/65 met rond 25 gewapende sluisdeur In dit hoofdstuk wordt de vervorming van de C53/65 sluisdeur met rond 25 wapening berekend. Bekend is dat een wapeningsverdeling met rond 20 wapening op scheurwijdte voldoet, echter de vervorming is nog te groot. De wapeningverdeling bij de rond 25 staven is identiek aan de verdeling gekozen bij de rond 16 verdeling. Het doel van deze stap is een doorbuiging te vinden die voldoet, en mogelijk gelijkwaardig is aan de vvuhsb variant Gevonden stijfheden in beide richtingen In Tabel 23 zijn de stijfheden gesommeerd die gevonden zijn uit de M-K diagrammen. h Ex Ey Tabel 23: Gevonden stijfheden in beide richtingen van de C53/65 rond 25 gewapende sluisdeur.

104 In Grafiek 30 is de vervorming van de sluisdeur met een C53/65 mengsel, en rond 25 buigtrekwapening uitgezet. Grafiek 30: Vervorming rond 25 gewapende C53/65 betonplaat onder variabele dikte. Uit Grafiek 30 is te concluderen dat de berekende doorbuiging van de sluisdeur gelijkwaardig is als die van de sluisdeur met het vvuhsb mengsel. Nu bekend is dat de doorbuiging voldoet, wordt er een terugkoppeling gemaakt naar de scheurwijdte. Deze is berekend en geplaatst in Grafiek 31. Grafiek 31: Scheurwijdte rond 25 gewapende C53/65 betonplaat onder variabele dikte Vervorming door kruip Bij het vervormen van de sluisdeur wordt geen rekening gehouden met kruip. De reden hiervoor is dat de optredende belasting zeer wisselend en zelden constant is. Berekend is dat bij een defect aan de sluisdeur, waarbij het maximale verval maximaal 30 dagen constant is, een kruipfactor van 0,07 in rekening gebracht moet worden. Een stilstand van de sluisdeur langer dan 30 dagen is vanuit economisch standpunt zeer onwaarschijnlijk. Pagina 99

105 3.16 Sommatie van gevonden vervormingen bij iedere betonnen sluisdeurvariant In Grafiek 32 te zien wat de vervorming is van de betonnen sluisdeur onder de vier berekende varianten. Hierin is de blauwe relatie de minst stijve. Dit is de combinatie die voldoet op sterkte, maar niet op scheurwijdte en vervorming. In het groen is de combinatie van een C53/65 betondeur die voldoet op sterkte en scheurwijdte getoond, en in het paars de C53/65 die voldoet op sterkte, scheurwijdte en stijfheid. De rode lijn stelt de vervorming van de vvuhsb betondeur voor. Grafiek 32: Vervorming betonnen sluisdeuren onder verschillende mengsels. In Grafiek 32 is te zien dat de sluisdeur die alleen op sterkte voldoet zeer slap is en voor geen enkele dikte kan voldoen aan de stijfheidseisen. Hierbij moet gezegd worden dat de maximale vervorming van een sluisdeur niet staat beschreven in een norm. Er wordt in dit onderzoek naar gestreefd om een constructies met gelijkwaardige eigenschappen met elkaar te vergelijken. Voor de vervorming kan niet gerefereerd worden naar een norm, om een voorwaarde op te stellen. Daarom is geprobeerd om de vervormingen van de betonnen varianten zo veel mogelijk overeen te laten komen. In Grafiek 33 is ingezoomd op de vervorming als getoond in Grafiek 32. Grafiek 33: Vervorming betonnen sluisdeur nader ingezoomd.

106 Te concluderen is dat alleen de vvuhsb sluisdeur en de rond 25 gewapende C53/65 sluisdeur bij iedere deurdikte gelijkwaardig is aan de vvuhsb variant Invloed vervorming op momentenverdeling Zoals bekend, bestaat er een kinematische relatie tussen de verplaatsing en de kromming. In het vorige subhoofdstuk is met een wapeningsverdeling een orthotrope plaat ingevoerd, en daaruit de verplaatsing berekend. In eerste instantie is de momentverdeling, die de wapeninsverdeling bepaald, als isotroop berekend. In deze paragraaf wordt bepaald wat de invloed van het herverdelen van de stijfheden is, op de optredende wapeninsmomenten. Hierbij wordt de vvuhsb sluisdeur met een dikte van 300mm als referentie genomen. Het optredende wapeningsmoment, in het model met isotoop materiaalgedrag, is 320kNm in de x- richting, en 106kNm in de y-richting. Na invoering van 300mm dikke orthotrope plaat, met de elasticiteitsmodulus zoals in Tabel 20 voor een dikte van 300mm is aangegeven, wordt een moment in de x-richting gevonden dat gelijk is aan 305 knm. Het optredend moment in de y-richting is gelijk aan 127 knm. In Figuur 48 zijn de resultaten van de gemaakte berekening geplaatst. Figuur 48: Momentverdeling na invoer van orthotrope plaat. Te concluderen is dat de momentverdeling iets wijzigt ten opzichte van de eerste berekening waarin isotroop materiaalgedag wordt verondersteld. Met deze conclusie wordt verder geen actie ondernomen omdat de afwijking slechts 3kNm is Berekenen dwarskrachtcapaciteit Om in de vergelijking mee te nemen wat de dwarskrachtcapaciteit is van de beschouwde elementen zijn de rekenmodellen van zowel de Eurocode2 als de Franse aanbevelingen voor vvuhsb met elkaar vergeleken. In dit subhoofdstuk worden de gevonden formules opgesomd zodat duidelijk is wat de verschillen zijn. Pagina 101

107 Volgens de Eurocode2 geldt dat de dwarskrachtcapaciteit berekend kan worden met: Vrdc = [Crdc * k * (100p*fck) 1/3 + k1*sigma,p]*bw*d Met als minimum Vrdc = (Vmin + k*sigma,p) *bw*d Hierin is : Vmin = 0,035 * k 3/2 * fck 1/2 Hierin in k = 1 + wortel (200/d) Met als waarden in overeenstemming met de Nationale Bijlage: Crdc = 0,12 en k1=0,15 Uitgedrukt in woorden geldt dat als het beton de schuifspanningen niet kan opnemen, dit aandeel niet mag worden opgesomd met de dwarskrachtcapaciteit van de beugels (wapening). Voor vvuhsb geldt volgens de Franse aanbeveling dat het aandeel van de vezels op de dwarskrachtweerstand opgeteld mag worden bij de dwarskrachtcapaciteit van het beton evenals de positieve invloed van de aanwezige buigtrekwapening. Voor de vezels geldt dat er gerekend mag worden met een dwarskrachtcapaciteit van: Hierin is S eff het effectieve gebied waarin de vezels actief zijn (bij een T-ligger bijvoorbeeld het lijf). In Grafiek 34 is uitgezet wat de dwarskrachtweerstand is van de sluisdeur onder verschillende mengsels, diktes, en bijbehorende wapeningsconfiguraties. Grafiek 34: Dwarskrachtcapaciteit onder variërende hoogte.

108 Te concluderen is dat de dwarskrachtweerstand van vvuhsb aanzienlijk hoger is dan bij conventioneel beton. De vraag kan hierbij gesteld worden of de Franse aanbeveling wel conservatief genoeg is. In de grafiek zijn twee rode lijnen bijgevoegd. De onderste rode lijn geeft aan wat de optredende dwarskracht is in het globale gebied in het rekenmodel van de sluisdeur. De bovenste rode lijn geeft aan wat de optredende dwarskracht is in het lokale gebied. Hierbij wordt gerefereerd aan Hoofdstuk 2. In de vvuhsb sluisdeur is het overbodig om haarspelden langs de plaatranden te plaatsen. Beugels tussen de inlaatopeningen zijn ook overbodig. Bij de C53/65 mengsels is dit wel het geval. De haarspelden, aan de plaatrand, om de buigtrekwapening op te sluiten heeft een diameter van 16mm met een onderlinge afstand van 200mm. De haarspelden worden deels om praktische redenen om de gehele plaat gelegd. Ter plaatse van de inlaatopeningen worden beugels in de tussenstukken geplaatst met een diameter van 20mm en een onderlinge afstand van 150mm. Verder worden ook haarspelden om de randen van de inlaatopeningen geplaatst. Zie Figuur 49 voor een verduidelijking. In deze figuur is met een blauwe lijn aangegeven waar haarspelden worden geplaatst, en met een groene lijn de posities waar beugels worden geplaatst. De haarspelden en beugels worden zo geplaatst dat de doorsnede valt in het scheurvlak. Figuur 49: Posities waar haarspelden en beugels worden geplaatst. In totaal zijn over een lengte van 31,70 meter met een onderlinge afstand van 200mm, 159 haarspelden nodig om de plaatrand af te wapenen. Met een haarspeld van rond 16mm met beenlengten van 500mm resulteert dit in een wapeningsinhoud van: 0,0319m 3. Naarmate de plaatdikte slanker wordt, zal de wapeningsinhoud enigszins afnemen. Dit is buiten beschouwing gelaten wegens de minimale invloed. Gesommeerd hebben de beugels, toegepast tussen de inlaatopeningen, een wapeningsinhoud van 0,0656m 3. Pagina 103

109 3.19 Totale wapeningsbehoefte Nu kan opgesomd worden wat de wapeningsbehoefte van vier verschillende situaties is. De verschillende situaties zijn: 1 Een C53/65 betonnen sluisdeur die voldoet op sterkte; 2 Een C53/65 betonnen sluisdeur die voldoet op sterkte, en scheurvorming; 3 Een C53/65 betonnen sluisdeur die voldoet op sterkte, scheurvorming, en stijfheid; 4 Een vvuhsb die voldoet op sterkte, scheurvorming, en stijfheid. De totale wapeningsbehoefte (veldwapening, bijlegwapening, dwarskrachtwapening en randwapening) van alle situaties is opgesomd en in Grafiek 35 geplaatst. Grafiek 35: Totale wapeningsbehoefte van alle situaties Berekenen embodied energie alle constructieve systemen Nu bekend is wat de wapeningsbehoefte is bij alle varianten kan een berekening gemaakt worden van de energiebehoefte. In de komende paragraven wordt stapsgewijs deze berekening uitgevoerd Gehanteerde eenheidswaarden voor de belichaamde energie Op synchrone wijze als in Hoofdstuk 2 wordt in dit subhoofdstuk de embodied energie van de verschillende varianten berekend. In Tabel 24 is opgesomd wat de belichaamde energie van de verschillende materialen is. (Reitsema, 2011) Omschrijving E.E eh. Vezels 100 GJ/m3 Wapening 100 GJ/m3 Beton C53/65 1,8 GJ/m3 beton C170/200 3,8 GJ/m3 Tabel 24: Embodied energie van de verschillende materialen.

110 De waarden als vermeld, worden verrekend met de gevonden wapeningsbehoeftes en de bijbehorende inhouden. Hierbij wordt, zoals opgegeven volgens fabrikant, het aandeel vezels in het betonmengsel gelijk aan 2,1% van het volume van het beton gesteld. Wat opvalt is dat de belichaamde energie van C170/200 hoger is dan van C53/65. Dit is te verklaren door de fijnere betonmatrix. Immers meer materiaal is een hogere energiebelasting Belichaamde energie constructieve systemen De totale gevonden belichaamde energie voor alle varianten is een opsomming van de energie die nodig is voor de stalen vezels, de buigtrekwapening, de dwarskrachtwapening, en het gebruikte betonmengsel. In Grafiek 36 is de totale belichaamde energie voor alle sluisdeurdiktes uitgezet. Grafiek 36: Totale belichaamde energie van de verschillende sluisdeuren. Uit Grafiek 36 is te concluderen dat de relatie tussen de dikte van deur en de benodigde energie om deze te bouwen, voor vvuhsb anders is dan voor een C53/65 mengsel. Waar een vvuhsb mengsel duurzamer wordt bij een dunne plaat, wordt de C53/65 steeds minder duurzaam bij een dunnere plaat. Het verloop van de curves wordt besproken: De vvuhsb relatie loopt van een dikte van 450mm tot een dikte van 325mm vrijwel lineair. Dit komt omdat er tot dan geen wapening nodig is om te voldoen. Vanaf een dikte van 325mm tot een dikte van 225mm neemt de energiebehoefte minder snel af. Het aandeel beton + vezels wordt minder, maar de hoeveelheid staal steeds meer. Een minimum wordt gevonden bij een sluisdeurdikte van 200mm. De C53/65 energiebehoefte neemt van een dikte van 450mm tot een dikte van 275mm continue toe. Naarmate de deur slanker wordt, is meer wapening nodig, dus meer energie. Pagina 105

111 Het verschil in de vorm van de curves is te verklaren uit het feit dat het UHSB-mengsel meer energie behoeft dan het C53/65 mengsel, en natuurlijk de aanwezigheid van de stalen vezels. Geconcludeerd kan worden dat de vvuhsb sluisdeur een minimum bereikt bij een dikte van 200mm. De C53/65 vindt een minimum bij een dikte van 450mm. Als kanttekening kan hierbij geplaatst worden dat een lager minimum gevonden wordt bij het dikker maken van de deur. Hierbij moet echter wel rekening gehouden worden met het eigen gewicht wat toeneemt, wat er voor zorgt dat het praktisch niet haalbaar is Invloed van gewicht deur op energie gedurende transport Bekijken we de situatie waarin een betonnen sluisdeur wordt vervoerd van productieplaats naar het sluizencomplex dan kost dit energie. De energie die hiermee gepaard gaat is afhankelijk van het gewicht van de sluisdeur. Wanneer gerekend wordt dat de afstand waarover de sluisdeur vervoerd moet worden 50km is dan kan berekend worden dat de energie die benodigd is om een sluisdeur met een gewicht van (2400kg * 27m3) = kg gelijk is aan N * = 32,40 GJ. Immers 1 Joule is gelijk aan een arbeid van 1 Newton over 1 meter. Echter doordat de rolweerstand van een auto op het asfalt gelijk verrekend wordt met een waarde van Crw=0,03 is de energie benodigd om de zwaarste variant van de sluisdeur op zijn bestemming te krijgen slechts 0,972 GJ. Doordat de invloed van dikte van de sluisdeur op transportenergie bijna verwaarloosbaar is op het totaal wordt deze niet meegenomen in verdere berekeningen Bepaling overige randvoorwaarden voor opstellen vergelijking tussen staal en beton Om de belichaamde energie van een stalen sluisdeur en een betonnen sluisdeur met elkaar te kunnen vergelijken, is het van belang te realiseren dat niet iedere invloed meegerekend kan worden. De vergelijking zal dan te complex worden terwijl de invloed van iedere afzonderlijke parameter niet altijd waardig is. In de vergelijking tussen de betonnen deur en de stalen deur worden de volgende parameters vooralsnog achterwege gelaten. De invloed van de benodigde mal voor het storten van de betonnen sluisdeur; De invloed van het materiaal en arbeid voor het realiseren van de verbindingen van de stalen sluisdeur. Denk hierbij al het laswerk bij iedere naad. Globaal kan de invloed van de genoemde twee punten tegen elkaar worden weggestreept. In het volgende hoofdstuk wordt een sluisdeur ontworpen met een niet alledaagse geometrie. Hierbij zal de invloed van de mal wel meegenomen wegens de ook niet alledaagse geometrie van de mal, welke daardoor meer energie behoeft Belichaamde energie stalen en betonnen sluisdeur uitgezet Nu berekend is wanneer de betonnen varianten optimaal zijn, worden de bijbehorende energiebehoefte vergeleken met de stalen varianten. In Grafiek 37 zijn alle gevonden waarden uitgezet.

112 Grafiek 37: Vergelijking totale belichaamde energie van alle variaties per sluisdeur. Te zien is dat ten opzichte van een stalen sluisdeur de betonnen sluisdeuren weinig belichaamde energie behoeven. Hierbij is gekozen om de stalen variant met een gerecyclede hoeveelheid van 25% als standaard te nemen. Deze keuze kan onderbouwd worden door het feit dat 30% van het staal gerecycled staal is. Daarbij is het vaak zo dat voor de productie van grotere elementen, zoals plaatstaal, een mindere mate van schroot wordt gebruikt. De stalen sluisdeur bestaat grotendeels uit grote liggers, welke zijn opgebouwd uit plaatstaal. Ten opzicht van de 25% gerecyclede variant, heeft de C53/65 betonnen deur 77% minder energie nodig. De vvuhsb sluisdeur 85%. De berekende belichaamde energie is in Grafiek 38 omgezet naar een aandeel in CO 2 om zo een beter inzicht te krijgen in de impact hiervan. Grafiek 38: Berekende CO 2 uitstoot van de verschillende varianten. Pagina 107

113 3.21 Kostprijs van alle varianten Om een vergelijking compleet te maken is het nodig ook de kostprijs van iedere variant erbij te betrekken. Bij het bepalen van de kostprijs van de varianten worden alleen de constructieve delen in rekening gebracht. Dit omdat de niet constructieve delen bij iedere variant gelijk zijn en daardoor geen invloed hebben op het verschil. Voor de stalen variant wordt gerekend met een eenheidsprijs van plaatstaal. Een gemiddelde prijs van plaatstaal is hedendaags 122,70 euro 18 per 100kg. Voor de prijs van C53/65 beton wordt een totaalprijs van 175 euro per m 3 beton gebruikt. Voor de wapening wordt een eenheidsprijs van 915 euro per 1000 kg aangehouden. Deze prijs van de wapening is opgebouwd zoals in Tabel 25 staat. Onderdeel Prijs leveren 550 knippen/buigen 70 verwerken 275 transport 15 buigstaten 5 Totaal 915 Tabel 25: Kostprijs van wapening. De meerprijs van vezelbeton wordt gerekend op 115 euro per m 3, hierbij is 15 euro per m 3 gerekend voor het mengen, en 100 euro voor de vezels. Uitgangspunt is dat er 50kg vezels per kubieke meter worden toegevoegd. Dit is nagenoeg gelijk aan 2,1% van het volume. Een prijs van 800 euro per kubieke meter wordt aangehouden voor C170/200 beton. Deze prijs is geschat door van Nieuwpoort 19, als en reëel bevestigd door Mebin 20. Met de vermelde eenheidsprijzen is de volgende kostprijs voor het constructieve materiaal berekend voor de verschillende varianten. Voor de stalen deur is een kostprijs berekend van (122,70 euro x 25,3 ton x 10 ) = 31043,10 De sluisdeur van vvuhsb en C53/65 beton hebben een kostprijs die verloopt met de dikte van de deur. Door het verlopen van de kostprijs over de dikte van deur is het mogelijk dat een nieuw minimum gevonden kan worden als de belichaamde energie met de kostprijs wordt verrekend. In Grafiek 39 is de relatie kostprijs dikte sluisdeur uitgezet

114 Grafiek 39: Kostprijs van de betonnen deuren uitgezet tegen de dikte van de sluisdeur. Uit de gevonden gegevens is te concluderen dat de prijs van het constructiemateriaal voor de stalen sluisdeur het duurste is. De kostprijs van de vvuhsb sluisdeur verloopt, sterkt met de dikte van de sluisdeur, dit omdat het mengsel veel duurder is dan het C53/65 mengsel. Met de berekende belichaamde energie, en de berekende kostprijs van het constructiemateriaal, kan een vergelijking worden gemaakt naar één eenheid. Dit door het verschil in kostprijs om te rekenen naar energie, en deze toe te voegen aan de berekende waarden voor de belichaamde energie zoals in Grafiek 37 zijn geplaatst. In totaal kunnen nu drie situaties worden beschouwd. Deze zijn: 1 Een stalen sluisdeur met een kostprijs van euro bij een belichaamde energie, bij een gerecycled aandeel van 25%, van 692 GJ. 2 Een 200mm dikke vvuhsb sluisdeur met een kostprijs van euro bij een belichaamde energie van 101,8 GJ. 3 Een 450mm dikke C53/65 betonnen sluisdeur met een kostprijs van euro bij een belichaamde energie van 158 GJ Kostprijs en belichaamde energie omzetten naar 1 constante In de vorige paragraven is berekend wat de kostprijs en de belichaamde energie van de verschillende varianten is. Om een eindconclusie te kunnen trekken is het van belang om deze gegevens te om te zetten naar een parameter. Er is voor gekozen om alle gegevens om te zetten naar de belichaamde energie. Dit wordt gedaan door de hogere belichaamde energie van de stalen sluisdeur, en de vvuhsb sluisdeur om te zetten naar een kostprijs. De volgende berekeningswijze met constanten wordt hierbij gehanteerd: De calorische waarde van benzine is 47,30 MJ / kg De soortelijke massa van benzine is 0,72 kg / liter De kostprijs van benzine is 1,663 euro / liter Pagina 109

115 Hiermee kan omgerekend worden dat 1 GJ gelijk is aan een financiële waarde van 25,31 euro. De hogere belichaamde energie van de stalen, en C53/65 betonnen sluisdeur, ten opzichte van de vvuhsb sluisdeur worden omgerekend naar de belichaamde energie. Het resultaat hiervan is geplaatst in Grafiek 40. Grafiek 40: Hogere kostprijs omgerekend naar belichaamde energie. Te concluderen uit Grafiek 40 is dat de C53/65 betonnen sluisdeur, wanneer het gunstige effect van de kostprijs meegenomen is, de laagste belichaamde energie bezit Levensduur en onderhoud De levensduur van een stalen sluisdeur is wellicht langer dan de levensduur van een vvuhsb, of een C53/65 betonnen sluisdeur. Hierop wordt geanticipeerd door dit mee te wegen in de vergelijking. Hierbij wordt als uitgangspunt genomen dat de C53/65 betonnen sluisdeur 50 jaar meegaat zonder vervanging, de vvuhsb sluisdeur 85 jaar, en de stalen sluisdeur 100 jaar. Deze aanname kan niet wetenschappelijk gefundeerd worden en is gebaseerd op gevoel en discussie. Dit gevoel is deels onderbouwd door de breukenergie die ieder constructief materiaal heeft. Hierbij is de breukenergie van staal vele malen hoger dan die van beton. Dit betekent dat bij eventuele aanvaring, of bij wisselende belasting, de slijtage minder groot is. De breukenergie is, zoals de naam zegt, de energie die opgenomen wordt bij breuk ofwel: het oppervlak onder de spanning-rek diagram. Wanneer de levensduur meegenomen wordt in de vergelijking, veranderden de parameters als in Grafiek 41 getoond.

116 Grafiek 41: Belichaamde energie gecorrigeerd op levensduur Omrekenen naar CO 2 uitstoot van iedere variant Via de belichaamde energie kan worden bepaald hoeveel CO 2 kan worden bespaard bij het toepassen van vvuhsb sluisdeuren in plaats van stalen deuren, of een conventionele betonnen sluisdeur. Deze relatie is uitgezet in Grafiek 42. Grafiek 42: Belichaamde energie uitgedrukt in ton CO Eigen gewicht van verschillende varianten Doorgerekend heeft de vvuhsb sluisdeur een eigen gewicht van 31,72 ton. Dit bestaat uit 0,3119m 3 * 7850kg/m 3 voor de wapening en 11,95m 3 * 2450kg/m 3 voor het beton. De C53/65 sluisdeur een eigen gewicht van 95,31 ton. Dit bestaat uit 0,9302m 3 * 7850kg/m 3 voor de wapening, en 26,67m 3 * Pagina 111

117 2400kg/m 3 voor het beton. De stalen sluisdeur, uit Hoofdstuk 1, heeft een eigen gewicht van: 25,36 ton. De berekende massa s zijn in Grafiek 43 geïllustreerd. Grafiek 43: Berekende massa s van iedere variant. In Hoofdstuk 5 worden de gegevens, welke in dit hoofdstuk zijn berekend, gebruikt om een vergelijking op te stellen. Dit hoofdstuk wordt afgesloten met een samenvatting Samenvatting In dit hoofdstuk is de sluisdeur berekend met een vvuhsb mengsel van Ductal. Dit mengsel heeft een rekendruksterkte van 200N/mm 2 en een vezelgehalte van 2,1%; Om te kunnen rekenen met het Ductal mengsel is gebruik gemaakt van de Franse aanbevelingen van AFGC-SETRA; In de aanbevelingen van AFGC-SETRA staat vermeld hoe een spanning-rek diagram voor zowel de BGT als de UGT kan worden opgesteld. Ook worden regels met betrekking tot het berekenen van de dwarskrachtcapaciteit uit de aanbeveling gehanteerd; Er is een Multi-layer model opgesteld om te kunnen rekenen met vvuhsb. Dit multi-layer model is geverifieerd met zowel de hand, als numeriek met ANSYS; Een parameter studie met als variabele de plaatdikte van de sluisdeur is uitgevoerd in het multi-layer model om te achterhalen wat de wapeningsbehoefte is van een vvuhsb betonnen sluisdeur, en een C53/65 gewapende sluisdeur;

118 Met de gevonden wapeningsverdeling zijn door de BGT spanning-rek diagrammen te gebruiken, M-K diagrammen gecreëerd waaruit bijbehorende stijfheden zijn ontleend; De gevonden stijfheden zijn gebruikt om vervormingen te bepalen. Deze vervormingen zijn bovengrenzen; De totale wapeningverdeling is bij vvuhsb afhankelijk van de behoefte bij sterkte. Bij C53/65 is de totale wapeninsbehoefte ook afhankelijk van de scheurwijdte en de vervorming; Uit berekening volgt dat een stalen sluisdeur meer belichaamde energie heeft dan een betonnen sluisdeur. Hierin heeft een C53/65 betonnen sluisdeur een iets hogere belichaamde energie dan de vvuhsb sluisdeur; Na het doorrekenen van de varianten, waarbij ook rekening is gehouden met kostprijs en levensduur, is weer de stalen sluisdeur het meest ongunstig. De betonnen sluisdeuren geven een gelijkwaardig beeld; Pagina 113

119 4 EIGEN ONTWERP SLUISDEUR M.B.V. OPTIMALISATIE ALGORITMEN Anno 2012 zijn de hogere lagen van onze atmosfeer een speeltuin geworden waar broeigassen zich kunnen uitleven. Ze tasten hierbij de ozonhoudende laag van de stratosfeer aan en geven aanleiding tot een verhoging van de gemiddelde temperatuur op aarde. De mensheid behoud zich echter niet van produceren en consumeren, terwijl de voorraden aan natuurlijke grondstoffen slinken. In de hedendaagse wereld is milieuproblematiek een onderwerp dat niet valt te negeren. Ook in de bouwsector is ecologie een veelbesproken thema. Onder de grote noemer duurzaamheid worden allerlei mogelijkheden beproefd en besproken. Zo worden woningen beter geisoleerd, zonnepanelen geplaatst, en worden er steeds meer passiefhuizen gebouwd. Toch kan er nog heel wat verbeteren, bijvoorbeeld op het gebied van materiaalgebruik. Duurzaam bouwen is namelijk ook gebruik maken van duurzame materialen en deze materialen zo optimaal mogelijk gebruiken. 4.1 Optimalisatiealgoritmen Het optimaliseren van de structuur in een ontwerp heet in het Engels: structural optimization. De methodes die men toepast voor deze structural optimization kunnen onderverdeeld worden in vier categorieën (Martin P. Bendsøe, 2003). Hoewel de beginvoorwaarden verschillen, zijn de doelstellingen identiek. Elke methode streeft voor een initieel bepaald evenwicht steeds het ontwerp met de grootste stijfheid na. Als voorbeeld is Figuur 50 toegevoegd. Figuur 50: De vier categorieën van structural optimization. a) Sizing optimization; b) Material optimization; c) Shape optimization; d) Topological optimization.

120 4.1.1 Sizing optimization Bij sizing optimization, zoals weergegeven in Figuur 50a, is de vorm reeds op voorhand bepaald. De optimalisatie bestaat er in de juiste dimenties van de onderdelen te vinden. In dit voorbeeld past men de sectie van alle 31 staafelementen uit het initieel ontwerp individueel aan, zodanig dat er voor een gegeven evenwicht een maximale stijfheid wordt bereikt. Het resultaat toont een gereduceerd vakwerk dat bestaat uit slechts 11 staven Material optimization Deze methode past men toe wanneer men werkt met een composietmateriaal, zoals in Figuur 50b. Hierbij zal men de samenstelling van de lagen uit het initieel ontwerp optimaliseren tot het ontwerp van de maximale stijfheid. De ontwerpvariabelen bij deze optimalisatie zijn de orientatie van de vezels en de diktes van de individuele lagen materiaal. Ook denkbaar bij deze vorm van optimaliseren is het verhogen/verlagen van de materiaaleigenschappen om een gewenst resultaat te krijgen. Bijvoorbeeld het verhogen van de elasticiteitsmodules om een doorbuiging te verlagen Shape optimization Om materiaal te besparen kan men logischerwijs gaten boren in een gegeven structuur. Dit geeft echter aanleiding tot verhoogde spanningsconcentraties aan de randen van de gaten. Bij belasten van de structuur zou deze hier kunnen bezwijken. Shape optimization zoekt, rekening houdend met de optredende spanningsconcentraties, de optimale vorm van een opgegeven gat. Om deze zeer potentiele methode te verduidelijken is er een voorbeeld van shape optimization toegevoegd. In dit voorbeeld wordt een vierkante plaat (1000x1000x100) met een rond gat in het midden belast op een trekkracht (1N/mm2). De randvoorwaarde van de plaat is dat deze aan de linker zijde ingeklemd is. Zie Figuur 51. Figuur 51: Mechanicaschema voor het voorbeeld over shape optimization. Nu treedt er bij belasten een bepaalde spanning op aan de randen van het gat. In dit voorbeeld wordt in het algoritme vastgesteld dat de spanning (von-misses) niet groter mag zijn dan een gedefinieerde waarde van 5N/mm 2. Hierop wordt door het programma gevarieerd met de diameter van het gat zodat Pagina 115

121 de optredende spanning niet hoger is dan de gedefinieerde. Het doel van de berekening is om het volume te minimaliseren. In Figuur 52 is de invoer in ANSYS te zien. De invoer bevat, zoals te zien aan de linkerzijde een inklemming, aan de rechter zijde een trekkracht op een oppervlak en in het midden een rond gat. Het volume is gemeshed met tetra vormige elementen. Bij het variëren van de gat diameter wordt de mesh aangepast. In bijlage 8 is, als naslagwerk, de ANSYS code van het optimalisatiemodel geplaatst. Figuur 52: Rekenmodel ingevoerd in ANSYS. Bij de invoer in ANSYS wordt een beginwaarde van diameter=10mm opgegeven. Dit houdt in dat de eerste iteratie bij een zowaar minimale situatie begint. Dit is om te voorkomen dat er wellicht een lokaal minimum aan volume gevonden wordt in plaats van een globaal minimum. Figuur 53: Lokaal en Globaal minimum gevonden door iteratie. Bij het uitvoeren van het optimalisatiealgoritme is als resultaat gevonden dat bij een gat diameter van 300mm de spanning onder het gewenste niveau blijft. In Figuur 54 is de spanningsverdeling in de optimale situatie te zien. Waar de contour rood is, treedt een spanning op van 5 N/mm 2

122 Figuur 54: Spanningsverdeling output ANSYS. Na het optimaliseren kunnen alle iteraties opgevraagd worden waardoor inzicht verkregen kan worden in de manier van optimaliseren. In Grafiek 44 is uitgezet hoe het ANSYS geïtereerd heeft naar een optimale waarde. Grafiek 44: Gat diameter tegen optredende spanning geïtereerd in ANSYS. Na dit voorbeeld kan gesteld worden dat het niet rendabel is om een redelijk ingewikkeld model te schrijven om een simpele optimalisatie als bovenstaand op te lossen. Immers handmatig kan deze berekening sneller worden opgelost. Als reactie hierop moet vermeld worden dat in dit voorbeeld gebruik is gemaakt van slechts een ontwerpvariabele. Wanneer er meer onderzoek wordt verricht naar dit ontwerp, blijkt dat er tot zelfs 60 ontwerpvariabelen kunnen worden gedefinieerd om een bepaald ontwerp te optimaliseren. Een complexere, maar zeer potentiele, uitdaging zou gedefinieerd kunnen worden door een betonnen ligger te optimaliseren zoals in Figuur 55 is getekend. Pagina 117

123 Figuur 55: Betonnen brugdek. In dit voorbeeld kan er als ontwerpvariabele worden opgesteld: *Hoogte van ligger *Hoogte van sparing *Hoek alfa van schuine rand *Oppervlakte van buigtrekwapening *Onderlinge afstand van buigtrekwapening *Breedte van element *Breedte van de sparing Hierbij kan er als ontwerpvoorwaarden worden opgesteld: *Maximale spanning *Maximale dwarskracht *Maximale doorbuiging Met als ontwerpdoel *Minimaliseren van de kosten / energiegebruik Het definiëren van het ontwerpdoel kan door parametrisch kengetallen toe te voegen aan de ontwerpvariabelen. Zoals beschreven, kan door met meerdere ontwerpvariabelen en voorwaarden te variëren een mogelijk minimum aan kosten of energie gevonden worden. Tot op heden wordt deze manier van optimaliseren slechts zelden in de civiele techniek gebruikt en kent het doorgaans grotere toepassing in Lucht en Ruimtevaarttechniek.

124 4.1.4 Topological optimization De basistheorie achter topology optimization werd al aan het begin van de 20ste eeuw vastgelegd door (Michell, 1904) onderzoek naar de optimale vorm van belaste structuren. Op dit theoretisch werk baseerden Martin.P en Bendsøe hun computeralgoritme voor topology optimization. Sindsdien nemen de toepassingen op zowel academisch vlak als industrieel valk toe. Topologie-optimalisatie is een wiskundige benadering dat de lay-out van een materiaal binnen een bepaalde ontwerp ruimte, voor een bepaalde set van lasten en randvoorwaarden zodanig dat de resulterende lay-out een voorgeschreven set van prestatie-doelstellingen voldoet. Wikskundige kan het generiek probleem als volgt worden genoteerd. (Wikipedia Topology optimization) Met randvoorwaarde dat: Deze bovenstaande mathematische voorstelling bevat de volgende componenten: a. Funcitonele doelstelling Dit is het doel van de optimalisatie dat wordt geminimaliseerd via het selectie veld. Als voorbeeld zou men de naleving van een structuur kunnen beperken om structurele stijfheid te verhogen. b. Ontwerpruimte (Ω): De ontwerpruimte is de toelaatbare hoeveelheid waarin het ontwerp kan bestaan. De ontwerpruimte is een gebied wat tijdens het optimalisatieproces niet gewijzigd kan worden. c. Het discrete selectie veld (ρ) Dit is het gebied waarover de discrete optimalisatie wordt uitgevoerd. Het selecteert of deselecteert een punt op de ontwerpruimte om het ontwerpdoel te bevorderen. Door een keuze nemen van een waarde tussen de 0 en 1 wordt de mate van optimalisatie gedefinieerd. d. Randvoorwaarden Dit zijn de ontwerpcriteria waaraan voldaan moet worden. Hiertoe behoren onder andere de beschikbaarheid van materialen en de steunpunten. Pagina 119

125 e. Benodigde diffentiaalvergelijkingen Dit is de fysica die de structuur omvat en benodigd is voor het oplossen. Om de zojuist gegeven wiskundige voorstelling minder ingewikkeld te maken, worden een aantal voorbeelden getoond. Om de algemene werking van topology optimization te vatten, geven deze voorbeelden een weergave van praktijktoepassingen. In voorbeeld 1 is een situatie beschouwd waarin een balkon uitkraagt. In de geplaatste foto is te zien dat dit balkon een massieve betonnen plaat is. In het gemaakte rekenmodel is gekozen om de plaat een uitkraging te geven van 3000 mm met een dikte van 350 mm. De randvoorwaarden in dit model is dat een inklemming in de gevel aanwezig is. Om met het model te kunnen rekenen is een gelijkmatige belasting geplaatst. In het 2D model is te zien dat er materiaal is weggehaald, daar waar deze het minst effectief is. Dus ter plaatse van de inklemming, waar de spanningen hoog zijn, en dus het materiaal effectief is, wordt veel materiaal behouden. Te zien is dat aan de rand van het balkon, waar het optredende moment laag is, veel materiaal bespaard is. Naast het 2D model is een 3D model gemaakt. Dit 3D model is complexer qua rekentijd en elementvorming. Dit resulteert doorgaans in een onnauwkeuriger model waar de ontwerper zelf interpretaties moet doen om van het optimalisatiemodel een werkelijke voorstelling te maken. Te zien in het 3D model is dat de structuur van het 2D model af te leiden is waarbij een koppeling tussen beide armen wordt gemaakt met losse staven. In voorbeeld 2 is een veelvoorkomende situatie beschouwd waarbij een ligger op twee steunpunten is geplaatst. De ligger, die in de foto is geplaatst, dient als ondersteuning in een brugdek. Ook van dit systeem is een 2D en een 3D optimalisatie gemaakt. In het 2D model is zeer duidelijk te zien waar materiaal nodig is en niet. Uiteraard is het materiaal effectief aan doorsnede zijde waar de koppel het grootst is en dus de waar grootste druk en trekkrachten optreden. Verder is te zien dat de koppelingen tussen de gedrukte en getrokken staven verlopen volgens enkele schuine staven. In wezen is het systeem een koppeling van vier drukbogen en vier trekbogen. Dit principe is in Figuur 56 verduidelijkt. Figuur 56: Koppeling van druk en trekbogen in een ligger. In voorbeeld 3 wordt een betonnen poer geanalyseerd. Het uitgangspunt van deze poer is dat het gesteund wordt door 4 steunpunten (palen). Deze steunpunten kunnen slechts verticale krachten opnemen. In feite is het niet heel moeilijk om een voorstelling te maken van de drukstaven en trekstaven in deze situatie, waarbij een verticale kracht uit een kolom opgenomen moet worden. Uit de

126 systematiek is heel duidelijk af te leiden dat het gebruik van topological optimization een strut and tie model genereerd. Dus een staafwerkmodel dat zo optimaal mogelijk geplaatst is. Voorbeeld 1: Uitkragend betonnen balkon. Voorbeeld 2: Betonnen ligger op twee steunpunten. Pagina 121

127 Voorbeeld 3: Vier paals poer Effect van verhogen Target Density Nu enig inzicht is verschaft over wat bereikt kan worden met topological optimization, wordt iets dieper op de materie ingegaan. Door het verhogen of verlagen van de target density is het model genoodzaakt een andere vorm aan te nemen. In het volgende voorbeeld wordt een betonnen brug geanalyseerd. Bij deze analyse wordt er een relatie gelegd naar de eerdere genoemde termen bij de wiskundige achtergrond. In Figuur 57 is het mechanicaschema getoond van het voorbeeld. Voorbeeld 4: Een brug over een vallei. Figuur 57: Mechanicaschema wat behoort bij voorbeeld vier.

128 Om aan te tonen van het effect is van het veranderen van de target density zijn in Figuur 58 drie verschillende situaties geplaatst. In de eerste situatie wordt gevraagd om 7,5% van het gedefinieerde volume over te houden. Bij de twee opvolgende situaties wordt dit met ieder 5% verhoogd. Figuur 58: Effect van het verhogen van de target density Effect van verhogen van meshdensity = aantal elementen Zoals bekend is geeft verhogen van de dichtheid van het aantal elementen een nauwkeuriger rekenresultaat. Theoretisch geeft het verhogen van het aantal elementen naar oneindig veel, een weergave van de werkelijkheid. Desondanks kan in veel situaties met veel minder elementen dan oneindig een juiste en betrouwbare schatting gemaakt worden. Dit zelfde principe geldt ook voor het optimaliseren in een EEM pakket. Wanneer er meer elementen worden toegepast zal het resultaat beter af te leiden zijn en wordt een makkelijker te interpreteren beeld gevormd. Pagina 123

129 In het komende voorbeeld wordt een model zoals in Figuur 59 getoond is geoptimaliseerd. Dit wordt in verschillende situaties gedaan waarbij slechts de meshdensity varieert. Er zijn in totaal drie modellen gemaakt waarin onderling geïllustreerd wordt wat het effect is van een verfijnd net. Resolutie = 50 Resolutie = 100 Resolutie = 200 Figuur 59: Effect van verhogen meshdensity op uitkomst EEM model. Te concluderen uit bovenstaande uitvoer is dat niet alleen de staven slanker weergegeven worden, maar dat ook de vorm van het optimalisatiemodel nauwkeuriger wordt. Te zien is onder andere dat bij de knopen (waar de staven bijeen komen) het model gewijzigd wordt om de krachtsafdracht te optimaliseren. Het slanker maken van de staven houdt verband met het beter kunnen definiëren van het optimalisatieveld. Indien een discreet veld van p=0.2 vereist is, kan bij een grove mesh een maximale benadering van bijvoorbeeld p=0.26 of p= 0.14 gevonden worden waar bij een fijnere mesh geïtereerd wordt naar p= Effect van aantal iteraties Zoals voorgaand beschreven is dat de target density en de meshfijnheid invloed hebben, heeft ook het aantal uitgevoerde iteraties invloed. Indien er oneindig geïtereerd is, wordt een oplossing gevonden waarbij het ontwerpdoel maximaal is benaderd. Bij slechts een aantal iteraties zal het ontwerpdoel in mindere mate benaderd worden. Bij het oplossen van een probleem is het daarom beter om te itereren met 5 stappen van 10, dan met 1 stap van 50 iteraties. Door meerdere series te maken kan nadrukkelijk gelet worden op de verandering van het model. Om dit te verduidelijken is een voorbeeld toegevoegd waarbij eenzelfde model getoond wordt onder verschillende iteratiesstappen.

130 Het mechanicamodel van het komende voorbeeld is een model waar de randvoorwaarde dat een ophanging als steunpunt geplaatst is en de zwaartekracht de belasting. Zoals bij de vorige voorbeelden ook getoond is bij dit voorbeeld ook een mechanicamodel geplaatst. Figuur 60: Effect van het aantal iteraties op het resultaat. Om een sommatie van de beschreven variabelen te maken kan het volgende geconcludeerd worden over de uitvoering van een topological optimization: De meest gunstige situatie wordt bereikt indien: De gedefinieerde netfijnheid oneindig groot is; Het aantal iteraties oneindig groot is; De gewenste target density exact behaald id. De bovengenoemde meest gunstige situatie is in de praktijk echter de minst ideale situatie. Immers wanneer de bovenstaande criteria behaald moeten worden, dient beschikt worden over of een oneindig krachtige computer, of oneindig veel tijd. Daarom is het bij iedere berekening nodig om concessies te doen. Hierin is van belang dat je weet welke concessies je doet, en dat je bewust bent wat de invloed hiervan is qua nauwkeurigheid Procedure van invoeren en oplossen De eerste stap in het optimalisatieproces bestaat er in de beginvoorwaarden van het ontwerp vast te leggen. Uiterste grenzen van de geometrie, verbindingen met de buitenwereld, alsook belastingen op de structuur worden vastgelegd. De tweede stap: de constructieve analyse van het systeem gebeurt bij topological optimization volgens de eindige elementen methode (EEM). Daarom wordt als tweede domein gediscretiseerd in een verzameling van eindige elementen. Vervolgens volgt een Finite Element Analysis (FEA) van de beginstructuur waaruit men onder andere de stijfheid, doorbuigingen, en spanningsverdeling kan afleiden. Aan de hand van de spanningsverdeling verwijdert het algoritme elementen die slechts in mindere mate belast worden. In een volgende iteratiestap behoren ze niet meer tot het ontwerpdomein. Pagina 125

131 De laatste twee stappen, FEA en verwijderen van elementen, worden herhaald tot er een ontwerp bereikt is dat voldoet aan de optimalisatiecriteria. Tegenwoordig bestaan er enkele rekentechnieken om aan topology optimization te doen. De solid Isotropic Material with Penalization techniek (SIMP) en Evolutionairy Structral Optimization techniek (SEO) zijn de twee meest gebruikte (C.S.Edwards). De optimale ontwerpvormen resulterend uit de twee technieken vertonen grote gelijkenissen. Toch zijn ze zelden 100% elkaars equivalent. SIMP Solid Isotropic Material with Penalization In structural optimization methoden is het optimalisatieproces vaak te herleiden tot continue functies. Door toepassing van rekenregels uit de calculus zijn de locaties van extrema (ofwel optima) gemakkelijk te vinden. Voor topological optimization geldt dit echter niet. De SIMP-techniek maakt gebruik van de Relaxation and Penalization methode. Hierbij wordt de elasticiteitsmodules van ieder element geïnterpoleerd naar de ratio van effectiviteit. ESO Evolutionary Structural Optimization In contrast tot de hogere wiskunde van de SIMP-techniek staat de filosofie van ESO. Het algoritme voor het oplossen van het optimalisatieproces is opgebouwd rond slechts een slagzin: verwijder geleidelijk onbenut materiaal, i.e. materiaal uit de zones met een lage spanning. Hiervoor worden in iedere iteratiestap de von-mises spanningen berekend. Het optimalisatieproces verwijdert daarna alle elementen met een von-mises spanning lager dan het voorgestelde niveau, de rejection ratio (RR) ten opzichte van de maximum von-mises spanning door hun relatieve dichtheid op nul te stellen. Om niet in elke stap een nieuwe mesh te moeten genereren die rekening houdt met nieuwe verwijderede elementen, wordt een aanpassing gemaakt in de berekening. Tijdens de volgende FEA wordt de E-modulus van de verwijderde elementen gereduceerd naar een fictieve waarde. 4.2 Combineren ontwerpalgoritmen tot ontwerpmethodiek Zoals eerder in het literatuuronderzoek geschreven, kunnen zowel shape optimization en topological optimization gebruikt worden om een ontwerpmethodiek te creëren. Hierbij wordt er in eerste instantie topological optimization ingezet om een optimale materiaalverdeling te vinden. Nadat de topological optimization is uitgevoerd, kan er handmatig een iteratieronde gemaakt worden door materiaal toe te voegen/verwijderen waar dit mogelijk is. Bij deze handmatige iteratieronde wordt er getoetst aan sterkte en stijfheid van de constructie. In Figuur 61 wordt schematisch weergegeven hoe het algoritme topological optimization in combinatie met shape optimization gebruikt kan worden.

132 Figuur 61: Ontwerpalgoritme om tot een optimale situatie te komen. 4.3 Potentie van topological optimization Nu dat bekend is welke soorten optimalisatieprocessen mogelijk zijn en uitgelegd is hoe deze werken, gaan is het interessant om te onderzoeken wat het potentieel is. Om het mogelijke potentieel van topologisch optimaliseren te achterhalen is er een vergelijking gemaakt tussen de relatie van het volume en doorbuiging van een ligger op twee steunpunten. Hierbij zijn er drie ontwerpen geanalyseerd. Het eerste ontwerp is een volle doorsnede op twee steunpunten, het tweede ontwerp is een vakwerkligger, en het derde ontwerp is een ligger gecreeerd middels topologisch ontwerpen. Bij ieder ontwerp is er met een variabele gevarieerd, dit is het volume van het element. De bijbehorende doorbuigingen zijn voor een reeks volumeveranderingen genoteerd. Het bijbehorende mechanicaschema waaruit de beginsituatie bepaald is staat in Figuur 62 getekend. Figuur 62: Bijbehorende mechanicaschema voor bepalen effectiviteit topological optimization. Het eerste ontwerp, waarbij een volle doorsnede wordt geanalyseerd kost weinig rekenkracht. Middels makkelijk te gebruiken vergeetmenietjes kan worden bepaald wat de relatie is tussen het volume van de doorsnede en de doorbuiging van de balk. Als ontwerparameter wordt de breedte van de balk gevarieerd van max. 300mm; tot een breedte van 50mm met een stapgrootte van 25mm. Doordat in Pagina 127

133 de traagheid de breedte lineair is opgenomen zal de balk met een breedte van 50mm zes keer verder doorbuigen dan de balk met een breedte van 300mm. In Grafiek 45 is de relatie tussen het volume en de doorbuiging van de volle doorsnede te zien. Op de vertical as is de doorbuiging in mm geplaatst, en op de horizontale as het volume van de balk. Grafiek 45: Relatie volume-doorbuiging bij een volle doorsnede. Het tweede model bestaat uit een in de praktijk vaak gebruikte optimalisatie. Namelijk door van een volle doorsnede een vakwerkligger te maken. Deze vakwerkligger bestaat uit rechte staven waarin slechts druk of trek zit. In het tweede model is in de volle doorsnede een vakwerkligger getekend, opgebouwd uit ronde staven. De hoogte en overspanning stroken met de volle doorsnede en de buisdikte wordt gebruikt als parameter. Hierdoor is het mogelijk om de relatie doorbuiging volume te leggen. In Figuur 63 is getekend hoe de beschouwde vakwerkligger eruit ziet. Figuur 63: Beschouwde vakwerkligger. De analyse, die op de vakwerkligger is uitgevoerd, is in het eindige elementen pakket ESA-PT. Hierin is een aantal keren met de doorsnede van de staaf gevarieerd. De relatie tussen het volume en de doorbuiging is in Grafiek 46 te zien.

134 Grafiek 46: Relatie volume-doorbuiging bij een vakwerkligger De laatste, en meest ingewikkelde stap is het anlyseren van een doorsnede geoptimaliseerd naar de topologie. Hierbij is een ontwerpruimte gedefineerd van 800x300x6000 (h,b,l). De benoemde target density is hierbij gevarieerd om tot een volumereductie te komen. Na te hebben geitereerd tot convergentie is behaald, is het optimalisatiemodel in ANSYS ingelezen en lineair elastisch (LE) doorgerekend om tot een doorbuiging te komen. In Figuur 64 is getoond welke modellen zijn verkregen met het topologisch optimaliseren, en wat voor target density bij deze modellen behoord. Target density = 0.2 Target density = 0.3 Pagina 129

135 Target density = 0.4 Target density = 0.5 Target density = 0.6 Target density = 0.7 Target density = 0.8 Target density = 0.9 Figuur 64: Variatie in target density bij zelfde model. Bij het analyseren van de geoptimaliseerde constructie zijn de parameters, L,H,B ongeschonden gebleven. Dit betekend dat de breedte van de constructie constant is (300mm). De geplotte afbeeldingen in Figuur 64 zijn berekend door het volume te meshen met tethra vormige elementen. Zie Figuur 65. Figuur 65: Meshen van liggers in ANSYS

136 Na het aanbrengen van de belasting op het model kan de vervorming gevonden worden. De vervorming gevonden in ANSYS, is net als in de vorige gevallen, gecombineerd met het bijbehorende volume voor ieder model. In Grafiek 47 is dit getoond. Grafiek 47: Verhouding doorbuiging en volume geoptimaliseerde liggers. Nu de verhouding tussen ieder constructiesysteem, waarbij volume en doorbuiging zijn uitgezet, bekend is, kan er een vergelijking gemaakt worden. Dit wordt gedaan door de grafieken van ieder geanalyseerd systeem in een grafiek te vatten, zie Grafiek 48. Grafiek 48: Vergelijking van alle berekenende relaties. Te concluderen uit de grafiek is dat de relatie tussen doorbuiging en volume het minst gunstig is bij een vakwerkligger (rode lijn). De verhoudingen van een volle doorsnede en een topologisch Pagina 131

137 geoptimaliseerde ligger lijken vrij goed met elkaar overeen te komen. Om het verschil tussen de systemen te bepalen is bij meerdere uitgezette volumes de doorbuiging berekend. Grafiek 49: Staafdiagram met hierin de relatie tussen doorbuiging en volume. In Grafiek 49 is te zien hoe het volume van de elementen op de vertical as is uitgezet, en de bijbehorende doorbuiging op de horizontale as. Wederom zijn de bijbehorende curves hierbij geplaatst. Om een indicatie te kunnen geven van een percentage materiaalbesparing zijn in Grafiek 50 de volumes van het topologisch optimaliseren (meest gunstige) geindexeerd naar een waarde van 100. Uit deze index zijn de andere indexwaarden berekend. Uit deze indexen is een gemiddelde berekend. Te concluderen is dat een vakwerk gemiddeld 25,8% meer materiaal behoeft dan de geoptimaliseerde ligger. Bij de volle doorsnede is dit percentage 7,4%. Een belangrijke opmerking is natuurlijk dat deze waarden geen uitspraak doen over wijzigingen van het constructietype (ligger op 2 steunpunten wandligger, meerdere steunpunten,poer,enz). De gegeven percentages zijn slechts een inschatting van effectiviteit. Een schatting op basis van voorgaande berekeningen is dat de meeste constructiedelen, die niet uit een volle doorsnede bestaan, varierend van c.a. 20% tot 30% meer materiaal bevatten dan een topologisch geoptimaliseerd gevonden doorsnede. Grafiek 50: Geïndexeerd staafdiagram.

138 4.4 Voorbeeldprojecten waar topological optimization is toegepast Het opimaliseren van constructies wordt door de komst van EEM programma s, waarin optimalisatiealgotrimen worden toegepast een steeds vaker toegepast onderdeel in het ontwerpproces. Echter is het niet verkeerd om te realiseren dat niet alleen de komst van meer kennis hiervan de enige oorzaak is van de ontwikkelingen. Gesteld kan worden dat het optimaliseren een proces is wat begonnen is bij het tweede bouwwerk. Immers na het instorten van het eerste bouwwerk is kennis opgedaan over hoe het niet moet, waar de constructie bezweken is, en waar dus extra stijfheid toegevoegd dient te worden. In dit subhoofdstuk wordt de nadruk gelegd op het toepassen van optimalisatietechnieken, die recent zijn toegepast in zowel gemaakte constructies, als studieprojecten Optimalisatiealgortimes toegepast in de werkelijkheid Naar eigen mening is een van de meest overweldigende bouwmeesters, die gebruik heeft gemaakt van optimalisatie Antoni Gaudi. In zijn meest bekende, niet afgeronde bouwwerk, La Sagrada Familia in Barcelona wordt de bezoeker enerzijds overwelmd door de dimensies, anderzijds door de correctheid van het krachtenspel. Dit laatste gebeurt wellicht niet bewust. Wat Antoni Gaudi beroemd heeft gemaakt, is het observeren van de natuur, en het toepassen van de kennis hierin opgedaan. Veel elementen en geometrische afleidingen zijn direct vertaald uit diverse elementen uit de natruur. Planten, bloemen, en bomen zijn meesters in het optimaliseren. Ze hebben niet, zoals de mens slechts een paar eeuw ervaring met bouwen, maar meerdere millenia. Hierdoor zijn ze ultermate geschikt om te gebruiken als studiemateriaal. Bij het binnenkomen van het koor valt direct op dat belagrijke knopen, waar het krachtenspel verandert zo gevormd zijn dat deze exact doen wat optimaal is voor de afdracht. Daardoor is het Gaudi gelukt om o.a. kolommen zeer slank te dimentioneren onder de grote normaalkrachten zodanig dat knikinstabiliteit niet optreedt. Foto 12: La Sagrada Familia, Barcelona. Een hedendaagsere toepassing van de optimalisatiealgoritmen kan gevonden worden bij de brug Villa Bdretto in Zwitserland. In Figuur 66 is een model getoond wat gevonden is in een eindige elementen programma. Onder dit model is het werkelijke ontwerp te zien. Wat geconcludeerd kan Pagina 133

139 worden is dat de ontwerpers de hoofdvorm van de constructie hebben ontleend aan toplogolical optimization. Vervolgens hebben zij shape optimization toegepast om o.a. de stalen vakwerkligger vorm te geven. Deze is, doordat de elasticiteitsmodus van staal hoger is dat beton, kleiner dan in het optimalisatiemodel waar voor alle elementen één elasticiteitsmodules is gebruikt. (Spasojević, 2008) Figuur 66: Brücke Villa Bdretto in Zwitserland. Een ander zeer interessant product is het werk van de onderzoekers Per Dombernowky en Asbjorn Sondergaard (Unikabeton) (foto 13).Het ontwerp is een gerealiseerde geoptimalisereerde betonnen strucuur. Hoewel de functie van het bouwwerk discutabel is, en wellicht beter als kunst opgevat kan worden dan een civiele functie toe te kennen, is de ontwerpmethodiek duidelijk. Foto 13: Geoptimaliseerde betonnen structuur.

140 4.5 Optimalisatiealgortimes toegepast in studieprojecten In Figuur 67 is wederom een project van Per Dombernowky en Asbjorn Sondergaard geplaatst. In dit project is een shell structuur ontworpen. Doordat beton een materiaal is met een lage treksterkte en een hoge druksterkte, is het uitermate geschikt voor shell structuren. Een shell structuur is namelijk een constructief systeem voornamelijk belast op drukkrachten. In de uitgevoerde casestudy is een bolvormige schaal geoptimaliseerd. De gereduceerde inhoud is 70% zodat 30% van de oorspronkelijke gedefinieerde ontwerpruimte benut wordt. Figuur 67: Shell structuur gevonden door topological optimization. 4.6 Fabricatieproces van niet rechtlijnige betonnen structuren Nu bekend is wat topologcal optimization is en wat er mee bereikt kan worden, is het logisch om na te denken over het productieproces. Tot op heden zijn er vele structuren geoptimaliseerd die van het materiaal staal of aluminium gemaakt zijn. Dit omdat ze makkelijk te zijn bewerken in een CNCgestuurde machnie. Om toch enigzinds een uitspraak te kunnen doen over het uitvoeringsproces van een betonnen constructief systeem dat niet allerdaags bekist kan worden, zijn er in dit Hoofdstuk 2 gedachten gevat. Enerzijds het frezen van een mal, anderzijds het injecteren van beton in buizen Frezen van een mal Na enig spreurwerk op het internet (Website:dk composites) is informatie opgedaan over een innovatieve botenbouwer in Maleisie. Wat deze botenbouwer innovatief maakt, is dat ze een computer gestuurde freesmachine hebben laten ontwikkelen, die niet alleen klein werk kan doen, maar ook zeer grote werken. De machine wordt ingezet om houten mallen te frezen die vervolgens dienen als bekisting voor boten vervaardigd van een composiet. In een werkplaats is de freeskop opgehangen aan een vakwerk die vervolgens afdraagt op een kraanbaan. Een afbeelding hiervan is geplaatst in Foto 14. Om een grotere mal te produceren worden veelal meerdere kleine mallen gemaakt die vervolgens tot een grote mal gekoppeld worden, of ze worden gerepeteerd. Pagina 135

141 Foto 14: Houten gefreesde mal voor een bood Foto 15: Gefreesde mal die gerepeteerd ingezet kan worden Onder hoge druk beton in buizen spuiten Een andere mogelijkheid tot uitvoeren, is het onder hoge druk injecteren van buizen met vezelbeton. Dit is gevonden door de architectural assosication in London (pasquero, 2007). Hier hebben masterstudenten een onderzoek gestart naar deze techniek. De werkwijze is een systeem waarbij buizen gehangen worden en met ringen/touwen op afstand worden gebracht. Vervolgens worden stops aangebracht, dit zijn dichte proppen aan het einde van een buis waardoor het aan een zijde gesloten is. De laatste stap is injecteren van het beton, wachten tot het uitgehard is, en ontkisten door de buizen te verwijderen. Onderstaand zijn twee foto s van dit ambieuse project uit londen getoond. Foto 16: (L) Een foto waarin de buizen gevuld zijn met beton. Foto 17: (R) Een foto waarin het buizenstelsel is afgehangen.0

142 4.7 Topologisch ontwerpen van een sluisdeur In dit hoofdstuk wordt een eigen ontwerp van een sluisdeur gemaakt. Dit model is op een niveau uitgewerkt, waarin geconcludeerd kan worden dat deze ingezet kan worden in de praktijk. Het beoogde doel is een sluisdeur te ontwerpen welke in vvuhsb gebouwd wordt, zonder hier extra wapening in te hoeven plaatsen Gebruikte software Om tot een topologisch geoptimaliseerd model te komen is specialistische software gebruikt. Deze software wordt niet alledaags door een constructeur gebruikt, en wordt zeker niet altijd aangeboden voor vrij gebruik. Voor het tot stand komen van een topologisch ontwerp is een pakket nodig wat in staat is om EE (Eindige elementen) vergelijkingen op te lossen. Topological optimization kan niet in ieder EE pakket worden uitgevoerd. Meest gebruikelijk voor het uitvoeren van een optimalisatie is het gebruik van een EE-pakket, welke hiervoor speciaal ontworpen is. Enkele voorbeelden van veel genoemde pakketten in de praktijk zijn: Topostruct, Tosca, Toposlang, Optistruct en ANSYS. Tijdens het opstellen van deze scriptie zijn niet alle genoemde programma s, met bijbehorende licenties voorhanden geweest. Slechts de programma s ANSYS en topostruct zijn voorhanden geweest. Van deze programma s is ANSYS verreweg het meest bekend, dit mede door zijn grote toepasbaarheid. Een minder bekend programma, topostruct, is opgesteld door Panagiotis Michalatos 21 en Sawako Kaijima 22. Het programma is gebaseerd op het werk van (Bendsoe, M.P., Sigmund, O. (Topology Optimization - Theory, Methods and Applications)) Topostruct wordt als freeware aangeboden onder voorwaarde dat het niet commercieel ingezet wordt. Een tweede voorwaarde van gebruik is dat het niet gebruikt wordt voor reverse-engineering 23. De derde voorwaarde voor gebruik is dat de producenten niet verplicht zijn om te antwoorden/reageren op vragen en eventuele kritiek. Door het uitvoeren van een aantal korte tests is een sommatie gemaakt van de mogelijkheden en valkuilen in zowel ANSYS als topostruct. Een groot verschil tussen beide is de wijze van invoer. Waar in ANSYS heel exact gemodelleerd kan worden (op de mm), is het in topostruct gebruikelijk om alleen een hoofdmaat op te geven van het ontwerpvolume. Tegen dit hoofdvolume worden steunpunten, belastingen, en openingen gesleept. Dit nadeel van topostruct wordt ruimschoots teniet gedaan door de benodigde rekentijd. Waar in ANSYS veel rekentijd nodig is voor een complex model, kan topostruct hetzelfde probleem oplossen in veelal 1/8 e van deze tijd. Doordat er meerdere modellen gemaakt worden is gekozen om deze te maken met topostruct. Veel tijd kan er bespaard worden door de makkelijke opzet, en snelle rekentijd van dit programma. In Tabel 26 zijn enkele eigenschappen van topostruct en ANSYS met elkaar vergeleken. 21 Computational design researchers in Adams Kara Taylor based in London / visiting Lecturer Harvard 22 Computational design researchers in Adams Kara Taylor based in London. 23 Reverse-Engineering = Iets nabouwen door iets van buiten naar binnen na reconstrueren. Pagina 137

143 ANSYS TOPOSTRUCT Invoergemak Via tekstbestand Makkelijke grafische interface Nauwkeurigheid van model Per mm te modelleren Randvoorwaarden "op het oog" plaatsen Opslaan van werk Via.cbs file of tekstbestand Niet Max. elementen Ongelimiteerd Gelimiteerd Elementvorm Alleen Kubisch Alleen Kubisch Rekentijd Bij zelfde aantal elementen 8x snel Geheugengebruik Tijdens rekentijd 2GB Tijdens rekentijd max 1,5 GB Grafische uitvoer Volledig Simpel Uitvoermogelijkheid Geen Uitvoer naar Autocad (.dwg) Tabel 26: Vergelijking tussen ANSYS en TOPOSTRUCT Randvoorwaarden voor het modelleren Een aantal randvoorwaarden worden gedefinieerd in dit hoofdstuk. Deze randvoorwaarden gelden voor iedere situatie welke geoptimaliseerd wordt Steunpunten De steunpunten zijn gelijk aan de steunpunten van de sluisdeur zoals deze gebouwd is. De sluisdeur wordt aan drie kanten gesteund. Aan de onderzijde valt de sluisdeur tegen een drempel, één zijkant steunt tegen de kolk, en de andere zijkant tegen de aanliggende sluisdeur. In Figuur 68 en Figuur 69 is een tekening gemaakt waarin de steunpunten zijn getekend. In ieder optimalisatiemodel zijn deze steunpunten zoals onderstaand getekend is gehanteerd. Figuur 68: Steunpunten vanaf de bovenkant gezien Figuur 69: Steunpunten vanaf de voorkant gezien, en ingezoomd op de hoek.

144 Belastingen In het optimalisatiemodel is het onmogelijk om een gelijkmatig verlopende belasting over de hoogte aan te brengen. Om toch te kunnen rekenen met deze belastingconfiguratie is een belastingmodel gemaakt door de gelijkmatig verlopende belasting op te delen in 5 stappen. Deze stappen hebben een hoogte van 1600mm, waarbij de waarde van de belasting toeneemt in de diepte. In Figuur 70 is dit geïllustreerd. Figuur 70: Het werkelijke belastingmodel en het belastingmodel welke gemodelleerd is. Als er in het optimalisatiemodel een gebied is gecreëerd waarin geen materiaal aanwezig is (p=0; in het geval van een opening) wordt de belasting op dit vlak verspreid over de randen door de vloeilijnentheorie Elementfijnheid In de berekening is gevarieerd met de elementfijnheid om een zo goed mogelijk beeld te krijgen van het geoptimaliseerd model. Als limiet van het verhogen van de elementen is een aantal van elementen gevonden. Bij invoer van dit aantal elementen wordt tijdens het oplossen een error : error in solution-phase getoond. De oorsprong van deze error is onbekend 24. De verdeling van het maximale aantal elementen is in Figuur 71 getoond. Hierin is te zien dat over de dikte van de sluisdeur 8 elementen zijn gebruikt. 24 Navraag heeft geen antwoord opgeleverd. Pagina 139

145 Figuur 71: Verdeling van de reken elementen over de sluisdeur Target density Met de target density is veelal gevarieerd om tot een voldoende nauwkeurig model te komen. In veel modellen is gekozen voor een target density tussen de 0,2 en 0, Geometrische randvoorwaarden. Een geometrische randvoorwaarde, die is opgenomen, bestaat uit het waterdicht zijn van het model. Dit uit zich geometrisch in het toepassen van een dunne plaat met een target density van 1.0 (altijd aanwezig). In Figuur 72 is dit geïllustreerd. Ontwerpgebied (0<p<1) Voorgedefinieerd gebied (p=1) Figuur 72: Model opgedeeld in een ontwerpgebied en een voorgedefinieerd gebied.

146 4.8 Geoptimaliseerde modellen In de volgende subhoofdstuken zijn de gemaakte topologische geoptimaliseerde modellen geplaatst. Gedurende dit onderzoek zijn er vele modellen gemaakt, waarvan velen niets toevoegen om in deze scriptie te tonen. Er is voor gekozen om drie modellen in deze scriptie te plaatsen. Uit deze modellen kunnen conclusies voor het opstellen van het praktisch model worden gehaald. Bij dit model wordt eerst een korte omschrijving geplaatst, vervolgens een mechanicamodel, en tot slot de uitkomst van het optimaliseren gevolgd door een conclusie Model 1 In het eerste model is een ontwerpvolume gecreëerd met een afmeting van 9m x 8m x 1m, (breedte,hoogte,dikte). Voor een dikte van 1 meter is gekozen om te zorgen dat er enerzijds een model wordt gecreëerd dat in de praktijk omgezet kan worden naar een model wat realistisch vervoerd kan worden. Een andere reden is het voorkomen van drukstaven met een lange lengte, (+1m) die gevoelig worden voor instabiliteit, waardoor gerekend moet worden met een gereduceerde capaciteit mechanicaschema In model 1 zijn de steunpunten aangebracht zoals aangegeven in Figuur 69, de belasting als in Figuur 70. In het model zijn geen openingen aangebracht voor het spuwen van water. Dit omdat het eerste model gebruikt wordt voor het onderzoeken waar deze het best geplaatst kunnen worden. Immers waar in het optimalisatiemodel geen materiaal wordt geplaatst, is deze het meest gunstig om openingen te plaatsen. In Figuur 73 is het mechanicamodel voor optimalisatiemodel 1 geplaatst. Figuur 73: Het optimalisatiemodel met aangebrachte belastingen en steunpunten Resultaat 20 iteraties, target density Een eerste resultaat is gevonden bij een target density van bij 20 iteraties en een CPU-tijd van 35 minuten. In dit model is er geen convergente situatie behaald, waarin de target density behaald is. Echter kan al uitspraak gedaan worden over de materiaalverdeling. Te zien is dat een vakwerkligger geplaatst wordt aan de bovenrand, en in een strook over het midden. Verder worden enkele staven tussen beiden geïnitieerd. In Figuur 74 is een bovenaanzicht, zijaanzicht, een vooraanzicht geplaatst. Pagina 141

147 In Figuur 75 zijn isometrische modellen geplaatst. Duidelijk is dat de blauwe plaat (Voorgedefinieerd p=1) een waterkerende functie heeft. De Rode staven zijn gevonden met optimalisatie. Figuur 74: Aanzichten bij 20 iteraties. Figuur 75: Isometrische modellen na 20 iteraties.

148 Resultaat 40 iteraties, target density 0.2 Een tweede resultaat is gevonden bij een target density van 0.2 bij 40 iteraties en een CPU-tijd van 70 minuten. Door het meer itereren zijn enkele druk/trekstaven tussen de vakwerken toegevoegd. Bij de 40 iteraties, en een target density van 0.2, is het model convergent geworden. Dit houdt in dat meer itereren geen verandering in resultaat geeft. In Figuur 76 is een bovenaanzicht, zijaanzicht, een vooraanzicht geplaatst Figuur 77 zijn isometrische modellen geplaatst. Figuur 76: Aanzichten bij 40 iteraties. Figuur 77: Isometrische modellen na 40 iteraties. Pagina 143

149 Conclusie eerste optimalisatiemodel Uit het eerste optimalisatiemodel kunnen twee conclusies worden getrokken. De eerste conclusie is dat uit het optimaliseren naar voren komt dat aan de bovenrand en over een strook in het midden stijfheid van belang is. Deze stijfheid uit zich in het vormen van een vakwerk over de breedte van de sluisdeur. Uit het optimalisatiemodel is te halen dat de stijfheid van de vakwerkligger aan de bovenrand minder groot is dan de stijfheid van de vakwerkligger in de middenstrook. Het aanbrengen van de vakwerkligger in de middenstrook is af te leiden uit de vloeilijnen. Als vloeilijnen op een plaat van 8x9 meter getekend worden is bij het snijpunt van de vloeilijnen, waar het maximaal moment optreedt, de vakwerkligger over de midden sectie gemodelleerd in het optimalisatiemodel. Dus: waar het grootste moment optreedt, is het meeste materiaal geplaatst. Anderzijds waar de grootste vervorming optreedt, aan de bovenrand, is het 2 e vakwerk geplaatst. De tweede conclusie is dat in het optimalisatiemodel twee posities onder het middelste vakwerk aan te wijzen zijn waar geen materiaal is geplaatst. Deze posities zijn dus ideaal om een opening te plaatsen om water te kunnen spuwen, zonder dat dit erg ten koste gaat van de capaciteit van de plaat. Het meest logische is dus om hier (ovale) openingen te maken. In figuur 78 is in een zijaanzicht te zien waar stijfheid aanwezig is. In Figuur 79 is een vooraanzicht te zien waarin de vloeilijnen van de plaat zijn getekend. Ook is hierin een mogelijke positie getekend waar openingen voor het spuwen geplaatst kunnen worden. Materiaal inefficiënt Figuur 78: (L) Zijaanzicht waarin te zien is waar versteviging is aangebracht. Figuur 79: (R)Vloeilijnen op de plaat, en posities waar materiaal inefficiënt is.

150 4.8.2 Model 2 In het tweede geoptimaliseerde model is gebruik gemaakt van de kennis opgedaan in het eerste model, door openingen te plaatsen voor het spuien. Deze openingen zijn geplaatst, waar geconcludeerd is de optimale krachtsafdracht niet stoort Mechanicaschema van het 2 e model Het mechanicaschema van model twee lijkt op het schema van model 1. De enige wijziging is het plaatsen van de openingen, met hierbij een verdeelde belasting over de randen van deze openingen. De belasting is geplaatst als een lijnbelasting rondom de gaten. De grote van deze belasting is gevonden door de kracht op het oppervlak van het gat te verdelen over de omtrek ervan. In Figuur 80 is het mechanicaschema van model 2 geplaatst. Figuur 80: Mechanicamodel van het tweede optimalisatiemodel Resultaat 20 iteraties, target density In model 1 is een begin gemaakt door te itereren met een target density van In model 2 is gekozen voor een target density van Dit om het effect van het verminderde volume (gaten) te compenseren. In Figuur 81 is te zien wat de uitkomst van het optimalisatiemodel is bij 20 keer itereren. In Figuur 82 is een isometrische tekening geplaatst van deze situatie. Pagina 145

151 Figuur 81: Aanzichten bij 20 iteraties. Figuur 82: Isometrische modellen na 20 iteraties.

152 Resultaat 40 iteraties, target density Uit het optimalisatiemodel bij 20 iteraties is te zien dat het model nog redelijk vet is. Daarmee wordt bedoeld dat er gevoelsmatig beter achterhaald kan worden wat de ideale vorm is door een lagere target density op te geven, en verder door te itereren. In Figuur 83 en Figuur 84 is het resultaat hiervan geplaatst. Figuur 83: Aanzichten bij 40 iteraties. Figuur 84: Isometrische modellen na 40 iteraties. Pagina 147

153 Conclusie tweede optimalisatiemodel Uit het tweede optimalisatiemodel kan geconcludeerd worden dat het toevoegen van de spuiopeningen geen/ tot weinig invloed heeft op het optimalisatiemodel. Dit houdt in dat deze op een posititie geplaatst zijn waarin deze weinig invloed heeft op de ideale krachtsverdeling. Bij het model waarin 40 keer geitereerd is, kan worden afgeleid dat een verandering van het algemene beeld ontstaat ten opzichte van het model waarin 20 keer is geitereerd. Waar eerst twee gekromde staven tussen de vakwerken zijn geplaatst, worden deze bij meer itereren vervangen door verfijnde koppeling waarbij er afgesteund wordt op de waterkerende plaat. Het voordeel hiervan is dat het optredend moment in de plaat lager is. De praktische insteek hierbij is dat er sowiso een koppeling tussen beide vakwerkliggers aanwezig moet zijn om instabiliteit hiervan te kunnen voorkomen. In Figuur 85 is het vooraanzicht, van zowel het model met 20 als 40 iteraties, geplaatst. Figuur 85: vooraanzicht model 2 met 20 en 40 iteraties Model 3 Model 3 is een model waar de waterkerende plaat uit het model is gehaald. Dit model is opgesteld om te onderzoeken welke vorm de waterkerende zijde van de plaat aanneemt, wanneer deze niet gedefinieerd is Mechanicamodel model 3 Geen voorgedefinieerde laag

154 Resultaat 40 iteraties, target density Figuur 86: Aanzichten bij 40 iteraties. Figuur 87: Isometrische modellen na 40 iteraties. Pagina 149

155 Conclusie derde optimalisatiemodel Uit het derde optimalisatiemodel, getoond in Figuur 86 en Figuur 87 is te concluderen dat bij het weglaten van de voorplaat de stijfheid aan de bovenzijde, en het midden van de plaat qua positie gelijk is aan die in de eerdere modellen. Ook is te concluderen dat het weglaten van de waterkerende plaat resulteert in een toename van het aantal staven. Deze staven zijn veelal zo gekromd dat ze afdragen in de x-richting. Er kan gesteld worden, dat het vrijwel onmogelijk is om model 3 te gebruiken als uitgangspunt voor een ontwerp. Immers het waterdicht maken van dit constructief systeem zal met dubbel gekromde platen gedaan moeten worden. Wat opvalt is dat bij het weglaten van de waterkerende plaat, een gekromde drukboog wordt geconstrueerd. Deze drukboog is gekromd om zo beter af te dragen naar de steunpunten. Dit geeft een indicatie dat de waterkerende plaat beter gekromd kan zijn dan recht Conclusie Topological Optimization Uit het topologisch ontwerpen kan worden geconcludeerd dat een optimaal ontwerp gemaakt kan worden door stijfheid aan een waterkerende plaat waar deze het meest effectief is. Uit model 1 blijkt dat deze stijfheid het best geconcentreerd kan worden aan de bovenrand, waar de vervorming het grootst is, en in het midden, waar de momenten het grootst zijn. Voor het aanbrengen van openingen, voor het nivelleren van het waterniveau, kunnen het beste ovale openingen worden gemaakt. Deze ovale openingen kunnen qua positie goed worden onttrokken uit Figuur 79. Uit optimalisatiemodel 3 kan ontleend worden dat de meest gunstige vorm voor een waterkerende plaat licht gekromd is. Door deze kromming worden drukkrachten effectief afgedragen. 4.9 Topologische ontwerpen omzetten naar een praktisch model In dit hoofdstuk worden de gevonden topologische geoptimaliseerde modellen omgezet naar een praktisch model. Hierin wordt er bij het praktische model zoveel mogelijk op gelet dat het werkelijk maakbaar, en inzetbaar is Ontwerpvoorwaarden voor het praktische model De eerste ontwerpvoorwaarde voor het praktische model is dat er stijfheid aangebracht dient te worden aan zowel de bovenrand, als over de middenstrook. Deze stijfheid kan het best worden gemodelleerd door een vakwerk. Als tweede voorwaarde geldt dat het praktische model gemodelleerd moet worden achter de waterkerende plaat. De dikte van deze plaat is afhankelijk van het op te nemen moment in deze plaat. De derde voorwaarde is dat het praktische model ontworpen wordt met het doel dat deze werkelijk ingezet kan worden Ontwerpen met de Eindige Elementen Methode In dit hoofdstuk wordt een inleiding gegeven in de mogelijkheden en valkuilen bij het gebruik van de Eindige Elementen Methode voor het toetsen van een ontwerp op sterkte, stabiliteit en vervormingen Waarom eindige elementen modellen toepassen Omdat in een Eindige elementen (EE)-berekening makkelijk fouten zitten en de wijze van invoeren van een model vaak complex is, wordt voor het oplossen van een eenvoudig probleem niet snel gebruikt gemaakt van een EE-pakket. Een voorbeeld waarbij een EE-pakket gebruikt wordt, is een

156 model waar veel staven aanwezig zijn. Handmatig doorrekenen zou te veel tijd kosten. Een ander voorbeeld is het geval waarin de geometrie zo complex is dat deze niet als een staafwerkmodel kan worden beschreven. In dit geval wordt vaak een EE-model gemaakt met volume elementen. Een ander geval is het Fysisch/Geometrisch niet lineair doorrekenen van een constructie wat handmatig soms zelfs zowaar onmogelijk is. In dit hoofdstuk worden EE-berekeningen gemaakt omdat de geometrie niet als staafwerkmodel beschreven kan worden. Ook wordt er niet lineair gerekend (fysisch) omdat de trekcapaciteit van de vezels in vvuhsb worden meegenomen in het spanning-rek diagram Wat is een eindige elementen model Een EEM kan gedefinieerd worden als een systematische toepassing van de stuksgewijze Raleigh- Ritz methode. De systematiek in de toepassing is dat de stukjes waarover probeerfuncties gekozen worden de elementen zijn, en dat als vrijheidsgraden de verplaatsingen (en/of rotaties) van de knopen van de elementen genomen worden. Daarbij worden net als in de matrix methode eerst elementenvergelijkingen afgeleid, die vervolgens gecombineerd kunnen worden tot constructie vergelijkingen. Uit het aldus ontstane stelsel vergelijkingen, kunnen na het in rekening brengen van de voorgeschreven vrijheidsgraden, de onbekende vrijheidsgraden worden opgelost. Als alle vrijheidsgraden (knoopverplaatsingen en/of rotaties) bekend zijn, liggen door de probeerfuncties ook de verplaatsingen in de elementen vast, en daarmee de rekken, spanningen, en potentiele energie. De naam eindige-elementen methode verwijst naar de eindige afmetingen van de elementen waaruit het discrete model wordt opgebouwd Theorie van EEM modellen De afleiding van elementvergelijkingen begint met de keuze van de probeerfunctie. Uitgaande van deze probeerfunctie kan de inwendige en uitwendige potentiele energie van het element berekend worden. De elementenvergelijkingen kunnen dan worden afgeleid uit de eis dat voor evenwicht de potentiële energie stationair moet zijn. Het berekenen van de inwendige potentiële energie van het element vereist bij lijnvormige elementen een integratie over de lengte van het element. Voor eenvoudige elementen kunnen deze integraties exact worden uitgevoerd. Voor ingewikkelde elementen worden deze integraties meestal numeriek uitgevoerd, waarbij de inwendige potentiële energie van het element wordt berekend uit de inwendige potentiële energie in een beperkt aantal punten in het element. Deze punten worden integratiepunten genoemd. (Cook, 1995) De elementvergelijkingen hebben altijd een zodanige vorm dat het uitwendige evenwicht van het element exact vervuld wordt. Omdat het afleiden van de elementenvergelijkingen het inwendig evenwicht van het element benaderd wordt met het principe van de virtuele verplaatsingen, zal het inwendig evenwicht van een element over het algemeen niet kloppen. Dit betekent dat als een snede over een element gemaakt wordt, de spanningen in deze snede geen evenwicht maken met de elementkrachten en de elementbelasting. In het bijzondere geval dat een EEM berekening de exacte oplossing geeft, zal het inwendige evenwicht van de elementen wel gewaarborgd zijn. In Figuur 88 is een tekening gemaakt van een element met uitwendig evenwicht, en een figuur met een benadering van het inwendig evenwicht in een element. Pagina 151

157 Figuur 88: inwendig evenwicht in een element. De fout in de oplossing van een EE-model, veroorzaakt door het feit dat het EE-model de wekelijke vervormingen van de constructie niet voldoende nauwkeurig kan beschrijven wordt de discretiesatiefout genoemd Kwaliteitsbewaking Een eindige elementen berekening is een geavanceerd stuk gereedschap voor het analyseren van het gedrag van constructies. Het gevaarlijke van EE-programma s is dat ze (bijna) altijd een uitkomst geven, maar dat die uitkomst volledig fout kan zijn. De volgende fouten kunnen onderscheiden worden. 1) Idealisatiefout: De constructie, of de daarop werkende belastingen worden op de verkeerde manier geïdealiseerd. In een EE-model betekend dit vaak dat het verkeerde elementtype gekozen is, of dat de verkeerde randvoorwaarden worden aangebracht; 2) Invoerfout: Het gebouwde EE-model is niet zoals bedoeld, er zijn domme invoerfouten gemaakt; 3) Discretiesatiefout: Wanneer het elementennet te grof is, wordt het inwendige evenwicht van de elementen niet voldoende nauwkeurig benaderd. Dit resulteert in een onnauwkeurige oplossing; 4) Geometriefout: De geometrie van de constructie wordt niet exact beschreven door het EEmodel. In feite hebben we dan een EE-model gemaakt voor een constructie met een andere geometrie. m.a.w. : er wordt het verkeerde probleem opgelost; 5) Oplosfout: Door de eindige precisie waarmee getallen in de computer worden weergegeven kan het stelsel knoopevenwichtsvergelijkingen niet altijd voldoende nauwkeurig worden opgelost. Dit probleem speelt bij slecht geconditioneerde constructievergelijkingen, en resulteert in oplossingen waarbij niet aan het knoopevenwicht voldaan wordt; 6) Weergavefout: de door de post-processor weergeven verdeling van verplaatsingen, rekken en spanningen over het element is niet gelijk aan de verdeling als berekend met het EE-

158 programma. Dit komt doordat de post-processor de resultaten op een andere manier over de elementen interpoleert en extrapoleert vanuit de berekende waarden in de knopen of integratiepunten dan het EE-programma; 7) Interpretatiefout: de post processor geeft iets anders weer dan men denkt, of de resultaten worden op een verkeerde manier weergegeven. Het effenen van spanningssprongen tussen elementen kan een grote discretisatiefout verdoezelen, of leiden tot een foutieve interpretatie van berekeningsresultaten; 8) Fouten door tekortkomingen in de elementenformuleringen. Bijvoorbeeld netinstabiliteit t.g.v. gereduceerde numerieke integratie, of afschuif/membraan blokkades in schaalelementen; 9) Programmeerfout: een bug in het programma. Vooral bij minder gebruikte opties in een EEprogramma moet de gebruiker hierop attent zijn. In de EE-berekeningen die in dit verslag gemaakt worden zal afhankelijk van de mate van onttrekken van informatie hieraan, getracht worden de aanwezigheid van een mogelijke fout te elimineren door het uitvoeren van simpele controles Kwaliteit van de mesh In een EE-berekening heeft de meshfijnheid, en de kwaliteit van deze mesh een grote invloed op de correctheid van de berekening. De invloed van de meshfijnheid op de correctheid van de berekening is makkelijk te vinden door de invloed van meer elementen te bepalen. Het beoordelen van de kwaliteit van de mesh is meer ingewikkeld. Een methode voor het beoordelen van elementen is het opvragen van de aspect ratio hiervan. Voor een kubisch gevormd element kan de aspect ratio berekend worden door de ratio tussen het volume van een element, en de lengte van de randen van de kubus. In het eigen ontwerp is de geometrie van de sluisdeur waarschijnlijk niet kubisch te meshen. Tetra elementen zullen gebruikt worden. Bij tetra gevormde elementen is het bepalen van de aspect ratio geïllustreerd in Figuur 89. Met de aspect ratio van alle gebruikte elementen kan een kwaliteit factor van de totale mesh berekend worden. Deze samengestelde kwaliteit waarde uit zich in ANSYS met een waarde tussen de 0 en de 1. Hierbij is de waarde 1 gelijk aan een perfecte mesh, en 0, of een negatieve waarde gelijk aan een slechte mesh (ANSYS, 2009). Bij de berekeningen gemaakt in ANSYS zal altijd uitspraak worden gedaan over de kwaliteit van de mesh. Pagina 153

159 Figuur 89: Bepalen van de aspect ratio in een tetra-element. De aspect ratio in Figuur 89 wordt bepaald door: 1) Een lijn te construeren tussen punt K, en het midden van I-J; 2) Een lijn te construeren tussen het midden van I-K en J-K; 3) Om de drie gevonden knopen heen een rechthoek te tekenen; 4) De aspect ratio is de grootste verhouding tussen de langste zijde gedeeld door de kortste zijde van de 6 vlakken van het tetra-element, delen door wortel(3) Materiaalmodel en Elementkeuze in een EEM model Om een eindige elementen berekening te kunnen maken is het nodig om een elementkeuze te maken, en een materiaalmodel op te stellen Lineair elastisch rekenen Voor het maken van een lineair elastische berekening is het creëren van een materiaalmodel eenvoudig. Er wordt een elasticiteitsmodulus opgegeven, en een poissonverhouding. Daarnaast is het nodig om een element toe te kennen. De keuze van een element hangt af van de omgeving waarin het ingezet wordt, en de gevraagde capaciteit. Voor het maken van elektromagnetische berekeningen zijn andere elementen beschikbaar dan voor het maken van een statische berekening. Opvolgend zijn er elementen beschikbaar die kruip / plasticiteit / temperatuur invloeden enz. kunnen bepalen. Voor het maken van een lineair elastische, statische berekening, van een volume in beton wordt er vaak gekozen voor een solid65 of een solid 186 element. Het onderscheid tussen deze is dat het solid65 element een 8-knoops element is, en de solid186 een 20 knoops, zie Figuur 90 (ANSYS, Finite element modelling for stress analysis, 2010). Figuur 90: 8knoops solid65 en een 20knoops solid186.

160 Een groot verschil tussen een 8, en een 20 knoops element is het toepassen van een lineaire of een kwadratische probeerfunctie. De mogelijkheid om een kwadratische probeerfunctie toe te passen bij een 20koops element ontstaat door een extra integratiepunt tussen de hoekknopen. Het voordeel van het toepassen van een 20knoops element volgt uit het bepalen van rekken, en bijbehorende spanningen, van onder andere niet homogene constructies. Een voorbeeld hiervan is toegevoegd onder Figuur 91. In dit voorbeeld wordt een taps toelopende balk doorgerekend op verplaatsing bij het aanbrengen van een trekkracht hierop. Aan de linkerzijde van dit figuur wordt de constructie doorgerekend met een lineaire probeerfunctie (A0+A1*x) en aan de rechter zijde met een kwadratische probeerfunctie. In de toegevoegde grafieken is te concluderen dat bij het opvragen van de rekken/spanningen over de knopen het FEM (Finite Element Model = FEM) bij een kwadratische probeerfunctie het analytisch bepaalde gedrag beter benaderd. Hierdoor is het dus belangrijk dat, indien mogelijk, 20knoops elementen worden gebruikt. Figuur 91: Verschil tussen een lineair en een kwadratisch verplaatsingsveld. (Website: 2doworld) Plastisch rekenen in ANSYS Aangezien vvuhsb een spaning-rek verdeling heeft dat in de drukzone hardening bevat, en in de trekzonde zowel hardening als softening, is het belangrijk om plastisch te kunnen rekenen om de maximale doorsnedecapaciteit te kunnen bepalen. Het opstellen van een plastisch materiaalmodel is moeilijker dan een lineair model. Vooral de koppeling tussen het gekozen element en de koppeling hiervan aan een materiaalmodel kan problemen opleveren. Zo zijn er elementen die niet in staat zijn niet lineair gedrag te omschrijven. Ook zijn er elementen die wel hardening omschrijven maar niet Pagina 155

161 softening. Of bijvoorbeeld elementen die zowel hardening/softening kunnen beschrijven, maar geen onderscheid kunnen maken tussen trek en druk. Na enig onderzoek te hebben gedaan, is gebleken dat er geen materiaalmodel bestaat dat in staat is om vvuhsb te beschrijven. Zowel hardening, als softening, onderscheiden in de trek en druk, kan niet beschreven worden met een standaard aanwezig materiaalmodel. Om een benadering van het materiaalgedrag van vvuhsb te kunnen invoeren zijn er twee opties (ANSYS, Finite element modelling for stress analysis, 2010). 1) Gebruik maken van het model Cast Iron. Dit model is in staat om onderscheid te maken in een materiaalmodel voor elementen belast op druk, en elementen belast op trek. Ook is het mogelijk om deze elementen te voorzien van een andere spanning-rek relatie. Uitzondering is dat er geen softening gedrag gemodelleerd kan worden. Het materiaalmodel kan alleen toegepast worden bij een 20knoops element. Zie Figuur 92 voor een Schematisatie van het materiaalmodel. Figuur 92: Materiaalmodel voor cast-iron. 2) Implementeren van een macro in tekstbestand. Door het toevoegen van een macro, die na een statische berekening alle elementen op druk scheidt van de elementen op trek, kan er onderscheid gemaakt worden. Na het onderscheiden kan er voor ieder materiaalmodel (druk, trek) een multi-lineair materiaalmodel opgesteld worden, dat in staat is zowel hardening als softening te beschrijven. Het nadeel van het toevoegen van deze macro is dat meerdere iteraties nodig zijn om het komen tot een convergente oplossing. Immers bij de tweede iteratie is de verdeling tussen elementen op druk/trek, anders dan tijdens de eerste iteratie. Bij het toepassen van een macro is het slechts mogelijk met een 8knoops element te rekenen Verificatiemodel Om nadien eventueel een ontwerp van een sluisdeur plastisch te kunnen doorrekenen, is een verificatiemodel opgesteld. Dit verificatiemodel bestaat uit een simpele balk op twee steunpunten, met een overspanning van 5000 mm, een hoogte van 400 mm, en een breedte van 100 mm. Als belasting is een gelijkmatig verdeelde last van 0,01N/mm 2 aangebracht. In dit model is het materiaalmodel met een macro om softening/hardening te beschrijven gebruikt. Om een verificatie te kunnen maken is een identieke doorsnedecapaciteit bepaald met het eerder opgestelde multi-layer model. Om een

162 evenwichtige vergelijking te maken zijn identieke spanning-rek relaties gebruikt. In Figuur 93 Is de uitkomst van beide berekeningen voor de doorsnedecapaciteit geplaatst in een grafiek. Te zien is dat de momentcapaciteit op de verticale as is geplaatst, en de rek in de drukzone op de horizontale as. Met rode stippen, en een lijn ertussen, is de gevonden relatie uit het multi-layer model geplaatst. Met groene en blauwe stippen de uitkomst van het ANSYS model. Hierbij zijn bij de blauwe relatie meer elementen toegepast dan bij de groene relatie. Figuur 93: Vergelijking tussen multi-layer en ANSYS model. Te concluderen met het verificatiemodel is dat de modellen goed met elkaar overeen komen. De doorsnedecapaciteit in ANSYS is slechts een fractie (4%) hoger Spanningsleer Ten gevolge van de veerkrachtsgevallen normaalkracht, dwarskracht, buiging en wringing treden in een denkbeeldige snede van materialen spanningen op. Een spanning is een kracht per oppervlakteeenheid. Lettende op de aard van de spanningen kan onderscheid gemaakt worden in spanningen welke loodrecht op een denkbeeldig vlak werken, normaalspanningen genoemd, en spanningen die evenwijdig aan een denkbeeldig vlak werken, schuifspanningen genoemd. De interactie tussen normaalspanningen en schuifspanningen wordt spanningsleer genoemd. Voor een ruimtelijke spanningstoestand zijn afspraken gemaakt met betrekking tot notaties en positieve richtingen van de spanningen. Spanningen worden met een vector weergegeven. In dit verslag wordt volgens Figuur 94 een spanningsaanduiding met dubbele index gehanteerd. In Figuur 94 zijn normaalspanningen aangegeven met de Griekse letter σ, de schuifspanningen met de Griekse letter. Figuur 94: Spanningsvectoren. Pagina 157

163 Elk materiaal is drie- dimensionaal en vertoont bij belasten in principe een drie- dimensionale spanningstoestand (ruimtespanningstoestand). In elk willekeurig punt van een belast materiaal kunnen drie onderling loodrechte richtingen worden onderscheiden waarin alleen normaalspanningen werken. Dus de schuifspanningen zijn dan nul. Deze richtingen worden hoofdspanningen genoemd en worden veelal aangegeven door in de index de getallen 1,2 en 3 te gebruiken. Deze richtingen kunnen van punt tot punt verschillen, omdat ze alleen afhankelijk zijn van de belastingstoestand en niet de vorm van de doorsnede. De hoofdspanningen (σ1, σ2, σ3) worden berekend op basis van de spanningen uit de kubische vergelijkingen. Hierin is σo de hoofdspanning in drie richtingen. De gemaakte ANSYS modellen voor het eigen ontwerp worden in het volgende hoofdstuk getoetst aan hoofdspanningen Ontwerpen van een realistisch model op basis van optimalisatie modellen In dit hoofdstuk wordt een eigen ontwerp van een realistische sluisdeur gemaakt. Dit praktische model zal worden gemaakt door gebruik te maken van de kennis die is opgedaan na het genereren van de optimalisatiemodellen. Als uitgangspunt wordt aangehouden dat het praktische model, geheel geproduceerd wordt met vvuhsb. Hierbij wordt de nadruk gelegd op het toepassen van rechte staven i.p.v. gekromde elementen, zoals deze veelal in optimalisatiemodellen gevonden zijn. Een ander uitgangspunt is dat het ontwerp dezelfde randvoorwaarden met betrekking tot steunpunten, belastingen, en hoofdgeometrie krijgt. Het doel van het praktisch ontwerp is om aan te tonen dat een constructief ontwerper inspiratie tot een beter ontwerp kan halen uit topologisch geoptimaliseerde modellen. Deze inspiratie dient tot het komen tot een sterker, lichter, of trager ontwerp. Het ontwerpen van de sluisdeur zal iteratief gedaan worden. Hierbij wordt een model opgezet, getoetst, aangepast, getoetst, enz. totdat voldaan wordt aan maximale toelaatbare spanningen en vervormingen Eerste ontwerp In het eerste ontwerp wordt gebruik gemaakt van de gevonden stijfheidsverdeling in het eerste optimalisatie-model. Hierin werd gesteld dat, stijfheid aan de bovenrand, en in het midden, het meest effectief is. Deze conclusie wordt verwerkt in het eigen ontwerp door tegen een waterkerende plaat met een dikte van 100mm, een drietal vakwerken te plaatsen. Deze vakwerken zijn identiek qua afmeting, en bestaan uit staven met een afmeting van 150x150mm. De totale dikte van de waterkerende plaat en de vakwerkliggers is 1000mm. De dikte van de totale sluisdeur is gelimiteerd

164 door de afmeting van de inkassing in de kolk welke +/- ook 1000mm dik is. In Figuur 95 is een tekening geplaatst met de afmeting van de vakwerken. De plaatsing van de vakwerken tegen de waterkerende plaat is zodanig gedaan dat deze bij belasten van de plaat druk op nemen. Ofwel ze zijn tegen de waterkerende zijde van de plaat geplaatst. In Figuur 96 staat een 3D tekening van het eerste ontwerp van de sluisdeur. Figuur 95: Translatie van optimalisatiemodel naar praktisch model. Figuur 96: 3D modellen. Pagina 159

165 Figuur 97: Details aan de rand van de sluisdeur. Figuur. Afmeting van het vakwerk. Figuur 98: Afmeting vakwerken welke tegen de kerende plaat zijn bevestigd. In Figuur 97 zijn 2 details van het ontwerp gemodelleerd. Deze details zijn aansluitingen van het vakwerk op de waterkerende plaat. De keuze is gemaakt om hier extra materiaal aan te brengen voor het inleiden van krachten. Het rechter detail laat zien dat de rand van de sluisdeur onder een hoek is gemodelleerd. Tegen deze hoek sluit de, spiegelende, sluisdeur aan. Aan de achterzijde van de sluisdeur is een verzwaarde rand gemodelleerd. Deze rand wordt gebruikt voor het inleiden van de krachten in de steunpunten. Zonder deze rand heeft de waterkerende plaat van 100mm een te geringe capaciteit om schuifspanningen op te nemen Aangebrachte belastingen Op het rekenmodel is de waterdruk als functie van de hoogte op de elementen aangebracht. Dit houdt dus in dat de locatie van iedere individueel element de belasting op deze heeft bepaald. In Figuur 99 is dit geïllustreerd. Belasting onder 0,080N/mm2 Belasting onder 0,040N/mm2 Figuur 99: Belasting aangebracht op de kerende plaat.

166 Zoals in figuur 99 Figuur 99 is te zien, ontbreekt de waterdruk waar de nivelleeropeningen zijn. Hier is geen volume, en kan er dus geen belasting aan de elementen worden gegeven. Om dit op te vangen is een serie puntlasten op de rand van deze openingen geplaatst. De som van de belasting, van de puntlasten, is gelijk aan het oppervlak van de opening x de belasting hierop, gedeeld door de omtrek. ((4,19m2 x 55kN)/7,28m1). In Figuur 100 is te zien hoe deze puntlasten zijn aangebracht. Figuur 100: Belasting aan de rand van de openingen. Naast de waterdruk, is ook het belastinggeval van het bordes meegenomen. Dit belastingmodel is gunstig voor de optredende trekspanningen ten gevolge van buiging. Daarom wordt dit belastinggeval momentaan (0,9xpermanent) meegenomen in het rekenmodel. Een last van 0,9kN/m 1, is op de bovenzijde van de sluisdeur geplaatst Gegenereerde mesh De keuze is gemaakt om een tetra-vormige mesh toe te passen. Deze meshvorm heeft, bij een complexere geometrie, voordelen voor wat betreft de toepasbaarheid ervan ten opzichte van een kubische mesh. In Figuur 101 is het ontwerp van de sluisdeur gemeshed. Figuur 101: Gemeshed model in ANSYS Pagina 161

167 Kwaliteit van de mesh In Figuur 102 is een overzicht geplaatst van een uitvoer van de meshkwaliteit. Te zien is dat er in totaal tetra elementen zijn gemaakt. Het slechtste element heeft een ratio van 0,274. De gemiddelde ratio is 0,783 en er zijn geen elementen die een ratio lager dan 0.1 hebben. Gesteld kan worden dat de kwaliteit van de mesh goed is. # of Shape Metric (Worst 0-1 Best) Metrics % of Tets Tets Minimum Average < < Init. Mesh: Figuur 102: Uitvoer kwaliteit van de mesh in ANSYS Doorrekenen van het eerste realistische model Het model wordt Lineair Elastisch doorgerekend. Tijdens het berekenen treden geen foutmeldingen of Errors op, de doorrekentijd is 2.30 min Steunpunten De correctheid van het aanbrengen van de steunpunten in belangrijk in een EEM berekening. Een kleine incorrectheid in de steunpunten, kan grote gevolgen hebben voor de berekening. De steunpunten zijn op dezelfde locatie aangebracht als in de optimalisatiemodellen. Uitzondering hierop is de manier van aanbrengen. De steunpunten zijn als een lijn aangebracht over de nodes, dit houdt in dat ze scharnierend zijn. In Figuur 103 is een voorbeeld gemaakt tussen het verschil in een ondersteuning over een lijn, en een vlak, en wat het gevolg hiervan is. In de werkelijkheid is de gehele zijkant gesteund, indien er geen belasting aanwezig is. Zodra er waterdruk aanwezig is, zal alleen de rand van het zijhout druk opnemen. In het geval van de inklemming zal het zijhout ook trek moeten opnemen hetgeen fysisch niet mogelijk is. Figuur 103: Verschil tussen een onbedoelde inklemming, en een vrije rotatie.

168 Reacties, Vervormingen en Spanningen De oplegreacties zijn geplot, en onder Figuur 104 in dit verslag geplaatst. De paarse vectoren geven de positie, en grafisch de grootte van de oplegreactie weer. Het is niet mogelijk om waarden bij deze reactiekrachten te plaatsen. Reactiekrachten Figuur 104: Optredende reactiekrachten. Vervormingen De vervormingen van het eerste model, praktische model, zijn geplaatst in Figuur 105. Figuur 105: Optredende vervormingen. De maximale vervorming van de sluisdeur is 103mm. Het vervormingsbeeld is, waar gewenst, symmetrisch. Dit wijst op een correct model (kwaliteitscontrole). Pagina 163

169 Spanningen In de Figuur 106 en Figuur 107 worden spanningen getoond. Deze spanningen zijn gerelateerd aan de legenda s die onder of bij deze figuren staan. Indien een, of meerdere, vlakken in een figuur grijs zijn betekent dit dat deze buiten het bereik van de legenda vallen. In de komende figuren worden spanningen opgevraagd aan twee zijden, in twee richtingen. De spanningen bevinden zich aan zowel de voor, als achterplaat. In zowel de x-(breedte) als de z-(hoogte) richting. De constructie voldoet zondermeer indien de hoofdspanningen zich tussen de 113 N/mm 2 (druk), en de -6,4 N/mm 2 (trek) bevinden. Als deze waarden niet in veel elementen worden overschreden kan de keuze gemaakt worden om plastisch te gaan rekenen om wel te voldoen. Deze optie wordt echter liever vermeden in verband met een lange rekentijd. Drukspanningen Drukspanningen in de voorplaat, x-richting Drukspanningen in de achterplaat, x-richting Drukspanningen in voorplaat (z-richting) Drukspanningen in achterplaat(z-richting) Figuur 106: Drukspanningen in eerste ontwerp.

170 Zoals verwacht, en hierop geconstrueerd, treden er grotere drukkrachten op in de vakwerkstaven. Deze spanningen zijn gelimiteerd tot een waarde van c.a. 33,3 N/mm 2. Dit is lager dan de maximale druk wat vvuhsb kan opnemen (113N/mm 2 ). De drukkrachten in de plaat zijn gelimiteerd tot een waarde van c.a N/mm 2. Trekspanningen Trekspanningen in de voorplaat, x-richting Trekspanningen in de achterplaat, x-richting Trekspanningen in voorplaat (z-richting) Trekspanningen in achterplaat(z-richting) Figuur 107: Trekspanningen in het eerste ontwerp. Pagina 165

171 Hoofdspanningen 1 e richting (trek grootst) 2 e richting Overschrijding van de maximale spanning 3 e richting (druk grootst) Figuur 108: Hoofdspanningen in het eerste model.

172 De hoofdspanningen zijn in drie richtingen opgevraagd. In de eerste richting zijn de trekspanningen het grootst. In de derde richting zijn de drukspannignen het grootst. De optredende schuifspanningen, worden in dit model, nog buiten beschouwing gelaten Overzicht spanning verdeling Om een inschatting te maken van de spanningsverdeling is deze uitgezet in een grafiek. De achterliggende gedachte is hierbij, dat als de spanningen slechts lokaal en mariginaal de elastische grens overschreid en plastisch rekenen zin, en nut heeft. In Grafiek 51 is een spanningsverdeling van alle elementen op trek geplaatst. In deze spanningsverdeling is op de verticale as de trekspanning geplaastst. Op de horizontale as staan alle elementen, de grafiek is dus niet continue, maar een verzameling van heel veel kolommen. Grafiek 51: Spanningsverdeling over de nodes. Uit Grafiek 51 is te concluderen dat in 16,3%, van alle gevallen waarin nodes onder trekspanning staan, de trekspanning hoger is dan 6,4 N/mm 2. Dit indiceert dat plastisch rekenen geen uitkomst is. Immers de spanningsverdeling wordt vereffend, waarop de vervorming van het model toeneemt. Bij een optredende vervorming van 103mm is het niet wenselijk om deze verder te verhogen. In Grafiek 52 is nog een keer het spanning rek diagram van vvuhsb opgenomen. Grafiek 52: Spanning-rek diagram vvuhsb in de UGT. Pagina 167

173 Conclusie eerste model Uit het eerste model is te concluderen dat een te groot deel van de optredende trekspanningen boven de limiet komt. Hierop kan niet geanticipeerd worden met het plastisch doorreken van het model, aangezien de vervorming van de sluisdeur onder lineair elastisch rekenen al groot is; De optredende drukspanningen vallen ruim binnen de marges; Het eerste praktische model is een goed uitgangspunt om een, inzetbaar, praktisch model te ontwerpen. Het spanningsniveau is dusdanig dat het maken van enkele aanpassingen een goed model oplevert. Kortom, een goede eerste stap Verbeterpunten naar een tweede model Om een model te ontwerpen dat voldoet aan het gestelde spanningsniveau, en niet te veel vervormd, worden enkele aanpassingen gedaan. Dit betreft: Een koppeling wordt er gemaakt tussen de vakwerkliggers. Bekend was al dat deze koppeling nodig is om te voorkomen dat de vakwerken instabiel worden. Echter, deze is niet meegenomen om het effect te kunnen schatten. Indien er een koppeling gemaakt wordt tussen de vakwerken zal deze zorgen dat de optredende vervorming gereduceerd wordt. Dit door een gedeelte van de energie op te slaan in de vorm van een drukspanning. Figuur 109 illustreert dit. Figuur 109: Vervormde sluisdeur in model één met een koppeling met tussenstaven.

174 Tweede ontwerp Als verbetering op het eerste ontwerp is een koppeling gemaakt tussen de vakwerken. Deze koppeling bestaat uit een volle, vierkante, doorsnede met een afmeting van 150x150mm. De koppeling tussen de vakwerkligger is enerzijds een verbetering van de stabiliteit van de vakwerkliggers, anderzijds een mogelijkheid om vervorming te beperken. In Figuur 110 is het verbeterde ontwerp geïllustreerd. De afmeting van de overige delen is ongewijzigd ten opzichte van het eerdere ontwerp. Figuur 110: Het tweede ontwerp, een verbetering op het eerste ontwerp. In relatie tot de optimalisatiemodellen is de verbetering logisch. Immers in de optimalisatiemodellen bestaan er ook koppelingen tussen de versterkte randen Belastingen De aangebrachte belastingen zijn identiek aan de belastingen welke op model één geplaatst zijn Mesh De keuze is gemaakt om een tetra-vormige mesh toe te passen. Deze meshvorm heeft, bij een complexere geometrie, voordelen betreft de toepasbaarheid ervan ten opzichte van een kubische mesh. In Figuur 111 is het ontwerp van de sluisdeur gemeshed. Figuur 111: Het tweede model gemeshed. Pagina 169

175 Kwaliteit van de mesh In Figuur 112 is een overzicht geplaatst van een uitvoer van de meshkwaliteit. Te zien is dat in totaal tetra elementen zijn gemaakt. Het slechtste element heeft een ratio van 0,1723. De gemiddelde ratio is 0,704 en er zijn geen elementen die een ratio lager dan 0.1 hebben. Gesteld kan worden dat de kwaliteit van de mesh goed is. Improving the element quality in volume 1 # of Shape Metric (Worst 0-1 Best) Metrics % of Tets Tets Minimum Average < < Init. Mesh: Figuur 112: Uitvoer kwaliteit van de mesh in ANSYS Reacties, Vervormingen en Spanningen Het model wordt Lineair Elastisch doorgerekend. Tijdens het berekenen treden geen foutmeldingen of Errors op, de doorrekentijd is 2.20 min. Reactiekrachten Figuur 113: Reactiekrachten in model twee. Vervormingen De vervormingen welke optreden in het tweede model zijn aanzienlijk kleiner dan in het eerste model. In het eerste model treedt een vervorming op van 108 mm, deze is gereduceerd naar 8.26mm.Dit is te verklaren door de koppeling tussen de vakwerkliggers die drukkrachten op neemt om vervorming te voorkomen. In Figuur 114 is de vervorming van het tweede model geplaatst.

176 Figuur 114: Vervorming van het tweede model. Spanningen In Figuur 115 en Figuur 116 worden de optredende spanningen van model twee getoond. Deze spanningen zijn gerelateerd aan de legenda s die onder, of bij deze figuren staan. Drukspanningen Drukspanningen in de voorplaat, x-richting Drukspanningen in de achterplaat, x-richting Pagina 171

177 Drukspanningen in voorplaat (z-richting) Drukspanningen in achterplaat(z-richting) Figuur 115: Drukspanningen in eerste ontwerp. Zoals verwacht, en hierop geconstrueerd, treden er grotere drukkrachten op in de vakwerkstaven. Deze drukkrachten zijn gelimiteerd tot een waarde van c.a. 33,3 N/mm 2. Dit is lager dan de maximale druk wat vvuhsb kan opnemen (113N/mm 2 ). De drukkrachten in de plaat zijn gelimiteerd tot een waarde van c.a N/mm 2. Trekspanningen Trekspanningen in de voorplaat, x-richting Trekspanningen in de achterplaat, x-richting

178 Trekspanningen in voorplaat (z-richting) Trekspanningen in achterplaat(z-richting) Figuur 116: Trekspanningen in het eerste ontwerp. Hoofdspanningen 1 e richting (trek grootst) Overschrijding van de maximale spanning Pagina 173

179 2 e richting 3 e richting (druk grootst) Figuur 117: Hoofdspanningen in het eerste model. De hoofdspanningen zijn in drie richtingen opgevraagd. In de eerste richting zijn de trekspanningen het grootst. In de derde richting zijn de drukspannignen het grootst.

180 Overzicht spanning verdeling Net als bij het eerste model is een spanningsverdeling uitgezet in een grafiek. Grafiek 53: Spanningsverdeling over de nodes. Uit Grafiek 53 is te concluderen dat in 148% van alle gevallen waarin nodes onder trekspanning staan, de waarde trekspanning hoger is dan 6,4 N/mm 2. Dit is een verlaging ten opzichte van de 16% in model één Conclusie tweede model De optredende vervorming is van 103mm in het eerste model, naar 8.2mm in het tweede model flink afgenomen. De tussenliggers dragen dus, naast het stabiliseren van de vakwerkliggers, bij aan een reductie van de vervorming. Dit doordat ze zorgen voor een fictieve inklemming; Uit het tweede model is te concluderen dat de aanwezige trekspanningen zijn gereduceerd t.o.v. model één, maar nog steeds groter dan maximaal toelaatbaar; De optredende drukspanningen vallen ruim binnen de marges; Pagina 175

181 Verbeterpunten naar een derde model Om een model te ontwerpen wat voldoet aan het gestelde spanningsniveau, en niet te veel vervormd, worden enkele aanpassingen gedaan. Deze worden opgesomd. Tussen de vakwerken wordt in verticale richting extra vakwerkliggers geplaatst. Deze vakwerkliggers zorgen ervoor dat de locatie waar de trekspanningen te hoog zijn wordt verstevigd.

182 Derde, definitieve ontwerp Als verbetering op het tweede ontwerp is lokaal een versteviging aangebracht. Deze versteviging bestaat uit vakwerken welke tussen de bovenste en de middelste, overspannende, vakwerken in loopt. De afmeting van de staven is identiek aan die van de overspannende vakwerkliggers. In Figuur 118 zijn de extra vakwerkliggers in het rood aangegeven. Figuur 118: Het tweede ontwerp locaal verstevigd om tot een derde ontwerp te komen Belastingen De aangebrachte belastingen zijn identiek aan de belastingen welke op model één geplaatst zijn Mesh De keuze is gemaakt om een tetra-vormige mesh toe te passen. Deze meshvorm heeft, bij een complexere geometrie, voordelen betreft de toepasbaarheid ervan ten opzichte van een kubische mesh. In Figuur 119 is het ontwerp van de sluisdeur gemeshed. Figuur 119: Een detail van de mesh in model drie. Pagina 177

183 Kwaliteit van de mesh In Figuur 120 is een overzicht geplaatst van een uitvoer van de meshkwaliteit. Te zien is dat in totaal tetra elementen zijn gemaakt. Het slechtste element heeft een ratio van 0,260. De gemiddelde ratio is 0,726 en er zijn geen elementen die een ratio lager dan 0.1 hebben. Gesteld kan worden dat de kwaliteit van de mesh goed is. # of Shape Metric (Worst 0-1 Best) Metrics % of Tets Tets Minimum Average < < Final Mesh: Figuur 120: Uitvoer kwaliteit van de mesh in ANSYS Reacties, Vervormingen en Spanningen Het model wordt Lineair Elastisch doorgerekend. Tijdens het berekenen treden geen foutmeldingen of Errors op, de doorrekentijd is 2.20 min. Reactiekrachten In figuur 121 Figuur 121 zijn de optredende reactiekrachten te zien. In deze figuur is het bovenaanzicht van de sluisdeur te zien. De reactiekrachten zijn vooral groot waar de sluisdeuren tegen elkaar aan vallen en waar de sluisdeur tegen de kolk wand staat. De reactiekrachten tegen de onder drempel zijn minder groot. Figuur 121: Reactiekrachten in model drie. (bovenaanzicht)

184 Vervormingen De vervormingen, welke optreden in het tweede model, zijn aanzienlijk kleiner dan in het eerste model. In het eerste model treedt een vervorming op van 108 mm, deze is gereduceerd naar 8.26 mm.dit is te verklaren door de koppeling tussen de vakwerkliggers, die drukkrachten opneemt om vervorming te voorkomen. In Figuur 122 is de vervorming van het tweede model geplaatst. Figuur 122: Optredende vervorming van het derde model. Spanningen In Figuur 123 en Figuur 124 zijn de optredende spanningen van model 3 getoond. Deze spanningen zijn gerelateerd aan de legenda s die onder, of bij deze figuren staan. Drukspanningen Drukspanningen in de voorplaat, x-richting Drukspanningen in de achterplaat, x-richting Pagina 179

185 Drukspanningen in voorplaat (z-richting) Drukspanningen in achterplaat(z-richting) Figuur 123: Drukspanningen in eerste ontwerp. Zoals verwacht, en hierop geconstrueerd, treden er grotere drukkrachten op in de vakwerkstaven. Deze drukkrachten zijn gelimiteerd tot een waarde van c.a. 33,3 N/mm 2. Dit is lager dan de maximale druk wat vvuhsb kan opnemen (113 N/mm 2 ). De drukkrachten in de plaat zijn gelimiteerd tot een waarde van c.a. 13,3 N/mm 2. Trekspanningen Trekspanningen in de voorplaat, x-richting Trekspanningen in de achterplaat, x-richting

186 Trekspanningen in voorplaat (z-richting) Trekspanningen in achterplaat(z-richting) Figuur 124: Trekspanningen in het eerste ontwerp. Hoofdspanningen 1 e richting (trek grootst) Overschrijding van de maximale trekspanning Pagina 181

187 2 e richting 3 e richting (druk grootst) Figuur 125: Hoofdspanningen in het eerste model. De hoofdspanningen zijn in drie richtingen opgevraagd. In de eerste richting zijn de trekspanningen het grootst. In de derde richting zijn de drukspannignen het grootst.

188 Overzicht spanning verdeling Net als bij het eerste en tweede model is een spanningsverdeling uitgezet in een grafiek. Grafiek 54: Spanningsverdeling over de nodes. Uit Grafiek 54 is te concluderen dat in 3,6% van alle gevallen waarin nodes onder trekspanning staan, de waarde trekspanning hoger is dan 6,4 N/mm 2. Dit is een acceptabel niveau aangezien plastisch rekenen niet tot zeer grote vervorming, of verstoorde elementen zorgt Reductie van de spanningspieken De spanningen in het derde model liggen, uitzondering daargelaten, binnen het maximale spanningsbereik. De uitzonderingen zijn spanningen welke zeer lokaal groter zijn dan de maximale trekspanning van 6,4 N/mm 2. Gebleken is dat het reduceren van deze spanningen, door toevoegen van materiaal, niet eenvoudig is. Dit omdat bij het toevoegen van meer volume in de vakwerkliggers, deze stijver worden, en dit voor het optreden van een ander vervormingsbeeld zorgt. Deze verandering in het vervormingbeeld brengt spanningsconcentratie in andere delen met zich mee. Dit wordt duidelijker gemaakt in Figuur 126. In Figuur 126 is een doorsnede geschematiseerd over de verticale richting van de sluisdeur. In dit 2Dmechanicaschema is een ligger met een lengte van 8 meter getekend, dit is gelijk aan de hoogte van de sluisdeur. De vakwerkliggers zijn als veren aangebracht tegen deze ligger en de drempel als een scharnier. Op de ligger is nu een verlopende belasting aangebracht welke de waterdruk schematiseert. Na doorrekenen van dit schema is in de bovenste afbeelding in Figuur 126 weergegeven dat de grootste vervorming optreed aan de bovenrand van de sluisdeur, dit is wat ook met de 3D ANSYS modellen is gevonden. In de middelste afbeelding zijn de drie veren stijver gemaakt. Door het stijver maken van deze veren treedt een andere vervorming op. In de onderste Pagina 183

189 afbeelding zijn deze veren zo stijf gemaakt, dat ze werken als een scharnier. Nu is duidelijk dat de grootste vervorming op een geheel andere locatie optreedt dan in het geval van slappe veren. Dit andere vervormingsbeeld zorgt op zijn beurt voor grote trekspanningen ter plaatste van de openingen in de sluisdeur, welke van zichzelf al een zwak gebied zijn. Te concluderen is dus dat het stijver maken van de vakwerkliggers het probleem verschuift, en daarom niet wenselijk is. Figuur 126: Verandering van vervorming door stijver maken van de veren. In een ANSYS model zijn enkele staven van de vakwerkligger verstevigd door deze dikker te maken. Vervolgens is dit model doorgerekend, in Figuur 127 het resultaat te zien. De beschrijving die zojuist is gegeven als een veer stijver wordt, komt goed overeen met het daadwerkelijke model waar dit gedaan is.

190 Posities waar de vakwerkliggers verstevigd zijn. Figuur 127: Vervormingsbeeld als de vakwerken zijn verstevigd. Hoge trekspanningen. Figuur 128: Spanning concentratie bij de nivelleeropeningen. Pagina 185

191 Produceren van het praktische model Door de aanwezigheid van de vakwerkliggers is het praktische model lastiger te produceren dan een vvuhsb sluisdeur welke als een rechte plaat geproduceerd wordt. Om dit in de vergelijking op duurzaamheid te kunnen meewegen is een ontwerp van de bekisting gemaakt. Om het praktische model te kunnen produceren wordt een mal ontworpen waarin het beton gestort wordt. Een deel van deze mal zal als verloren bekisting gaan dienen, en wordt dus niet ontkist. Het voordeel hiervan is dat de bekisting direct een beschermende functie geeft voor de delen die hierin gestort zijn. Het nadeel is dat dit deel van de mal niet meerdere keren ingezet kan worden. De mal zal worden opgebouwd uit vierkante PVC buizen met een wanddikte van 1.5mm. Deze wanddikte is gebaseerd op gevoel, en enigszins onderbouwd door de dikte van standaard PVC buizen te vergelijken. De oppervlakte van de mal zoals deze in Figuur 129 is geplaatst bedraagt 77,14 m 2. Figuur 129: Mal voor het gieten van de vakwerkliggers. Als de oppervlakte van de mal wordt vermenigvuldigd met de wanddikte heeft de mal een totale inhoud van 0,115 m 3. Met een eigen gewicht van 1400kg/m 3 heeft de PVC mal een eigen gewicht van 162kg. Zoals eerder geschreven, wordt na het injecteren van het beton in de mal, deze niet ontkist. Na het uitharden van het betonnen geraamte kan deze ingestort worden in de waterkerende plaat. Deze waterkerende plaat zal op dezelfde wijze worden gestort als de sluisdeuren zoals deze in Hoofdstuk 3 zijn berekend.

192 Belichaamde energie De embodied energie van het eigen ontwerp is afhankelijk van het eigen gewicht van het model, de vezels, en de toeslag voor de productie van de PVC mal. In het eigen ontwerp wordt geen buigtrek,- of dwarskrachtwapening aangebracht. Het volume van het model is 9,3m 3. Dit geeft een embodied energie van 35,34 GJ. Het vezelvolume van het model is 2,1%. Dit geeft een embodied energie van 19,53 GJ. Voor PVC geldt een waarde van 70MJ/kg. Het gewicht van de mal is 162kg wat dus een embodied energie van 11,34 GJ oplevert. De totale embodied energie van het eigen ontwerp is: 66,21GJ. In Grafiek 55 is de energiebehoefte van het eigen ontwerp naast de andere varianten gezet. Grafiek 55: Belichaamde energie van alle varianten. Te concluderen uit Grafiek 55 is dat het eigen ontwerp 90% minder energie behoeft dan het ontwerp in staal. In Grafiek 56 is ingezoomd op de embodied energie van alleen de betonnen varianten. Grafiek 56: Belichaamde energie van alle betonnen varianten. Pagina 187

193 In grafiek 57en Grafiek 58 is de energie uitgedrukt in embodied energie omgezet naar CO 2. Grafiek 57: CO 2 behoefte van alle varianten. Grafiek 58: CO 2 behoefte van alle betonnen varianten Eigen gewicht van eigen ontwerp Het eigen gewicht van het eigen ontwerp is gelijk aan 22,78 ton. Ter vergelijking is het eigen gewicht van de vvuhsb variant 31,72 ton.

194 Conclusie derde model De optredende vervorming van het model is lager dan die van de vlakke betonnen platen uit Hoofdstuk 2. De optredende trekspanningen zijn lager dan maximaal toegestaan. Slechts op enkele locaties is dit hoger, dit kan opgelost worden door de plastische capaciteit van vvuhsb in rekening te brengen. De optredende drukspanningen vallen ruim binnen de marges. Het model kan geproduceerd worden door eerst een PVC mal die de vorm heeft van de vakwerken te injecteren met vvuhsb. Pagina 189

195 5 VARIANTEN In dit hoofdstuk wordt kort voor alle beschouwde varianten een opsomming gemaakt van het eigen gewicht, embodied energie, levensduur, kostprijs, productiemethode, en tot slot een gecorrigeerde embodied energie waarin alle effecten zijn meegewogen. Vervolgens is een vergelijking opgesteld tussen alle varianten. Deze vergelijking wordt gebruikt om de conclusies te trekken. 5.1 Stalen sluisdeur De analyse van de stalen sluisdeur is gedaan op het model zoals deze daadwerkelijk vervangen gaat worden D Tekening Om de stalen sluisdeur terug op het netvlies te krijgen is deze als 3D tekening geplaatst in Figuur 130. Figuur 130: 3D tekening van de stalen sluisdeur Eigen gewicht Het eigen gewicht van de constructieve delen in de stalen sluisdeur is berekend op 25,4 ton. Dit gewicht bevindt zich voornamelijk in de waterkerende voorplaat, de achterplaat, en de tussenliggende hoofddraagconstructie Embodied energie De embodied energie van de stalen variant is afhankelijk van de mate waarin het gebruikte materiaal gerecycled is. Het wereldwijde aandeel gerecycled constructiestaal is 30%. De keuze is gemaakt om voor de stalen sluisdeur een gerecyclede hoeveelheid van 25% te nemen. Deze keuze kan onderbouwd worden door het feit dat 30% van het staal gerecycled staal is. Daarbij is het vaak zo dat voor de productie van grotere elementen, zoals plaatstaal, een mindere mate van schroot wordt gebruikt. De stalen sluisdeur bestaat grotendeels uit grote liggers, welke zijn opgebouwd uit plaatstaal. De berekende embodied energie van de stalen sluisdeur, met 25% gerecycled staal, is 692 GJ.

196 5.1.4 Levensduur De levensduur van de stalen sluisdeur is groter dan de betonnen varianten. De levensduur van de stalen sluisdeur is geschat op 100 jaar Kostprijs De kostprijs van de constructieve delen van de stalen sluisdeur is berekend met de hedendaagse waarde van plaatstaal. Deze ligt op: 122,70 per 100kg. Omgerekend is de waarde van het constructieve materiaal van de stalen sluisdeur: Productiemethode De stalen sluisdeur wordt geproduceerd door plaatstaal aan elkaar te lassen. Dit lassen is een bewerking welke niet nodig is bij een betonnen sluisdeur. Echter moet voor de betonnen sluisdeur een mal gemaakt worden. In dit onderzoek is gekozen om deze bewerkingen tegen elkaar weg te strepen. Deze keuze is gemaakt omdat enerzijds de berekening te complex wordt, en aan de andere kant ook omdat deze verschillen slechts een klein aandeel op het geheel zijn Gecorrigeerde embodied energie De gecorrigeerde embodied energie is berekend door de kostprijs, levensduur, en eventuele extra energie waarde voor het maken van een mal te verrekenen. De gecorrigeerde embodied energie voor de stalen sluisdeur is: 707 GJ. 5.2 C53/65 variant Voor stalen sluisdeur gemaakt met een mengsel van C53/65 beton is middels een multi-layer model een optimum gevonden voor de toegepast dikte en wapeningsbehoefte. Voor de afmeting van de sluisdeur is dezelfde hoogte en breedte aangehouden. Ook de openingen voor het spuwen van water zijn op dezelfde positie aangehouden D Tekening Figuur 131: Model van de C53.65 betonnen sluisdeur Pagina 191

197 5.2.2 Eigen gewicht Het eigen gewicht van de C53/65 betonnen sluisdeur is berekend op 95,31 ton. Dit eigen gewicht zorgt voor een normaalkracht in de ankers welke aan de halspen zijn bevestigd. De maximale kracht in deze ankers is 118,2 ton in gesloten stand, en 103 ton in open stand (Figuur 132). De horizontale kracht welke optreedt is 53,61 ton, dit is lager dan maximaal toelaatbaar. Het eigen gewicht van de betonnen deur is dus toegestaan met betrekking tot de ankers in de kolk. F,anker ton ton F,anker = (95,31 * (8900/2))/7900 = 53,61 ton. Figuur 132: Maximale horizontale belasting welke de ankers op kunnen nemen.

198 5.2.3 Embodied energie De totale embodied energie van de C53/65 sluisdeur is gebaseerd op een wapeningsaandeel van 0,312m 3, en een betonaandeel van 11,959m 3. De totale energiebehoefte is 158 GJ Levensduur De betonnen sluisdeur is ontworpen met veiligheidsfactoren die betrekking hebben op een levensduur van 50 jaar. Deze veiligheidsfactoren hebben invloed op de dekking van de wapening, en zo ook de doorsnedecapaciteit Kostprijs De kostprijs van het constructieve materiaal van de betonnen sluisdeur is berekend door de een eenheidsprijs te hanteren voor de wapening, en een eenheidsprijs voor het beton. De eenheidsprijs van de wapening (leveren, knippen/buigen, verwerken, transport, buigstaten) is 915/100kg. Voor het C53/65 mengsel is een eenheidsprijs van 175/m 3 aangehouden. In totaal komt dit op een kostprijs van het constructiemateriaal van: Productiemethode De betonnen sluisdeur wordt gestort in een eenvoudige mal. De energie/kosten van dit proces is gelijkgesteld aan de energie/kosten welke het lassen van de stalen variant behoeft Gecorrigeerde embodied energie De gecorrigeerde embodied energie voor de C53/65 betonnen sluisdeur is onveranderd vergeleken met de niet gecorrigeerde. Dit omdat de kostprijs van deze variant, en de levensduur, het laagst zijn. De gecorrigeerde embodied energie voor de sluisdeur is: 158 GJ. 5.3 vvuhsb variant De vvuhsb variant is op dezelfde wijze als de C53/65 sluisdeur benaderd D Tekening Figuur 133: Model van de vvuhsb betonnen sluisdeur. Pagina 193

199 5.3.2 Eigen gewicht Het eigen gewicht van de vvuhsb betonnen sluisdeur is berekend op 31,72 ton Embodied energie De embodied energie van de vvuhsb vlakke plaat is 102 GJ Levensduur De levensduur van de vvuhsb sluisdeur is aangenomen op 85 jaar. Dit is lager dan de stalen variant, en hoger dan de C53/65 variant Kostprijs De kostprijs van de vvuhsb sluisdeur is berekend op Dit is opgebouwd uit een prijs van 915/1000kg voor de wapening, 800/m 3 voor het mengsel, en 115/m 3 voor de vezels Productiemethode De productiemethode is gelijk aan die van de C53/65 sluisdeur Gecorrigeerde embodied energie Gecorrigeerd is de embodied energie van de vvuhsb sluisdeur gelijk aan 70 GJ. 5.4 Eigen ontwerp vvuhsb D Tekening Een 3d tekening is gemaakt om te verduidelijken hoe het eigen ontwerp in vvuhsb geplaatst wordt in de kolk. Ook is een bordes geplaatst, en een ontwerp gemaakt voor de afsluiting van de nivelleeropeningen. Onder Figuur 134 is deze tekening geplaatst. Figuur 134: Eigen ontwerp van een vvuhsb sluisdeur.

200 In het 3D model is de sluisdeur aangekleed met een bordes, voorhout, en een afsluitmechanisme. Dit afsluitmechanisme is een voorstelling van een oplossing voor het afsluiten van de nivelleeropeningen. Dit mechanisme bestaat uit een aantal cilinders, welke hydraulisch zijn aangedreven, die de afsluitende ovale platen in beweging brengen. De leidingen welke op de sluisdeur zijn getekend, zijn onder druk met olie gevuld om de cilinders hydraulisch te kunnen aansturen Eigen gewicht Het eigen gewicht van dit eigen ontwerp is 22,95 ton. Het volume van de deur is 9,37m Embodied energie De embodied energie van het eigen ontwerp bestaat uit een aandeel beton, en een aandeel vezels. Totaal is de energiebehoefte 54,8 GJ Levensduur De levensduur van het eigen ontwerp is 85 jaar Kostprijs Voor de kostprijs van het constructiemateriaal is alleen een prijs van het beton, en de vezels in rekening gebracht. In totaal komt dit uit op: Een extra toeslag wordt in rekening gebracht voor de productiemethode. Deze toeslag bedraagt Totaal is de kostprijs van deze variant dus Productiemethode De productiemethode van het eigenontwerp bestaat uit twee delen. Het eerste deel is het injecteren van beton onder hoge druk in een buizenstelsel. Het tweede deel is het storten van de waterkerende plaat. Tijdens het storten van de waterkerende plaat wordt het eerste deel ingegoten Gecorrigeerde embodied energie De gecorrigeerde embodied energie van het eigen ontwerp is bepaald door een toeslag te hanteren voor de PVC mal, de hogere kostprijs, en de langere levensduur in rekening te brengen. De gecorrigeerde embodied energie is berekend op 46GJ. 5.5 Vergelijking tussen alle varianten In dit hoofdstuk wordt een vergelijking gemaakt tussen alle beschouwde varianten in dit verslag. Deze vergelijking wordt opgedeeld in een vergelijking zonder corrigerende factoren, en een vergelijking met corrigerende factoren. De corrigerende factoren zijn: extra kostprijs, levensduur, en productieproces. In Tabel 27. Zijn alle berekende parameters, voor alle varianten, opgesomd. Pagina 195

201 Tabel 27: Alle gevonden waarden, voor alle varianten Vergelijking zonder extra factoren Uit Tabel 27 wordt gevonden dat het eigen gewicht van de stalen, en vvuhsb-en, varianten met elkaar overeen komen. Het eigen gewicht van de C53/65 betonnen sluisdeur is c.a. een factor drie hoger. Uit berekening is gekomen dat dit geen problemen met zich meebrengt voor de ankers van de halspen. Wat niet berekend is in dit verslag, maar waar wel rekening mee gehouden moet worden is de energie die benodigd is om de sluisdeur in beweging te krijgen. Tijdens de gehele levensduur zal de sluisdeur geopend, en gesloten worden met een cilinder. Deze cilinder zal, bij een zware sluisdeur, meer energie behoeven dan bij een lichte sluisdeur. De embodied energie, zonder de verrekening van de extra factoren, is voor het eigen ontwerp het laagst. Omdat in het eigen ontwerp geen additionele buigtrekwapening wordt gebruikt heeft deze variant groot voordeel. Ook het gebruik van optimalisatie-algoritmen bewijst zijn effectiviteit met deze uitkomst. Een nadeel van het eigen ontwerp is dat de productie op een niet conventionele manier gedaan moet worden, namelijk het injecteren van PVC buizen. Naast het eigen ontwerp is te herleiden dat de vvuhsb vlakke plaat ook een lage energiebehoefte heeft. De vlakke plaat is een alternatief dat vele malen duurzamer is dan de stalen variant Vergelijking welke is aangevuld met corrigerende factoren Als gebruik gemaakt wordt van corrigerende factoren is dit in het voordeel van de vvuhsb-en varianten. Dit omdat de kostprijs van deze ontwerpen niet veel hoger is dan het ontwerp in C53/65, maar de levensduur wel langer geschat is. De stalen variant heeft de hoogste levensduur, maar ook een hoge kostprijs. Dit compenseert elkaar in de berekening. Uit alle varianten, rekening houdend met de corrigerende factoren, ontstaat het zelfde beeld als zonder de corrigerende factoren. Namelijk dat de vvuhsb-en varianten de beste alternatieven zijn.

202 6 CONCLUSIE In dit afstudeeronderzoek zijn vier varianten beschouwd voor de sluisdeuren in het project Sambeek en Belfeld. Een stalen variant, zoals deze hedendaags geplaatst wordt, is na onderzoek de meest milieubelastende variant. Dit zowel voor,- en nadat corrigerende factoren, welke de levensduur, kostprijs, en productiemethode in rekening brengen, zijn toegepast. De betonnen C53/65 variant, welke uitgevoerd wordt als een 450mm dikke betonnen plaat, is een variant welke op basis van zijn embodied energie gunstiger is dan de stalen variant. Het nadeel van deze variant is echter dat het eigen gewicht een factor drie hoger is dan de stalen sluisdeur. Dit zorgt bij tewerkstelling voor een hoger energie behoevend systeem. Dit omdat de cilinder, welke de sluisdeur opent en sluit, een grotere kracht moet voortstuwen. Desondanks is de C53/65 betonnen sluisdeur, een variant welke in de praktijk ingezet kan worden. De minst milieubelastend zijn de vvuhsb-en varianten. Zowel de vlakke plaat welke optimaal is bij een dikte van 200mm, als het eigen ontwerp met vakwerkliggers hebben een lagere embodied energie dan de stalen,- en C53/65 sluisdeur. Dit is verklaarbaar door enerzijds de gunstige werking van de vezels, waardoor weinig buigtrekwapening toegevoegd hoeft te worden. Anderzijds door de lage embodied energie van het betonmengsel t.o.v. staal. Het verschil in belichaamde energie tussen de 200mm dikke vvuhsb vlakke sluisdeur, en de stalen sluisdeur is, zonder corrigerende factoren - 85%. Met corrigerende factoren is dit -90%. Om te komen tot een nog efficiënter ontwerp dan de vlakke vvuhsb plaat, zijn optimalisatiemodellen gemaakt in vvuhsb. Dit ontwerp heeft een volume van 9.3m3, en heeft geen additionele buigtrek,- of dwarskrachtwapening nodig. De reductie in belichaamde energie is 46% ten opzichte van de vlakke vvuhsb sluisdeur. Met corrigerende factoren is dit 34%; Het verschil in de gecorrigeerde embodied energie is lager, dit door de productie welke gecompliceerder is. Uit het ontwerp opgesteld met optimalisatiemodellen blijkt dat deze ontwerpmethodiek goed inzetbaar is om tot een duurzaam ontwerp te komen. De CO 2 uitstoot welke gereduceerd kan worden door toepassing van een 200mm dikke vlakke vvuhsb sluisdeur ten opzichte van de stalen sluisdeur is, met corrigerende factoren meegerekend, 62,4 ton over de levensduur van 100jaar. Wanneer dit voor de zestien toegepaste deuren wordt doorgerekend gaat het in totaal om 999 ton CO 2 welke gereduceerd wordt. Als ontwerp gebaseerd op optimalisatiealgoritmen wordt toegepast gaat het om 1036 ton CO 2 voor de zestien sluisdeuren. Als kanttekening bij deze conclusies moet vermeld worden dat, naast de factoren welke in rekening gebracht zijn, ook andere factoren invloed kunnen hebben. Denk hierbij aan esthetica/uniekheid welke de levensduur mede kan bepalen, breukenergie van het materiaal welke schade bij ongevallen bepaald, of de gevoeligheid voor vermoeiing wat voor lokale schade zorgt. Echter is het goed te realiseren dat het verschil in de vergelijking zo groot is, dat het verrekenen van deze factoren geen verschil gaan maken in de conclusie. Pagina 197

203 7 AANBEVELINGEN VOOR VERDER ONDERZOEK Aan de hand van kennis en inzichten wordt aanbevolen onderzoek te verrichten naar de invoering van ontwerpalgoritmes in de praktijk. Een opsomming is gemaakt met hierin punten waar verder onderzoek naar nodig is. In de Eurocode 2 wordt de mogelijkheid geboden om te rekenen met staafwerkmodellen. De procedure is dat de ontwerper een staafwerkmodel aanneemt, en vervolgens deze toetst aan de hand van de norm. De valkuil is aanwezig dat de ontwerper niet weet of het aangenomen staafwerkmodel het meest gunstige model is. Hier kan topological optimization worden ingezet om tot inzicht te geven in welk model het meest gunstige kan zijn. In paragraaf is een stuk geschreven over shape optimization. Dit is een, naar eigen mening, ontwerpmethode waarmee veel bespaard kan worden. Een vergelijkstudie kan gestart worden door een bestaand project naast een studieproject, waar shape optimization is gebruikt, te leggen en te concluderen wat het potentieel is van deze methode. In paragraag is een voorbeeld gegeven waar beton, onder hoge druk, in buizen wordt geïnjecteerd. Hier dienen de buizen als mal voor het beton. Deze methode is in Nederland onbeproefd. Aangezien deze methode een groot raakvlak heeft met topological optimization, en vvuhsb, is het zinvol hier onderzoek naar te doen om de mogelijkheid van het vrije vorm ontwerpen in beton meer kansen te geven.

204 8 LITERATUURLIJST 8.1 Geschreven literatuur ANSYS APDL. Meshing help. (2009). ANSYS APDL. Finite element modelling for stress analysis. (2010). Arends, G. Sluizen en stuwen. De ontwikkeling van de sluis- en stuwbouw in Nederland tot (1994) AFGC/SETRA. Ultra High Performance Fibre-Reinforced Concretes. (2002). C.S.Kleinman. Betonconstructies 3. (2006). Cement. Sluisdeur in HSB. (2010). Cook, R. Finite element modelling for stress analysis. (1995). vandepitte, D. Berekenen van Constructies. (1979). Hordijk, D. Local approach to fatigue of concrete. (1991). Budd,J. An evaluative study on ESO and SIMP for optimising a cantilever tie-beam. Bendsøe, O.S. Topology Optimization: Theory, Methods, and Applications. (2003). Michell. The limits of economy of material in framed structures. (1904). Pasquero, c. fibrous structures workshop evaluation report. (2007). Reitsema, A. Literatuuronderzoek vvuhsb. (2011). Rijkswaterstaat. Ontwerpen van schutsluizen. (2000). Spasojević, A. Structural Implications of Ultra-High Performance Fibre-Reinforced Concrete in Bridge Design. (2008). Timoshenko, S. Theory of plates and shells. (1959). Pagina 199

205 8.2 Digitale literatuur 2doworld. Riable FE-Modeling with ansys Bouwen met staal. van Recycling en hergebruik: de feiten Ductal Lafarge. Products & Technical Specifications Rijkswaterstaat. Deelproject Maaswerken: Unikabeton. Shell lattice structure Wikipedia. Embodied energy en.wikipedia.org Wikipedia. Topology optimization en.wikipedia.org Dk composites. CNC-mallen in Maleisie Ruimte voor de rivier. Film: Gevaar voor overstroming

206 9 LIJST MET AANWEZIGE AFBEELDINGEN 9.1 Figuren Figuur 1: De Maasroute in de kaart van Nederland Figuur 2: Illustratie met verloop van het streefpeil over de Maas Figuur 3: Complete sluisdeur; links de voorzijde, rechts de achterzijde Figuur 4: Sluisdeur met detail gelegd op de inlaatschotten Figuur 5: Geometrie van de bestaande sluisdeuren Figuur 6: Rekenmodel voor bepaling optredende krachten onder variabele sluithoek Figuur 7: Isometrische tekening van de sluisdeur in beton met hierin ook bordes ed Figuur 8: Mechnica model ingevoerd in SCIA-ENGINEER Figuur 9: Doorsnede sluis met aangegeven waterlijn Figuur 10: Maximaal verval bij zowel situatie Belfeld als situatie Sambeek Figuur 11: Maximaal verval aangebracht op het rekenmodel Figuur 12: Schutpeil bij zowel situatie Belfeld als situatie Sambeek Figuur 13: Aanhangend ijs aangebracht in rekenmodel Figuur 14: Opsomming belastingcombinaties met veiligheidsfactoren Figuur 15: Monotone convergentie in enkele eindige elementen berekening Figuur 16: Aantonen convergentie mechanicamodel in SCIA Figuur 17: Toegepaste netfijnheid in eindige elementen rekenmodel Figuur 18: Schematisatie van buigende en wringende momenten in plaat Figuur 19: Wapeningsmomenten in de MDx- richting Figuur 20: Snede waar het grootste moment optreedt in de plaat Figuur 21: Posities waar wapening bijgelegd moet worden Figuur 22: Optredende wapeningsmomenten in de MDy- richting Figuur 23: Snede waar het grootste moment optreedt in de plaat Figuur 24: Posities waar bijlegwapening benodigd is Figuur 25: Posities waar bijlegwapening benodigd is Figuur 26: Optredende dwarskracht aan de rand van de plaat Figuur 27: Belastingmodel waarin het eigen gewicht van de plaat als belasting optreedt Figuur 28: Optredende momenten in de MDx+ richting Figuur 29: Lokale velden waarin het overschrijding plaatsvindt Figuur 30: Optredende momenten in de MDy+ richting Figuur 31: Lokale velden waarin bijlegwapening moet worden gerekend Figuur 32: De wapeningskorf zoals berekend in 3d uitgetekend Figuur 33: Spanning rek diagram vvuhsb in de UGT Figuur 34: Spanning rek diagram vvuhsb in de BGT Figuur 35: Betonnen staaf belast op trek Figuur 36: Consequent afknotten van spanning-rek diagram Figuur 37: Eerste basisprincipe van het multi-layer model. (Hordijk, 1991) Figuur 38: Tweede basisprincipe van het multi-layer model. (Hordijk, 1991) Figuur 39: Derde basisprincipe van het multi-layer model. (Hordijk, 1991) Figuur 40: Verschil kracht gestuurd en verplaatsing gestuurde beproeving. (Hordijk, 1991) Pagina 201

207 Figuur 41: Overzicht van handverificatiemodel Figuur 42: Gebruikte zones voor bepalen van de trekkracht in het beton Figuur 43: Elasticiteitsmodulus berekenen uit M-K diagram Figuur 44: Een strip uit een plaat met een continue dikte; Doorsnede van dezelfde plaat Figuur 45: Optredende momenten in de mx-richting Figuur 46: Optredende momenten in de my-richting Figuur 47: Spanning-rekdiagram vvuhsb in de BGT waaruit maximale stijfheden zijn ontleent Figuur 48: Momentverdeling na invoer van orthotrope plaat Figuur 49: Posities waar haarspelden en beugels worden geplaatst Figuur 50: De vier categorieën van structural optimization Figuur 51: Mechanicaschema voor het voorbeeld over shape optimization Figuur 52: Rekenmodel ingevoerd in ANSYS Figuur 53: Lokaal en Globaal minimum gevonden door iteratie Figuur 54: Spanningsverdeling output ANSYS Figuur 55: Betonnen brugdek Figuur 56: Koppeling van druk en trekbogen in een ligger Figuur 57: Mechanicaschema wat behoort bij voorbeeld vier Figuur 58: Effect van het verhogen van de target density Figuur 59: Effect van verhogen meshdensity op uitkomst EEM model Figuur 60: Effect van het aantal iteraties op het resultaat Figuur 61: Ontwerpalgoritme om tot een optimale situatie te komen Figuur 62: Bijbehorende mechanicaschema voor bepalen effectiviteit topological optimization Figuur 63: Beschouwde vakwerkligger Figuur 64: Variatie in target density bij zelfde model Figuur 65: Meshen van liggers in ANSYS Figuur 66: Brücke Villa Bdretto in Zwitserland Figuur 67: Shell structuur gevonden door topological optimization Figuur 68: Steunpunten vanaf de bovenkant gezien Figuur 69: Steunpunten vanaf de voorkant gezien, en ingezoomd op de hoek Figuur 70: Het werkelijke belastingmodel en het belastingmodel welke gemodelleerd is Figuur 71: Verdeling van de reken elementen over de sluisdeur Figuur 72: Model opgedeeld in een ontwerpgebied en een voorgedefinieerd gebied Figuur 73: Het optimalisatiemodel met aangebrachte belastingen en steunpunten Figuur 74: Aanzichten bij 20 iteraties Figuur 75: Isometrische modellen na 20 iteraties Figuur 76: Aanzichten bij 40 iteraties Figuur 77: Isometrische modellen na 40 iteraties Figuur 78: (L) Zijaanzicht waarin te zien is waar versteviging is aangebracht Figuur 79: (R)Vloeilijnen op de plaat, en posities waar materiaal inefficiënt is Figuur 80: Mechanicamodel van het tweede optimalisatiemodel Figuur 81: Aanzichten bij 20 iteraties Figuur 82: Isometrische modellen na 20 iteraties Figuur 83: Aanzichten bij 40 iteraties

208 Figuur 84: Isometrische modellen na 40 iteraties Figuur 85: vooraanzicht model 2 met 20 en 40 iteraties Figuur 86: Aanzichten bij 40 iteraties Figuur 87: Isometrische modellen na 40 iteraties Figuur 88: inwendig evenwicht in een element Figuur 89: Bepalen van de aspect ratio in een tetra-element Figuur 90: 8knoops solid65 en een 20knoops solid Figuur 91: Verschil tussen een lineair en een kwadratisch verplaatsingsveld. (Website: 2doworld) Figuur 92: Materiaalmodel voor cast-iron Figuur 93: Vergelijking tussen multi-layer en ANSYS model Figuur 94: Spanningsvectoren Figuur 95: Translatie van optimalisatiemodel naar praktisch model Figuur 96: 3d modellen Figuur 97: Details aan de rand van de sluisdeur Figuur 98: Afmeting vakwerken welke tegen de kerende plaat zijn bevestigd Figuur 99: Belasting aangebracht op de kerende plaat Figuur 100: Belasting aan de rand van de openingen Figuur 101: Gemeshed model in ANSYS Figuur 102: Uitvoer kwaliteit van de mesh in ANSYS Figuur 103: Verschil tussen een onbedoelde inklemming, en een vrije rotatie Figuur 104: Optredende reactiekrachten Figuur 105: Optredende vervormingen Figuur 106: Drukspanningen in eerste ontwerp Figuur 107: Trekspanningen in het eerste ontwerp Figuur 108: Hoofdspanningen in het eerste model Figuur 109: Vervormde sluisdeur in model één met een koppeling met tussenstaven Figuur 110: Het tweede ontwerp, een verbetering op het eerste ontwerp Figuur 111: Het tweede model gemeshed Figuur 112: Uitvoer kwaliteit van de mesh in ANSYS Figuur 113: Reactiekrachten in model twee Figuur 114: Vervorming van het tweede model Figuur 115: Drukspanningen in eerste ontwerp Figuur 116: Trekspanningen in het eerste ontwerp Figuur 117: Hoofdspanningen in het eerste model Figuur 118: Het tweede ontwerp locaal verstevigd om tot een derde ontwerp te komen Figuur 119: Een detail van de mesh in model drie Figuur 120: Uitvoer kwaliteit van de mesh in ANSYS Figuur 121: Reactiekrachten in model drie. (bovenaanzicht) Figuur 122: Optredende vervorming van het derde model Figuur 123: Drukspanningen in eerste ontwerp Figuur 124: Trekspanningen in het eerste ontwerp Figuur 125: Hoofdspanningen in het eerste model Figuur 126: Verandering van vervorming door stijver maken van de veren Pagina 203

209 Figuur 127: Vervormingsbeeld als de vakwerken zijn verstevigd Figuur 128: Spanning concentratie bij de nivelleeropeningen Figuur 129: Mal voor het gieten van de vakwerkliggers Figuur 130: 3D tekening van de stalen sluisdeur Figuur 131: Model van de C53.65 betonnen sluisdeur Figuur 132: Maximale horizontale belasting welke de ankers op kunnen nemen Figuur 133: Model van de vvuhsb betonnen sluisdeur Figuur 134: Eigen ontwerp van een vvuhsb sluisdeur Grafieken Grafiek 1: Elasticiteitsmodulus tegen de soortelijke massa van materialen uitgezet Grafiek 2: Resultaat onderzoek sluithoek op optredend moment Grafiek 3: Materiaalverdeling stalen sluisdeur Grafiek 4: Belichaamde energie stalen sluisdeur onder variabele recyclepercentages Grafiek 5: Belichaamde energie stalen sluisdeuren omgerekend naar uitstoot in ton CO Grafiek 6: Benodigde wapeningshoeveelheid Grafiek 7: Effect verandering meetlengte in betonnen trekstaaf op spanning-verplaatsing diagram Grafiek 8: Parameterstudie naar εlim > ε1% Grafiek 9: Cilinderdruksterke Ductal-FM Grafiek 10: Vergelijking variabel spanning-rek diagram tegen vast spanning rek diagram Grafiek 11: Spanning-rek relatie van wapeningstaal Grafiek 12: Vergelijking bezwijkmoment vvuhsb element met/zonder vezelaandeel Grafiek 13: (L) M-ε b diagram uitvoer Grafiek 14: (R) M-K diagram uitvoer Grafiek 15: Gebruikte spanning-rek relatie Grafiek 16: (L) Uitvoer multi-layer model Grafiek 17: (R) Krachten in iedere laag Grafiek 18: Vergelijking multi-layer model en uitvoer Ansys model Grafiek 19: (R)De verdeling van het momentaandeel aandeel per laag Grafiek 20: Benodigde buigtrekwapening in de Mdx- richting om te voldoen aan Md=320kNm Grafiek 21: Werkelijke spanning-rek relatie C53/65 beton zoals gebruik in multi-layer model Grafiek 22: Uitkomst parameteronderzoek benodigde buigtrekwapening in C53/65 sluisdeur Grafiek 23: Benodigde buigtrekwapening in vvuhsb en C53/65 bij variërende elementdikte Grafiek 24: Berekende scheurwijdte van de vvuhsb variant Grafiek 25: Optredende scheurwijdte in alle richtingen bij een C53/65 mengsel Grafiek 26: Parameterstudie met voorwaarde van 0,3mm scheurwijdte toegevoegd aan geheel Grafiek 27: Doorbuiging vvuhsb sluisdeur onder variërende deurdikte Grafiek 28: Vervorming gewapende C53/65 betonplaat onder variabele dikte Grafiek 29: Vervorming van C53/65 sluisdeur met rond 20 wapening Grafiek 30: Vervorming rond 25 gewapende C53/65 betonplaat onder variabele dikte Grafiek 31: Scheurwijdte rond 25 gewapende C53/65 betonplaat onder variabele dikte Grafiek 32: Vervorming betonnen sluisdeuren onder verschillende mengsels

210 Grafiek 33: Vervorming betonnen sluisdeur nader ingezoomd Grafiek 34: Dwarskrachtcapaciteit onder variërende hoogte Grafiek 35: Totale wapeningsbehoefte van alle situaties Grafiek 36: Totale belichaamde energie van de verschillende sluisdeuren Grafiek 37: Vergelijking totale belichaamde energie van alle variaties per sluisdeur Grafiek 38: Berekende CO 2 uitstoot van de verschillende varianten Grafiek 39: Kostprijs van de betonnen deuren uitgezet tegen de dikte van de sluisdeur Grafiek 40: Hogere kostprijs omgerekend naar belichaamde energie Grafiek 41: Belichaamde energie gecorrigeerd op levensduur Grafiek 42: Belichaamde energie uitgedrukt in ton CO Grafiek 43: Berekende massa s van iedere variant Grafiek 44: Gat diameter tegen optredende spanning geïtereerd in ANSYS Grafiek 45: Relatie volume-doorbuiging bij een volle doorsnede Grafiek 46: Relatie volume-doorbuiging bij een vakwerkligger Grafiek 47: Verhouding doorbuiging en volume geoptimaliseerde liggers Grafiek 48: Vergelijking van alle berekenende relaties Grafiek 49: Staafdiagram met hierin de relatie tussen doorbuiging en volume Grafiek 50: Geïndexeerd staafdiagram Grafiek 51: Spanningsverdeling over de nodes Grafiek 52: Spanning-rek diagram vvuhsb in de UGT Grafiek 53: Spanningsverdeling over de nodes Grafiek 54: Spanningsverdeling over de nodes Grafiek 55: Belichaamde energie van alle varianten Grafiek 56: Belichaamde energie van alle betonnen varianten Grafiek 57: CO 2 behoefte van alle varianten Grafiek 58: CO 2 behoefte van alle betonnen varianten Tabellen Tabel 1: Maten en afmetingen van de Oostsluizen Tabel 2: Oude en nieuwe maatgevende hoogtes Tabel 3: Volume/oppervlakte eenheden behorend bij een stalen sluisdeur Tabel 4: Brongetallen embodied energy staal, gerecycled staal, en verf Tabel 5: Opsomming belichaamde energie per constructiedeel Tabel 6: Opsomming belichaamde energie per constructiedeel tgv het verven Tabel 7: Bepalen maximaal verval Belfeld Tabel 8: Optredende wapeningsmomenten en dwarskrachten Tabel 9: Wapeningbehoefte per snede bij een plaatdikte van 430mm Tabel 10: Subtotale behoefte aan buigtrekwapening Tabel 11: Totale aanwezigheid aan bijlegwapening Tabel 12: Benodigde hoeveelheid haarspelden en beugels Tabel 13: Totale benodigde wapeningshoeveelheid Tabel 14: Aangehouden eenheden embodied energie Pagina 205

211 Tabel 15: Samenstelling Ductal FM in vergelijking tot C35/ Tabel 16: Eigenschappen beschouwde vvuhsb mengsel Tabel 17: Overzicht van de gevonden krachten in iedere laag Tabel 18: Vergelijking uitkomst rekenmodellen vvuhsb Tabel 19: (L)Opsomming van het momentaandeel in iedere laag volgends handberekening Tabel 20: Gevonden stijfheden in Mx, My richting Tabel 21: Gevonden stijfheden in beide richtingen van de C53/65 sluisdeur Tabel 22: Gevonden stijfheden in beide richtingen van de C53/65 rond 20 gewapende sluisdeur Tabel 23: Gevonden stijfheden in beide richtingen van de C53/65 rond 25 gewapende sluisdeur Tabel 24: Embodied energie van de verschillende materialen Tabel 25: Kostprijs van wapening Tabel 26: Vergelijking tussen ANSYS en TOPOSTRUCT Tabel 27: Alle gevonden waarden, voor alle varianten Foto s Foto 1: Het overstromen van de Maas in Foto 2: (L) Foto van bestaande sluis in Belfeld Foto 3: (R) Foto van bestaande stuw in Belfeld Foto 4: Vervoeren van nieuwe stalen sluisdeur via schip Foto 5: Te plaats brengen en monteren van sluisdeur Foto 6: Satellietfoto met hierop de topografie van sluiscomplex Belfeld Foto 7: Satellietfoto met hierop de topografie van sluiscomplex Sambeek Foto 8: (L) Halspen van de puntdeur van Middensluis Foto 9: (R) Halsbeugel van de puntdeur van de tweede sluisdeur te Lith Foto 10: (L) Taats van de puntdeur van Middensluis te IJmuiden Foto 11: (R) Taatskom van de puntdeur van Middensluis te IJmuiden Foto 12: La Sagrada Familia, Barcelona Foto 13: Geoptimaliseerde betonnen structuur Foto 14: Houten gefreesde mal voor een bood Foto 15: Gefreesde mal die gerepeteerd ingezet kan worden Foto 16: (L) Een foto waarin de buizen gevuld zijn met beton Foto 17: (R) Een foto waarin het buizenstelsel is afgehangen Laatste pagina.

212 Litatuuronderzoek UHSC 9 juni 11 Literatuuronderzoek vvuhsb Technische Universiteit Eindhoven (TU/e) Faculteit Bouwkunde Postbus 513, 5600 MB Eindhoven tel: 31(0) fax: 31(0) Auteur : ing. A.D.Reitsema TU/e Breijn b.v. Grootschalige infra 5248 JT, Rosmalen Tel: Fax: Afstudeercommissie: prof.dr.ir. D.A.Hordijk ing. S.de.Boer ir. L.D.Moloenbroek TU/e TU/e Breijn b.v i

213

214 TITELPAGINA Titel verslag: Literatuuronderzoek vvuhsb Auteur: ing. A.D. (Albert) Reitsema, Versie: Versie A: 9 juni 2011 Afstudeercommissie: Voorzitter prof.dr.ir. D.A. Hordijk TU/e Interne Begeleider ing. S.de Boer TU/e Externe begeleider ir. L.D. Molenbroek Breijn b.v Uitgave van: Technische Universiteit Eindhoven faculteit bouwkunde Postbus MB Eindhoven

215

216 VOORWOORD De scriptie die voor u ligt vormt het resultaat van mijn literatuuronderzoek naar vezel versterkt Ultra Hoge Sterkte Beton. De literatuurstudie is uitgevoerd ter voorbereiding op het afstuderen van de studie Constructief Ontwerpen aan de Faculteit Bouwkunde bij de Technische Universiteit Eindhoven. Het afstudeeronderwerp heeft als titel: Ontwerpen in vvuhsb, sluizen te Samsbeek-Belfelt Voor de totstandkoming van deze literatuurstudie wil ik graag mijn afstudeercommissie bestaande uit, prof.dr.ir. D.A. Hordijk, ing. S. de.boer en ir. L.D. Molenbroek bedanken voor de gegeven begeleiding. ing. A.D. Reitsema. Eindhoven, 9 juni 2011.

217

218 INHOUDSOPGAVE Titelpagina Voorwoord Introductie iii i i 1 Classificatie Niet vezelversterkt beton Vezelversterkt beton Strain Hardening of Strain Softening Korte samenvatting Historische achtergrond Ontwikkeling chemische samenstelling van beton Toename van hulpstoffen Kennis van constructief ontwerpen met materialen Korte samenvatting Samenstelling van Conventioneel Beton en UHSB Conventioneel beton Bindmiddel Toeslagmateriaal Hulpstoffen Water UHSB Water/cementratio Hulpstoffen Additionele toeslagmaterialen Verschil conventioneel beton, hoge sterkte beton en ultahoge sterkte beton Korte samenvatting UHSB Eigenschappen Mechanische eigenschappen Spanning-rek relatie Eenassige druksterkte Schuifspanningen Elasticiteitsmodules Poisson verhouding Eigen Gewicht Krimp Kruip Vermoeiing Eigenschappen met betrekking tot duurzaamheid Doordringbaarheid Weerstand tegen vriezen en dooien Coefficient van thermische expansie Brandwerendheid Korte samenvatting... 39

219 5 Vezels in uhsb Wat doen de vezels Welke vezels Stalen Vezels Kunststof vezels Glasvezels Afmetingen en percentage vezels Oriëntatie en distributie van de vezels Uittrekgedrag van de vezel Korte Samenvatting Referentie mengels C50/65 Eurocode Samenstelling Druksterkte Treksterkte Buigsterkte Schuifsterkte Elasticiteitsmodules samenvatting vvuhsb mengsels M1Q Ductal Rekenen met UHSB Rekenmodellen en Regelgeving Opstellen spanning rek diagram uiterste grenstoestand Numeriek onderzoek Korte samenvatting Ontwerpen met UHSB [A] Ontwerpen met UHSB als met conventioneel beton Een nieuwe ontwerpmethode voor een nieuw materiaal Optimalisatie methoden Topologische optimalisatie Inleiding Wiskundige benadering Praktische benadering Voorbeelden van topologisch ontwerpen Visuele optimalisatie Ontwerp optimalisatie Voorbeeld ontwerpoptimalisatie Ideale ontwerpmethodiek Korte samenvatting... 69

220 10 Uitgevoerde projecten in UHSB Villa Bedretto Bridge, Switzerland Seony Footbridge, Seoul, Korea (South) Sherbrooke Footbridge, Québec, Canada Garnerplatz bridge, Kassel Stationsoverkapping Shaugnessy Lightrail, Canada Sluisdeuren Amsterdams Oost-IJburg White Balconies, Denmark Pre-Stressed sheet piles Ankerplaten Voegen Korte samenvatting Effect op Milleubelasting BIJ toepassen van UHSB belichaamde energie Onderhoud van UHSB Overige aspecten Positieve aspecten Negatieve aspecten Korte samenvatting Sluizen en Stuwen Sluistypen Uitwateringssluizen of suatiesluizen Ontlastsluizen Inlaatsluizen Irrigatiesluizen Keersluizen Spuisluizen Schutsluizen Inundatiesluizen Damsluizen Afsluitmiddelen Enkele draaideur Puntdeuren Toldeuren Waaierdeuren Kruisende deuren Gekoppelde deuren Klepdeuren Segmentdeuren Roldeuren Hefdeuren en schuiven Schipdeuren Korte samenvatting Literatuurlijst Boeken/papers/artikelen Internet Overzicht van gebruikte bijschriften Lijst met alle figuren Lijst met alle foto s Lijst met alle tabellen Lijst met alle grafieken

221

222 INTRODUCTIE Vezel Versterkt Ultra Hoge Sterkte Beton (vvuhsb), internationaal beter bekent als Ultra High Performance Fibre Reinforced Concrete (UHPFRC), is een high-tech composiet materiaal met perspectieven door zijn verhoogde sterkte, taaiheid en duurzaamheid. Eerste veelbelovende toepassingen, veelal in de civiele sector, zijn al uitgevoerd en toonden de mogelijkheden. Net als bij ieder materiaal dat in ontwikkeling is, zijn er nog veel onbeantwoorde vragen. Grootschalige toepassing wordt tegengehouden door het ontbreken van een internationaal erkende rekenmethode. In principe wordt het UHSB altijd uitgevoerd in combinatie met vezels omdat het anders een enorm bros materiaal is. De vezels dienen dus als versteviging, maar kunnen ook gebruikt worden ter vervanging van de dwarskracht- of in sommige gevallen zelfs de hoofdwapening. Verder is UHSB door de hoge opneembare druksterkte het ideale beton voor gebruik bij voorgespannen elementen. Naast sterkte-eigenschappen is er nog een belangrijk aspect waarnaar gekeken wordt bij constructiematerialen; duurzaamheid. UHSB is door de dichte pakking op veel punten duurzamer dan conventioneel beton. Denk hierbij aan verminderde chemische invloeden, minder onderhoud, lager energieverbruik bij productie en montage en minder benodigde grondstoffen.

223

224 1 CLASSIFICATIE [1] - [A] Elk constructiemateriaal dient geclassificeerd te worden, zodat vanuit de gemaakte berekening kan worden aangegeven welke type constructiemateriaal toegepast moet worden. Bij het classificeren van constructiematerialen wordt onderscheid gemaakt naar specifieke materiaaleigenschappen. 1.1 Niet vezelversterkt beton Bij niet vezelversterkt beton wordt dit onderscheid gemaakt op de karakteristieke druksterkte. Veelal wordt de volgende indeling hierbij gebruikt: Normale sterktebeton NSB fck C40/50. Hogesterktebeton HSB C40/50 fck C90/105. Zeer hogesterktebeton ZHSB C90/105 fck C150/105. Ultra hogesterktebeton UHSB C150/200 fck. Super hogesterktebeton SHSB fck.> C200 Foto 1: Doorsnede van verschillende betonmixen, B130 (Contec), B200 (Densit), B200 (BSI) 1.2 Vezelversterkt beton Vezel versterkt beton is ten opzichte van normaal beton niet onderscheidend op druksterkte omdat de druksterkte door de hoeveelheid staalvezels tot een volume van één procent niet, en bij hogere percentage nauwelijks wordt beïnvloed. Op het trekgedrag daarentegen kan wel een onderscheid gemaakt worden. Evenals conventionele wapening worden staalvezels actief na het optreden van scheurvorming. Zeer kenmerkend voor vezel versterkt beton is het constructief gedrag na het ontstaan van de eerste scheur. De resterende treksterkte na scheuren wordt beïnvloed door de treksterkte van de cementmatrix, maar vooral door de hoeveelheid staalvezels. Afhankelijk van het volume aan staalvezels en het type belasting zal na scheurvorming versteviging (hardening) of week (softening) gedrag optreden. Hardening-gedrag leidt tot een ander spanning-rek diagram dan softening-gedrag. Derhalve leidt hardening-gedrag dus tot andere constructieve eigenschappen en een andere berekeningswijze dan softening-gedrag. Pagina 1

225 1.3 Strain Hardening of Strain Softening De spanning-rekrelatie van vezelversterkt beton met hardening-gedrag belast op trek bestaat uit vier fases. Eerst ontstaat een elastische fase 1 in figuur 1a, waarna bij het optreden van de eerste scheur nog een lichte toename van de spanning plaats vind fase 2 : hardening-gedrag. Na het bereiken van de maximale spanning volgt een onstabiele neergaande, fase 3, waarna een stabiele minder stijl verlopende neergaande fase 4 volgt tot het materiaal bezwijkt. Beton dat softening-gedrag vertoont (figuur 1b) wordt gekenmerkt door het ontbreken van de hardening-fase(fase 2). Het onderscheidt op basis van hardening, dan wel softening gedrag is tweedelig; een materiaal dat softening-gedrag vertoont ten gevolge van zuivere trek kan hardening-gedrag vertonen ten gevolge van buiging. In dit geval zal bij het berekenen van een element gekeken moeten worden naar de wijze waarop het element belast wordt en hiervoor het juiste σ-ε diagram aanhouden. Figuur 1: Spanning-rek relatie van vvushb dat 'strain-hardening' en 'strain-softening' vertoont. Middels het gedrag van vvushb onder zuivere trek en buiging kan er een classificatie in vezelversterkt beton worden aangebracht. In onderstaand figuur 2 is dit gedaan. Belasting zuivere trek Belasting buiging Figuur 2: classificatie in vvuhsb Benaming Pagina 2

226 Een lineair rekverloop zoals bij buiging, bevordert een stabieler scheurverloop dan het geval is bij zuivere axiale trek of trek met een zekere excentriciteit. Na het scheuren zijn er nog bruggen aanwezig tussen de scheurvlakken waardoor nog kleine trekkrachtjes overgebracht kunnen worden (Figuur 3). Om deze reden is de buigtrekkracht van beton groter dan de zuivere trekkracht. Dit is tevens de reden waarom vezel versterkt beton in geval van zuivere trek softening-gedrag kan vertonen, maar ten gevolge van buiging hardening-gedrag. Figuur 3: scheurverloop bij belasting op zuivere trek (links) en buiging (rechts) 1.4 Korte samenvatting Niet vezelversterkt beton UHSB kan worden geclassificeerd op basis van de karakteristieke druksterkte. vvuhsb wordt geclassificeerd op het gedrag dat het vertoont bij belasting op trek en buiging. vvushb dat na het ontstaan van de eerste scheur stugger (verharding) gedrag vertoont noemt men hardening, tegen softening bij een weker gedrag. Het percentage aan vezels en de grootte ervan zijn het meest bepalend voor het gedrag. Pagina 3

227 2 HISTORISCHE ACHTERGROND [2] - [3] - [B] In de laatste veertig jaar is de kubische druksterkte van commercieel produceerbaar beton ruim verdubbeld van 35 MPa in 1970 tot 115 MPa hedendaags. Deze vooruitgang in materiaaleigenschappen is voornamelijk mogelijk gemaakt door een drietal belangrijke factoren. De eerste factor is de ontwikkelingen in de chemische samenstelling van beton, de tweede factor is de toename in beschikbaarheid van aanvullende hulpstoffen. De laatste, en misschien meest bepalende, factor is de toenemende kennis van constructief ontwerpen met materialen. Dit stimuleert de vraag naar materialen met een hogere sterkte. 2.1 Ontwikkeling chemische samenstelling van beton Eerst de Egyptenaren, Babyloniërs en later de Grieken en vooral de Romeinen pasten beton toe. De Romeinen maakten gebruik van het bindmiddel kalk met toevoeging van hydraulische toeslagen, zoals santorin- en puzzolaanaarde, waardoor hun mengsels ook zonder toetreding van lucht, dus zelfs onder water, konden verharden. Pas in 1756 maakte de Brit John Smeaton voor de herbouw van een vuurtoren gebruik van een mengsel van kalk en klei. In 1824 vindt een Engelse uitvinder Joseph Aspdin Portlandcement uit. Joseph Aspdin creëerde het eerste echte kunstmatige cement door het verbranden van gemalen kalksteen en klei. Het brandproces veranderd de chemische eigenschappen van de materialen en Joseph Aspdin creëerde een sterker cement dan gebroken kalksteen. In 1887 lukte het Henri Le Chatelier van Frankrijk de juiste oxide verhoudingen in relatie tot het kalk te bereiden om Portlandcement te produceren. Hij noemde de componenten: Alite (tricalciumfosfaat silicaat), Belite (dicalciumfosfaat silicaat), encelite (tetracalcium aluminoferrite). Hij stelde dat de verharding wordt veroorzaakt door de vorming van kristallijne producten van de reactie tussen cement en water. In 1917 werden er voor het eerst beproevingen met Portlandcement beton vastgelegd in een standaard door het US Bureau of Standards en de American Society. Hierdoor werd het construeren met beton mogelijk gemaakt voor ontwerpers. Vanaf 1917 tot de komst van plastificerende hulpstoffen is er in de chemische samenstelling van beton weinig veranderd. Naast de chemische samenstelling van beton zijn er wel een aantal technieken in de afgelopen eeuwen ontwikkelend om de zwakke punten van beton te compenseren. Denk hierbij aan de uitvinding van het wapenen van beton in 1867, het introduceren van voorspantechnieken in 1920, en vezelwapening in Figuur 4: De ontwikkeling van het materiaal beton door de eeuwen heen Pagina 4

228 2.2 Toename van hulpstoffen Zoals te zien in figuur 4 begint er in het jaar 1960 een nieuw tijdperk in de ontwikkeling van beton. In de jaren 1960 begint de snelle ontwikkeling van materiaaleigenschappen, invoering van vezelversterking, en de toename van hulpstoffen. Doel van de hulpstoffen is bijvoorbeeld de mortel beter verwerkbaar te maken, het uitgeharde beton sterker te maken, de weerstand tegen het klimaat of de vervuilde omgeving te verhogen of het beter bestand te maken tegen hoge temperaturen. Onderstaand zijn een aantal voorbeelden van hulpstoffen die in de periode tussen 1960 en 1980 zijn uitgevonden opgesomd: Plastificeerders die de verwerkbaarheid van het beton verhogen zonder extra water toe te voegen, te veel water zou de sterkte verminderen. (kunststoffen) Bindingsversnellers : versnelt de bindingstijd maar is minder sterk. (calciumchloride) Bindingsvertragers : waardoor het betonmengsel langere tijd verwerkbaar blijft. (suiker) Luchtbelvormers : om de vorstbestendigheid te verhogen. (speciale detergenten) Kleurpigmenten : voegen kleur toe. (metaaloxides) Schuimvormers : geringe dichtheid en daardoor een betere isolatiewaarde. Minerale hulpstoffen : verhogen de werkbaarheid, plasticiteit en sterkte. (vliegas) In het jaar 1950 wordt Silica fume geïntroduceerd om technieken met filters te verbeteren. Dit blijkt geen succes. In het jaar 1980 maakt het de stof Silica fume wel een commerciële doorbraak. Deze doorbraak vindt plaats voor het gebruik in beton. Een van de kenmerkende eigenschappen is de extreem hoge fijnheid (specifiek oppervlak in m2 per kg bedraagt circa ). De combinatie van het grote specifieke oppervlak en het hoge gehalte aan SiO2 verklaart de duidelijke puzzolane (poederachtige) eigenschappen van silica fume. Silica fume wordt onder meer verwerkt in zeerhogesterktebeton en in beton waaraan zeer hoge eisen worden gesteld wat betreft de dichtheid en de slijtvastheid en in speciale cementen, bestemd voor hogesterktebeton en mortels. De stof Silica fume is een product van silicon en ferrosilicium. De silicon kan niet in de natuur gevonden worden, maar wordt geproduceerd door silica (SiO2) en koolstof (C) te verbinden. In een ideale situatie ontstaat de volgende reactie SiO2 + 2C = Si + 2CO. Hierin is SiO2 normaal quartz en de koolstof is een mix van kolen, cokes, en houtsnippers. Voor de ferrosilicium wordt altijd een bron van ijzer toegevoegd, zoals ijzeroxide. De productie vindt plaats in grote elektrische ovens met temperaturen hoger dan tweeduizend graden. Figuur 5: De verhouding tussen cement en Silica Fume en de stof Silica Fume in tastbare vorm. Pagina 5

229 2.3 Kennis van constructief ontwerpen met materialen Door de geschiedenis heen is het constructief ontwerp gebaseerd op de beginselen sterkte, duurzaamheid, functionaliteit, economie, en esthetiek. ( firmitas,utilitas,venustas, Marcus Vitruvius Pollio in De Archectectura, 1e eeuw v. Chr.) Deze fundamentele ontwerpprincipes gelden vandaag de dag nog steeds. Hierdoor kan een vergelijking tussen bekende bouwwerken uit de oudheid en hedendaagse constructies gemaakt worden, om te ontdekken welke vooruitgang er is gemaakt in de loop der eeuwen. Een vergelijking die gemaakt wordt is tussen koepels/schalen die zijn opgekomen in de eerste eeuw na Christus, en voornamelijk gebruikt zijn voor de sacrale bouwkunst. De oorsprong van het bouwen met koepels begint met het Romeinse Pantheon The Triumph of Concrete, een tempel in Rome die gebouwd is tussen 118 en 125 na Christus. Het ronde gebouw bestaat uit een betonnen koepel met een centrale opening (de oculus, diameter 8.7m). De diameter van de koepel is gelijk aan de hoogte van de vloer tot aan de oculus, 43.3 meter. De Romeinen beperkten het gewicht van de koepel, door cassettes in de koepel aan te brengen en door naar boven toe de koepel dunner te maken en lichter materiaal te gebruiken. Zo is in de basis van de koepel basalt gebruikt en bovenin rond het oculus puimsteen dat zo licht is dat het in water drijft. De schil van de koepel is bovenaan bij de oculus 1,2 meter dik en wordt naar onderen toe steeds dikker en rust tenslotte rondom op zeven meter dikke muren. Een ander bekend bouwwerk uit de oudheid is de Sint Pieter in Vaticaanstad, een katholieke kerk en basiliek die 1500 jaar na de bouw van het Pantheon voltooid is. Het is de grootste kerk van het christendom en vervult in de Rooms-katholieke Kerk een centrale functie. De grote koepel heeft een doorsnede van 42 meter en een totale hoogte van 132,5 meter en wordt omhooggehouden door vier enorme zuilen. De koepel van de Sint-Pieter is een dubbele koepel, opgebouwd uit licht metselwerk met een dikte van drie meter. Een meer recent, maar minder bekend, bouwwerk is het Kresge Auditorium in Cambrige VS. Het Auditorium is een gebouw van Massachusetts Institute of Technology (MIT), en is ontworpen door de architect Eero Saarinen, en voltooid in Het gebouw wordt gekenmerkt door de elegante dunne schaalconstructie uitgevoerd in gewapend beton, en bekleed met koper. De hoogte van de schaal is 15 meter, en de overspanning van de nerf is 49 meter. Door de sterk gereduceerde dikte van de schaal is het gewicht slechts 1200 ton. Om de reeks van oudheid tot één van de meest recente bouwwerken compleet te maken wordt het Tenerife s Auditorium toegevoegd aan de vergelijking. Het Tenerife Auditorium is ontworpen door de hedendaagse wereldberoemde architect Santiago Calatrava. Het ontwerp van Calatrava is voltooid in 2003, en heeft zes jaar gekost om te bouwen. De hoogte van het auditorium is 58 meter. De vorm van de betonnen schalen is het best als organisch te omschrijven. Calatrava heeft voor dit ontwerp een combinatie van een betonnen frame met een geoptimaliseerde geprefabriceerde geribde betonnen liggers gebruikt. Calatrava staat bekend als architect die door zijn grondige kennis in de constructieleer in staat is om de meest ongewone vormen te ontwerpen. Pagina 6

230 Nu een viertal algemeen bekende en minder bekende, bijzondere, bouwwerken zijn toegelicht blijkt wederom dat alle aspecten genoemd door Vitruvius zijn blijven gelden voor ieder ontwerp. Daarom kan er nu vergeleken worden welke vooruitgang er is in de afgelopen eeuwen. Wat in de eerste plaats opvalt is dat het verbeteren van materialen een grote rol heeft gespeeld. Het Pantheon is opgebouwd uit basalt en puimsteen met relatief grote dimensies. De Sint Pieter Basiliek daarentegen is met zijn drie meter dikke koepel aanzienlijk slanker doordat gebruik is gemaakt van gestapeld metselwerk. Veel slanker dan de Koepel van de Sint Pieter is de schaal door Eero Saarinen voor MIT waarbij gebruik is gemaakt van gewapend beton. Bij het ontwerp Tenerife Auditorium van Calatrava is in plaats van alleen een beter constructief materiaal ook gebruik gemaakt van numerieke onderzoek/optimalisatie technieken om een ideaal slanke organische structuur te realiseren. Figuur 6: Pantheon: 125 n.chr Figuur 7: Sint Pieter Basiliek: 1626 n.chr Figuur 8: Kresge auditorium: 1955 n.chr Figuur 9: Tenerife Auditorium: 2003 n.chr 2.4 Korte samenvatting De grootste vooruitgang in constructief ontwerpen is tweedelig. Enerzijds het verbeteren van de materialen. Anderzijds het optimaliseren van bestaande structurele concepten door het verminderen van materiële consumptie met behoud van voldoende sterkte en passende stijfheid. Pagina 7

231 3 SAMENSTELLING VAN CONVENTIONEEL BETON EN UHSB [4] - [5] - [A] - [B] In dit hoofdstuk wordt aandacht besteed aan de ruwe materialen die gebruikt worden om conventioneel beton en UHSB te maken. Ook wordt een vergelijking gemaakt tussen het verschil in samenstelling van conventioneel beton en UHSB. 3.1 Conventioneel beton Beton ontstaat door water te mengen met een bindmiddel (zoals cement), toeslagmateriaal (zand en grind), additionele toeslagmaterialen en hulpstoffen. Bij de juiste verhoudingen worden de holtes tussen het grind vrijwel geheel gevuld met zandkorrels waarbij het cement de verschillende korrels aan elkaar plakt. Na uitharding kan de hardheid en duurzaamheid van natuurlijk gesteente worden geëvenaard. Het toegepaste betonrecept is enerzijds afhankelijk van de gewenste sterkte en gewenste eigenschappen en anderzijds van de omgeving waar de betonconstructie zich in bevindt (milieuklasse van het beton) Bindmiddel Er zijn een aantal mogelijke bindmiddelen. Een eerste mogelijke bindmiddel is gebaseerd op kalk, zoals de Romeinen het gebruikten. Dit wordt niet meer gebruikt. De eigenschappen leken het meest op het tegenwoordige metselspecie of ongewapend beton. Bij gebruik van het bindmiddel asfalt ontstaat asfaltbeton, wat gebruikt wordt voor de wegenbouw, parkeerplaatsen, bedrijfsvloeren. Daarnaast gebruikte men vroeger ook pek/teer als bindmiddel. Deze worden vandaag de dag niet meer gebruikt in verband met hun vervuilende eigenschappen en slechtere mechanische eigenschappen. Voor hedendaagse bouwwerken in beton wordt cement gebruikt als bindmiddel, onder cement verstaan we een bindmiddel die met water reageert tot niet water oplosbare vaste verbindingen. We noemen dit soort bindmiddelen "hydraulische bindmiddelen". De drie belangrijkste cementsoorten voor Nederland zijn hoogovencement (CEM III/A en B, Engels: "blast furnace slag cement"), Portlandcement (CEM I) en Portlandvliegascement (CEM II/B-V, Engels:"Portland fly ash cement") Portlandcement Portlandcement wordt vervaardigd uit voornamelijk kalksteen, aluminiumoxide-, siliciumoxide- en ijzeroxide houdende verbindingen. Het grootste aandeel van portlandcement, +/- 95% bestaat uit portlandklinker. De grondstoffen van portlandklinker zijn onder andere mergel, zwavel (leem), poederkoolvliegas, leisteen en hoogovenslak. Deze grondstoffen gaan in poedervorm in een oven en worden gesinterd tot een klinker. De klinker bevat kristallijne verbindingen (mineralen) die met water kunnen reageren tot cementsteen. De belangrijkste mineralen zijn aliet (3CaO).SiO2 (tricalciumsilicaat), beliet (2CaO).SiO2 (bicalciumsilicaat), (3CaO).Al2O3 (tricalciumaluminaat) en celiet (4CaO).Al2O3.Fe2O3 (tetracalciumaluminaatferriet. In de cementchemie kort men deze mineralen af als resp. C3S, C2S, C3A en C4AF. De Portlandklinker wordt vervolgens samen met gips (CaSO4.2H2O calciumsulfaat-dihydraat) en/of anhydriet (calciumsulfaat CaSO4) gemalen tot cement. Pagina 8

232 Hoogovencement In Nederland zijn hoogovencement en portlandvliegascement erg populair. Hoogovencement heeft ongeveer een marktaandeel van 60 procent. Hoogovencement is een cementsoort die de naam ontleent aan een belangrijk bestanddeel. Hoogovencement wordt gemaakt door het mengen van gemalen gegranuleerde hoogovenslak en portlandcementklinker, waaraan gips en/of anhydriet worden toegevoegd als bindtijdregelaar. Hoogovenslak is een bijproduct dat vrijkomt bij de productie van ijzer in hoogovens. Daarbij worden ijzererts, schroot en smeltmiddelen, tezamen met cokes als brandstof in een hoogoven gebracht. De cokes worden verbrand voor de productie van koolmonoxide, dat het ijzererts reduceert tot gesmolten ijzer. Op dit ijzer drijft de slak, die hiermee gelijktijdig wordt afgetapt. Nadat slak en ijzer van elkaar zijn gescheiden, wordt de slak door het inspuiten van een grote hoeveelheid water snel afgekoeld, waardoor de slak in zandachtige korreltjes met een glasachtige structuur uiteengeslagen wordt (er treedt geen of slechts een geringe mate van kristallisatie op; omdat het een beetje op grof zand lijkt, heet hoogovenslak ook wel slakzand). Dit proces heet granuleren. Hoogovenvencement wordt geleverd als CEM III/A, CEM III/B en CEM III/C. De letters A en B staan voor het percentage slak ten opzichte van de totale som van de bestanddelen. CEM III/A bevat 35-65% hoogovenslak, CEM III/B 66-80% hoogovenslak. CEM III/C met een slakpercentage van 81-95% wordt in Nederland nauwelijks gebruikt. Tabel 1 Portlandklinker ontbonden naar de basis elementen Figuur 10: Samenstelling portlandcement en hoogovencement. Pagina 9

233 Portlandcement en hoogovencement hebben verschillende eigenschappen. In onderstaande tabel 2 zijn de eigenschappen van de beide cementsoorten opgesomd. Tabel 2 Vergelijking van eigenschappen van portlandcement en hoogovencement Toeslagmateriaal In Nederland beschikken we over uitstekende toeslagmaterialen, in de vorm van zand, grind en gebroken grind (steenslag). Het zand en grind dat in Nederland gebruikt wordt is voor het grootste deel afkomstig uit de grote rivieren. Duizenden jaren hebben rivieren onder invloed van klimaat uit het hooggebergte rotsblokken losgetrokken en deze meegesleurd naar de zee. Tijdens deze tocht breken de grote brokken in stukken, terwijl door te rollen de stenen worden afgerond. Naarmate de sterkte van de stroom in een rivier afneemt, vermindert ook de kracht om grote stenen te verplaatsen. Zodoende is er gaandeweg de rivier een gradering te vinden van het grovere materiaal bij het hooggebergte, en het meest fijne materiaal rivier afwaarts. Doormiddel van grindwinwerktuigen en zandzuigers wordt het materiaal naar boven gebracht, gewassen, gezeefd en geladen in binnenvaartschepen. In de meeste gevallen worden de grondstoffen gezeefd in 4 groepen materialen: Grof grind (groter dan 31.5mm), betongrind (4-31.5mm), spramex (4-16mm) en betonzand (0-4mm) Zand Zand is ongeconsolideerd (los), korrelig materiaal en een van de meest voorkomende natuurlijke stoffen op aarde. Zand bestaat uit zeer kleine stukjes steen, zandkorrels, die in grootte variëren tussen 63 micrometer en 2 millimeter. Als de korrels kleiner dan 63 micrometer zijn heet de grondsoort silt; bij korrels groter dan 2 millimeter spreekt men van grind. Zand komt meestal voor als sediment, hetgeen wil zeggen dat het zand is vervoerd door water of wind. Zo zijn van Pagina 10

234 zand duinen, stranden, woestijnen en rivieren ontstaan. De korrels zijn meestal afbraakmateriaal van gesteenten, maar kunnen ook van organische afkomst zijn. De Nederlandse korrelgrootte classificatie is als volgt: De standaard voor classificatie van sediment is in Nederland vastgelegd in NEN5104 (Geotechniek - Classificatie van onverharde grondmonsters). Zand behoort tot de zogenaamde fijne toeslagmaterialen met een korrelafmeting van : 0-1, 0-2 en 0-4 (resp. fijn zand, metselzand en betonzand) Tabel 3 Classificatie in korrelgrote van zand Grind Grind behoort tot de grove toeslagmaterialen: 4-16, en Ook tussenliggende korrelgroepen komen voor zoals 8-16 en dan wel grovere korrelgroepen boven 32 mm. In NEN-EN 12620, Toeslagmaterialen voor beton en NEN 5905 (de Nederlandse aanvulling op NEN- EN 12620) zijn de eigenschappen voor toeslagmaterialen voor beton gespecificeerd. Deze eisen hebben onder meer betrekking op de korrelopbouw. De korrelgroep wordt beschreven in termen van de ondermaat en de bovenmaat. De keuze van de grootste korrelafmeting van het toeslagmateriaal is van belang in relatie tot de dichtheid van de wapening. Voor constructies met dichte wapening kan de constructeur aanwijzingen geven over de toelaatbare grootste korrelafmeting Additionele toeslagmaterialen Als aanvulling of vervanging van de granulaten zand en grind wordt soms in het beton een extra toeslagmateriaal bijgevoegd. Dit bestaat onder andere uit : Vulstof, een inert poeder van gemalen baksteen dat de stabiliteit van het mengsel verhoogt; Vliegas (siliciumpoeder), dat als plastificeerder optreedt en puzzolane 1 eigenschappen heeft; Silica fume (ultrafijn siliciumpoeder) met sterke puzzolane eigenschappen; Recyclinggranulaat; Gegranuleerde hoogovenslak, gemalen als poeder (hoogovencement) of als granulaat. 1 Puzzolanen zijn poeders die als toeslagmateriaal voor mortel of beton kunnen worden gebruikt. De naam is afkomstig van de Italiaanse stad Pozzuoli, in de buurt van Napels, waar het materiaal veel voorkomt in vulkanische afzettingen van de Vesuvius. Pagina 11

235 3.1.3 Hulpstoffen Doel van de hulpstoffen is bijvoorbeeld de mortel beter verwerkbaar te maken, het uitgeharde beton sterker te maken, de weerstand tegen het klimaat of de vervuilde omgeving te verhogen, beter bestand te maken tegen hoge temperaturen. Hulpstoffen bij betonspecie zijn onder meer: Vertrager, luchtbelvormer, versneller, plastificeerder, superplastificeerder, waterretentiemiddel, waterdichtingsmiddel, antivries, injectiehulpstoffen, kleeflagen, sterkteverbeteraar, ontkistingsmiddelen, oppervlaktebeschermers, anti-aankorsting, dichtheidverbeteraar, samenhangverbeteraar, vuurvastmaker, kleurverbeteraars Water Water kan niet onbeperkt worden toegevoegd aan een betonmengel. De verharding van cement is een chemische reactie die een beperkte hoeveelheid water vraagt; een teveel aan water levert zwakker beton ("water is vergif voor beton"). Een tekort aan water zorgt er echter weer voor dat niet alle cement reageert. Bijgevolg is een juiste verhouding tussen water en cement (de zogeheten water/cementfactor) noodzakelijk om een goede kwaliteit beton te verkrijgen. In conventioneel beton is het gebruikelijk een water/cementfactor toe te passen met een waarde tussen de 0.4 en Grafiek 1: Invloed van watercementfactor op representatief de druksterkte en porositeit. Pagina 12

236 3.2 UHSB Met UHSB zijn zeer hoge sterktes te behalen door een aantal factoren in het mengsel te beïnvloeden. Onderstaand staan de ontwikkelingen die de aanleiding zijn voor het behalen van de sterk verbeterde eigenschappen van UHSB. Ieder onderdeel wordt los besproken in een subhoofdstuk: De water/cementratio; Hulpstoffen; Vulstoffen Water/cementratio Er is een sterk verband tussen de betondruksterkte en de water/cementratio. Door de toevoeging van water aan cement wordt een hydratatie opgestart, die er voor zorgt dat er een verhard mengsel ontstaat. Bij regulier beton hoort een ratio tussen de 0,4 en 0,75 afhankelijk van de sterkte. Bij hogere klassen gaat de verhouding omlaag naar 0,3 tot 0,35 (HSB) of 0,2 tot 0,25 (UHSB). Bij een water/cementverhouding van 0,4 reageert al het cement. Wanneer een lagere verhouding wordt gebruikt zal een deel van het cement niet kunnen reageren en bij een hogere verhouding zal overtollig water aanwezig zijn. In de grafiek hieronder zijn de volumeaandelen van de desbetreffende stoffen uiteengezet tegen de water/cementratio. Hierbij is een hydratatiegraad van 1 gebruikt, wat betekent dat grafiek 2 is uitgezet op een moment dat alle cement gereageerd heeft met het water indien mogelijk. Grafiek 2: Volumeaandeel tegen watercementfactor. Pagina 13

237 Fases in grafiek 2: 1. ongehydrateerd cement; 2. gehydrateerd cement zonder hydraatwater; 3. hydraatwater; 4. fysisch gebonden water (gelporiën); 5. vrij water (gevulde capillaire poriën); 6. chemische krimp. Het lijkt zo op het eerste gezicht een uitstekende ontdekking om de water/cementratio te verlagen. Dit wordt bevestigd door de permeabiliteit van het mengsel. Wanneer lagere water/cementverhoudingen gebruikt worden ontstaat een hogere dichtheid. Hierdoor is de waterdoorlaatbaarheid van het verharde materiaal kleiner. Deze ontwikkeling levert een bijdrage aan een hogere duurzaamheid, zeker wanneer schadelijke milieus, vorst en strooizouten minder effect op het materiaal hebben. Echter, lange tijd zijn er geen hogere betonkwaliteiten gebruikt dan B65. Dit heeft te maken met een aantal nadelen die ontstaan door het toepassen van een lage water/cementratio: De verwerkbaarheid van het beton neemt af, het beton is droog waardoor het minder vloeibaar is; De hydratatiegraad van het cement is lager, niet al het cement kan een reactie aangaan met water; De warmteproductie stijgt, hierdoor kan scheurvorming ontstaan. Door een toepassing van composietcement kan dit worden gereduceerd. Door deze argumenten werd lange tijd geen beton gebruikt met een lage water/cementratio. Echter door de ontdekking van superplastificeerders werd de verwerkbaarheid verhoogd, waardoor het mogelijk werd een lagere water/cementratio te gebruiken. Een bewering in de betontechnologie was altijd: grove deeltjes vereisen minder aanmaakwater dan fijne deeltjes. Dit wordt veroorzaakt door de oppervlaktespanningen die een groter effect hebben op de fijne deeltjes in verhouding met de grote deeltjes. Door de toevoeging van zeer kleinere korrels (microsilica) in een UHSB mengsel zou deze bewering betekenen dat er meer aanmaakwater vereist is. Door de toevoeging van een superplastificeerder blijkt dit niet noodzakelijk te zijn. Indien een superplastificeerder wordt toegevoegd in combinatie met kleinere korrels, is de hoeveelheid aanmaakwater afhankelijk van de ruimtes die gevuld moeten worden tussen de toeslagmaterialen. (cement en microsilica) Hulpstoffen In het voorafgaande hoofdstuk is een belangrijk kenmerk van UHSB behandeld. Er is gesteld dat een relatief lage water/cementratio tot een toename van de dichtheid leidt en daarmee een toename van de sterkte. Bekend is dat deze lage water/cementfactor een slechte verwerkbaarheid tot gevolg heeft. Om deze ontwikkeling te voorkomen worden superplastificeerders toegevoegd. Superplastificeerders zijn hulpstoffen die toegevoegd worden aan een betonspecie om de verwerkbaarheid van het materiaal te vergroten. De superplastificeerder in combinatie met een kleine diameter van het grind kan ervoor zorgen dat de betonspecie op moeilijk bereikbare plaatsen doordringt zonder te Pagina 14

238 ontmengen. Het doel van een superplastificeerder is het reduceren van inwendige wrijvingskrachten in de betonspecie. Hierdoor wordt wederzijdse aantrekking van deeltjes in de betonspecie verhinderd, ondanks een dichte pakking. De werking van een superplastificeerder berust op de aantrekkingskrachten op molecuulniveau. Het oppervlak van een cementkorrel bevat vrije elektrische ladingen. De tegengestelde ladingen trekken elkaar onderling aan. In contact met water zullen de korrels zich in vlokken aan elkaar rijgen, omdat de aanwezige elektrische afstoting onvoldoende blijkt. Het aanmaakwater dat zich tussen de vlokken bevindt raakt ingesloten en draagt niet meer bij aan de plasticiteit van de cementpasta. Meer aanmaakwater is vereist, maar dit gaat ten koste van de sterkteeigenschappen. Figuur 11: vlokvorming door tegengestelde ladingen aan het oppervlak van de cementkorrels Een superplastificeerder kan door een sterische 2 verhindering zorgen voor een efficiënte verspreiding van het cement, ofwel een verhindering van de vlokvorming. Moleculen van de superplastificeerder hechten zich door adsorptie vast op het grensvlak tussen cementkorrel en aanmaakwater. Eens geadsorbeerd vormt de superplastificeerder een negatieve lading rond elke cementkorreltje. Hierdoor stoten de korrels zich onderling af. Het gevolg hiervan is een goede verdeling van de stoffen, waardoor de viscositeit van de cementpasta wordt verlaagd. De moleculaire opbouw van de superplastificeerders draagt bij aan dit effect. Het zijn lange kamvormige polymeerstructuren. Figuur 12: Werking van superplastificeerder op cementdeeltjes in een betonmengsel. 2 Het begrip sterische hindering wordt op verschillende plaatsen in de chemie gebruikt. Het betekent dat er door het volume van bepaalde delen van een molecuul andere stukken van het molecuul zich niet vrij kunnen gedragen. Pagina 15

239 De moleculen van een superplastificeerder verdelen zich gelijkmatig door de specie en kunnen zo een half plastische specie vloeibaar maken. Als aan portlandcement microsilica en een superplastificeerder worden toegevoegd dan zorgt de superplastificeerder, meer dan een plastificeerder, voor een goede verdeling van microsilica in het cement/water milieu. De werkingsduur van plastificeerder is korter ter gevolge van het inkapselen van de gevormde hydratatieproducten. Aan de betonspecie kan naast een superplastificeerder daarom tevens een vertrager worden toegevoegd of de vertrager kan deel uitmaken van de superplastificeerder. Door deze ontwikkeling kan de aanvoer van het beton over een langere afstand geschieden of kan het beton geschikt worden voor het verpompen over grote hoogtes. De belangrijkste grondstoffen voor superplastificeerders zijn: Lignosulfonaten; Melaminesulfonaten; Naftaleensulfonaten. Lignosulfonaten vertragen het verhardingsproces en behouden hun werkzaamheid gedurende een lange tijd. Melaminesulfonaten en naftaleensulfonaten vertragen het hydratatieproces wat betekent dat de verwerkbaarheid beter wordt. De eindsterkte van een mengsel wordt in mindere mate beïnvloed door een superplastificeerder, dit is meer afhankelijk van het type cement. superplastificeerders zijn in vele soorten op de markt te verkrijgen, ze worden o.a. geproduceerd door Sika en Desmepol. De hoofdeigenschappen van deze superplastificeerders kunnen kort samengevat worden: Hoge waterreductie (40%) Hoge mate van plasticiteit; Controle op uitharding tijd en verwerkbaarheid; Mixen van verschillende polymeren is mogelijk (diverse typen superplastificeerder) Additionele toeslagmaterialen Een belangrijke eigenschap van het UHSB mengsel is de dichte structuur. De gedachte is de poreusheid van het beton te verminderen. Bij regulier beton bevinden zich in de korrelstructuur ruimtes die niet gevuld zijn. Door het toepassen van zeer fijne vulstoffen worden deze ruimtes opgevuld. De dichtheid van het materiaal wordt verhoogd en daarmee de constructieve eigenschappen verbeterd Silicafume De eerste opzet voor het verhogen van de dichtheid werd uitgevoerd door het vermalen van een deel van het cement. 70% werd toegevoegd als cement en 30% werd vermalen en toegevoegd als zeer fijn cement. Op deze manier werd een hoogwaardig materiaal gecreëerd. Na uitgebreid onderzoek raakte men bekend met microsilica ofwel silicafume. Silicafume is een stof die bestaat uit zeer kleine siliciumoxide-bolletjes. De gemiddelde diameter van een deeltje is 0,1 μm. De deeltjes fungeren als Pagina 16

240 vulstof voor de poriën tussen de grotere korrels. De deeltjes zijn 50 à 100 keer zo klein als cement en dus is de effectiviteit van dit materiaal beter dan gemalen cement. Een combinatie van dichtopeengepakte cementdeeltjes en microsilica werd verkozen om een aantal redenen: Microsilica deeltjes in combinatie met fijn gemalen cement geeft de meest efficiënte korrelstructuur en daarmee de beste pakking (dichtheid). De microsilica deeltjes zijn bolvormig terwijl cementdeeltjes hoekig van vorm zijn. De microsilica deeltjes zijn zeer reactief van aard. Secundaire calcium-silicaat kristallen worden gevormd onder invloed van calciumhydroxide. De microsilica deeltjes reageren chemisch minder snel dan cementdeeltjes, wat dus de problemen van een te snelle binding voorkomt. Figuur 13: De ontwikkeling van de cementpasta structuur Principe dichtheid De dichtheid van een materiaal hangt af van de hoeveelheid ruimtes tussen verschillende moleculen of deeltjes. In een traditioneel betonmengsel worden grove korrels gebruikt wat betekent dat de dichtheid laag is en er veel poriën ontstaan. Daar komt bij dat cementdeeltjes hoekig van vorm zijn. Hoekige deeltjes dragen bij aan een lagere dichtheid. De microsilica deeltjes zijn bolvormig en rangschikken zich veel beter, waardoor een hechte structuur ontstaat. Een combinatie van bolvormige en hoekige elementen resulteert in een dichtere pakking dan wanneer enkel hoekige deeltjes gebruikt worden. In een betonmengsel resulteert dit in een driecomponenten skelet van toeslagmateriaal, cement en microsilica. Wanneer in het betonmengsel ook vezels zijn toegevoegd heeft dit een negatieve invloed op de dichtheid. De vezelwapening bestaat uit lange, dunne en soms gekromde staafjes die niet goed verdichten. Dit kan echter wel gecompenseerd worden door meer fijn en zeer fijn materiaal toe te voegen. Bij het type vezelwapening en de hoeveelheid moet hier dus rekening mee worden gehouden. De dichtheid van een mengsel wordt dus mede bepaald door de verhouding in grootte tussen de verschillende deeltjes. Uit onderzoeken aan de TU Delft blijkt dat een optimale pakkingsdichtheid wordt verkregen bij een diameter verhouding van 1:7 tussen ieder element. Dit blijkt efficiënter te werken dan wanneer grote korrels enkel aangevuld worden door zeer veel ultra fijne stoffen met een kleinere diameter. In theorie kan door het combineren van de juiste diameters een dichtheid van 100 procent verkregen worden. In een betonmengsel is dit echter niet mogelijk doordat de deeltjes te veel variëren van heel groot 10 mm Pagina 17

241 tot heel klein 0,1 μm. Het blijft dus altijd kiezen tussen een dichte pakking van grove of fijne elementen in het mengsel. Bij een UHSB mengsel is deze verhouding geoptimaliseerd waardoor hogere sterkteklassen haalbaar zijn. Zand Cement Silica-Fume Figuur 14: Schematische pakkingsdichtheid in UHSB Voor het UHSB mengsel dient altijd rekening gehouden te worden met onderstaande principes voor het creëren van een hoge dichtheid: Tussen de verschillende componenten dient een juiste verhouding aangehouden te worden voor een optimale dichtheid. In vezelversterkt ultra hoge sterkte beton dient een dichte pakking verkregen te worden door aan de sterkte ontwikkelende cementdeeltjes relatief grof zand en ultra fijne deeltjes toe te voegen. Indien er andere deeltjes en/of vezels aan het mengsel worden toegevoegd met grotere afmetingen dan de cementdeeltjes, dan dienen extra ultra fijne deeltjes toegevoegd te worden om de hoge dichtheid te behouden. Grafiek 3: Orde van grootheid silicafume in verhouding met andere deeltjes in een betonmengsel Pagina 18

242 1. Cement; 2. fijne kalksteendeeltjes; 3. ultra fijne kalksteendeeltjes; 4. ultrafijne silicium houdende deeltjes; 5. silicafume Mechanica Door het toevoegen van microsilica worden de sterkte-eigenschappen van het beton verbeterd. De verklaring hiervoor is de structuur van het nieuw ontstane mengsel. Eerder is gesteld dat de microsilica zich tussen de cementdeeltjes en andere korrels bevinden en zo de open structuur teniet doen en een hogere pakking veroorzaken. In onderstaand figuur 15 is duidelijk gemaakt hoe het mechanische principe werkt in regulier beton en vvuhsb. Door deze mechanische eigenschappen wordt de druksterkte verhoogd. Figuur 15: Links conventioneel beton, rechts UHSB In de linker figuur wordt schematisch de krachtsoverdracht in op druk belast regulier beton getoond. Hier is te zien dat de krachten via de kiezels (grind) wordt afgedragen. Door de heterogeniteit van het mengsel treden zijdelingse reacties op die opgenomen worden door het cement. Het grind is vaak de sterkste component, maar is niet beslissend voor de sterkte. Het beton bezwijkt door de scheuren tussen het grind en het cement doordat de lijm het zwakst is. Het figuur rechts toont, schematisch, de krachtoverdracht in op druk belast UHSB. Hier is te zien dat de krachten via het korrelskelet worden afgedragen. Door de heterogeniteit van het mengsel ontstaan Pagina 19

243 zijdelingse reacties. De verharde cementsteen fungeert als een soort lijm die de krachten kan opnemen. Als de lijm breekt is de druksterkte van het beton bereikt. Echter het cementsteen is nu de sterkste component in het mengsel. De scheuren ontstaan nu in het grind in tegenstelling tot regulier beton. Het bezwijken van de lijm verklaart tevens waarom op druk belast beton altijd bezwijkt door scheurvorming in de krachtsrichting. Door de toevoeging van het silica fume worden twee aspecten verbeterd in het mengsel ten aanzien van de belasting op druk: De ruimtes tussen de korrels worden gevuld waardoor het beton homogener wordt en de zijdelingse krachten minder groot zijn; Door de (langzame) reactiviteit van de silica fume korrels wordt de lijm sterker waardoor het bezwijken op druk wordt uitgesteld Hydratatie De werking van de silicafume berust op een scheikundig proces. Bij de samenstelling van beton wordt gebruikt gemaakt van hydratatie. Hydratatie is de chemische reactie van cement met water. Na het mengen van cement met water ontstaat een cementlijm. Deze pasta verhardt en er ontstaan sterkte en stabiliteit. Ook is het eindproduct niet in water oplosbaar. Bij de reactie van water en cement ontstaan op moleculair niveau calciumhydraat kristallen. Zolang er water beschikbaar is blijft dit proces doorgaan totdat het mengsel is verzadigd. In regulier beton zullen altijd poriën ontstaan dankzij het overtollige water wat nodig is voor de verwerkbaarheid. Wanneer silicafume wordt toegevoegd aan het mengsel zullen deze de gaten tussen de korrels en het cement vullen. Silicafume is een product dat ontstaat uit silicium. Voor 75 à 95% bestaat het, afhankelijk van de productie, uit siliciumdioxide (Si02). De siliciumdioxide reageert met de calciumhydraat kristallen. Dit veroorzaakt een tweede groei. Hierbij worden ook de poriën gevuld tussen cementdelen en het grind. Aan het eind van de reactie zijn er nauwelijks nog ruimtes tussen de kristallen Kleinere korrelafmetingen De fijnere cementmatrix zou nog meer invloed hebben als de toeslagstoffen ook fijner te maken. Grind werd weggelaten, en alleen de fijnste zandkorrels werden toegevoegd aan de mix. Dit betekend dat de grove toeslagmaterialen weg worden gelaten en het zand deels wordt vervangen door fijngemalen kwarts < 800 μm. Figuur 16: Globale verhouding in grootte tussen cement, kwarts, en silicafume. Pagina 20

244 3.2.4 Verschil conventioneel beton, hoge sterkte beton en ultahoge sterkte beton. Om een sterker soort beton te krijgen is het noodzakelijk om de samenstelling aan te passen. De samenstelling van ultrahoge sterkte wijkt af doordat er gebruik wordt gemaakt van fijne stoffen zodat de betonmatrix compacter, en dus beter in staat is om drukspanningen op te nemen. In onderstaande grafieken is af te lezen wat de verschillen in samenstelling zijn tussen conventioneel beton (tot C50/60), hoge sterkte beton (C90/105) en ultrahoge sterkte beton (C200). Grafiek 4: Samenstelling normaal beton Grafiek 5: Samenstelling hoge sterkte beton Grafiek 6: Samenstelling ultrahoge sterkte beton Grafiek 7: Vergelijking samenstelling Normaal beton HSB UHSB Beeldbreedte 23 µm Beeldbreedte 7 µm Beeldbreedte 300 µm Foto 2: Vergelijking van de structuur + microstructuur van standaard-, hogesterkte,- en USHB Pagina 21

245 3.3 Korte samenvatting De basisprincipes van het recept voor USHB zijn: 1. Lage waarden van het water/ cementratio (bv. w / c = 0,12 tot 0,20): alle aanwezige water wordt gebruikt voor de hydratatie van een deel van de totale hoeveelheid cement, de resterende niet gehydrateerde cement deeltjes fungeren als opvuller op het micro-niveau; 2. De verhoging van de homogeniteit door de afschaffing van de grove granulaten, bijvoorbeeld door de toepassing slechts een zeer fijn zand als aggregaat. De haarscheurtjes zullen daarom van veel kleinere afmetingen zijn in vergelijking met die in conventioneel beton met grote grind korrels; 3. Een maximale pakkingsdichtheid van alle korrels (fijn zand, cement en silica fume), zodat elke klasse van korrels de leegtes vult van de grotere klasse. De rest moet worden gevuld met water. Pagina 22

246 4 UHSB EIGENSCHAPPEN [2] - [6] - [7] - [8] [9] [10] [12] - [13] - [A] Ultra Hoge Sterkte Beton is wereldwijd omschreven als beton met een druksterkte van ten minste 150MPa. UHSB kan breder worden toegepast dan conventioneel beton omdat het mengsel is ontworpen om een aantal van de karakteristieke zwakke punten van normaal beton te elimineren. Door het gebruik van poederachtige componenten wordt de sterkte enorm verhoogd. Ook de duurzaamheid ten opzichte van conventioneel beton is door de lage penetratiewaarde vele malen beter. Een stoomwarmtebehandeling wordt meestal gebruikt in combinatie met UHSB om haar sterkte en duurzaamheid eigenschappen nog verder te verbeteren. UHSB bevat vaak staalvezels om de taaiheid van het materiaal te verbeteren. De voordelen van UHSB ten opzichte van het conventionele beton zijn, mits goed toegepast, divers. De meest voor de hand liggende, en wellicht meest toegepaste, vorm van UHSB zijn liggers. Hiervoor is gebleken dat bij een gelijke doorsnedecapaciteit een bijna even laag eigen gewicht/m1 behaald kan worden met een UHSB ligger als liggers in staal. Foto 3: Gewicht/m 1 van een stalenligger en betonnen-liggers bij gelijke doorsnedecapaciteit. De voordelen van vvuhsb liggers ten opzichte van conventioneel betonnen liggers zijn: Er kan een grotere overspanning behaald worden; De onderlinge afstand van de liggers van vergroot worden; Een verhoogde duurzaamheid door een lagere doordringbaarheid; Lagere kosten voor onderhoud; Het minimaliseren van bouwhoogte; Er zijn geen beugels nodig om schuifspanningen op te nemen. (er zijn hooguit beugels nodig voor de connectie ligger-plaat in geval van een dek) Naast deze aspecten zijn er nog een aantal voordelen en aandachtspunten te noemen. Daarom worden in dit hoofdstuk alle aspecten van vvuhsb afzonderlijk uitgelicht aan de hand van twee eigenschappen: 1. Mechanische eigenschappen; 2. Duurzaamheid. Pagina 23

247 4.1 Mechanische eigenschappen Spanning-rek relatie In de Eurocode (NEN-EN) is het hogesterktebeton (HSB) al opgenomen. Hiervoor zijn dus representatieve onderzoeken gedaan naar het gedrag van HSB. UHSB is een vervolgontwikkeling van HSB en dus zullen de afwijkingen in gedrag nog groter zijn dan bij HSB. Uit onderzoek blijkt dat het σ-ε-diagram (drukzijde) verandert ten opzichte van het conventioneel beton. De grenswaarde van de betonstuik (ε c3 ) neemt iets toe (minder gevoelig voor kruip) bij hogere sterkte, maar de grenswaarde van het bezwijkmoment (ε cu3 ) neemt duidelijk af. Vrij vertaald betekent dit dat naarmate de betonsterkte toeneemt het materiaal zich brosser gaat gedragen. Bij UHSB gaat de lineair elastische vervorming door tot ongeveer 95 procent van het bezwijkmoment. Dit wijst erop dat UHSB zonder vezeltoevoeging een enorm bros materiaal is De invloed van vezels Nadat duidelijk is wat er gebeurt als de sterkte van beton toeneemt, wordt onderzocht wat er gebeurt als de gangbare wapening vervangen wordt door vezels. De vezels hebben de grootste invloed op het scheurpatroon van het beton. In figuur 17 is een voorbeeld van het scheurpatroon gegeven bij een op buiging belaste balk met en zonder vezelwapening: studie TU/Delft. Hier is duidelijk te zien dat de vezels er voor zorgen dat de microscheuren niet snel uitbreiden naar macroscheuren. Hierdoor treden er meer kleine scheurtjes op wat zorgt voor een grotere scheurverzadiging en de balk minder snel bezwijkt. Wat verder opvalt is dat alle drie de proefstukken bezwijken op afschuiftrekbreuk. Figuur 17: scheurvorming studie TU/Delft Pagina 24

248 Wat doet hogesterktebeton met het spanningsdiagram Als een balk wordt belast treedt er een spanning in het materiaal op, waarbij boven de neutrale lijn een drukzone ontstaat en onder een trekzone. In figuur 18a is het spanningsdiagram te zien van traditioneel gewapend beton. De drukzone neemt evenveel kracht op als de wapening (N c = Ns). De bovenste helft van de drukzone verkeert in plastische toestand en de onderste helft in elastische toestand. Bij figuur 18b is het traditioneel beton vervangen door hogesterktebeton (C90/105). Doordat dit beton een grote drukspanning op kan nemen verplaatst de neutrale lijn naar boven. Dit is gunstig voor de maximaal opneembare moment van de balk, aangezien de wapening nu verder van de neutrale lijn ligt. Om een zelfde belasting op te kunnen nemen als bij a kan de balk dus lager worden uitgevoerd. Verder is te zien dat er nog maar 12procent van de drukzone in plastische toestand verkeert tegen 88procent elastisch. Dit is het gevolg van de grotere brosheid van het materiaal. De kleine trekspanning die het ongescheurde beton op kan nemen wordt in beide gevallen verwaarloosd. Figuur 18: spanningsdiagram gewapend beton (a. tot C53/65) & (b. C90/105) Wat doet het vvuhsb met het spannings-diagram In een eerder hoofdstuk is verteld dat vezelversterkt beton geclassificeerd wordt op het vertoonde gedrag bij belasting op trek. In figuur 19a is een σ-ε diagram te zien van vvuhsb met softeninggedrag. Hierin is te zien dat na het optreden van de eerste scheur (punt 1) de opneembare spanning drastisch daalt. vvuhsb dat hardening-gedrag vertoont laat daarentegen (fig. 19b), na het optreden van de eerste scheur (punt 1) een gebied zien waarin de rek nog flink toe kan nemen zonder spanningsverlies. Dit gedeelte (gebied B) noemen we de verstevigingfase en wordt veroorzaakt door het multiple-cracking gedrag. Dit houdt in dat er een heleboel kleine scheurtjes ontstaan waartussen betonbruggen aanwezig zijn die nog krachten over kunnen brengen. Deze vele scheurtjes ontstaan doordat de vezels sterker zijn dan de betonmatrix, waardoor als een bestaande scheur eenmaal een vezel heeft bereikt het minder energie kost een nieuwe scheur te beginnen dan de bestaande scheur verder uit te scheuren. Dit betekent dat door een hoger percentage vezels meer, maar kleinere scheurtjes ontstaan waardoor je maximaal opneembare kracht toeneemt. Pagina 25

249 Figuur 19: spanning-rek relatie vezel versterkt beton in trekzone (a. strain-softening gedrag) (b. strain-hardening gedrag) Nadat het beton verzadigd is met kleine scheurtjes (voltooid scheurpatroon, punt 2) gaat de vervorming zitten in een toename van de scheurwijdte. Vervolgens zullen de vezels bezwijken of uit het beton getrokken worden waardoor de opneembare kracht afneemt (gebied C). Uiteindelijk zal het beton bezwijken (punt 3). Deze theorie is ontwikkeld door dhr. Naaman. 20: tussen de vele scheurtjes door vinden de krachten hun weg (multiple cracking) Strain hardening of softening Zoals eerder vermeld is het na-scheurgedrag van vezelversterkt beton sterk afhankelijk van de hoeveelheid vezels in de mix en in mindere mate van de betonsterkte. Dit is te verklaren doordat na het ontstaan van de eerste scheur de vezels de trekkracht overnemen, en de totale opneembare spanning van de vezels in een doorsnede dus groter moet zijn dan de totale opneembare spanning van de betonmatrix om hardening gedrag te vertonen. In figuur 21 is een voorbeeld gegeven. Hierbij moet vermeld worden dat dit een theoretische benadering is die niet altijd op gaat. Een ander belangrijk punt is namelijk de binding tussen de betonmatrix en de vezels. Bij een lagere betonkwaliteit zullen vezels sneller uitgetrokken worden en leveren deze een veel mindere bijdragen waardoor alsnog softening gedrag optreedt. Pagina 26

250 Figuur 21: tussen de vele scheurtjes door vinden de krachten hun weg (multiple cracking) Eenassige druksterkte Eenassige druksterkte UHSB zonder vezels UHSB zonder vezels vertoont belast op druk een gedrag dat gekenmerkt wordt door : - een hoge sterkte, > 150 MPa; - hoge modulus van elasticiteit, in de range van 50 tot 70 GPa; - lineariteit van spanning-rek curve dat overeenkomt met 70-90% van de druksterkte; - zeer brosse breuk. Grafiek 8: Gedrag van UHSB, hoge-sterkte en gewoon beton in compressie Grafiek 8 toont het gedrag van UHSB onder statische drukbelasting in vergelijking met het gedrag van gewone en hoge sterkte beton. Het bezwijken van een cilinder is van een explosieve aard, en de dalende tak kan niet worden waargenomen in de spanningrek curve. De toename van de brosheid bij toename van de druksterkte is een fenomeen dat reeds al opgemerkt is voor gewone en hogesterkte beton. Deze tendens is ook tentoongesteld door UHSB Eenassige druksterkte UHSB met vezels De toevoeging van vezels aan een UHSB matrix leidt tot minder bros druksterktegedrag, vezels hebben een soortgelijke werking vanuit het mechanische oogpunt, als de aggregaten die in gewone beton werken. Pagina 27

251 Grafiek 9 toont de resultaten van een statische eenassige druktesten op elementen vervaardigd uit verschillende mengsels vvuhsb. A B Grafiek 9: gedrag vvuhsb in compressie. Grafiek 9a: gemeten spannings-rek relatie van de verschillende mengels vvuhsb in compressie (testen op cilinders D / L = 100/200 mm); Grafiek 9b karakteristieke parameters van spanning rek curve; Het gedrag van vvuhsb onder druk wordt gekenmerkt door de volgende takken: Lineaire elastische deel met een modulus van elasticiteit in de range van GPa; Niet-lineaire deel voorafgaand aan de bezwijkbelasting; Na kritisch verzachtend gedrag. De druksterkte is iets verbeterd door vezels toevoeging. Een stijging van 5-10% van de gemiddelde druksterkte voor vezels hoeveelheden tot 4% volume is gevonden in onderzoek. Het niet-lineaire deel is verlengd als gevolg van de verbeterde spanning overbreng mechanisme door de haarscheurtjes. De druksterkte wordt bereikt bij een rek in het bereik van 3. Naast het effect van de element grootte, wordt het post-peak gedrag vooral beïnvloed door: - vezelgehalte; - vezels type (rechte of verslaafde vezels, aspect ratio, LF / df), - interactie van vezels en matrix; Pagina 28

252 Eenassige Treksterkte met vezels De toevoeging van vezels aan UHSB matrix leidt tot een trek-gedrag dat schematisch kan worden weergegeven gepresenteerd als in grafiek 10. De gemeten curven van vvuhsb onderworpen aan een eenassige trekproef worden weergegeven. Het volgende gedrag wordt onderscheiden: - lineair elastisch gedrag tot aan het spannings niveau dat overeenkomt met matrixtreksterkte; - pseudo koudversteviging gedrag dat voortvloeit uit multi-microscheurvorming; - softening gedrag met lokalisatie van deformatie. Grafiek 10: Eenassige treksterkte reactie van vvushb element Schuifspanningen In iedere belaste horizontale constructie zullen inwendige schuifspanningen optreden. De scheuren die ontstaan door schuifspanningen zijn bijna altijd diagonaal in plaats van verticaal. Deze afschuifscheuren bevinden zich meestal onder een hoek van 45 graden. Bij verdere belasting treedt een rotatie van de drukdiagonalen op en vormen er nieuwe scheuren onder een kleinere hoek. Uit onderzoek blijkt dat dit principe niet verandert bij UHSB. Bij conventioneel beton zijn de toeslagstoffen sterker dan cementlijm waardoor de scheur om de toeslagstoffen heen ontstaat. Bij UHSB is dit net andersom, door de toegenomen sterkte van de cementlijm gaat de scheur door de toeslagstoffen heen. Dit principe is weergegeven in figuur 24. Figuur 22. Scheurpatroon bij conventioneel beton en (vv)uhsb Pagina 29

253 Het gevolg hiervan is dat de scheuroppervlaktes in UHSB minder grof zijn dan bij conventioneel beton. De scheurtjes die ontstaan kunnen over het algemeen nog aardig wat spanningen opnemen. Uit onderzoek is echter gebleken dat de opneembare spanningen bij USHB na het scheuren relatief gezien 50 tot 75procent lager zijn, als resultaat van deze gladdere scheuroppervlaktes. Echter, door de toevoeging van vezels neemt de opneembare schuifspanning van vvuhsb weer extra toe. Dit komt omdat na het scheuren van het beton de vezels de schuifspanningen voor een groot gedeelte over nemen (Figuur 22c) Elasticiteitsmodules Hoewel beton niet wordt beschouwd als een perfect lineair elastisch materiaal, is Hooke s wet van elasticiteit wel van toepassing op constructief beton met het bereik van de rek die vaak gebruikt wordt in ontwerp berekeningen. De elasticiteitsmodulus is een van de belangrijkste mechanische eigenschappen van beton. De elasticiteitmodules wordt gedefinieerd als de verhouding van de stress met overeenkomstige rek voor trek-of drukspanningen onder de proportionele grens van een materiaal. Het is een belangrijke factor die van invloed de constructieve uitvoering van gewapend beton en is vooral belangrijk als een ontwerp parameter in het voorspellen van de vervorming. De elasticiteitsmodulus van beton wordt in sterke mate beheerst door de eigenschappen van het grove toeslagmateriaal. Het vergroten van de omvang van het toeslagmateriaal of het gebruik van stijvere toeslagmateriaal met een hogere modules van elasticiteit verhoogt de elasticiteitsmodules van het beton. Grafiek 11: Typische spanning-rek verhouding van hoge-,matige-, en conventioneel beton. Conventioneel beton heeft een E-modulus van circa N/mm2 voor een C20/25. De E-modulus van zeer hoge sterkte beton is rond de N/mm2. Deze stijging is te wijten aan het feit dat UHSB een groter gebied tussen de aggregaten en de verharde cement pasta heeft. Daarom zal de nadruk op het betonmengsels kleiner worden en wordt de rek kleiner. De E-modulus geeft informatie over de elastische lineaire druk en treksterkte gedrag. Pagina 30

254 Het zegt niets over de niet elastische delen Het gedrag onder druk wordt gemodelleerd met een bilineair spanning-rek diagram. In werkelijkheid is dit een lineair en plastisch deel. Grafiek 12: Gemeten spanning-rek diagram, en geschematiseerd spanning-rek diagram. Grafiek 13: Geschematiseerd spanning-rek diagram van UHSB 1. Elastische fase van de drukzone. 2. Plastisch traject: De betonmatrix begint te bezwijken. de vezels houden de matrix samen totdat de uiterste rek wordt bereikt 3. Elastische fase van de treksterkte, die dezelfde helling heeft als traject 1. de kleine vezels verhogen de treksterkte in verhouding tot conventioneel beton. 4. Verstevigingsgedrag. De betonmatrix faalt, de micro scheuren ontwikkelen zich tot macro scheuren. De lange vezels worden geactiveerd. 5. De vervorming neemt toe, de grote vezels beginnen te falen en de scheuren groter worden. Dit is het softening gedrag. 6. In dit traject zijn alle vezels bezweken. Pagina 31

255 4.1.5 Poisson verhouding De Poisson-factor (Poisson ratio, of factor van Poisson, of dwarscontractiecoëfficiënt, ν) is een materiaalconstante genoemd naar Siméon Poisson die beschrijft hoe een materiaal reageert op een trek- of drukbelasting, namelijk welke rek er loodrecht op de trekrichting ontstaat (dwarscontractie). Wanneer een monster materiaal in één bepaalde richting samengedrukt wordt, heeft het materiaal de neiging in de andere twee richtingen uit te gaan zetten: Waarin: ν: de Poisson-factor ε xx : de rek in de richting waarin getrokken wordt (de x-as) ε yy : de rek in de richting loodrecht op de trekrichting (de y-as)en in 3D ook loodrecht op de z-as In conventioneel beton blijft de Poisson ratio constant tussen de 0 en 50% van de druksterkte met een waarde van Bij UHSB blijft de Poisson ratio constant tot 70-80% van de druksterkte met een waarde van 0.21 Grafiek 14: Dwarscontractiecoëfficiënt ontwikkeling over drukbelasting bij zowel NSB als UHSB Eigen Gewicht Het eigen gewicht van verschillende vvuhsb-mengels varieert niet veel van conventioneel beton. In onderstaand grafiek 15 is een overzicht gemaakt van betonmengsels met hun eigen gewicht. Grafiek 15: Eigen gewicht verschillende types betonmengsels. Pagina 32

256 4.1.7 Krimp Krimp is een proces dat met name veroorzaakt wordt door de zelf-verdroging. Vanwege de lage water-cement verhouding in UHSB, treed het grootste deel van krimp onmiddellijk na verharding op, terwijl vrijwel geen krimp optreedt na vroege leeftijd. Een verschil in gedrag is gemeld tussen thermisch behandelde en niet-behandelde UHSB. Volgens de Franse aanbevelingen, is autogene krimp gedefinieerd als een functie van de water-cementfactor, en voor het thermisch nietbehandelde materiaal met een water-cementfactor van 0,17-0,20, voor de tijd t, de krimp waarde is 550 um/m. Voor het thermisch behandelde materiaal is geen krimp ontwikkelt op basis van deze aanbevelingen. Bepaalde fabrikanten van vvuhsb geven gelijkaardige waarden: nul tot 10 micrometer/m postcure krimp en 550 micrometer/m voor thermisch niet-behandeld materiaal. Conventioneel beton kan een kruip-coëfficiënt bereiken van 3-4. Bij het bepalen van een bekisting is het belangrijk om in te gaten te houden hoeveel krimpvervorming optreed Kruip Onder kruip wordt verstaan: de met de tijd toenemende vormverandering (verkorting) in het beton bij gelijkblijvende belastingen. Wanneer er op een betonnen element een belasting wordt gezet treedt er een op het tijdstip t=0 een vormverandering op ten gevolge van deze belasting. Naarmate de tijd vordert levert ook de kruip een vormverandering op bij gelijkblijvende belasting. Wanneer de belasting wordt weggenomen of verminderd vervormt het beton deels weer terug ten gevolge van de belasting. Dit heeft nagenoeg enkel te maken met een elastische terug vering. Het ontlasten geeft ook enige mate van kruip, deze is altijd kleiner dan de kruip bij een grotere belasting. Het beton zal niet geheel in zijn oude toestand terug verkeren waardoor er een blijvende vervorming aanwezig is. Grafiek 16: Schematische voorstelling van kruip in beton. De grootte van de kruip wordt beïnvloed door een aantal factoren: 1. Betonkwaliteit; de mate van vervorming is afhankelijk van de sterkte van het mengsel. Des te sterker een mengsel zal zijn des te minder vervorming er zal optreden. In een betonmengsel is het type cement van belang en de water/cementratio. Wanneer minder water in het mengsel zit blijkt er minder vervorming op te treden doordat minder vochtmigratie mogelijk is. Pagina 33

257 2. De relatieve vochtigheid van de omgeving rondom de constructie; in de betontechnologie wordt een onderscheidt gemaakt tussen een binnenmilieu en een buitenmilieu. Een binnenmilieu word gekenmerkt door een RV van 0-60% en een buitenmilieu 60-85%. Hoe vochtiger de omgeving des te minder kruip optreedt. 3. Tijdstip van belasten; kruip is een tijdsgebonden proces welke afneemt naarmate de constructie langer belast wordt. 4. Afmetingen van de constructie; de doorsnede van de constructie en de blootstelling aan respectievelijk binnen- of buitenlucht zijn van belang. Kruip is een verschijnsel dat door vele factoren beïnvloed kan worden en dus onderling moeilijk te vergelijken is. In de betontechnologie is het gebruikelijk de invloed van kruip te definiëren in de vorm van een kruipcoëfficiënt die bepaald wordt aan de hand van een theoretische kruipfactor en een belasting gedurende een bepaalde tijd. De kruipcoëfficiënt in combinatie met de elasticiteit en een bepaalde spanning levert een vervorming van het materiaal op. In de Eurocode 2 (NEN-EN ) is deze rekenmethode uitgebreid beschreven. Om de kruipcoëfficiënt van UHSB te voorspellen is de kruipcoëfficiënt van lagere betonklassen uitgezet tegen de druksterkte. Grafiek 17: Kruipcoëfficiënt in verhouding met de betonkwaliteit. Aan de hand van het verloop van de grafiek is een voorspelling te doen over de ontwikkeling van de kruipcoëfficiënt van UHSB. UHSB zal weer een lagere kruipcoëfficiënt hebben dan HSB. Echter de daling van de kruipcoëfficiënt zal aanzienlijk minder zijn t.o.v. HSB en regulier beton. De hoogste kwaliteit HSB geregistreerd in de NEN-EN kent een factor 0,85 à 1. De polynoom toont het verloop van de grafiek na het doorzetten van de NEN-EN waarden. De kruipfactor zal nog enigszins afnemen, maar de daling heeft naar het lijkt zijn hoogtepunt bereikt. De kruipcoëfficiënt van UHSB zal rond de 0,8 liggen. Pagina 34

258 Er zijn eerder onderzoeken verricht op het gedrag van kruip in betonconstructies. Bij reguliere betonklassen rolt vaak een 28-daagse kruipcoëfficiënt rond 2,0 uit de bus. Hogere sterkteklassen hebben een lagere kruipcoëfficiënt die richting de 1,0 gaat. Bij enkele uitgevoerde onderzoeken aan de TU/Delft is gerekend met een waarde van 0,8 als kruipcoëfficiënt voor UHSB. De grafieken tonen dezelfde waarden. Het Franse vvuhsb merk Ductal krijgt tijdens de productie een warmtebehandeling om de constructieve eigenschappen te verbeteren. De met staalvezels versterkte betonsamenstelling van Ductal behaalt volgens opgave van de leverancier een kruipcoëfficiënt van 0,3; met organische vezels is dit 0, Vermoeiing De toepassing van UHSB maakt het mogelijk om zeer lichte en slanke structuren te ontwerpen. De consequentie van lichte constructies is dat ze vermoeiing gevoelig zijn. Vermoeiing is het gevolg van het optreden van dynamische belasting, zoals verkeer, machines of wind. Vermoeiing is een probleem dat nauwelijks een rol speelt in grote massieve betonnen structuren. Vermoeiing van beton kan in zowel druk als in trek. De levensduur is ingesteld op een bepaald aantal cycli. Meestal is dit nummer ingesteld op 2x10 ^ 6. Vermoeiing in beton zal optreden als gevolg van micro-scheuren op het snijvlak van het aggregaat en de verharde cement. Grafiek 18 Vermoeiingsgedrag van normaal beton onder axiale belasting. Grafiek 18 toont het gedrag van normaal beton onder verschillende stress-ratio s. In deze test is de frequentie en de minimale spanning constant. De enige variabele is de maximale spanning (dus Δσ), en het deel van de vermoeiingsbelasting wat afkomstig is uit trek. Uit de test kan worden geconcludeerd dat beton zwakker is onder trek-vermoeiing dan onder druk-vermoeiing. Aan de TU/Delft is onderzoek gedaan naar de vermoeiingseigenschappen van verschillende soorten vvuhsb mengsel. De eigenschappen van de beproefde mengsels zijn gesommeerd in onderstaande tabel. Soort Beton Karakteristieke druksterkte Vezelvolume Vezel (L/D) HSFR 145 1,6 12/0,16 Hybrid HSFRC 120 0,5 & 1,0 12/0.2 & 60/0.75 BSI/CERACEM 220 2,5 20/0.3 Tabel 4 Vergelijking eigenschappen mengsels beproefd op vermoeiing. Pagina 35

259 Het BSI/CERACEM mengsel heeft de hoogste druksterkte, het grootste vezelvolume en de laagste vermoeiingssterkte. Dit is verklaarbaar door het type vezels. Vermoeiingsscheuren zijn microscheuren, de vezels in het BSI mengsel zijn lange vezels. Bekend is dat lange vezels minder effectief zijn voor microscheuren. Het HSFRC mengsel heeft het grootste aantal kleinere vezels, en de beste vermoeiingseigenschappen. Belangrijk is dus om het vezelmengsel af te stemmen op het gebruik van een constructief element. Grafiek 19 Vermoeiingssterkte van verschillende soorten vvuhsb onder vermoeiing. 4.2 Eigenschappen met betrekking tot duurzaamheid Doordringbaarheid De duurzaamheid door chemische invloeden van vvuhsb is enorm verbeterd ten opzichte van conventioneel beton. De verhoogde weerstand tegen allerlei schadelijke gassen, vloeistoffen, chloride-ionen en vorst-dooi-zout invloeden, is vooral te danken aan de grotere dichtheid van het beton. Grafiek 20: Poriën in verschillende betonklassen Pagina 36

260 De porositeit van beton wordt gekenmerkt door de aanwezigheid van capillaire poriën grafiek 19. Poriën groter dan 0,01 μm worden tot de capillaire poriën gerekend. Sommige onderzoekers leggen de grens soms bij 0,03 of zelfs 0,1 μm. Een scherp onderscheid is overigens niet mogelijk, vooral omdat porieafmetingen moeilijk (betrouwbaar) te meten zijn. Aanmaakwater dat nog niet bij de hydratatie is verbruikt, bevindt zich in de capillaire poriën. Aanvankelijk vormen deze poriën een min of meer doorlopend kanalenstelsel in de cementsteen. Aantal en afmetingen van deze poriën zijn sterk afhankelijk van de water/cementfactor en de hydratatie graad (verhouding van de hoeveelheid cement die met het water heeft gereageerd en de totale cement in de matrix). Met een gemiddelde afmeting van deze poriën, variërend van circa 0,01 tot 0,1 μm, zijn ze meer dan honderdmaal zo groot als die van de fijnste gel poriën tussen de cement hydratatie producten. Door contact met de buitenlucht kan het water uit de poriën verdampen. Het gemakkelijkst uit de wijdste poriën. In figuur 23 is te zien hoeveel poriën van welke grote zich bevinden in verschillende betontypen. Hierin is duidelijk te zien dat door de lage water/cementratio vvuhsb weinig en relatief kleine capillaire poriën bevat. Figuur 23: Poriën in beton schematisch weergegeven Om een beeld te schetsen over de reactie van vvuhsb op chemische invloeden is gebruik gemaakt van de richtlijn SETRA-AFGC(2002). De AFGC (normalisatie instituut Frankrijk) heeft een richtlijn opgesteld over de duurzaamheid van een bouwwerk (groupe AFGC indicateurs de durabilité). De richtlijn is gebaseerd op enkele duurzaamheidsindicatoren. In tabel 3 zijn enkele van deze belangrijkste indicatoren vermeld met daarbij de waarden voor conventioneel beton, HSB en vvuhsb. Tabel 5: Duurzaamheidsindicatoren met waarden volgens AFGC, bij een hydratatiegraad van 1. Pagina 37

261 4.2.2 Weerstand tegen vriezen en dooien. De weerstand van beton tegen herhaalde cycli van invriezen en ontdooien, terwijl de doorsnede kritisch verzadigd is wordt gewoonlijk bepaald in termen van de totale inhoud van de lucht in het beton. Bij een dichtere betonmatrix is er minder kans op luchtbellen, waardoor de weerstand tegen vriezen en ontdooien groter is bij UHSB dan bij conventioneel beton. In onderstaande grafiek 21 is het effect van vriezen en dooien op conventioneel beton en UHSB uitgezet met op de x-as het aantal cycli en op de y-as de afwering in gram per vierkante meter. Grafiek 21: Afwering van conventioneel en UHSB bij vriezen en dooien Coefficient van thermische expansie Voor waarden met betrekking tot de thermische uitzetting van UHSB is informatie verzameld uit een onderzoek gedaan door Michigan Technological University in Houghton. Daar zijn op een verscheiden aantal proefstukken test uitgevoerd om de thermische expansie van UHSB te vergelijken met dat van regulier beton. Gemeten waarden van de uitzettingsgraad van UHSB tijdens het testen waren iets hoger dan de typische normale en hoge sterkte beton waarden van ongeveer 7,4 tot 13 x 10^-6 mm/mm/ºc. Deze waarde werd verwacht, omdat de uitzettingsgraad van beton het meest wordt beïnvloed door de uitzetting van voornamelijk fijn zand en Portland cement. Doordat UHSB voor een groter aandeel bestaat uit fijn zand en portland cement hebben deze stoffen een groot aandeel in de uitzettingsgraad. De uitzettingsgraad van cement / natuurlijke silica is 12 x10 ^-6 en verzadigde Portland cement 18 x10 ^ -6) Grafiek 22: Gemiddelde waarden van de thermische uitzetting voor lucht gedroogde UHSB Pagina 38

262 4.2.4 Brandwerendheid UHSB versterkt met alleen stalen vezels vertoont relatief ongunstig gedrag. Vanwege de lage inhoud van de aangesloten poriën en hoger gesloten porositeit kan er geen stoom, wat ontwikkeld is door het verdampen van water, ontsnappen. Dit resulterend in een toename van interne spanningen bij de aanwezigheid van hoge temperaturen. Brandwerendheid problemen kunnen worden vermeden door het gebruik van polypropyleenvezels. Bij hoge tempraturen smelten die vezels waardoor de communicatie tussen de poriën voor ontsnappen van stoom en vermindering van interne spanning zorgt. 4.3 Korte samenvatting vvuhsb is een nieuw, geavanceerd materiaal van uitgewerkte composieten met opvallend superieure mechanische sterkte en duurzaamheid-eigenschappen in vergelijking met andere soorten beton. Als gevolg van materiaal-optimalisatie op verschillende schalen, is de verkregen microstructuur zeer homogeen en compact met bijna geen capillaire porositeit. De ontwikkelde microstructuur verklaart de sterk verbeterde mechanische eigenschappen. Ductiliteit wordt bereikt door de toevoeging van korte vezels. Dit in een optimale hoeveelheid die ook het behoudt van de verwerkbaarheid van het verse mengsel garandeert. De druksterkte van vvuhsb hoger is dan 150 MPa, de treksterkte ligt in het bereik van 10 MPa en wordt gekenmerkt door aanzienlijke ultieme breukrek. Vanuit een kwalitatief oogpunt is het gedrag van de druksterkte van vvuhsb niet anders dan het gedrag van gewoon beton. Het gedrag van de treksterkte vvuhsb wordt gekenmerkt door de rek-verharding fase, vaak met een kleine helling, die het onderscheidt van andere soorten beton. Het potentieel van de rek-verharding fase is afhankelijk van de hoeveelheid vezels en hun oriëntatie, waarbij de laatste sterk beïnvloed door de productie procedure. Naast de mechanische krachten, zijn de eigenschappen van belang voor de structurele toepassing zoals kruip en krimpen en de duurzaamheid ook sterkt verbetert. De combinatie van deze verbeterde eigenschappen vragen om een meer geavanceerde structurele toepassing: - Hoge sterktes en taaiheid, gecombineerd met de duurzaamheid van het materiaal suggereren dat geconstrueerd kan worden zonder passieve wapening. In combinatie met een daling van de afmeting van het element. - De plasticiteit van het verse materiaal geeft aan dat het eenvoudig te plaatsen is in een verscheidenheid van bekistingen, zonder aanvullende trillende hulpmiddelen. Gecombineerd met het feit dat de gewone wapening kan worden uitgesloten is dit een winst in de productie tijd en een grotere vrijheid van vorm. Pagina 39

263 5 VEZELS IN UHSB [10] - [11] - [A] In hoofdstuk drie is uitgelegd dat de vulstof (meestal Silicafume) twee functies heeft, namelijk het zorgen voor een homogener product waardoor meer druk opgenomen kan worden en het versterken van de lijm. Wordt het beton echter op trek belast, dan is het effect van de vulstof veel minder. Hierbij wordt namelijk alleen een beroep gedaan op de toegenomen sterkte van de lijm en heeft de vulfunctie geen invloed meer. Uit onderzoek is gebleken dat wanneer de druksterkte met 50 procent toeneemt, de treksterkte slechts met 15procent toeneemt. De verhoging van de elasticiteitsmodulus blijft nog verder achter bij de verhoging van de druksterkte, deze neemt slechts met 5 procent toe. Om de treksterkte en elasticiteit van het materiaal te verhogen wordt vezelwapening toegevoegd. Het is zelfs mogelijk dat de hoofdwapening compleet wordt vervangen door vezels. Door de relatieve grofheid van de vezels moeten er meer fijnere toeslagstoffen toegevoegd worden naarmate het vezelpercentage stijgt. Onderstaand grafiek 23 geeft een beeld van de ontwikkelingen rondom de treksterkte. Hierin is duidelijk te zien dat de treksterkte van het beton erg achter loopt op de druksterkte ontwikkeling. De vezels zorgen voor een beduidend grotere opneembare treksterkte van het materiaal. De vezels kunnen verschillen in materiaal, lengte en vorm. Een combinatie van verschillende vezels is ook mogelijk, dit noemt men een vezel cocktail. Grafiek 23: ontwikkelingen van trek- en druksterkte van beton Pagina 40

264 5.1 Wat doen de vezels De samenstelling van het betonmengsel moet afgestemd worden op het soort en toegevoegde percentage vezels om de hoge dichtheid te blijven behouden en problemen met de verwerking ervan te voorkomen. De relatief grote vezels (tot 30 mm) zijn geschikt voor het beperken van de microscheuren die uiteindelijk overgaan op macroscheuren. De relatief kleine vezels (tot 6 mm) versterken de matrix tussen de grote vezels en beperken de microscheuren. Nog grotere vezels (tot 60 mm) worden toegepast om de buigtreksterkte van het beton te verhogen. Door de toevoeging van de vezels neemt de treksterkte en ductiliteit van het beton aanzienlijk toe terwijl de druksterkte vrijwel gelijk blijft. Figuur 24: Effect op scheurvorming bij toevoeging van korte /lange vezels aan een betonmengsel. 5.2 Welke vezels De vezels kunnen verschillen van materiaal, vorm en afmetingen. Er zijn inmiddels al veel verschillende soorten vezels op de markt voor het versterken van betonconstructies. Met de materialen staal en polypropyleen zijn inmiddels al enkele projecten voltooid wat resulteert in productkennis. De andere materialen blijven hier echter wat hangen waardoor er weinig technische informatie beschikbaar is. In de volgende subhoofstukken wordt aandacht besteed aan drie verschillende soorten vezels en de bijbehorende toepassingsgebieden. Foto 4: Staalvezels. Foto 5: Verschillende types staalvezels. Pagina 41

265 5.2.1 Stalen Vezels Voordelen van vezelbeton met stalen vezels toepassingen van staalvezelbeton: - vorming van een homogene driedimensionale wapening over de gehele doorsnede, in bepaalde gevallen is normale wapening niet meer nodig of aanzienlijk minder Elastisch ondersteunde betonvloeren en verhardingen; Sluisdeuren; Dekvloer voor oude stalen bruggen; - verhoging van de scheurweerstand en de taaiheid - overbrugging van scheuren dmv. vezels die verdere scheurvorming voorkomen waardoor de draagkracht toeneemt - hogere draagkracht, waardoor de betondoorsnede kan afnemen (slanker bouwen; - betere brandweerstand - meer bestand maken tegen aardbevingen Bedrijfsvloeren; Vloeistofdichte vloeren; Tunnelbouw; Onderwaterbeton; Staalvezel-spuitbeton voor complexe constructies; Gebouwen in gebieden waar aardbeving voorkomen; Gebouwen die gevoelig zijn voor explosies. - meer bestand maken tegen explosies (vvuhsb schijnt duizend keer zoveel energie te absorberen dan gewoon beton) - vvuhsb is zo'n vijfmaal sterker dan gewoon beton (treksterkte) Tabel 6 Voordelen van stalen vezels en het toepassingsgebied Pagina 42

266 5.2.2 Kunststof vezels Voordelen van vezelbeton met kunststof vezels Toepassingen van kunststofvezelbeton - hogere capaciteit om spanningen op te nemen in een vroeg stadium (uren) - lagere bleeding (uitbloeding) - lagere plastische krimp - hogere samenhang en verminderde Ontmenging in de grond gevormde palen betonvloeren en verhardingen vloeistofdichte vloeren Brandwerendheid - hogere stootweerstand, splijtweerstand en slijtweerstand - verbeterde weerstand tegen vorst/dooiwisselingen - hogere weerstand tegen explosief afspatten Tabel 7 Voordelen van kunststofvezels en het toepassingsgebied Foto 6: Kunststof vezels in een doorzichtige kubus. Foto 7: Conifiber, een vezel gemaakt van 100 procent polypropyleen Pagina 43

267 5.2.3 Glasvezels Voordelen van vezelbeton met glasvezels Toepassingen glasvezelbeton: - verhoging duurzaamheid - het beperken en opnemen van de plastische krimp, dus een grote vermindering van microscheuren - het drastisch verminderen van de capillariteit en daarmee een sterk verbeterd gedrag tov. de invloed van vorst en de indringing van chemische stoffen - vloeistofdichte oppervlakken in tal van uitvoeringen eventueel in combinatie met klassieke wapening (zwembaden, drinkwaterreservoirs e.d.) - inkuipingen allerhande eventueel in combinatie met klassieke wapening - betons onder helling - voetpaden en fietspaden - prefab onderdelen (zonder normale wapening, snel en eenvoudig) - is goed toe te passen bij restauratie, reproductie en renovatie (vezelbeton is gietbaar immers) Tabel 8 Voordelen van glasvezels en het toepassingsgebied 5.3 Afmetingen en percentage vezels Als een vvuhsb constructie wordt uitgevoerd zonder traditionele wapening dan moet het vezelgehalte aanzienlijk hoog zijn om de schuifspanningen op te kunnen nemen. In deze gevallen moet men uitgaan van een vezelgehalte van 2,0 tot 3,0 procent. In andere gevallen, waarbij vezels worden gebruikt als versterking om de veiligheidsmarge voor brosse breuk te halen of om de dwarskrachtwapening te vervangen, moet men denken aan een vezelpercentage van 1,0 procent. Op de universiteit van Kassel (Duitsland) is onderzoek gedaan naar de beste vezeltoevoeging aan een mengsel. In het onderzoek is de buigtreksterkte gemeten van vier identieke betonsamenstellingen (mix M1Q) met ieder een verschillende vezeltoevoeging. De resultaten zijn weergegeven in onderstaande grafiek. Uit het onderzoek bleek dat een fiber cocktail van staalvezels en PVA-vezels de hoogste sterkte aan het materiaal geeft. Grafiek 24: Effectiviteit van staal en PVA-vezels op de buigsterkte van vvuhsb. Pagina 44

268 Ook zijn er proeven gedaan over de invloed van de vorm van de vezels. Hieruit blijkt dat gedraaide of golvende vezels een veel hogere uittrek capaciteit hebben dan rechte of eind verankerde vezels. Dit is te verklaren doordat een gedraaide of golvende vezel over de hele lengte weerstand bied tegen uittrekken terwijl bij een eindverankering dit slechts een klein deel voorkomt. 5.4 Oriëntatie en distributie van de vezels De vezeloriëntatie is erg belangrijk om een hoge trek/buigtreksterkte te behalen. Gestreefd moet worden naar een oriëntatie waarbij de vezels parallel aan de lengte (overspanning richting) van het element liggen. Naar de beste stortmethode voor het beïnvloeden van deze oriëntatie is al veel onderzoek gedaan. Om de beste verdeling van vezels in de mix te krijgen is het belangrijk dat de vezels pas als laatst aan de mix toegevoegd worden. Dit moet geleidelijk aan gebeuren om clustervorming te voorkomen. Figuur 25 (a); het storten volgens de vloeimethode (b); onregelmatig storten 5.5 Uittrekgedrag van de vezel De verankeringscapaciteit van een vezel kan bepaald worden door een uittrekproef te verrichten op een enkele vezel. In grafiek 24 is een uittrekproef op een rechte en op een gehaakte vezel gegeven. Van Gysel [2000] stelt dat het uittrekken van een gehaakte vezel afhankelijk is van vijf verschillende processen: 1. Elastisch of plastisch vervormen van de vezel; 2. Ontbinding tussen vezel en betonmatrix; 3. Wrijving en geleiding bij het uittrekken van de vezel; 4. Rechttrekken van de eindverankeringen; 5. Breuk van de vezel. Pagina 45

269 Grafiek 25: Uittrekgedrag van een rechte en van een gehaakte vezel Uit proeven besloot Van Gysel [2000] dat de gehaakte vezels een veel grotere uittrekkracht hebben dan een rechte vezel. Dit ligt vooral aan de wrijving bij het uittrekken van de vezel en door het rechtrekken van de eindverankeringen. Ook zullen vezels met een hogere treksterkte een grotere kracht vereisen om de vezels uit de betonmatrix te kunnen trekken. Figuur 26: Uittrekgedrag van een gehaakte vezel 5.6 Korte Samenvatting Als korte samenvatting kan er gesommeerd worden dat : 1. Om een grote trekkracht op te kunnen nemen moet er gezorgd worden dat de vezels een grote trekspanning op kunnen nemen, zodat deze niet te snel bezwijken. De beste oplossing is stalen vezels; 2. Om te voorkomen dat de vezel na het scheuren uit het beton getrokken worden is een vorm met zo veel mogelijk weerstand hiertegen het beste. Gedraaide of golvende vezels over de gehele lengte geven veel weerstand; 3. Bij een hoger percentage aan staalvezels kan een grotere trekkracht worden opgenomen. De maximale opneembare trekkracht bepaalt de hoogte van het drukgebied. Bij overschrijden van deze bezwijktoestand zal een scheur het drukgebied verder beperken, waardoor betonstuik ontstaat. De vezelhoeveelheid kan het beste tot een maximum van 2 procent van het volume worden toegevoegd; 4. Relatief lange vezels zorgen voor het tegenhouden van de macroscheuren en zorgen voor het opnemen van de grootste trekkrachten. Relatief korte vezels zorgen voor het beperken van de scheurgrootte waardoor er meer kleine scheurtjes ontstaan en het beton minder snel scheurverzadigd raakt. Een mix tussen lange en korte vezels is het beste; 5. Om meer trekkracht op te kunnen nemen zullen de vezels evenwijdig aan de lengte van het element moet liggen. Tijdens het storten van vezelbeton kan het best gezorgd worden voor een zo lang mogelijk vloeigebied. Pagina 46

270 6 REFERENTIE MENGELS [12] [14] [D] Om in het afstudeerproject een vergelijking tussen verschillende opties te kunnen maken is het nodig om referentiemengsels te hebben. In dit hoofdstuk worden eerst de mechanische eigenschappen van een C50/65 betonmengsel volgens de eurocode 2 besproken. Hierna volgt een UHSB mengsel van Ductal. 6.1 C50/65 Eurocode Om een goede vergelijking met de beter presterende vezelbeton te maken is een standaard beton nodig, gekozen is voor C53/65. In de komende sub paragraven worden de mechanische eigenschappen van dit beton volgens de eurocode uitgezet Samenstelling Samenstelling kg/m 3 CEM I/52.5R 330 Vliegas 145 Zand 0-4 mm 704 Zand 4-32 mm 1041 Superplastificeerders 1,91 Water 151 Tabel 9 Samenstelling C50/ Druksterkte De eigenschappen van dit mengsel is gebaseerd op de indeling van het mengsel in de C53/65 sterkteklasse. De karakteristieke cilindervormige drukbelasting fck is 53 N/mm2. De ontwerp druksterkte van het beton kan berekend worden met : f cd α cc f ck : Rekenwaarde van de druksterkte van beton [N/mm2] Coëfficiënt die rekening houdt met de langeduureffecten op de druksterkte en van ongunstige effecten als gevolg van de manier waarop de belasting aangrijpt. Karakteristieke cilenderdrukstrekte van beton na 28 dagen[n/mm2] γc: Partiële factor voor beton [1,5] Volgens de Nederlandse nationale bijlage is de α cc waarde gelijk aan1. Met deze waarden is de ontwerp druksterkte van het beton gelijk aan 35,3 N/mm 2 Pagina 47

271 6.1.3 Treksterkte De treksterkte heeft een directe relatie met de druksterkte. De treksterkte is volgens de eurocode 2 als volgt te berekenen : f ck f cm Karakteristieke cilenderdrukstrekte van beton na 28 dagen[n/mm2] Gemiddelde waarde van de cilenderdrukstrekte van beton [N/mm2] f ctm1 Gemiddelde waarde van de axiale trekkracht [N/mm2] voor sterkteklasse < C50/65 f ctm2 f ctk0.05 f ctd α ct Gemiddelde waarde van de axiale trekkracht [N/mm2] voor sterkteklasse >C50/65 5% ondergrens van de karakteristieke waarde van de axiale treksterkte van beton [N/mm2] Rekenwaarde van de treksterkte van beton [N/mm2] Coëfficiënt die rekening houdt met langeduureffecten op de treksterkte en met ongunstige effecten als gevolg van de manier waarop de belasting aangrijpt. Met de kenmerkende cilindrische drukbelasting van 53 N/mm2 is de ontwerp treksterkte f ctd gelijk aan 1,94 N/mm2 voor het C53/65 mengsel Buigsterkte De buigsterkte wordt berekend uit de karakteristieke druksterkte en is afhankelijk van de doorsnede hoogte (in mm). Bij deze buigsterkte wordt rekening gehouden met spanning die het beton kan overdragen door het softening traject. f ctm h f ct,fl Gemiddelde axiale sterkte [N/mm2] De totale elementhoogte [mm] Buigtreksterkte [N/mm2] Pagina 48

272 6.1.5 Schuifsterkte De basis van de afschuifsterkte berekend volgens de Eurocode is direct verbonden met de karakteristieke druksterkte. De Eurocode beschrijft de maximale schuifspanning met V rd,c. De VBC beschrijft de maximale schuifspanning met de waarde τrd. Beide schuifspanning capaciteiten zijn afhankelijk van de trekspanning. De Eurocode is ook afhankelijk van de effectieve hoogte. V rd,c V rd,c1 V rdt,c Dwarskrachtweerstand elementen zonder wapening [N] Minimale dwarskrachtweerstand element zonder wapening [N] Dwarskrachtweerstand in delen waar de doorsnede niet is gescheurd [N] V rd,max Maximale dwarskrachtweerstand met wapening [N] V rd,s Dwarskrachtweerstand met wapening [N] C rd,c Coëfficiënt vastgesteld door beproevingen (0,12) C Coëfficiënt met een waarde tussen 0,3 en 0,75. k Schaalfactor k = 1 + (200/d) 0,5 d Effectieve hoogte [mm] ρl: Ratio moment versterking met de doorsnede As / (bw * d) 0,2 B W A sw s z f yd f ctd f ck I S αl σ cp α Kleinste breedte van de dwarsdoorsnede in de zone onder trek [mm] Oppervlakte van de dwarsdoorsnede van de dwarskrachtwapening [mm2] Hart op hart afstand van de beugels [mm] Interne hefboomarm [mm] Rekenwaarde van de vloeigrens van de dwarskrachtwapening [N/mm2] Rekenwaarde van de treksterkte van beton [N/mm2] Karakteristieke cilenderdrukstrekte van beton na 28 dagen[n/mm2] Traagheidsmoment [mm4] Statisch moment [mm3] Reductiefactor voorspankracht voor de vezels in de eindzone Drukbelasting in beton als gevolg van de voorspanning [N/mm2] Hoek tussen de dwarskrachtwapening en de as van de ligger loodrecht op de dwarskracht Pagina 49

273 6.1.6 Elasticiteitsmodules De elasticiteitsmodules wordt berekend met : E cm f cm Secans-Elasticiteitsmodules van beton [N/mm2] Gemiddelde waarde van de cilenderdrukstrekte van beton [N/mm2] Met deze formule wordt een waarde gevonden van Ecm = N/mm2 voor het C53/65 mengsel samenvatting Met de Eurocode 2 wordt een algemene norm ontwikkeld die aanvaard wordt in heel Europa. In de volgende tabel zijn alle eigenschappen berekend volgens de Eurocode 2 voor een C53/65 mengsel. Eigenschap Symbool waarde eenheid Dichtheid p 2373,7 kg/m 3 Karakteristieke cilenderdrukstrekte fck 53 N/mm 2 Rekenwaarde van de druksterkte fcd 35,3 N/mm 2 Rekenwaarde van de treksterkte fctd 1,94 N/mm 2 Gemiddelde waarde van de axiale trekkracht fctm 4,16 N/mm 2 Dwarskrachtweerstand elementen zonder wapening ΤRd 0,48 N/mm 2 Secans-Elasticiteitsmodules E'b N/mm 2 Tabel 10 Eigenschappen van een C53/65 mengsel. 6.2 vvuhsb mengsels Om een indicatie te geven van de mogelijkheden van vvuhsb en de ontwikkeling worden in de volgende paragraven een aantal verschillende vvuhsb mengsels uitgelicht. Van deze mengsels worden de samenstelling en de eigenschappen opgesomd M1Q M1Q is een onderzoek mengsel ontwikkeld in Duitsland (Schmidt) met 2,5 Vol-% korte staalvezels (6-9 mm) en fijne toeslagmaterialen. Dit mengsel is geoptimaliseerd en toegepast in Duitsland. Het representeert een typisch mengsel van vvuhsb Samenstelling Samenstelling kg/m 3 Cement 733 Silica Fume 230 Quartz poeder 183 Quartz zand 1008 Stalen vezels 118 Water 176 w/c ratio 0,24 Tabel 11 Samenstelling M1Q mengsel Pagina 50

274 Eigenschappen Eigenschap eenheid waarde Dichtheid N/mm Karakteristieke cilenderdrukstrekte N/mm Rekenwaarde van de druksterkte N/mm Rekenwaarde van de treksterkte N/mm 2 - Buigtreksterkte N/mm Elasticiteitsmodules N/mm Tabel 12 Eigenschappen M1Q mengsel Ductal Ductal is een commercieel vvuhsb-product dat op de markt is gebracht door een samenwerking tussen Lafarge en Bouygues (Frankrijk). Er zijn 3 soorten Ductal beschikbaar, Ductal FM of AF waarin stalen vezels zijn toegepast (draagconstructies) en Ductal FO waarin organische vezels zijn toegepast (architectonische elementen) Samenstelling Samenstelling kg/m 3 Cement 710 Silica Fume 230 "Ground Quartz" = Zand 0,7-1,2 mm 210 Zand 1020 Stalen vezels 160 Superplatificeerders 13 Water 140 Tabel 13 Samenstelling Ductal mengsel Eigenschappen Eigenschap eenheid waarde Dichtheid N/mm Karakteristieke cilenderdrukstrekte N/mm Rekenwaarde van de druksterkte N/mm 2 - Karakteristieke treksterkte N/mm 2 8 Buigtreksterkte N/mm Elasticiteitsmodules N/mm Tabel 14 Eigenschappen van Ductal mengsel Pagina 51

275 7 REKENEN MET UHSB [15] [16] [17] [18] Constructieve elementen worden in hoofdzaak belast op momenten, dwars- en normaalkrachten of combinaties daarvan. Deze inwendige krachten moeten worden vertaald naar optredende spanningen en vervolgens worden getoetst aan de toelaatbare spanningen. Hiervoor zijn kennis van de materiaaleigenschappen en een passend spanning-rek diagram nodig. 7.1 Rekenmodellen en Regelgeving De belangrijkste publicaties op het gebied van regelgeving zijn op dit ogenblik [15]. Deze publicatie is toegespitst op het gebruik van het merk Ductal van de Franse leverancier Lafarge. Naast deze publicatie is er op het gebied van vvuhsb in de afgelopen jaren een grote hoeveelheid artikelen verschenen. Natuurlijk bevatten de vele publicaties overeenkomsten, maar van een echte eenduidigheid in uitgangspunten, benaderingswijze en resultaten is geen sprake. Wel kan op grond van vele onderzoeksresultaten worden geconcludeerd dat de betonsamenstelling sterk van invloed is op de eigenschappen van het materiaal. 7.2 Opstellen spanning rek diagram uiterste grenstoestand De basis voor de berekening van een snede belast op buiging wordt gevormd door het geïdealiseerd spanning-rek diagram conform de aanbevelingen van de Accociation Francaise de Genie Civiel. Momenteel is dit de enige norm waarin de uitgangspunten voor het opstellen van een spanning-rek diagram voor balken of gedrongen elementen zijn vastgelegd. Voor dunne, slanke elementen voldoet dit diagram niet en wordt teruggegrepen op het diagram voor vezelbeton conform de CUR 111. Wat voornamelijk opvalt binnen het trekgebied van het spanning-rek diagram volgens de Accociation Francaise de Genie Civiel is het relateren van de spanning aan de scheurwijdte. Voorts wordt met het oog op uittrekken, dan wel breuk van de vezels van de veronderstelling uitgegaan dat de vezels geen bijdrage meer leveren aan de opname van de snedekracht indien een rek van 1/4 e deel van de vezellengte ontstaat. Bij belasting op trek zijn de vezels binnen het elastisch gebied nauwelijks actief. De trekspanning wordt door de betonmatrix opgenomen. Na het ontstaan van de eerste scheur worden de vezels geactiveerd. Afhankelijk van het vezelpercentage en de grootte van de staalvezels zal de opneembare trekspanning eerst nog toenemen. Het materiaal vertoont dus verstevigings of strain-hardening gedrag. In de trekkromme van staal komt dit tot uiting in het deel van het plastisch gebied dat zich uitstrekt vanaf de vloeigrens tot het punt waarop de maximale trekspanning wordt bereikt. In het geval van strain-softening gedrag neemt na het ontstaan van de eerste scheur de spanning direct af. Het percentage en de grootte van de staalvezels zijn zodanig dat geen verstevigingsgedrag op zal treden. Voor elke individuele betonsamenstelling zal dus proefondervindelijk moeten worden vastgesteld of er sprake is van strain-hardening dan wel strain softening gedrag. Pagina 52

276 Volgens [15] geldt er voor de rekken : Rek bij grenswaarde betonstuik : ε u = 3 * 10-3 Rek bij ontstaan van de eerste scheur : ε e = f ij / (γ bf * E ij ) Rek bij een scheurwijdte van 0,3 mm : ε u0.3 = w 0.3 /l c + f ij / (γ bf * E ij ) Waarin w 03 = 0,3mm Rek bij een scheurwijdte gelijk aan 1% van proefstukhoogte : ε u1.0 = w 1 /l c + f ij / (γ bf * E ij ) Waarin w 1% = 0,01H en H= hoogte van het proefstuk onder buiging in mm Maximale opneembare rek : ε lim = l f / (4 * l c ) Waarin l f de vezellente is Volgens [15] geldt er voor de spanningen : σ bcu = 0,85 * (f cj / θ * γ b ) σ btu = σ (w03) / (k* γ bf) Waarin σ (w03) de karakteristieke spanning is bij een scheurwijdte van 0.3 mm σ u1% = σ (w1%) / (k* γ bf) Waarin σ (w1%) de karakteristieke spanning is bij ε = ε u1% In bovenstaande formules voor εu0.3, εu1.0, en εlim is lc de karakteristieke lengte waarvoor geldt lc = 2/3 h Hierin is h de elementhoogte. (LET OP : h is ongelijk aan H) Met deze formules kan wordt een spanning-rek diagram opgezet voor het betonmengsel Ductal. Als uitgangspunten wordt genomen dat de karakteristieke cilenderdrukstrekte 180Mpa bedraagt, de karakteristieke treksterke 8Mpa en de elasticiteitsmodules Mpa. De veiligheidsfactor γbf = 1,5. Verder wordt er gebruik gemaakt van het paper Complete characterisation of tensile properties of Ductal UHPFRC according to the frensch recommendations. Hierin is onderzoek gedaan naar de trek/buigtrek sterkte van een Ductal mengsel met beproeving volgens de Franse norm. In een typisch Ductal mengsel zitten vezels met een diameter van 0,2mm en een vezellengte van lf = 13 mm met een sterkte van 1800Mpa. Pagina 53

277 Met deze gegevens kan berekend worden: 1. ε e = f ij / (γ bf * E ij ) = 8 / (1,5 * 50000) = 0, ε u0.3 = w 0.3 /l c + f ij / (γ bf * E ij ) = 0,3 / (2/3)*h + 8 / (1,5 * 50000) = 2,22h+0, ε u1.0 = w 1 /l c + f ij / (γ bf * E ij )= 0,01H / (2/3)H + 8 / (1,5 * 50000) = 66,66 H+0,1066 H= hoogte van het proefstuk. 4. ε lim = l f / (4*l c ) = 4875/h Uit proeven met Ductal is gebleken dat bij belasting op druk de plastische fase wordt bereikt bij een rek van 2,35. De grenswaarde van de rek bij betonstuik wordt bereikt bij 3. Wanneer er een vvuhsb mengels van C170/200 wordt genomen met een karakteristieke kubusdruksterkte van 200Mpa en een karakteristieke cilenderdrukstrekte van 170Mpa kan het volgende spanning-rek diagram worden opgesteld: Randvoorwaarden : ε u1.0 wordt niet meegenomen wegens ontbrekende gegevens. : Karakteristieke druksterkte f ck Karakteristieke cilenderdrukstrekte van beton na 28 dagen γ c: Extra veiligheidsfactor γc: Veiligheidsfactor gelijk aan 1,3 Grafiek 26 Spanning rek diagram C200/170 mengsel volgens Franse aanbeveling [15] Pagina 54

278 Met dit spanning rek diagram kan de doorsnedecapaciteit van een vvuhsb ligger belast op buiging worden bepaald. Dit wordt onderstaand gedaan voor een balk met een afmeting van : 200x400x3000 (b, h, l). Het volgende spanning rek diagram ontstaat : Door de voorwaarde op te stellen dat de som van alle horizontale krachten in de doorsnede 0 moet zijn (evenwicht) kan er een functie worden opgesteld waarmee de hoogte van de drukzone iteratief gevonden moet worden. F1 F2 F3 F4 F5 Z H Horizontale drukkracht Horizontale drukkracht Horizontale trekkracht Horizontale trekkracht Horizontale trekkracht Inwendige hefboom Hoogte balk = 400mm De krachten F1 en F2 zijn inwendige krachten die in de drukzone liggen. De krachten F1,F2 en F3 zijn krachten die ontstaan in de trekzone en betrekking hebben op het verstevigingsgedrag. Pagina 55

279 F1 = 113 * 200 * 1 * 0,21 * Xu= 4746 Xu F2 = 113 * 200 * 0,5 * 0,78 * Xu = 8814 Xu F3 = 5,3 * 200 * 0,5 * 0,00823 * (400-Xu) = 4,36 (400-Xu) = ,36 Xu F4 = ((6,4+5,3)/2) * 200 * 0,91 * 0,101 (400-Xu) = 101,14 (400-Xu) = ,53 Xu F5 = (6,4+0)/2) * 200 * 0,5 * 0,890 (400-Xu) = 286,72 (400-Xu) = ,8 Xu EH=0 : 4746 Xu Xu = ,36 Xu ,53 Xu ,8 Xu Iteratief volgt hieruit : Xu = 11,22 mm F1 = N F2 = N F3 = 1792 N F4 = N F5 = N Zw 1 = 11,22 ((0,21*11,22)/2) =10,04 mm Zw 2 = Xu * (2/3) = 7,48 mm Zw 3 = ((400-11,22) * 0,0086) * (2/3) =2,22mm Zw 4 = (208,07*21, ,59*28,39) / (208, ,39) + 2,22 = 24,68mm Zw 5 = ((400-11,22)*0,890) * (2/3) + 2, ,46 = 255,35mm Nu de hoogte van de drukzone bekend is, kan de afstand tussen de horizontale kracht en de neutrale lijn bepaald worden. Hiermee kan de doorsnedecapaciteit worden bepaald. Hieruit volgt een doorsnedecapaciteit van (54977*10,04) + (99382*7,48) + (1792*2,22) + (41808*24,68) + ( * 255,35) = 30,61 knm 7.3 Numeriek onderzoek In het vorige hoofdstuk is geschreven hoe een de doorsnedecapaciteit van een balk op 2 steunpunten bepaald kan worden middels de evenwichtsmethode. Bij simpele constructies is deze methode goed toe te passen. Als de geometrie van een constructie complexer is, bijvoorbeeld bij gekromde elementen, of een niet prismatische doorsnede kan een constructie worden doorgerekend met de Eindige Elementen Methode. De eindige-elementenmethode (EEM of FEM) is een rekenmethode waarmee partiële differentiaalvergelijkingen en integraalvergelijkingen kunnen worden opgelost. De methode is ontwikkeld, omdat analytische rekenmethoden onvoldoende mogelijkheden bieden, of te complexe berekeningen vergen. Omdat in de hoofdfase van het afstuderen middels topological optimization (Hoofdstuk 9) een ontwerp wordt gemaakt wat hoogstwaarschijnlijk alles behalve recht en analytisch makkelijk door te rekenen is, is er alvast enig onderzoek gedaan hoe met behulp van ANSYS een berekening gemaakt kan worden. In ANSYS is dezelfde balk geïmporteerd als doorgerekend in hoofdstuk 7.2, een balk met een breedte van 200mm, hoogte van 400mm en een lengte van 3000mm. Deze balk is gemodelleerd in Autocad. Door het weten van de mogelijkheid om modellen te importeren uit Autocad is het makkelijker om complexe constructies te modelleren. In ANSYS is de gemodelleerde balk gemeshed met een opdeling in 8 elementen in de breedte, 10 in de hoogte, en 100 in de lengte. Totaal dus 8000 elementen. Pagina 56

280 Grafiek 27 Overzicht van gemeshed model in ANSYS. Het gebruikte element is een SOLID65, dit element wordt gebruikt om het beton te modelleren. De materiaal modellen zijn lastig in te voeren in ANSYS. In ANSYS is geen optie geprogrammeerd om een verschil in stijfheid/vloeitraject tussen elementen onder druk of trek te modelleren. vvuhsb heeft geen verschil in stijfheid onder trek of druk, wel heeft het een geheel anders vloeitraject. Om dit op te lossen heeft ANSYS een macro gepubliceerd die er voor zorgt dat ANSYS elementen herkent die onder druk/trek staan, en daar per groep materiaalmodel 1 of materiaalmodel 2 toekent. Deze macro is toegevoegd in de berekening. Onderstaand is opgesomd welke eigenschappen materiaalmodel 1(trek) en materiaalmodel 2(druk) hebben: Materiaalmodel 1 : Lineair Isotopic E =50000, v=0,20 Multilineair Kinematic (Hardening) strain , stress 5.3 strain , stress 6.4 strain , stress 0 Concrete Open shear transfer Coef : 0.6 Closed shear transfer Coef:0.9 Uniaxial Cracking Stress :5.3 Uniaxial Crushing Stress :113 Materiaalmodel 2 : Lineair Isotopic E =50000, v=0,20 Multilineair Kinematic (Hardening) strain , stress 113 strain 0.003, stress 113 Concrete Open shear transfer Coef : 0.6 Closed shear transfer Coef:0.9 Uniaxial Cracking Stress :5.3 Uniaxial Crushing Stress :113 Deze materiaalmodellen geven aan dat ANSYS rekent met een vloeitraject, dus fysisch niet lineair. Pagina 57

281 In de gegevens onder het materiaalmodel Concrete moet aangegeven worden welke waarde de Open shear transfer Coef. heeft. Dit is ingevoerd als 0.6, hier is verder niet mee gevarieerd om de invloed te bepalen. De belasting die aangebracht wordt op het model is een gelijkmatig verdeelde belasting. De steunpunten zijn aangebracht als scharnierend. In onderstaande afbeelding is te zien hoe ANSYS de verdeling heeft gemaakt tussen elementen die onder druk staan en elementen die onder trek staan. Elementen onder trek Figuur 27 Overzicht van verdeling in elementen onder trek en druk in ANSYS Het doel van het numeriek doorrekenen van de balk is een vergelijking te maken met de doorsnedecapaciteit als handmatig berekend in het vorige subhoofdstuk. Als de momentcapaciteit van 30,61 knm omgerekend wordt naar een gelijkmatige belasting betekend dit een gelijkmatige belasting van 1,36 N/mm 2 (balkbreedte =200mm). In onderstaande grafiek is het resultaat uitgezet van het fysisch niet lineair doorrekenen van de balk met uitgezet de gelijkmatige belasting tegen de doorbuiging. Grafiek 28 Resultaat fysisch niet lineair doorrekenen van een 200x400x3000 vvuhsb balk In de grafiek zijn als blauwe punten uitgezet de gevonden verplaatsingen tegen de aangebrachte gelijkmatige belasting. Te zien is dat bij een gelijkmatige belasting van 0,20 N/mm 2 de vervorming sterkt toeneemt, en dat bij een belasting van 0,26 N/mm 2 de balk bezwijkt. Hier word verder geen conclusies aan verbonden, of verdere verificatieberekeningen voor gemaakt. Het onderzoek naar een Pagina 58

282 methode voor een numerieke benadering in ANSYS is slechts uitgevoerd ter voorbereiding op het afstuderen. Tijdens het afstuderen zal worden uitgezocht hoe de resultaten te interpreteren. 7.4 Korte samenvatting Middels de Franse aanbevelingen kan een rekenmodel opgesteld worden om de doorsnedecapaciteit van een vvuhsb element op buiging te bepalen. Het nadeel van dit rekenmodel is dat er bij iedere wijziging van elementhoogte een ander spanning-rek diagram opgesteld moet worden. Er is onderzoek gedaan naar een methode om met ANSYS uitspraak te doen over de capaciteit van een vvuhsb element. Eerste berekeningen hebben laten zien dat resultaat niet veel afwijkt van het analytisch model. Tijdens het afstuderen zal echter energie gestoken moeten worden in het verifiëren van het model. Pagina 59

283 8 ONTWERPEN MET UHSB [A] Een constructief ontwerp is altijd afhankelijk van het gebruikte materiaal. Zo wordt bij een grote overspanning met een relatieve lage belasting eerder stalen liggers toegepast dan betonnen ligger. Zoals te lezen in eerder hoofdstukken is vvuhsb een heel ander materiaal dan conventioneel beton. De vraag die dus gesteld kan worden is : hoe ontwerp je hiermee? 8.1 Ontwerpen met UHSB als met conventioneel beton Wanneer in een betonnen ligger met een hoogte van 800mm en een breedte van 300 mm, gewapend met 3 staven rond 25, stapsgewijs de sterkteklasse van het beton wordt verhoogd levert dit steeds een hoger bezwijkmoment op. Door het verhogen van de sterkteklasse kan een minder hoge betondrukzone volstaan, en neemt dus de hefboomarm toe. Als ontwerper is het belangrijk dat er indien de scheurwijdte/duurzaamheid dit toelaat niet een onnodig hoge sterkteklasse wordt gekozen. Bij het ontwerpen van constructieve elementen is het dus verstandig om altijd de vraag te stellen welke sterkteklasse kies ik, en wat levert dat op. In onderstaande grafiek is uitgezet wat het nut is van het verhogen van de druksterkte van het beton in de ligger als zojuist gedefinieerd. Grafiek 29: Bezwijkmoment van een ligger bij het verhogen van de betondruksterkte in beton. Te zien is dat in dit specifieke geval het verhogen van de cilinderdruksterkte na een sterkte van 40N/mm 2 weinig invloed meer heeft op het bezwijkmoment. Zoals eerder genoemd is de reden hiervan dat de betondruksterkte steeds minder klein wordt bij het iedere verhoging. Af te leiden uit dit korte onderzoek is dus dat wat betreft het verhogen van de capaciteit van constructieve elementen het niet altijd nuttig is om met behoud van vorm van de doorsnede de betonsterkteklasse te verhogen. 8.2 Een nieuwe ontwerpmethode voor een nieuw materiaal Zoals in vorig subhoofdstuk te concluderen is, heeft het weinig zin om met UHSB te gaan construeren als enkel de bezwijklast van elementen verhoogd moet worden. Er moet dus anders geconstrueerd worden met dit nieuwe materiaal om anders dan op het gebied van duurzaamheid gewin te behalen. Doordat UHSB sterk verbeterde mechanische eigenschappen heeft kan er ook anders geconstrueerd worden. De ontwerpers van de twee onderstaande voorbeelden zijn in staat geweest om een andere constructieve gedachte te gebruiken in combinatie met een ander constructief materiaal. Zoals te zien is levert dit spraakmakende beelden op. Pagina 60

284 Voorbeeld 1: Folley Sanatorium Zonnestraal Hilversum, 2005 De luifel is ontworpen om de ontwikkelingen van de betontechnologie en constructietechnieken van de afgelopen 75 jaar weer te geven. De luifel bestaat uit een dakvlak van 8 bij 8 meter opgedeeld in 4 prefab kwadranten ondersteund door 4 armen die naar een enkele kolom leiden. De kolom is van RVS, de overige onderdelen van vvuhsb met enkel vezelwapening. Het dakvlak heeft een dikte van slecht 25 mm en wordt verstevigd door ribben in twee richtingen. Foto 8: Luifel Folley Sanatorium Zonnestraal Hilversum Wat opvalt aan deze luifel is dat de ontwerper gekozen heeft voor een verstevigde plaatconstructie in plaats van een dikkere plaat in het geheel. De versteviging van de plaat zorgt er voor dat er met slechts een dikte van 25 mm voldoende weerstand geboden wordt tegen de optredende belastingen. De vorm van de plaat-versteviging komt overeen met de structuur van een spinnenweb. Een spinnenweb is een geoptimaliseerde vorm. Voorbeeld 2: Project onbekend uit: Aplicaciones Estructurales de hormigon con fibras Foto 9: Vakwerkligger in Beton. Bovenstaande foto is gevonden in een artikel uit een Spaans blad. Informatie over het project of ontwerpers is moeilijk te achterhalen. Wat wel duidelijk is dat het hier gaan om een vakwerkligger uit Hoge/Ultrahoge sterkte beton, gewapend met vezels. De vakwerkligger laat goed zien dat ook hier gekozen is voor een andere ontwerpmethodiek dan de voor de hand liggende oplossing in gewapend beton. Pagina 61

285 9 OPTIMALISATIE METHODEN [19] - [E] [F] 9.1 Topologische optimalisatie Inleiding Huidige ontwerp problemen worden complexer wegens vergrootte economische en milieuvriendelijke invloeden. Om deze te verlagen wordt het gebruik van minder materiaalgebruik gestimuleerd, hoewel de stijfheid en spanning niet in het geding mogen komen. Eindige elementen computerprogramma s met topologische optimalisatie kunnen gebruikt worden bij complexe minimalisatie problemen om materiaalgebruik te verminderen. Het belangrijkste voordeel van de topologische optimalisatie in relatie tot andere vormen van structurele optimalisatie is dat er in eerste instantie geen structurele vorm hoeft voorgeschreven te worden. Dit zorgt voor een grotere vrijheid naar de zoektocht voor de meest geschikte vorm. Het doel van een topologische optimalisatie is : Het vinden van een materiele verdeling die de hoogste structurele stijfheid, voor een gegeven hoeveelheid materiaal met domein en randvoorwaarden, in relatie tot eigengewicht heeft Topologie-optimalisatie is een wiskundige benadering dat materiaal binnen een layout optimaliseert binnen een bepaalde ontwerpruimte, voor een bepaalde set van de belastingen en randvoorwaarden zodanig zijn dat de resulterende lay-out een voorgeschreven set van prestatiedoelstellingen voldoet. Met behulp van topologie-optimalisatie kunnen ingenieurs het beste concept dat binnen het ontwerp voldoet vinden. Topologie-optimalisatie is uitgevoerd door het gebruik van eindige elementenmethoden voor de analyse, en optimalisatie technieken gebaseerd op de methode van het verplaatsen van asymptoten, genetische algoritmen en optimaliteit criteria methoden. Topologie-optimalisatie wordt gebruikt tijdens het concept niveau in het ontwerp-proces, om te komen tot een conceptueel ontwerp, dat vervolgens wordt afgesteld voor prestaties en maakbaarheid. Dit vervangt tijdrovend en kostbaar ontwerp iteraties, en dus vermindert het de ontwikkeling van de ontwerptijd en de totale kosten. Optimalisatie in de natuur : Het vinden van een optimale stijfheid, in combinatie met een zo groot mogelijke oppervlakte bedekt door bladeren om een zo vruchtbaar mogelijk product te zijn. ofwel : stijfheid tegen de wind, en een grote oppervlakte voor fotosynthese om lichtenergie om te zetten Foto 10: Optimalisatie in de natuur. (i.c.m visuele optimalisatie ) Pagina 62

286 9.1.2 Wiskundige benadering Wiskundig kan topologisch optimaliseren als volgt weergegeven worden : op voorwaarde dat: In deze wiskundige uitdrukking zijn de volgende termen verwerkt : 1. Objectieve functionele : Dat is het doel van de optimalisatie. 2. Ontwerpruimte (Ω): De ontwerpruimte is de toegestane volume binnen het ontwerp wat kan bestaan. 3. Het discrete veld (ρ): Dit is het gebied waarover de discrete optimalisering wordt uitgevoerd. Zij selecteert of de-selecteert een punt in de ontwerp ruimte en geeft aan met een 1 of een 0 of een tussenliggende waarde hoe dit gebied geoptimaliseerd dient te worden. 4. Ontwerpbeperkingen: Dit zijn ontwerp criteria waaraan moet voldaan. Daartoe behoren onder meer de randvoorwaarden opgelegd uit de steunpunten Praktische benadering Om topologisch ontwerpen te verduidelijken worden de wiskunde principes toegepast op een ontwerp met randvoorwaarden die overeenkomen met een doorsnede van een brugdek. Als domein van het ontwerp is een rechthoek met een breedte van 6 meter en een hoogte van 1.5 meter. Op dit domein is een belasting in de verticale richting op de bovenzijde van de rechthoek geplaatst. De belasting is om analyse makkelijk te maken gelijk verdeeld over de bovenzijde. Als steunpunten zijn 2 punten aan de onderzijde van het rechthoek gedefinieerd. De steunpunten geven alleen steun in de verticale richting. In onderstaande figuur 28 is het ingevoerde domein met randvoorwaarden, en het gemeshte oppervlakte te zien. Figuur 28: Praktisch voorbeeld met hierin een ontwerpruimte, belasting, en steunpunten Pagina 63

287 In onderstaande figuur 29is de uitdraai geplaatst, met als tussenstap 3 iteraties, wat topologisch optimaliseren doet met het voorgeschreven model in figuur 28. Itteratie. Structuur als isolijn met stresplot. Streslijnen in doorsnede Figuur 29: Topologisch optimaliseren van een model in topostruct Pagina 64

288 Te zien in de figuur 29 op de vorige pagina is dat na 24 iteraties de optimale stijfheid/eigen gewicht ratio voor ingevoerde structuur gevonden is. Bij het door itereren naar 50 iteraties levert dit geen andere doorsnede op. Om dit hoofdstuk praktische benadering af te sluiten wordt de gevonden doorsnede in een ontwerp geplaatst om duidelijk te maken hoe topologisch ontwerpen ingezet kan worden. Dwarsdoorsnede Langsdoorsnede Figuur 30: Traditionele oplossing voor een dek. Mogelijke langsdoorsnede Figuur 31: Doorsnede brugdek gevonden door topologisch ontwerpen Voorbeelden van topologisch ontwerpen Foto 11: Airbus A380. Door het gebruik van topologische optimalisatie : 500 kg reductie per vleugel. Pagina 65

289 Sellwood bridge U.S.A. Het Sellwood brug-project is een voortdurende inspanning van Multnomah County ter vervanging van deze 85-jaar oud rivieroversteek met een nieuwe brug. Het project bevindt zich momenteel in de definitieve ontwerp fase. De bouw zal beginnen in Figuur 32: Invoer model Figuur 33: Uitvoer geoptimaliseerd model Figuur 34: Ontwerp Sellwood bridge op basis van topologisch ontwerpen. Ontwerp optimalisatie van verpakkingsproducten (Van Dijk & Van Keulen TU/Delft) Doel van onderzoek : Minimaliseren van gebruik van materiaal voor verpakking van vloeistof. Voorwaarden : Optredende spanningen en stabiliteitsproblemen. Resultaat van onderzoek : 20 procent besparing op het verpakkingsmateriaal. Figuur 35: Optimalisatie van verpakkingsmateriaal. Pagina 66

290 9.2 Visuele optimalisatie Met de term visuele optimalisatie wordt een link gelegd naar het feit dat vele elementen in de natuur niet alleen zijn geoptimaliseerd om alleen hun constructieve functie zo goed mogelijk te vervullen. De weerzijde van de elementen in de natuur is het voldoen aan een visuele voorwaarde. Deze voorwaarde wordt in de literatuur vaak omschreven middels de term gulden snede. De gulden snede of de sectio aurea of divina proportia (goddelijke proportie) is een fascinerend begrip uit de wiskunde. Het gaat om de verdeling van een lijnstuk in twee ongelijke delen, waarbij het kleinste deel zich tot het grootste verhoudt, zoals het grootste zich verhoudt tot het geheel. Of: de gulden snede ontstaat als een lijn AB door een punt S zodanig in tweeën wordt gedeeld dat AB staat tot AS als AS staat tot SB. Bijgevoegde tekening maakt dit duidelijk. Figuur 36: Verdeling lijnstuk volgende de gulden snede ratio. De bedoelde verhouding a/b wordt het gulden of perfecte getal genoemd en dit getal wordt aangeduid met de Griekse letter phi. Phi is gelijk aan 0,618 ofwel 0,618^-1 = 1,618 Het fascinerende nu is dat die ideale verhouding op heel veel en soms onverwachte plekken wordt teruggevonden: in de kunst, in de muziek en in de architectuur, maar ook in de natuur en in het menselijke lichaam. Daarom wordt het soms gezien als een magisch en mysterieus getal. Zo zouden de Egyptische piramiden gebouwd zijn volgens de gulden snede, en ook het Parthenon in Athene. De gulden snede kenmerkt ook de draaiing van een slakkenhuis, of de wijze waarop de zaden in een zonnebloem zijn geplaatst. En ook in het menselijke lichaam vind je de gulden snede terug. In je vingerkootjes bijvoorbeeld: in de verhouding tussen de lengte van het middelste botje van je vinger tot het langste en het kortste botje. Of in de verhouding van de lengte van je neus tot de breedte. Onderstaand een aantal voorbeelden van de gulden snede als gebruikt door mens en natuur. Foto 12 Voorbeelden van toepassing van de gulden snede door mens en natuur Pagina 67

291 9.3 Ontwerp optimalisatie Ontwerp optimalisatie is een techniek die een optimaal ontwerp tracht te bepalen. Hierbij moet het ontwerp aan alle gespecificeerde eisen voldoen, maar met een minimum koste van bepaalde factoren zoals gewicht, oppervlakte, volume, stress, kosten, enz. Met andere woorden, het optimale ontwerp is meestal een die zo effectief mogelijk is. Vrijwel elk aspect van een ontwerp kan worden geoptimaliseerd: afmetingen, vorm, plaatsing van steunen, de kosten van fabricage, natuurlijke frequentie, materiële goederen, en zo verder. Tijdens de optimalisatie analyse, vinden een reeks van analyse-evaluatiemodificatie cycli plaat. Dat wil zeggen, er wordt een analyse van het eerste ontwerp uitgevoerd. De resultaten worden geëvalueerd tegen bepaalde criteria en het ontwerp wordt zo nodig gewijzigd. Dit proces wordt herhaald totdat alle gespecificeerde criteria wordt voldaan. De volgende terminologie wordt gebruikt in verband met de optimalisering van een ontwerp: Ontwerp Variabelen : Dit zijn de onafhankelijke variabelen die worden bemeten om een optimalisatie te kunnen uitvoeren. Denk aan traagheid, volume, eigen gewicht enz. Toestandsvariabelen : Worden de hoeveelheden die worden gebruikt om beperkingen te definiëren voor het ontwerp. Toestandsvariabelen zijn ook bekend als afhankelijke variabelen en zijn typisch reactiehoeveelheden, zoals spanningen en verplaatsingen. Doelstelling functie : Deze is de afhankelijke variabele die geprobeerd wordt te minimaliseren. Het moet een functie van de ontwerpvariabelen zijn, dat wil zeggen, het veranderen van de waarde van de ontwerpvariabele moet zorgen voor veranderen van de waarde van de doelfunctie Voorbeeld ontwerpoptimalisatie Bij een ontwerpoptimalisatie zijn er in tegenstelling met een topologische optimalisatie gegevens over de vorm bekend. Gegeven: Vierkante ligger op 2 steunpunten met gelijkmatig verdeelde last Ontwerpvariabelen Traagheidsmoment, Weerstandsmoment, inhoud van de doorsnede. Toestandsvariabelen Maximale spanning = 200 MPa Maximale doorbuiging = 40mm Doelstelling functie 1 Breedte x 1,5 = hoogte 2 Minimale inhoud van doorsnede. Pagina 68

292 9.4 Ideale ontwerpmethodiek Nu bekend is welke mogelijkheden er zijn om een ontwerp te optimaliseren kan er een algoritme worden beschreven die alle optimalisatiemethoden meeneemt. In onderstaand figuur 36 wordt dit schematisch gedaan. Figuur 37: Ontwerp algoritme 9.5 Korte samenvatting Er zijn verschillende manieren waarom een ontwerp tot stand kan komen. Bij het toepassen van een nieuw materiaal als UHSB moet er op een andere wijze geconstrueerd worden dan met traditioneel beton. Doordat het materiaal vele malen sterker, duurzamer en duurder is dan conventioneel beton is het belangrijk om zowel het constructieve systeem, als de doorsnede te optimaliseren zodat het toepassen van een duurder materiaal loont. Het opgestelde ontwerp algoritme kan in het afstudeeronderzoek helpen om een zo geoptimaliseerde mogelijke constructie te ontwerpen. Pagina 69

293 10 UITGEVOERDE PROJECTEN IN UHSB [20] - [G] [H] [I] [J] [K] [L] In het vorige hoofdstuk is geschreven dat het optimaliseren van zowel de individuele doorsnede als het gehele constructieve systeem een aanbeveling is voor het ontwerpen in UHSB. In dit hoofdstuk worden een aantal gerealiseerde projecten in UHSB geanalyseerd. Het doel van deze analyse is het achterhalen of recent afgeronde projecten daadwerkelijk zijn geoptimaliseerd, en op welke manier. Verder worden dimensies van de gehele constructieve systemen opgesomd om een indruk te krijgen van de slankheid waarmee een ontwerp gerealiseerd kan worden. De volgende projecten worden geanalyseerd : Betonnen bruggen Villa Bedretto Bridge, Switzerland Seony Footbridge, Seoul, Korea (South) Staal+beton bruggen Sherbrooke Footbridge, Québec, Canada Garnerplatz bridge, Kassel, Duitsland Stationsoverkapping Shaugnessy Lightrail Station Calgary, Canada Sluisdeur Amsterdamse Oost-IJburg, Nederland Balkons White CRC balconies, Copenhagen, Denenmarken Damwanden Pre-Stressed sheet piles Ankerplaten Ile de Reunion, Frankrijk Voegen High strength joints for precast bridge slabs Pagina 70

294 10.1 Villa Bedretto Bridge, Switzerland Omschrijving: De Bedretto brug in Zwitserland is voor autoverkeer over de Ticino rivier in Zwitsereland. Het dek van de brug bestaat uit gewapend beton, de getrokken staven bestaan uit voorgespannen staalbeton kabels Technische data: Totale lengte 44.0 m, breedte 7.0 m. Datum in gebruik name: 1996 Foto 13: Zijaanzicht Bedretto Bridge. Foto 14: Uitvoering van de vakwerkligger. Foto 15: Uitvoering 2 UHSB pijlers. Figuur 38: Tekening van de dwarsdoorsnede en langsdoorsnede. Pagina 71

295 Het ontwerp van de Bedretto Bridge is middels het EEM pakket ANSYS topologisch geanalyseerd om te achterhalen of de architect optimalisatieprocessen voor zijn ontwerp heeft gebruikt. Het model dat ingevoerd is staat als onderstaand figuur 39 getekend. Ontwerpruimte Figuur 39: Ingevoerd model voor topologische optimalisatie. Opleggingen Dy&Dx Om een redelijk betrouwbaar resultaat te verkrijgen is er voor gekozen om ANSYS te laten rekenen met een netfijnheid van 0.5 meter. In totaal zijn er 1670 elementen gevormd in het model. In onderstaande figuur 40 is de uitvoer van Ansys te zien. De in het rood aangegeven gebieden zijn gebieden waar spanningen hoog zijn, en dus materiaal belangrijk is. De gebieden die groen of blauw zijn hebben een minder grote bijdrage aan de stijfheid van de constructie. Omdat er is gekozen om een percentage van 50 procent van het oorspronkelijke ontwerpgebied over te houden is, wordt in de post-processor ook de blauwe gebieden getoond. Figuur 40: Uitvoer model na topologische optimalisatie. In onderstaande afbeelding is het topologisch geoptimaliseerde model uit ANSYS ingevoegd in het zijaanzicht van de Bedretto Brug. Te zien is dat er overeenkomst is, en dus in het ontwerp met een nieuw materiaal, UHSB, ook een nieuwe ontwerpmethodiek is gekozen. Figuur 41: Inpassing geoptimaliseerd model de werkelijkheid & het werkelijk ontwerp zonder model. Pagina 72

296 10.2 Seony Footbridge, Seoul, Korea (South) Omschrijving: De Seony Footbridge - of de voetgangersbrug van de Vrede - ingehuldigd in april 2002 in Seoul, Korea, is tot op heden de langste loopbrug gemaakt met Ductaal Ultra- High Performance Concrete. Als gevolg van extreme klimaat variaties in Seoul,is HPC gekozen voor zijn kracht, veelzijdigheid, esthetica en duurzaamheid. Deze opmerkelijke brug met een enkele, 120 m overspanning en geen centrale ondersteuning, kruist rivier de Han naar Sunyodo Island, dit is een natuurpark in het hart van de Zuid-Koreaanse hoofdstad. Het geheel bestaat uit 6 geprefabriceerde voorgespannen pi-gevormde segmenten. Technische data: Overspanning 120 m Hoogte 15 m Dikte brugdek 3 cm Breedte brugdek 4.3 m Hoogte brugdek 1.1 m Totale massa 220 ton Betonstaal 0 Voorspanning 12 ton Deze geringe dikte van 3cm voor het kokerligger gebruikt als brugdek kan worden bereikt omdat er geen wapening nodig is in UHSB. Dus de dekking op het betonstaal zorgt niet voor een toename van de dimensies. Datum ingebruikname 2002 Foto 16: Seony Footbrige in de nacht. Pagina 73

297 Als er geprobeerd wordt om middels topologische optimalisatie de optimale structuur van de overspanning te behalen valt op dat het construeren van de drukboog in dit project van cruciaal belang is. Om dit te demosteren zijn er in Ansys drie modellen gemaakt om de invloed van de geometrie van de drukboog op een optimaal systeem aan te tonen. Op de eerste plaatst moet gezegd worden dat een optimale drukboog de vorm van een kettinglijn volgt. Immers doordat men vaak constructiehoogte wil beperken wordt er van deze kettinglijn afgeweken en naar een optimale geconditioneerde drukboog gezocht. De drie modellen die in Ansys gemaakt zijn betreffen modellen met ieder andere uitgangspunten. Per uitgangspunt wordt hieronder het resultaat besproken. Belangrijk is bij het lezen van de volgende uitwerking dat er beseft wordt dat de voetgangersbrug uit een horizontaal gedeelte, en een gebogen (drukboog) looppad bestaat. In alle modellen is met symmetrie gewerkt om het aantal elementen te beperken. In de modellen zijn 2 opleggingen aangebracht, 1 linksonder die zowel in de Y als X-richting krachten kan opnemen, en 1 rechtsboven die krachten in de Y-richting kan opnemen. Er is op de bovenste lijn een lijnlast aangebracht. Model 1, optimalisatie van een model met een te lange horizontale loopbrug t.o.v. drukboog. In dit model is de horizontale loopbrug een lengte van 28 meter gemodelleerd en geoptimaliseerd. In dit model is te zien dat de drukboog niet ongestoord zijn weg van steunpunt naar steunpunt volgt. Model 2, optimalisatie van een model met een te korte horizontale loopbrug t.o.v. drukboog. In dit model is de horizontale loopbrug een lengte van 20 meter gemodelleerd en geoptimaliseerd. In dit model is te zien dat de drukboog niet ongestoord zijn weg van steunpunt naar steunpunt volgt. Model 3, optimalisatie van een model waarin de horizontale loopbrug exact goed is. In dit model is de horizontale loopbrug een lengte van 23 meter gemodelleerd en geoptimaliseerd. In dit model is te zien dat de drukboog ongestoord zijn weg van steunpunt naar steunpunt volgt en hierdoor de optimale stijfheid/gewicht ratio bereikt. Pagina 74

298 Onderstaande foto is een aanzichtfoto van de Seony Footbridge. In deze foto is het geoptimaliseerde model 3 getekend. Te zien is dat het geoptimaliseerde model exact over de voetgangersbrug valt, en daardoor is te concluderen dat het constructief ontwerp sterk geoptimaliseerd is. Te zien is dat zelfs de stalen staaf tussen de drukboog en de horizontale loopbrug gevonden is. De stalen staaf die uit het midden van de drukstaaf naar de bovenhoek van de brug loopt, is niet meegenomen in de optimalisatie. Dit doordat hij globaal het systeem niet stijver maakt. Lokaal is deze staaf echter van groot belang, namelijk als knikverkorter van de gedrukte stalen staaf. Opmerking: De stalen staven zijn niet verbonden aan de betonnen drukboog, ze staan er naast. De constructieve werking is echter exact het zelfde. (voordeel van het ontkoppelen is om uitvoeringstechnische redenen) Figuur 42: Seony Footbridge met hierin een rood gestreepte symetrielijn en model 3 ingevoerd. Wat bij het bestuderen van de doorsnede van de segmenten opvalt is dat deze ook geoptimaliseerd is. De optimalisatie van de doorsnede is gedaan o.b.v. de materiaaleigenschappen van UHSB, dus de drukzone is slank, de trekzone relatief vors, en de dwarskracht wordt met minimaal materiaal opgenomen. Het koppel wat gemaakt kan worden is zo groot mogelijk, dus het optredend moment in de doorsnede kan groot zijn. Figuur 43: Doorsnedes van het brugdek uitgevoerd als pi liggers. Pagina 75

299 10.3 Sherbrooke Footbridge, Québec, Canada Omschrijving: De Sherbrooke voetgangersbrug bestaat uit een betonnen dek aan de bovenkant en een betonnen balk aan de onderkant verbonden met een vakwerksysteem tussenin. De diagonale staven in het vakwerk bestaan uit stalen secties die zijn gevuld met beton. De brug is opgebouwd uit tien afzonderlijke prefab delen die zijn verbonden met een voorspanning op de bouwplaats. De Sherbrooke voetbrug is een goed voorbeeld van een brug met slanke onderdelen. Het mysterieuze aan het ontwerp is echter wat het nut van het vullen van de stalen vakwerkdiagonalen met vvuhsb is. Door de opgesloten beton wordt zowel de druk als de knikcapaciteit van de staaf groter, maar dit zal ook makkelijk met stijvere diagonalen te realiseren zijn. Technische data: Overspanning Dikte brugdek Breedte brugdek Hoogte brugdek 60 m 3 cm 3.3 m 1.1 m Deze geringe dikte van 3cm voor het kokerligger gebruikt als brugdek kan worden bereikt omdat er geen wapening nodig is in UHSB, dus de dekking op het betonstaal zorgt niet voor een toename van de dimensies. Datum in gebruik name 1997 Foto 17: Foto s van de Sherbrooke Footbridge, Québec. Pagina 76

300 10.4 Gärtnerplatz bridge, Kassel Omschrijving: De Gärtnerplatz Bridge is de eerste vvuhsb brug gebouwd in Duitsland. Het is een staal-betonnen brug die de bestaande houten brug vervangt over de rivier de Fulda. De brug bestaat uit 6 overspanningen met de grootste overspanning van 36 meter. Elke overspanning is geprefabriceerd en getransporteerd naar locatie waar ze zijn verbonden met bouten. De doorsnede is een vakwerkligger en de hoogte varieert over de lengte van de overspanning. De constructie bestaat uit twee prefab voorgespannen vvuhsb balken in de bovenste regel en een stalen buis in de onderste regel. De diagonalen van het vakwerk zijn stalen buizen. Technische data: Overspanning Max overspanning Dikte brugdek Breedte brugdek Hoogte brugdek Totale massa Betonstaal Voorspanning 136 m 36 m 8 cm 5.0 m 1.2 m 349 ton 22 ton 12 ton Datum ingebruikname 2002 Foto 18: Gärtnerplatz bridge, Kassel. Door een goede structurele samenhang en optimalisatie van zowel de doorsnede als het gehele constructieve systeem is de massa van de brug 501 ton lichter dan een zelfde ontwerp in conventioneel beton. Op de volgende pagina is een figuur 44 te zien met zowel het huidige in vvuhsb ontwerp, als een ontwerp in conventioneel beton. Pagina 77

301 Figuur 44: Doorsnede huidig ontwerp en doorsnede gelijkwaardig ontwerp in conventioneel beton. De ontwerper heeft in dit project gekozen voor een hybride uitvoering met vvuhsb en een stalen vakwerk om de trekkrachten op te nemen. Een andere keuze zal geweest zijn een model zoals in bovenstaand figuur 44 met conventioneel beton. Ook de optie om een vvuhsb vakwerk toe te passen in plaats van een stalen vakwerk heeft tot de mogelijkheden bestaan. Door de TU/Kassel is een analyse gemaakt op de drie genoemde alternatieven om het gebruik van grondstoffen en energie met elkaar te vergelijken. In deze analyse is eerst vergeleken wat de energiebehoefte is van zowel conventioneel beton als UHSB. Tabel 15 Energie behoefte en broeikaseffect van 1 m3 conventioneel beton en UHSB. Het UHSB wordt gekenmerkt door een relatief hoog cementgehalte en de aanwezigheid van silica fume. Ook opmerkelijk is een w/c-verhouding van ongeveer 0,20 en het gebruik van Quartz poeder. De bovenstaande tabel laat zien dat er voor UHSB ongeveer dubbel zoveel energievraag is bij productie in vergelijking met conventioneel beton. Met deze gegevens is een matrix gemaakt met hierin alle gegevens voor de drie mogelijke constructieve systemen. Tabel 16 : Energiebehoefte bij 3 verschillende alternatieven. Te concluderen is dat een constructief systeem volledig uitgevoerd in UHSB superieur is in de analyse uitgevoerd door TU-Kassel waarbij energieverbruik voor productie aanleidend is. Pagina 78

302 10.5 Stationsoverkapping Shaugnessy Lightrail, Canada Omschrijving: Het Shawnessy Light Rail Transit (LRT) Station, is gebouwd in de herfst 2003 en winter Het maakt deel uit van een zuidelijke uitbreiding naar Calgary LRT-systeem en is 's werelds eerste LRT systeem worden gebouwd met een ultra-hoge sterkte beton (UHSB). Het innovatieve project, ontworpen door Enzo Vicenzino van de CPV-Groep Architecten Ltd, is eigendom van de stad Calgary. Technische data: Aantal gekromde luifels 40 Gewicht gekromde luifel 1800 kg Breedte gekromde luifel 3.0 m Lengte gekromde luifel 5.1 m Dikte gekromde luifel 20 mm Aantal rechte luifels 8 Datum ingebruikname 2004 Foto 19 Foto s + Isometrische tekening overkapping Shaugnessy Lightrail Station Calgary. Pagina 79

303 10.6 Sluisdeuren Amsterdams Oost-IJburg Omschrijving: Sluis 124 in het project Oost-Ijburg te Amsterdam is een van de vier sluizen op IJburg en zal worden gebruikt voor het schutten van pleziervaart. Het architectonisch ontwerp is van Meyer & Van Schooten architecten. De 10 centimeter dikke, 6,55 meter lange deuren hebben rondom een afgeschuinde rand van 35 bij 40 centimeter. Sluisdeuren zijn traditioneel van hout of staal. De bouwen onderhoudskosten van beton zijn echter flink lager. Een speciaal ontwikkeld betonmengsel (C90/105) met daarin zeer fijne toeslagmaterialen zorgt voor uiterst compacte, sterke en onderhoudsarme deuren Ook scoort beton beter op het aspect duurzaamheid. De CO2-uitstoot tijdens de hele cyclus van de deuren (het maken, het gebruik en uiteindelijk het afvoeren) is flink gereduceerd. Dat concludeerde Ingenieursbureau Amsterdam (IBA) vijf jaar geleden in een verkennende studie naar het gebruik van hogesterktebeton voor sluisdeuren. Bij het openen en sluiten van de deuren persen, pompen straks een zeer dun laagje water (0,1 mm) onder de deuren. Deze zogenoemde hydrovoet beperkt de glijweerstand tot een minimum. Daardoor is minder energie nodig om de deuren te bedienen en is vervuiling onder de deuren minimaal. Technische data: Aantal Sluisdeuren 4 Breedte Sluisdeur 6,55 m Hoogte Sluisdeur 4,5 m Dikte Sluisdeur 100 mm Dikte afgeschuinde rand 350 mm Lengte afgeschuinde rand 400 mm Datum ingebruikname 2010 Foto 20 Foto s van de sluisdeuren uitgevoerd in HSB Pagina 80

304 10.7 White Balconies, Denmark Omschrijving: In 2007 produceerde Hi-Con A/ S een totaal van 145 witte balkonplaten in CRC voor Ørestadshuset - dicht bij het vliegveld in Kopenhagen. CRC is de aanduiding voor een speciaal type van vezel versterkte High Performance Concrete met een hoge sterkte ( MPa), ontwikkeld door Aalborg Portland A / S en nu de handel gebracht en verkocht door CRC Technology. Vanwege een grote inhoud van staalvezels in CRC is het zeer buigzaam en dat maakt het mogelijk om geen betonijzer te gebruiken veel meer effectief zonder met grote scheuren onder bedrijfsomstandigheden. Alle balkons zijn uitkragende, met een dikte van ongeveer 100 mm. De balkonplaten worden geplaatst op consoles aan de gevel en trekkrachten worden gedragen door draadstangen bevestigd aan inzetstukken in de zijkanten van de balkons. Technische data: Aantal Balkons 145 Dikte Balkon 100 mm Datum ingebruikname 2007 Foto 21 Foto s van de witte balkons in Denenmarken. Pagina 81

305 10.8 Pre-Stressed sheet piles Omschrijving: In 2004 heeft Grünewald experimenten uitgevoerd op zelf verdichtend vezelversterktebeton (vvuhsb) voor het ontwikkelen van een mix geschikt voor toepassingen in prefab damwanden. Om de dunne wanden te gebruiken voor de voorgespannendamwand, Grünewald werkelijk toegepaste veel van dezelfde principes gebruikt in de UHSB. Hij verminderde de lengte van de staalvezels slechts 0,5 inch (13 mm) enbeperkte de maximale totale grootte tot 0,04 in (1 mm), waardoor de mix enigszins vergelijkbaar met UHSB. De mix bevat iets minder silica fume dan het bedrag dat doorgaans gebruikt in UHSB, echter, en geen warmte behandeling werd toegepast tijdens het uitharden. Technische data: Dikte web damwand Dikte flens damwand Diameter voorspanstreng Dekking op voorspanning 45mm 50mm 13mm 16mm Datum ingebruikname 2004 Foto 22 Serie foto s voorgespannen betonnen damwanden. Pagina 82

306 10.9 Ankerplaten Omschrijving: Het Franse eiland Reunion dat naast Madagaskar ligt is met UHSB betrokken geraakt bij het stabiliseren van een keermuur aan de rand van het water, over de gehele lengte van de kustweg. De originele draagstructuur die de rijbaan versterkt werd gebouwd van prefab platen, deze zijn in de loop der jaren zwaar beschadigd. Ter versterking van de muur, is een ondergronds verankering systemen aangesloten op ankerplaten gemaakt van UHSB en vastgemaakt aan de zeedijk. UHSB heeft een uitstekende weerstand tegen corrosie en maritieme omstandigheden waardoor er minimaal onderhoud nodig is, dit is een belangrijke factor voor het realiseren van het project in UHSB. Het gehele project bestaat uit de installatie van UHSB ankerplaten met organische vezels en 200 UHSB ankerplaten met metalen vezels. De UHSB ankerplaten zijn in dit project kosteneffectief, lichtgewicht en eenvoudig te installeren met de hand. Een aanvullende besparing van 18 procent ten opzichte van de initiële kosten zijn gerealiseerd als gevolg van de lage onderhoudskosten en besparing op schilderkosten van een variant. Technische data: Aantal ankerplaten 6500 Datum ingebruikname 2003 Foto 23 Ankerplaten in UHSB. Pagina 83

307 10.10 Voegen Omschrijving: Bij een project tussen Strängbetong, Zweden en Aalborg Portland heeft Denemarken onderzocht of het gebruik van een speciale hoge sterkte beton genaamd CRC JointCast, nuttig kan zijn voor het samenvoegen van geprefabriceerde brug platen. De voorgenomen voeg is volledig moment bestendigd. Het onderzoek heeft ook een aantal statische en dynamische proeven bij Chalmers Universiteit uitgevoerd. Technische data: Druksterkte beton 150 MPa Veel vezels, 6 procent van het volume. (in andere elementen max. 2 procent) Datum ingebruikname 2008 Foto 24 Overzicht van te vullen voegen. Foto 25 Detail van de voeg. Pagina 84

308 10.11 Korte samenvatting 1 Villa Bedretto Bridge, Switzerland a. Topologisch geoptimaliseerd constructief systeem 2 Seony Footbridge, Seoul, Korea (South) a. Topologisch geoptimaliseerd constructief system b. Geoptimaliseerde doorsnede 3 Sherbrooke Footbridge, Québec, Canada a. Mits constructief geoptimaliseerd kan er enorm slank gedimensioneerd worden, het dek van de voetbrug is slechts 3cm dik. 4 Gärtnerplatz bridge, Kassel, Duitsland a. Uit vergelijking blijkt dat een hybride constructie meer milieubelastend is dan een constructieve volledig uitgevoerd in UHSB 5 Shaugnessy Lightrail Station Calgary, Canada a. De unieke combinatie van superieure eigenschappen van UHSB heeft de architect de mogelijkheid gegeven om esthetisch zeer aantrekkelijke luifels te ontwerpen 6 Amsterdamse Oost-IJburg, Nederland a. Bij de sluisdeuren is onder andere voor UHSB gekozen door het onderhoudsarme eigenschappen van UHSB. Een traditionele houten of stalen sluisdeur is niet alleen onderhoudsrijker maar ook minder duurzaam. 7 White CRC balconies, Copenhagen, Denenmarken a. Doordat met UHSB zeer slank geconstrueerd kan worden is het voor architecten aantrekkelijk om bouwonderdelen die werken als eyecatcher slank uit te voeren in UHSB. 8 Pre-Stressed sheet piles a. Bij toepassing van UHSB kan een zeer kleine dekking op voorspanning voldoen. Bij de voorgespannen damwanden is een dekking van 16 mm voldoende. 9 Ile de Reunion, Frankrijk a. Door goede duurzaamheidseigenschappen wordt UHSB geprefereerd boven een stalen ankerplaat vanwege het besparen in onderhoudskosten. 10 High strength joints for precast bridge slabs a. De regel dat er niet meer dan 2-3% vezels toegepast dienen te worden gaat niet op voor iedere toepassing. In dit project zijn er 6% vezels t.o.v. het totaalvolume toegepast. Pagina 85

309 11 EFFECT OP MILLEUBELASTING BIJ TOEPASSEN VAN UHSB [21] - [A] Duurzaamheid is een lastig begrip waar een hoop onderwerpen onder vallen. Als er gesproken wordt over de duurzaamheid van een bouwmateriaal wordt vooral gekeken naar de levensduur, onderhoud en de benodigde energie om een element uit het materiaal te vervaardigen. Maar is vezel versterkt ultra-hogesterktebeton duurzamer ten opzichte van conventioneel beton? 11.1 belichaamde energie De belichaamde energie wordt gedefinieerd als de commerciële energie (fossiele brandstoffen, kernenergie, etc) dat werd gebruikt om een product te maken in de markt te brengen en verwerken van het afval ervan. De Belichaamde energie is een boekhoudkundige methode die gericht is op het vinden van de totale som van de energie die nodig is voor een hele levenscyclus van het product. Deze cyclus omvat winning van grondstoffen, transport, de fabricage, de montage, demontage, deconstructie en / of ontbinding.typische belichaamd gebruikte energieeenheden zijn MJ / kg (megajoule energie die nodig is om een kilogram van het product te maken), tco2 (ton kooldioxide gecreëerd door de energie die nodig is om een kilogram van het product te maken). Het omzetten van MJ op tco2 is niet eenvoudig omdat verschillende soorten van energie (olie, wind, zonne-energie, kernenergie en ga zo maar door) verschillende hoeveelheden kooldioxide uitstoten. Dus de werkelijke hoeveelheid kooldioxide die vrijkomt bij een product zal afhankelijk worden van het type energie die wordt gebruikt in het productieproces. Bijvoorbeeld: de Australische regering geeft een wereldwijd gemiddelde van 0,098 tco2 = 1 GJ. Dit is hetzelfde als 1 MJ = kgco2 = 98gCO2 of 1 kgco2 = MJ. In de onderstaande grafieken zijn een aantal materialen uitgezet met daarbij de volume energie per materiaal. Het volume materiaal is de belichaamde energie maal het volume. Grafiek 30 : Volume energie per materiaal van de vriendelijke materialen Pagina 86

310 Grafiek 31 Volume energie van de minder vriendelijke materialen Uit de grafiek is af te lezen dat UHSB iets onvriendelijker is dan conventioneel C30/37 beton. Dit verschil is echter marginaal als er over de volledige range van materialen wordt gekeken waarbij b.v. koper en aluminium als zeer energie-behoevend zijn geplaatst Om een gevoel bij deze waarden te krijgen wordt er een kleine rekensom gemaakt. Stel : Je stort 20 m3 UHSB, wat is daarvan de geschatte invloed op het milieu? Antwoord : 3,6 * 20 = 72 GJ = MJ Co2 die vrijkomt : * 0,098 kg = 7056 kg In 2008 was de gemiddelde uitstoot van een auto : 143 gram Co2 / km Dus 20 m3 UHSB staat gelijk aan een gemiddelde auto die km aflegt. E.E (MJ/kg) E.g (g/cm3) V.E (GJ/m3) Baal stro 0,24 0,05 0,012 Cellulose isolatie 3,3 0,105 0,3465 Minerale wol 14,6 0,03 0,438 Steen 0,79 1,5 1,185 Hout 2,5 0,5 1,25 Beton C30/37 0,8 2,4 1,92 UHSB 1,44 2,5 3,6 Balksteen 2,5 1,5 3,75 Polystyreen 117 0,035 4,095 Gipsbord 6,1 1 6,1 Multiplex 10,4 0,8 8,32 Tabel 17 Belichaamde energie Eigen gewicht en Volume energie in tabel. Pagina 87

311 11.2 Onderhoud van UHSB UHSB is beter bestand tegen chemische invloeden dan conventioneel beton. Logischerwijze is UHSB dus ook beter te onderhouden. Figuur 45 de voordelen van vvuhsb bij onderhoud 11.3 Overige aspecten Naast de direct berekende invloed van het toepassen van een materiaal op het milieu, en de invloed die het onderhoud met zich meebrengt, zijn er een aantal aspecten die ook meewegen in de beoordeling hoe een materiaal zich gedraagt in relatie tot het milieu. Onderstaand worden een aantal positieve en negatieve aspecten van UHSB ten opzichte van conventioneel beton opgesomd Positieve aspecten Door lichtere constructie ook een veel lichtere fundering; Door verbeterde duurzaamheideigenschappen (chemische invloeden) is een langere gebouw levensduur te bereiken; Door minder materiaalgebruik minder grondstoffen benodigd; Door minder materiaalgebruik minder transport benodigd; Door minder materiaalgebruik minder energie nodig bij produceren en monteren. Pagina 88

312 Negatieve aspecten Moeilijk te hergebruiken door de toevoeging van vezels die bijna niet uit het materiaal te halen zijn. Als het als puingranulaat gebruikt wordt zonder de vezels te verwijderen is het gedrag van de vezels oncontroleerbaar doordat deze mogelijk beschadigt zijn en er geen invloed uitgeoefend kan worden op de oriëntatie; Door het werken op microschaal (precieze samenstelling) is het toevoegen van puingranulaat voor het produceren van vvuhsb haast niet mogelijk; Als vvuhsb bekeken wordt met de Cradle-to-Cradle (C2C; wieg tot wieg) methode scoort het minder goed. Bij deze methode probeert men een product zo te maken dat het geheel vervaardigd kan worden uit hergebruikte materialen en na gebruik ook zelf als hergebruikmateriaal kan dienen. Echter door de bovengenoemde negatieve aspecten is vvuhsb, in tegenstelling tot conventioneel beton, hier niet voor geschikt als men als uitgangspunt neemt dat vvuhsb niet als vulstof gebruikt kan worden in een nieuw mengsel. Kijkt men echter naar het opnieuw gebruiken van een element dan is het juist een positief aspect aangezien de levensduur van een element vervaardigd uit vvuhsb langer is dan die uit conventioneel beton vervaardigd Korte samenvatting vvuhsb is door de dichte pakking op veel punten duurzamer dan conventioneel beton. De Co2 die vrijkomt bij een gelijkwaardige conventionele constructie uitgevoerd in UHSB is hoger. Echter doordat met UHSB slanker gedimensioneerd kan worden zal een UHSB constructie snel een mindere rekenkundige milieubelasting opleveren. Echter als gekeken wordt naar hergebruik scoort het materiaal minder goed. Verwacht wordt dat als de ontwikkelingen op dit gebied door blijven zetten (denk hierbij aan verbetering verpulver machines en het scheiden van beton en vezels) vvuhsb in de toekomst ook een te hergebruiken en dus duurzaam materiaal is. Pagina 89

313 12 SLUIZEN EN STUWEN. [22] In het beheersbaar maken van het water spelen sluizen een belangrijke rol. Sluizen zijn waterbouwkundige bouwwerken, die dienen ter regulering van de waterstand. Zij kenmerken zich door een beweegbare waterkering en tevens door de mogelijkheid de waterwegen aan beide zijden van de sluis met elkaar te verbinden ook als de waterstand niet gelijk is. In tegenstelling hiermee staan bijvoorbeeld de gemalen en overlaten, waarmee wel de waterstand kan worden gereguleerd, maar die geen directe verbinding tussen twee waterwegen vormen. Duikers en grondduikers daarentegen verbinden wel twee waterwegen met elkaar, maar hebben geen waterkerende functie. Nauw verwant aan de sluizen zijn de beweegbare stuwen. Evenals de sluizen regelen deze de waterstand van een waterweg, gewoonlijk een rivier of een beek, en zorgen er voor dat de waterstand achter de stuw zoveel mogelijk op het gewenste peil wordt gehouden. Bij een Figuur 46 Overzichtskaart gemalen, overschot aan water kan het afsluitmiddel in de stuw sluizen en stuwen in Nederland geheel of gedeeltelijk worden weggenomen. Het verschil tussen sluizen en stuwen is niet zo groot. Soms is het ook niet duidelijk of men met een sluis of met een stuw te maken heeft. Over een stuw stroomt gewoonlijk water heen, maar er zijn ook (schut)sluizen waar het water over de deuren heen kan stromen. Met name keersluizen hebben vaak een functie die vergelijkbaar is met die van een stuw Sluistypen. Sluizen worden gewoonlijk ingedeeld naar hun functie. Daarbij zijn drie hoofdgroepen te onderscheiden, namelijk sluizen ten behoeve van waterhuishouding, sluizen voor de scheepvaart, en sluizen met een militaire functie. Tot de sluizen die voornamelijk de waterhuishouding dienen, behoren de uitwateringssluizen, de ontlastingssluizen, de inlaatsluizen, de irrigatiesluizen en sommige keersluizen. De bekendste scheepvaartsluizen zijn de schutsluizen. Daarnaast zijn er de keersluizen en de spuisluizen, die een functie voor de scheepvaart bezitten. De militaire sluizen omvatten de inundatiesluizen en de damsluizen. Een andere meer op vorm en constructie gerichte indeling is die in de stroomsluizen en schutsluizen. Tot de stroomsluizen behoren de sluizen die uit een sluishoofd bestaan. Dit zijn alle sluistypen met uitzondering van de schutsluizen. Schutsluizen bezitten twee of meer sluishoofden, onderling gescheiden door een of meer schutkolken. Pagina 90

314 Uitwateringssluizen of suatiesluizen Uitwaterings- of suatiesluizen voeren het overtollige water uit een polder of een boezem af. Een polder is meestal laaggelegen gebied met een geregelde waterstand, dat gewoonlijk wordt omringd door dijken. Deze dijken moeten het buitenwater uit de polder houden. De polders ontvangen echter ook regenwater uit de lucht en kwelwater, dat door de dijken heen sijpelt. Met name in natte perioden moeten voorzieningen worden getroffen om het overtollige water af te voeren. Indien de polders niet al te laag ligt ten opzichte van het buitenwater, is een uitwateringssluis hiervoor geschikt. Deze sluizen kunnen alleen functioneren wanneer de waterstand achter de sluis hoger is dan de waterstand voor de sluis. Dit doet zich bijvoorbeeld voor bij polders die op een benedenrivier, een zeearm of op zee lozen. Tijdens eb is het buitenwater lager dan het binnenwater in de polder, zodat de sluisdeuren openstaan. Bij het opkomend tij moeten deze weer worden gesloten. Het kenmerkende van een uitwateringssluis is dus dat de sluis overtollig binnenwater moet afvoeren, terwijl daarnaast hoog buitenwater moet worden gekeerd. Uitwateringssluizen zijn voor wat betreft de waterhuishouding verreweg het belangrijkste sluistype. Figuur 47 Isometrische tekening uitwateringssluis Foto 26 Uitwateringssluis te Lauwersoog (gr) Ontlastsluizen. Ontlastsluizen hebben als functie het water af te voeren dat ten gevolge van een al dan niet gewenste overstroming een gebied is binnengekomen. Zij kunnen als een bijzonder type van de uitwateringssluizen worden beschouwd, maar doen alleen in noodgevallen dienst. Een schuif, die er voor moet zorgen dat het buitenwater niet naar binnen stroomt, is in de meeste gevallen voldoende. Ontslastsluizen behoeven niet perse in een waterweg te liggen. Figuur 48 Isometrische tekening ontlastsluis Foto 27 Uitwateringssluis te Denderbelle (Bel) Pagina 91

315 Inlaatsluizen Inlaatsluizen dienen om op gewenste tijden water in te laten; dus een tegenovergestelde functie aan die van de uitwateringssluizen. De inlaatsluizen worden toegepast in polders waar het polderpeil, en daarmee de grondwaterstand, na een droge periode te laag zou worden en de bodem hiermee zou uitdrogen. Om ook bij lage rivierstanden water in te kunnen laten, moet de sluisdrempel voldoende laag liggen. Onder normale omstandigheden is de sluis gesloten om het buitenwater te keren. Inlaatsluizen worden ook gebruikt voor het verversen van grachtwater in steden of van polderwater. Een ander toepassingsgebied van de inlaatsluis is het doorlaten van water op een kanaal om de vaartuigdiepte op peil te houden. Sluizen met deze functie worden ten onrechte ook wel sluisluizen genoemd. Figuur 49 Isometrische tekening inlaatsluis Foto 28 Inlaatsluis te Beemster (nh) Irrigatiesluizen Irrigatiesluizen dienen om water bewust over landerijen te laten lopen voor bevloeiing. Als het buitenwater hoger ligt dan het maaiveld achter de sluis kan het water via de irrigatiesluis over het land worden verdeeld. Vaak werd het water eerst via een inlaatsluis van een hoger gelegen water afgetapt naar een tussenreservoir. Van daaruit werd het dan via irrigatiesluizen over de landerijen verdeeld. Figuur 50 Isometrische tekening irrigatiesluis Foto 29 Irrigatiesluis, locatie onbekend. Pagina 92

316 Keersluizen Keersluizen moeten voorkomen dat er achter de sluis een te hoge of juist te lage waterstand komt. De sluis wordt veel toegepast bij zeehavens. Meestal staan zij open vanwege de scheepvaart, maar bij hoog of laag water worden de deuren gesloten om te voorkomen dat het achterliggend gebied overstroomd, respectievelijk dat de haven droogvalt. Dit laatst kan zowel voor de schepen als voor de kademuur fataal zijn. Indien de sluis zowel bij laag als bij hoog water moet worden gesloten, is deze dubbel kerend uitgevoerd. Bij toepassing van puntdeuren is de sluis in dat geval voorzien van twee stel deuren. Bevindt de keersluis zich aan de ingang van een dok, dan wordt zij gewoonlijk doksluis genoemd. Een dok is een bassin waarin nieuwe schepen worden gebouw of waarin bestaande schepen kunnen worden drooggezet voor onderhouds- en reparatiewerkzaamheden. De doksluis wordt bij hoge waterstand geopend, waarna het schip naar binnen kan varen. Figuur 51 Isometrische tekening keersluis Foto 30 Keer/Schuitsluis te heumen (gl) Spuisluizen Spuisluizen hebben als doel het dichtslibben van waterwegen te voorkomen deze zodoende op voldoende diepte te houden. Zij waren vooral te vinden aan het einde van kleine zeehavens. De sluis heeft daar een functie ten dienst van de scheepvaart, namelijk een baggerfunctie, hoewel hij zelf meestal geen schepen doorlaat. Achter de sluis bevind zich een waterbekken, de spuikom, die tijdens opkomend tij moet worden gesloten en bij laag water, als de waterspiegel van het buitenwater voldoende is gezakt weer geopend. Het in de spuikom opgeslagen water stroomt dan met een grote snelheid naar buiten. Door de kracht van het naar buiten stromende water wordt het slib dat op de bodem van de voor de sluis gelegen water ligt, losgewoeld en meegenomen. Figuur 52 Isometrische tekening spuisluis Foto 31 Spuisluis aan de afsluitdijk (fr) Pagina 93

317 Schutsluizen. Schutsluizen maken scheepvaart mogelijk tussen twee verschillende waterwegen of kanaalpanden met een ongelijk waterpeil. Daartoe bestaat een schutsluis gewoon uit ten minste twee sluishoofden, die onderling zijn verbonden door een schutkolk. Door het water in de schutkolk beurtelings de hoogte van het boven of beneden water te geven, kan het afsluitmiddel tussen de kolk en respectievelijk het boven of het beneden water worden geopend en een schip naar binnen of naar buiten varen. Een bijzonder type schutsluizen zijn de keerschutsluizen. Deze staan normaliter open en worden alleen onder uitzonderlijke omstandigheden in werking gesteld. Schutsluizen zijn de belangrijkste en gewoonlijk de meest in het oog springende sluizen. Zij kunnen verschillende vormen hebben. Zo kan een schutsluis enkel kerend dan wel dubbel kerend zijn. In het laatste geval kan naar twee zijden water worden gekeerd, hetgeen onder meer nodig is bij sluizen die een binnenwater met de open zee verbinden. Bijzondere schutsluizen zijn de gekoppelde sluizen en de driewegsluizen (die drie scheepvaarwegen met elkaar verbinden) Figuur 53 Isometrische tekening schutsluis Foto 32 Schutsluis te den oever (nh) Inundatiesluizen. Inundatiesluizen dienen om ten tijde van oorlog of oorlogsdreigingen snel te kunnen worden geopend om water door te laten en op deze wijze grote stukken land onder water te zetten of te inunderen. In normale gevallen is de sluis gesloten. Inundatiesluizen hebben dus een soortgelijke werking als de inlaatsluizen. Soms worden zij ook wel met deze naam aangeduid of doorlaatsluizen genoemd. Een inundatiesluis hoeft niet altijd twee waterwegen met elkaar te verbinden. Figuur 54 Isometrische tekening inundatiesluis Foto 33 Inundatiesluis te Amsterdam (nh) Pagina 94

318 Het terrein rond Amsterdam bestaat nog steeds uit polders en uitgeveende plassen en is doorgaans erg nat en laaggelegen. Bij een vijandelijke aanval zouden de polders, door een grote hoeveelheid water binnen te laten stromen, geïnundeerd worden met een laag water van ongeveer 50 centimeter. Hierdoor werd de aanvaller gedwongen om over de toen aanwezige smalle landwegen en dijken, de accessen, aan te vallen. De verdediger moest zich wel veel moeite getroosten om op deze accessen verdedigingswerken aan te leggen. Maar door dit in vredestijd te doen had de verdediger een niet in te lopen voorsprong. De aanvaller zou in het natte landschap veel moeite moeten doen om de accessen te gebruiken en om zelf verdedigingswerken aan te leggen. Figuur 55 Een schematisch overzicht van de inlaatpunten en waterstromen van de stelling Damsluizen Damsluizen moeten in oorlogstijd voorkomen dat het inundatiewater het inundatiegebied uitstroomt, of juist een te groot gebied onder water zet. Zij bestaan meestal uit een sluishoofd waarin schotbalken kunnen worden geplaatst. In normale gevallen staat de damsluis open en kan er bijvoorbeeld onbelemmerde scheepsvaart plaatsvinden. Alleen bij oorlogsgevaar wordt de sluis gesloten, waarbij er feitelijk een dam in de waterweg wordt gecreëerd. Een bijzonder type damsluis is de plofsluis, waarbij de vaarweg wordt afgesloten door het laten exploderen van de bodem van een reservoir dat boven de vaarweg is gebouwd. Figuur 56 Isometrische tekening damsluis Foto 34 Damsluis te Amsterdam (nh) Pagina 95

319 12.2 Afsluitmiddelen Een sluis kenmerkt zich door een beweegbare waterkering, die geopend en gesloten kan worden. Het meest eenvoudige afsluitmiddel bestaat uit een aantal schotbalken die in de waterweg op elkaar worden gestapeld en op deze wijze het water keren. Deze waterkering voldoet echter alleen maar in situaties waarbij het afsluitmiddel slechts sporadisch behoeft te worden geopend of gesloten. Wanneer dit niet het geval is, zijn andere afsluitmiddelen nodig. Hiervan zijn er in de loop der tijd verschillende typen ontwikkeld. Deze kunnen onder meer worden onderscheiden naar wijze van bewegen. Er zijn deuren die een draaiende beweging maken (rotatie), maar ook die alleen horizontaal of verticaal bewegen (translatie). De roterende afsluitmiddelen, die om een verticale as draaien, vormen verreweg de grootste groep. Hiertoe behoren de enkele draaideur, de puntdeuren, de toldeur, de waaierdeuren, de kruisende deuren en de gekoppelde deuren Enkele draaideur De enkele draaideur is, zoals de naam aanduidt, een sluisdeur die in zijn geheel de sluisopening afsluit. De enkele draaideur is draaibaar om een verticale as aan een van de uiteinden. Geopend bevindt de deur zich in een uitsparing in de wand van het sluishoofd (de deurkas), evenwijdig aan de sluis as. In gesloten stand is de deur naar een in de wand aan de overzijde aangebrachte uitsparing gedraaid, die meestal is afgerond. De deur wordt door de waterdruk tegen de aanslagen in de sluiswanden en de drempel gedrukt, en bij kokersluizen tegens tegen de bovenaanslag. Vaak staat de deur daarbij loodrecht op de sluis as. Enkele draaideuren zijn vaak van hout gemaakt, maar er komen ook ijzeren en stalen deuren voor. De enkele draaideur is een relatief eenvoudig afsluitmiddel, dat al vroeg in de sluisbouw werd toegepast. De enkele draaideur komt vooral voor in sluizen met een kleine breedte (tot circa 4 meter, afhankelijk van de deurhoogte). Bij een grote breedte-hoogte verhouding wordt de enkele draaideur al gauw te zwaar voor de scharnieren en zakt de deur door. De enkele draaideur is slecht naar een zijde waterkerend. Wanneer aan die zijde de waterstand hoger is, zal de deur tegen de aanslagen worden gedrukt. Bij sluizen waar naar twee zijden gekeerd moet worden, zijn twee achter elkaar geplaatste deuren nodig, waarvan de ene naar binnen en de andere naar buiten draait Puntdeuren Puntdeuren bestaan uit twee draaideuren met een verticale draai as, die in gesloten stand onder een hoek tegen elkaar steunen. Geopend bevinden de deuren zich in deurkassen, die in de zijwanden van het sluishoofd zijn uitgespaard. Puntdeuren zijn het bekendste en in schutsluizen ook het meest toegepaste afsluitmiddel. Er wordt onderscheid gemaakt tussen vloed- en ebdeuren. De eerste zijn met de punt naar het buitenwater gericht en keren de vloed, terwijl de andere naar binnen zijn gericht en bij eb het binnenwater tegenhouden. De deuren in het buitensluishoofd noemt met buitendeuren en die in het binnenhoofd binnendeuren. Het merendeel van de puntdeuren is van hout gemaakt. Brede deuren zijn gewoonlijk van ijzer of staal vervaardigd. Puntdeuren zullen doorgaans het water keren, dat aan de zijde staat waar de punt naar toe wijst, de voor of buitenzijde genoemd. Het hoge water drukt de deuren tegen de aanslagen van het sluishoofd. Daarnaast worden de deuren in de punt tegen elkaar aangedrukt, waardoor er ook een kracht in de Pagina 96

320 richting van de deur aanwezig is. Ten gevolge van de waterdruk vindt er, afhankelijk van de waterhoogte, over de gehele breedte van de deuren een gelijkmatige verdeelde belasting plaats. Deze staat loodrecht op het deurvlak. Figuur 57: Puntdeuren in gesloten en geopende toestand Foto 35: Puntdeur Toldeuren De toldeur is en oude typische Nederlandse constructie. De eerste toldeur werd rond 1500 in Brielle gemaakt. Deze deur bevond zich in een raam waarin aan de onderzijde een sponning was aangebracht. In de gesloten stand stond deze deur in de sponning. Om de deur te openen werd deze door middel van een ijzeren bewegingswerk 10 cm omhoog gedraaid. De druk van het water doet de deur daarna een kwartslag draaien, zodat het water door de sluis kon stromen. De toldeur kan naar twee zijden water keren: het buiten water doordat de waterdruk op het grootste deurdeel de deur gesloten houdt en het binnenwater door een vergrendeling. Deze vergrendeling maakt het mogelijk de sluis als spuisluis te gebruiken. Een houten toldeur bestaan uit een raamwerk waarover aan beide zijden een beplanking is aangebracht. Figuur 58: Toldeuren in gesloten en geopende toestand Foto 36: Toldeur Amstelsluis Waaierdeuren Een waaierdeur bestaat uit twee delen die aan elkaar zijn gekoppeld tot een stijf geheel. De waaierdeur komt gewoonlijk dubbel voor. Er worden dan twee puntdeuren gevormd welke ieder zijn voorzien van een waaier. De enkele waaierdeur wordt zelden toegepast. Het waterkerende deel van een waaierdeur is bijna gelijk aan een enkele draaideur of een puntdeur. Dit deel wordt als de Pagina 97

321 eigenlijke deur beschouwd en ook wel met de naam puntdeur aangeduid. Het andere deel dat zich in de waaierkas in het sluishoofd bevindt, wordt de waaier genoemd. In gesloten stand staat de waaier bijna evenwijdig aan de waterweg. De waaierkas heeft ongeveer de vorm van een kwart cilinder, waarin de waaier kan draaien. Sluizen voorzien van waaierdeuren worden vaak waaiersluizen genoemd. Er komen zowel houten als ijzeren en stalen waaierdeuen voor. De waaierdeur is universeel toepasbaar in alle sluistypen. Vaak worden sluizen voorzien van waaierdeuren beschreven als een apart sluistype met een gemengde functie, zowel voor de scheepvaart als voor de waterhuishouding. Het belangrijkste voordeel van dit afsluitmiddel is, dat het onder vrijwel alle omstandigheden te openen en te sluiten is, zelfs tegen de stroom of de waterdruk in. Ook kan de deur naar beide zijden water keren. De constructie van een houten waaierdeur is nogal ingewikkeld en omvangrijk. Voor ijzeren waaierdeuren ligt dit iets anders. Deze zijn op relatief eenvoudige wijze als stijve constructie uit te voeren. De waaierkolom vereist een omvangrijk sluishoofd dat veel breder is dan bij gewone puntdeuren het geval is. Zowel de grote deuren als de grote sluishoofden maken de waaierdeur relatief duur. Figuur 59: Waaierdeur in gesloten en geopende toestand Foto 37: Waaierdeursluis in Gouda Kruisende deuren Kruisende deuren bestaan uit twee paren puntdeuren, die in gesloten stand met de voorharren tegen elkaar steunen. In een horizontale doorsnede vormen zij daarbij een kruis. Op deze wijze kan het afsluitmiddel naar twee zijden water keren. Geopend liggen de deuren aan weerszijden van de sluisdoorgang in de deurkas, waarbij zij elkaar gedeeltelijk overlappen. De deurkassen zijn in de wanden uitgespaard, de kruisende deuren zijn in het verleden alleen in het hout uitgevoerd. De puntdeuren, waarin de kruisende deuren zijn opgebouwd, vormen in gesloten stand onderling een scherpe hoek. Dit in tegenstelling tot de normale puntdeuren die een stompe hoek vormen. Een scherpe hoek is nodig om het openen van deuren mogelijk te maken. Dit brengt wel met zich mee dat de deuren langer zijn dan bij normale puntdeuren. Figuur 60: Isometrische tekening kruisende deuren Foto 38: Kruisende deuren Pagina 98

322 Gekoppelde deuren Gekoppelde deuren bestaan uit twee paar puntdeuren die achter elkaar zijn geplaatst, en in dezelfde richting draaien. De voorharren van overeenkomstige deuren zijn met elkaar verbonden via een koppeldeur. De punt van de deuren is gericht naar het buitenwater, waar de hoogste waterstand voorkomt. De deuren aan de zijde van het buitenwater worden de buitendeuren, de andere de binnendeuren genoemd. Het draaipunt van de buitendeuren is iets dieper in de sluiswand aangebracht en wel ter dikte van de sluisdeur. In gesloten stand steunen de voorharren van de binnendeuren tegen elkaar in tegenstelling tot die van de buitendeuren, die zich op een afstand van twee maal de deurdikte van elkaar bevinden. De deuren bewegen ongeveer volgens een parallellogram, waarvan de hoekpunten worden gevormd door de scharnierpunten. De plattegrond van de deuren zelf wijkt iets af van een parallellogram, omdat zij anders niet geheel zouden kunnen worden geopend. In open stand bevinden de deuren zich in deurkassen. De koppeldeuren vormen daarbij een lijn met de binnendeuren, evenwijdig aan de sluis as. Figuur 61: Isometrische tekening gekoppelde deuren Foto 39: Maquette van een sluishoofd met gekoppelde deuren in Terneuzen Klepdeuren Een klepdeur draait om een horizontale as aan de onder of de bovenzijde van de deur. Bij een draaias op de bodem ligt de geopende deur in een inkassing in de sluisvloer en wel zodanig dat er geen delen boven de vloer uitsteken. In gesloten stand neigt de deur enigszins naar de zijde met de hoogste waterstand. Klepdeuren in duikersluizen met een draaias aan de bovenzijde hangen aan de bovenkant van een sluiskoker en worden door het water open of dicht gedrukt. Klepdeuren met de draaias aan de bovenzijde in scheepvaartsluizen hangen in open stand gewoonlijk tegen de onderzijde van een brug. Er zijn zowel houten als stalen klepdeuren gemaakt. Een klepdeur met de draaias aan de beneden zijde heeft in gesloten stand gewoonlijk een helling van ongeveer 85 graden gericht naar de hoogwaterzijde. Figuur 62: Isometrische tekening klepdeuren Foto 40: Klepdeur Maasbracht Pagina 99

323 Segmentdeuren Een segmentdeur bestaat uit een gebogen plaat, die om een horizontale as draait. In verticale doorsnede heeft de plaat de vorm van een cirkelboog met de draaias als middelpunt. De plaat is door twee armen met de beide draaipunten verbonden. Deze draaipunten bevinden zich aan weerzijden van de sluis ter plaatse van de sluiswanden. Meestal zijn de draaipunten aan de zijde met de laagste waterstand geplaatst, zodat zij onder normale omstandigheden droog staan. Bij toepassing in een getijdegebied bevinden zij zich aan de landzijde. Gesloten rust de segmentdeur met de onderrand op de sluisbodem. Het afsluitmiddel wordt geopend door deze om de beide scharnierpunten naar boven te draaien. In geheel geopende stand bevinden de onder en de bovenrand van de segmentvormige plaat zich op gelijke hoogte. De deur ligt dan horizontaal, zodat de schepen er onderdoor kunnen varen. Segmentdeuren zijn uitsluitend in staal gemaakt. De segmentdeur draait om een horizontale as. De deur is aan beide zijden via een stalen arm met de scharnierpunten verbonden. Figuur 63 Isometrische tekening segment deuren Foto 41 Kleine parksluis Rotterdam Roldeuren Een roldeur is een vlakke deur, die bij het openen en sluiten een horizontale beweging maakt, loodrecht op de sluisas. De deur wordt bij het openen zijwaarts getrokken, meestal in een in het sluishoofd aangebrachte sleuf die de deurkas wordt genoemd. Bij de roldeur bestaan er twee hoofdtypen: deuren met een laaggelegen rol of rijbaan, en deuren met een hooggelegen rijbaan. Bij deuren met een laaggelegen rijbaan is de deur op rollen of wielen geplaatst. Deze lopen over een rail die op de sluisvloer is gemonteerd. Bij deuren met een hooggelegen rijbaan hangt de deur met wielen aan een rail. Nauw verwant met de roldeur is de schuifdeur, die eveneens een horizontale beweging maakt. Deze onderscheidt zich van een roldeur door de afwezigheid van rollen of wielen. De deur wordt bewogen over een vlakke schuifbaan. Roldeuren zijn zowel in hout als in ijzer of staal toegepast. In hout hebben de roldeuren vrijwel altijd een hooggelegen rolbaan. IJzeren deuren komen zowel met een hoog als laaggelegen rijbaan voor. De werking van een roldeur is eenvoudig, om deze te sluiten moet de deur uit de kas worden gerold en met de voorzijde goed in de tegenovergelegen sponning worden gedrukt. Dit laatste is belangrijk, omdat de deur anders een goede aanslag mist en kans op bezwijken bestaat. Pagina 100

TITELPAGINA. Ontwerpen van een vvuhsb sluisdeur m.b.v. optimalisatie algoritmen. ing. A.D. (Albert) Reitsema. Studentnummer: 0664835

TITELPAGINA. Ontwerpen van een vvuhsb sluisdeur m.b.v. optimalisatie algoritmen. ing. A.D. (Albert) Reitsema. Studentnummer: 0664835 TITELPAGINA Titel verslag: Ontwerpen van een vvuhsb sluisdeur m.b.v. optimalisatie algoritmen. Auteur: Studentnummer: 0664835 ing. A.D. (Albert) Reitsema Opleiding: Afstudeerrichting: Leerstoel: Architecture

Nadere informatie

Rekenregels vvuhsb; een voorzet

Rekenregels vvuhsb; een voorzet 23 Juni 2011 Ir. P.C. van Hennik Ing. P.P.F. van Rijen Rekenregels vvuhsb; een voorzet Inhoudsopgave CAE Nederland B.V. Introductie Praktijk voorbeelden Het materiaal (samenstelling & eigenschappen) Rekenen:

Nadere informatie

Sluis met enkele draaideuren

Sluis met enkele draaideuren thema 1 Het sluitstuk van de Zuid-Willemsvaart: Sluis Empel Sluis met enkele draaideuren De omlegging van de Zuid-Willemsvaart bevat twee nieuwe sluiscomplexen: Hintham en Empel. Van deze twee sluizen

Nadere informatie

Ambities in hybride beton

Ambities in hybride beton Ambities in hybride beton Motto Innovatie is en blijft onze voornaamste drijfveer ir. Erwin ten Brincke RC adviseur 2 Introductie Multidisciplinair adviesbureau voor de gebouwde omgeving 250 medewerkers

Nadere informatie

Leggerdocument sluis Limmel

Leggerdocument sluis Limmel 3 Leggerdocument sluis Limmel DLB 2009/8944 Datum 7 december 2009 Status Definitief Leggerdocument sluis Limmel DLB 2009/8944 Datum 7 december 2009 Status Definitief Colofon Uitgegeven door Rijkswaterstaat

Nadere informatie

7.3 Grenstoestand met betrekking tot de dragende functie 7.3.1 Kanaalplaatvloeren Buiging

7.3 Grenstoestand met betrekking tot de dragende functie 7.3.1 Kanaalplaatvloeren Buiging Tabel 4 Brandwerendheidseisen met betrekking tot bezwijken (zie Bouwbesluit tabellen V) bouwconstructie brandwerendheidseis (min.) bouwconstructie waarvan bet bezwijken l~idt tot bet onbruikbaar worden

Nadere informatie

Het versterken en verstijven van bestaande constructies

Het versterken en verstijven van bestaande constructies Het versterken en verstijven van bestaande constructies ir.m.w. Kamerling, m.m.v. ir.j.c. Daane 02-02-2015 Onderstempeling voor de renovatie van een kozijn in een gemetselde gevel, Woerden 1 Inhoudopgave

Nadere informatie

Constructieve analyse bestaande vloeren laag 1/2/3 (inclusief globale indicatie van benodigde voorzieningen)

Constructieve analyse bestaande vloeren laag 1/2/3 (inclusief globale indicatie van benodigde voorzieningen) Pieters Bouwtechniek Haarlem B.V. Dr. Schaep manstraat 284 2032 GS Haarlem Postbus 4906 2003 EX Haarlem Tel.: 023-5431999 Fax: 023-5316448 Email: pbt.haarlem@pieters.net Internet: www.pietersbouwtechniek.nl

Nadere informatie

Mechanica Deel 1 Melissa Vermeule

Mechanica Deel 1 Melissa Vermeule Mechanica Deel 1 Melissa Vermeule Construeren 5-12-2015 1. Welke soort vloer- en dakbelastingen kunnen aanwezig zijn? Maak onderscheid tussen rustende en veranderlijke belasting. Bepaal de grootte van

Nadere informatie

CHIBB. Bijlage 2 CHIBB Projekt 2b Dictaat Constructief ontwerpen met Mechanicamodellen

CHIBB. Bijlage 2 CHIBB Projekt 2b Dictaat Constructief ontwerpen met Mechanicamodellen Bijlage 2 Projekt 2b Dictaat Constructief ontwerpen met Mechanicamodellen Versie: 6 november 2011 Auteurs: Paul van Rijen, Annette Detzel Bijlage 2 Projekt 2b 1 Inhoudsopgave Inhoudsopgave 2 1 Inleiding

Nadere informatie

Watermanagement en het stuwensemble Nederrijn en Lek. Voldoende zoetwater, bevaarbare rivieren

Watermanagement en het stuwensemble Nederrijn en Lek. Voldoende zoetwater, bevaarbare rivieren Watermanagement en het stuwensemble Nederrijn en Lek Voldoende zoetwater, bevaarbare rivieren Rijkswaterstaat beheert de grote rivieren in Nederland. Het stuwensemble Nederrijn en Lek speelt hierin een

Nadere informatie

Station Waterlooplein

Station Waterlooplein Definitief Versie 1 12 september 2014 Projectnr 30619 Documentnr 188629 Constructies Stad Station Waterlooplein Stationsrenovaties Oostlijn VO+ Beschouwing constructieve aanpassingen Auteur(s) D. in t

Nadere informatie

Waterbouwdag 2011. Sluizen in de wereld. Han Vos

Waterbouwdag 2011. Sluizen in de wereld. Han Vos Sluizen in de wereld Han Vos Recente sluisprojecten voor Waterbouwdag 2011 de zeevaart In de laatste jaren zijn en worden er plannen gemaakt voor grote zeesluizen waarvan de capaciteit aansluit bij de

Nadere informatie

11 oktober 2012 W2.4: Constructieve aspecten van transformatie. Imagine the result

11 oktober 2012 W2.4: Constructieve aspecten van transformatie. Imagine the result 11 oktober 2012 W2.4: Constructieve aspecten van transformatie Imagine the result Wie zijn wij? Jeroen Bunschoten Senior adviseur bouwregelgeving ARCADIS Nederland BV Gerard van Engelen Senior adviseur

Nadere informatie

Funderingsherstel achter de plint met een minimum aan overlast. Varianten funderingsherstel: - Plaat- en balkfundaties - Kelderbouw - Schuimbeton

Funderingsherstel achter de plint met een minimum aan overlast. Varianten funderingsherstel: - Plaat- en balkfundaties - Kelderbouw - Schuimbeton Funderingsherstel achter de plint met een minimum aan overlast Varianten funderingsherstel: - Plaat- en balkfundaties - Kelderbouw - Schuimbeton Funderingsherstel bij woningen en andere gebouwen is niet

Nadere informatie

Tentamen Constructief Ontwerpen met Materialen B (7P118)

Tentamen Constructief Ontwerpen met Materialen B (7P118) Tentamen Constructief Ontwerpen met Materialen B (7P118) Naam en voorletters: TENTAMEN COM B (7P118) BESTAAT UIT TWEE MATERIALEN: BETON EN STEEN. PUNTENVERDELING: BETON: STEEN: 55 PUNTEN 45 PUNTEN - Voor

Nadere informatie

Hout. Houteigenschappen 2013/12

Hout. Houteigenschappen 2013/12 2013/12 Hout Houteigenschappen Hout is een natuurproduct. Elke houtsoort heeft zijn eigen unieke eigenschappen. Deze eigenschappen kunnen echter per soort enigszins variëren. Om tot optimaal gebruik en

Nadere informatie

UHSB: onbetaalbaar materiaal of economische oplossing? Ontdekking van UHSB en directe gevolgen

UHSB: onbetaalbaar materiaal of economische oplossing? Ontdekking van UHSB en directe gevolgen Inleiding tot UHSB: Onderzoek en toepassing in Nederland Ontdekking van UHSB en directe gevolgen Hans-Hendrik Hendrik Bache Denemarken 1986 Info-avond Ultra Hoge Sterkte Beton CRC wcf: 0.13 0.18 wap. percentage:

Nadere informatie

Onderbouwing van de duurzaamheid van staalconstructies = Large Valorisation on Sustainability of Steel Structures CASE STUDIES

Onderbouwing van de duurzaamheid van staalconstructies = Large Valorisation on Sustainability of Steel Structures CASE STUDIES Onderbouwing van de duurzaamheid van staalconstructies = Large Valorisation on Sustainability of Steel Structures CASE STUDIES November 2014 Agenda 12/10/2014 2 12/10/2014 3 Scope van de studie Doel: vergelijk

Nadere informatie

Technische uitvoering van damwanden, steigers en meerpalen

Technische uitvoering van damwanden, steigers en meerpalen Technische uitvoering van damwanden, steigers en meerpalen Damwanden Damwand wordt in de waterbouw toegepast om water en grond te scheiden, veelal langs een oever waar een bepaalde waterdiepte vereist

Nadere informatie

de sluis gesloten. voldaan. De techniek en faalkanseisen vormen de bron Rijkswaterstaat werkt aan de Maas: naast de

de sluis gesloten. voldaan. De techniek en faalkanseisen vormen de bron Rijkswaterstaat werkt aan de Maas: naast de KEERSLUIS HEUMEN OMSCHRIJVING PROJECT KEERSLUIS HEUMEN In het kader van de Maaswerken is bij Heumen een nieuwe keersluis gerealiseerd. Een helder baken in het herstelde open kanaallandschap verbetert de

Nadere informatie

Legger regionale waterkering

Legger regionale waterkering Legger regionale waterkering Apeldoorns Kanaal, Anklaarseweg-Koudhoornsesluis Definitief Datum 28 september 2009 Opgemaakt door J. Borgers Afdeling Planvorming Inhoudsopgave 1 INLEIDING... 1 2 INHOUD...

Nadere informatie

van ruimte m² te winnen

van ruimte m² te winnen nr 1. fabrikant van ruimte OM EENVOUDIG m² te winnen De tussenvloer met grote overspanning DE VLOERCONSTRUCTIES PROPLUS LP: Creëren ruimte op de begane grond Zijn voordelig op alle gebieden: verwarming,

Nadere informatie

Constructie. Nieuwbouw Hogeschool Utrecht in Amersfoort. thema

Constructie. Nieuwbouw Hogeschool Utrecht in Amersfoort. thema La Sagrada Familia en de Turning Torso zijn behalve architectonische hoogstandjes vooral voorbeelden van de nauwe verwevenheid tussen architectuur en constructie. De invloed van constructief ontwerpen

Nadere informatie

Wat is Staalvezelbeton?

Wat is Staalvezelbeton? Samen bouwen aan constructieve veiligheid in Nederland. Studiedag COBc / CUR B&I-dag Ing. A. Hoekstra Technisch Manager 10 november 2011 Vereniging BWT Nederland Wat is Staalvezelbeton? 1 19-11-2011 Van

Nadere informatie

Solico. Brugdekpaneel 500x40. Solutions in composites. Mechanische eigenschappen. Versie : 2. Datum : 16 januari 2013

Solico. Brugdekpaneel 500x40. Solutions in composites. Mechanische eigenschappen. Versie : 2. Datum : 16 januari 2013 Solico B.V. Everdenberg 5A NL-4902 TT Oosterhout The Netherlands Tel.: +31-162-462280 - Fax: +31-162-462707 E-mail: composites@solico.nl Bankrelatie: Rabobank Oosterhout Rek.nr. 13.95.51.743 K.v.K. Breda

Nadere informatie

Piekresultaten aanpakken op platen in Scia Engineer

Piekresultaten aanpakken op platen in Scia Engineer Piekresultaten aanpakken op platen in Scia Engineer Gestelde vragen en antwoorden 1. Kan er ook een webinar gegeven worden op het gebruik van een plaat met ribben. Dit voorstel is doorgegeven, en al intern

Nadere informatie

projectnr. 130121 berekend J.E. datum 12-11-14

projectnr. 130121 berekend J.E. datum 12-11-14 1 Inhoudsopgave 1 ALGEMEEN... 2 1.1 CONSTRUCTIEVE SIMPLICITEIT... 2 1.2 UNIFORMITEIT, SYMMETRIE EN REDUNDANTIE... 2 1.3 TWEEZIJDIGE WEERSTAND EN STIJFHEID... 2 1.4 WEERSTAND EN STIJFHEID TEGEN TORDEREN...

Nadere informatie

Module 3 Uitwerkingen van de opdrachten

Module 3 Uitwerkingen van de opdrachten Module 3 Uitwerkingen van de opdrachten Opdracht 1 a De trekkracht volgt uit: F t A f s 10 100 235 235000 N 235 kn b De kracht kan als volgt worden bepaald: 1 l l l E l F E A F EA l 2,1 10 5 10 100 10/2000

Nadere informatie

Bio-based brug Emmen

Bio-based brug Emmen Bio-based brug Emmen Durability van VVVK draagconstructies in een vochtige omgeving VVVK: Vlas Vezel Versterkte Kunststof Ir. P.G.F. Bosman Lectoraat Kunststof Technologie Duurzame brug Dichtheid geen

Nadere informatie

VABOR. Bepaling druksterkte betonconstructies september 12. Bepaling van de druksterkte van bestaande betonnen constructies. Doel van het onderzoek

VABOR. Bepaling druksterkte betonconstructies september 12. Bepaling van de druksterkte van bestaande betonnen constructies. Doel van het onderzoek 1 VABOR Bepaling van de druksterkte van bestaande betonnen constructies Doel van het onderzoek Controle van de geleverde betonkwaliteit Hoe kan op basis van de resultaten van drukproeven op boorkernen

Nadere informatie

05-11-12. Gedrag bij brand van staal-beton vloersystemen. Eenvoudige ontwerpmethode. Doel of van de ontwerpmethode. Inhoud van de presentatie

05-11-12. Gedrag bij brand van staal-beton vloersystemen. Eenvoudige ontwerpmethode. Doel of van de ontwerpmethode. Inhoud van de presentatie 05-11-1 Doel of van de Gedrag van staal-beton vloersystemen Achtergrond van de eenvoudige Inhoud van de presentatie Achtergrond van de eenvoudige van gewapend betonplaten bij 0 C Vloerplaatmodel Bezwijkvormen

Nadere informatie

Postbus 58 4200 AB GORINCHEM. Lange Kleiweg 5 Postbus 1090 2280 BC RIJSWIJK. Notified Body Nr.: 1234. Niet-dragende wand met Attema hollewanddozen

Postbus 58 4200 AB GORINCHEM. Lange Kleiweg 5 Postbus 1090 2280 BC RIJSWIJK. Notified Body Nr.: 1234. Niet-dragende wand met Attema hollewanddozen CLASSIFICATIE VAN DE BRANDWERENDHEID VOLGENS EN 13501-2:2007+A1:2009 VAN EEN NIET-DRAGENDE WANDCONSTRUCTIE VOORZIEN VAN HOLLEWANDDOZEN MET VERSCHILLENDE TYPEN BEDRADING Opdrachtgever: Attema B.V. Postbus

Nadere informatie

Invloed van het aantal kinderen op de seksdrive en relatievoorkeur

Invloed van het aantal kinderen op de seksdrive en relatievoorkeur Invloed van het aantal kinderen op de seksdrive en relatievoorkeur M. Zander MSc. Eerste begeleider: Tweede begeleider: dr. W. Waterink drs. J. Eshuis Oktober 2014 Faculteit Psychologie en Onderwijswetenschappen

Nadere informatie

5 PRODUCTEN 5.3 SYSTEEMVLOEREN

5 PRODUCTEN 5.3 SYSTEEMVLOEREN PRODUCTEN.3 SYSTEEMVLOEREN RIBBENVLOER Een ribbenvloer is een vrijdragende systeemvloer van geprefabriceerde vloerelementen die in de lengterichting (overspanningsrichting) van ribben zijn voorzien. Ook

Nadere informatie

Pesten onder Leerlingen met Autisme Spectrum Stoornissen op de Middelbare School: de Participantrollen en het Verband met de Theory of Mind.

Pesten onder Leerlingen met Autisme Spectrum Stoornissen op de Middelbare School: de Participantrollen en het Verband met de Theory of Mind. Pesten onder Leerlingen met Autisme Spectrum Stoornissen op de Middelbare School: de Participantrollen en het Verband met de Theory of Mind. Bullying among Students with Autism Spectrum Disorders in Secondary

Nadere informatie

De Kroon te Den Haag. Atriumoverkapping

De Kroon te Den Haag. Atriumoverkapping De Kroon te Den Haag Atriumoverkapping In het Wijnhavenkwartier in Den Haag, gelegen tussen Centraal Station en het Spui, is in 2011 naast de nieuwe ministeries van Justitie en Binnenlandse Zaken, op de

Nadere informatie

Renovatie Stuwensemble Nederrijn en Lek. Design & Construct contract

Renovatie Stuwensemble Nederrijn en Lek. Design & Construct contract Renovatie Stuwensemble Nederrijn en Lek Design & Construct contract Inleiding Het stuwensemble in de Nederrijn en Lek gaat grootschalig gerenoveerd worden. Met deze brochure informeert Rijkswaterstaat

Nadere informatie

fundamentele verbetering voor grondgebonden woningbouw

fundamentele verbetering voor grondgebonden woningbouw fundamentele verbetering voor grondgebonden woningbouw KanaalBreedPlaat gecertificeerd KOMO HET BESTE VAN TWEE WERELDEN De KanaalBreedPlaat combineert het beste van de kanaalplaatvloer en de breedplaatvloer.

Nadere informatie

Effecten van contactgericht spelen en leren op de ouder-kindrelatie bij autisme

Effecten van contactgericht spelen en leren op de ouder-kindrelatie bij autisme Effecten van contactgericht spelen en leren op de ouder-kindrelatie bij autisme Effects of Contact-oriented Play and Learning in the Relationship between parent and child with autism Kristel Stes Studentnummer:

Nadere informatie

De beantwoording van de categorieën A, B en C steeds op een nieuw vel papier beginnen.

De beantwoording van de categorieën A, B en C steeds op een nieuw vel papier beginnen. Deelexamen : Betononderhoudskundige Datum : 16 april 2015 Tijd : 14.00 16.30 uur (150 minuten) Het examen bestaat uit drie gedeelten met een totaal van 13 vragen: categorie A (5 vragen), categorie B (4

Nadere informatie

Houtkachels. Merk : Dovre. 760CB 11kW Houtkachel met zijvuldeur. afmetingen BxHxD: 780x800x580 mm gewicht: 210 kg rendement: 78 %

Houtkachels. Merk : Dovre. 760CB 11kW Houtkachel met zijvuldeur. afmetingen BxHxD: 780x800x580 mm gewicht: 210 kg rendement: 78 % Houtkachels Merk : Dovre 760CB 11kW Houtkachel met zijvuldeur. afmetingen BxHxD: 780x800x580 mm gewicht: 210 kg rendement: 78 % 640GM 9kW (zowel hout als kolen) Multibrandstofkachel met zijvuldeur. afmetingen

Nadere informatie

Steiger Installatie Handleiding. 1. Installeren van de kubussen P.2. 2. Installeren van de korte pen P.2. 3. Installeren van de lange pen P.

Steiger Installatie Handleiding. 1. Installeren van de kubussen P.2. 2. Installeren van de korte pen P.2. 3. Installeren van de lange pen P. Steiger Installatie Handleiding....................................... Installeren van de kubussen P.2...................................... 2. Installeren van de korte pen P.2......................................

Nadere informatie

Ontwerp van koudgevormde stalen gordingen volgens EN 1993-1-3. met Scia Engineer 2010

Ontwerp van koudgevormde stalen gordingen volgens EN 1993-1-3. met Scia Engineer 2010 Apollo Bridge Apollo Bridge Architect: Architect: Ing. Miroslav Ing. Miroslav Maťaščík Maťaščík - Alfa 04 -a.s., Alfa Bratislava 04 a.s., Bratislava Design: DOPRAVOPROJEKT Design: Dopravoprojekt a.s.,

Nadere informatie

Projectplan afstudeeronderzoek innovatief remmingwerk (vertrouwelijk)

Projectplan afstudeeronderzoek innovatief remmingwerk (vertrouwelijk) Innovatief Ontwerpen en Onderhouden Projectplan afstudeeronderzoek innovatief remmingwerk (vertrouwelijk) Dit projectplan geeft het kader, de organisatie en planning weer van het afstudeeronderzoek als

Nadere informatie

Agmi Structures. aluminium constructies VICA. alles in één!

Agmi Structures. aluminium constructies VICA. alles in één! Agmi Structures aluminium constructies VICA alles in één! VICA, alles in één! Met ruim 45 jaar ervaring vanuit de Agmi Group waarin Agmi Traffic aluminium borden (ALISA) levert, produceert Agmi Structures

Nadere informatie

PROBETON vzw Aarlenstraat 53/B9 1040 Brussel Tel.: +32 (0)2 237 60 20 Fax : +32 (0)2 735 63 56 mail@probeton.be www.probeton.be

PROBETON vzw Aarlenstraat 53/B9 1040 Brussel Tel.: +32 (0)2 237 60 20 Fax : +32 (0)2 735 63 56 mail@probeton.be www.probeton.be PROBETON vzw Beheersorganisme voor de controle van de betonproducten PROBETON vzw Aarlenstraat 53/B9 1040 Brussel Tel.: +32 (0)2 237 60 20 Fax : +32 (0)2 735 63 56 mail@probeton.be www.probeton.be TECHNISCHE

Nadere informatie

BA-richtlijn 3.1 Versie januari 2007

BA-richtlijn 3.1 Versie januari 2007 Techniek BA-richtlijn 3.1 Metalen bevestigingsmiddelen voor het afhangen van verlaagde plafonds in beton, cellenbeton en andere steenachtige materialen Metalen bevestigingsmiddelen voor het afhangen van

Nadere informatie

Planuitwerkingsfase Grote Zeesluis kanaal Gent-Terneuzen

Planuitwerkingsfase Grote Zeesluis kanaal Gent-Terneuzen Planuitwerkingsfase Grote Zeesluis kanaal Gent-Terneuzen Jan Willem Slager Opdrachtleider MER lid omgevingsteam Middensluis (1910) o lengte: 140 m o breedte: 18 m o diepte: 6,50 m o tonnage: 10.000 dwt

Nadere informatie

Funderingen. Willy Naessens 7

Funderingen. Willy Naessens 7 Funderingen Willy Naessens 7 1. Funderingen op staal of volle grond Inleiding Aanzet van funderingen op draagkrachtige grond op geringe diepte. Hier kan men een onderscheid maken tussen prefab funderingen

Nadere informatie

Leiden Ringweg Oost. Bouwfasering Sumatrabrug. Movares Nederland B.V. ing. R. van der Vlies Kenmerk TW-VDV-120009934 - Versie 1.0

Leiden Ringweg Oost. Bouwfasering Sumatrabrug. Movares Nederland B.V. ing. R. van der Vlies Kenmerk TW-VDV-120009934 - Versie 1.0 Leiden Ringweg Oost Bouwfasering Sumatrabrug Opdrachtgever Gemeente Leiden Ondertekenaar Movares Nederland B.V. ing. R. van der Vlies Kenmerk TW-VDV-120009934 - Versie 1.0 Utrecht, 10 mei 2012 Definitief

Nadere informatie

THEMA IS BEZWIJKEN HET BEREIKEN VAN DE VLOEIGRENS?

THEMA IS BEZWIJKEN HET BEREIKEN VAN DE VLOEIGRENS? CT309 : PLASTICITEITSLEER THEMA IS BEZWIJKEN HET BEREIKEN VAN DE VLOEIGRENS? M M - N N + + σ = σ = + f f BUIGING EXTENSIE Ir J.W. Welleman bladnr 0 kn Gebruiksfase met relatief geringe belasting WAT GEBEURT

Nadere informatie

Aanleg en verlengen duikers en aanleg watergang te Almere Poort. Kwelberekening (KWEL) 150011 150011-KWEL-GE-v2.0 Defintief 01-07-2015

Aanleg en verlengen duikers en aanleg watergang te Almere Poort. Kwelberekening (KWEL) 150011 150011-KWEL-GE-v2.0 Defintief 01-07-2015 Projectnaam Aanleg en verlengen duikers en aanleg watergang te Almere Poort Projectonderdeel Projectnummer Kenmerk Status Datum Opdrachtnemer Opdrachtgever Kwelberekening (KWEL) 150011 150011-KWEL-GE-v2.0

Nadere informatie

Slimline Technische Informatie. brochurea4 Techniek SlimLineRBui1 1 27-03-2008 13:18:41

Slimline Technische Informatie. brochurea4 Techniek SlimLineRBui1 1 27-03-2008 13:18:41 Slimline Technische Informatie brochurea4 Techniek SlimLineRBui1 1 27-03-2008 13:18:41 Inleiding Slimline is een unieke combinatie van plafond, installatieruimte en topvloer. Slimline is dunner, lichter

Nadere informatie

Schöck Isokorb type QS 10

Schöck Isokorb type QS 10 Schöck Isokorb type Schöck Isokorb type 10 Inhoud Pagina Bouwkundige aansluitsituaties 152 Afmetingen 153 Kopplaat staalconstructie/bijlegwapening 154 Capaciteiten/Voegafstanden/Inbouwtoleranties 155 Inbouwhandleiding

Nadere informatie

Ir. A.M. de Roo MBA RO Hoofd Adviesgroep Constructies ARCADIS Nederland BV

Ir. A.M. de Roo MBA RO Hoofd Adviesgroep Constructies ARCADIS Nederland BV Ir. A.M. de Roo MBA RO Hoofd Adviesgroep Constructies ARCADIS Nederland BV 1 1 Introductie Aardbevingen 2 Kaders en normen 3 Aanpak Bouwkundig Versterken 4 Noodzaak van een efficiënt ontwerp 5 Belangrijke

Nadere informatie

Avans Hogeschool. Sander Bastiaansen en Koen Bazelmans. Brugconstructies. .2012 - Academie voor Bouw en Infra Avans Hogeschool

Avans Hogeschool. Sander Bastiaansen en Koen Bazelmans. Brugconstructies. .2012 - Academie voor Bouw en Infra Avans Hogeschool Avans Hogeschool Sander Bastiaansen en Koen Bazelmans Brugconstructies.2012 - Academie voor Bouw en Infra Avans Hogeschool Inleiding Beste HAVO-leerlingen, Het profielwerkstuk is één van de belangrijkste

Nadere informatie

Product catalogus: GARSY Contour edging www.garsy.com

Product catalogus: GARSY Contour edging www.garsy.com Stalen edging Product catalogus: GARSY Contour edging 2 Garsy edging...de voordelen zijn overduidelijk Snel en makkelijk te vormen curves Ook perfect voor strakke lijnen Werkt voor alle types ondergrond

Nadere informatie

Module 6 Uitwerkingen van de opdrachten

Module 6 Uitwerkingen van de opdrachten 1 Module 6 Uitwerkingen van de opdrachten Opdracht 1 De in figuur 6.1 gegeven constructie heeft vier punten waar deze is ondersteund. A B C D Figuur 6.1 De onbekende oplegreacties zijn: Moment in punt

Nadere informatie

Montagesysteem. E l e k t r i s c h e i n s t a l l a t i e s 650.0XX

Montagesysteem. E l e k t r i s c h e i n s t a l l a t i e s 650.0XX Montagesysteem E l e k t r i s c h e i n s t a l l a t i e s Productbeschrijving Het montagepracticum elektrische installaties bestaat uit montageframes,, waarin montageborden kunnen worden geplaatst.

Nadere informatie

STERKTE BEPALING. Opdracht 1 : Onderzoek aluminium constructiedeel

STERKTE BEPALING. Opdracht 1 : Onderzoek aluminium constructiedeel STERKTE BEPALING In de lessen sterkteleer heb je een berekeningsmethode gezien om de spanningen in een materiaal te bepalen en hieruit de nodige afmetingen te berekenen. In solid edge kan dit op een soepele

Nadere informatie

Milieueffectrapportage

Milieueffectrapportage Milieueffectrapportage Lichteren in Averijhaven MER Rijkswaterstaat Noord-Holland juli 2012 Milieueffectrapportage Lichteren in Averijhaven MER dossier : BA1469-101-100 registratienummer : LW-AF20121545

Nadere informatie

Staalberekening dakopbouw bouwdeel C, E en L

Staalberekening dakopbouw bouwdeel C, E en L Nieuwbouw Amphia Ziekenhuis Breda Staalberekening dakopbouw bouwdeel C, E en L code: 11714K Nieuwbouw Amphia ziekenhuis Breda Staalberekening Dakopbouw bouwdeel C, E en L Berekening deel S-CEL - Concept

Nadere informatie

BK1043 - Rekenvoorbeeld

BK1043 - Rekenvoorbeeld BK1043 - Rekenvoorbeeld Inhoud 1. Algemeen berekeningschema... 2 2. Belasting omrekenen van kn/m 2 naar kn/m 1 ligger... 3 2.1. Gegeven... 3 2.2. Gevraagd... 3 2.3. Uitwerking... 3 3. Ligger op 2 steunpunten

Nadere informatie

Overzicht van in Nederland verkrijgbare vloersystemen

Overzicht van in Nederland verkrijgbare vloersystemen Overzicht van in Nederland verkrijgbare vloersystemen dec. 2000 Voor de gehanteerde begrippen en voor verdere informatie wordt verwezen naar het boek Jellema, deel 9, dictaat 'Draagconstructies-Basis,

Nadere informatie

17 september 2014 ONTWERP EN BEREKENING NEN NEN--EN 1998 EN 1998--1 1 + MEMO 15 mei 2014 NIEUWBOUWREGELING 1 Ing. H.J. Hoorn RC

17 september 2014 ONTWERP EN BEREKENING NEN NEN--EN 1998 EN 1998--1 1 + MEMO 15 mei 2014 NIEUWBOUWREGELING 1 Ing. H.J. Hoorn RC 17 september 2014 ONTWERP EN BEREKENING NEN-EN 1998-1 + MEMO 15 mei 2014 NIEUWBOUWREGELING 1 Ing. H.J. Hoorn RC 2 Introductie 3 Introductie 4 Introductie 5 Introductie Regelgeving Groningen 6 Gegevens

Nadere informatie

KNPL 150 KNPL 165 KNPL 200 KNPL 260/265 KNPL 320 KNPL 400. De kanaalplaatvloer wordt toegepast in woningbouw en utiliteitbouw.

KNPL 150 KNPL 165 KNPL 200 KNPL 260/265 KNPL 320 KNPL 400. De kanaalplaatvloer wordt toegepast in woningbouw en utiliteitbouw. De kanaalplaatvloer wordt toegepast in woningbouw en utiliteitbouw. De vloer is snel en makkelijk te leggen Uitvoering ongeïsoleerd en geïsoleerd. De vloer is geschikt voor projecten - Grote overspanningen

Nadere informatie

Molenmaker Techniek B.V. Sneek

Molenmaker Techniek B.V. Sneek December 2015 Molenmaker Techniek B.V. Sneek Inhoud 10 jaar Molenmaker Techniek B.V. www.mts-cilinders.nl Eigen transport Lopende projecten Gerealiseerde projecten 10 jaar Molenmaker Techniek B.V. Dit

Nadere informatie

Constructeursuitgave (berekening volgens Eurocode)

Constructeursuitgave (berekening volgens Eurocode) Constructeursuitgave (berekening volgens Eurocode) Vebo borstweringssteun: altijd op zijn taak berekend Toepassing De borstweringssteun wordt toegepast in gemetselde borstweringen om deze voldoende sterkte

Nadere informatie

Brons Constructeurs & Ingenieurs Blad: 100 Brons Constructeurs & Ingenieurs Blad: 101 Project...: 14.15.32 Onderdeel.: Dimensies.: [kn] [knm] [mm] [graden] [N/mm2] [knm/rad] Datum...: 16-02-2015 Bestand...:

Nadere informatie

Kalkzandsteen in utiliteitsbouw economisch zeer aantrekkelijk

Kalkzandsteen in utiliteitsbouw economisch zeer aantrekkelijk Kalkzandsteen in utiliteitsbouw economisch zeer aantrekkelijk Lage prijs per bruto vloer oppervlak (bvo); Flexibel in uitvoeringstraject; Concurrerend bouwtempo. Inleiding In de woningbouw is kalkzandsteen

Nadere informatie

Sander de Haas en Cedrick Gijsbertsen sanderdehaas@samsamwater.com cedrickgijsbertsen@samsamwater.com

Sander de Haas en Cedrick Gijsbertsen sanderdehaas@samsamwater.com cedrickgijsbertsen@samsamwater.com Aan Weebale Foundation Datum 3 oktober 2010 Project Watervoorziening Banda, Oeganda Referentie 56-1 Opgesteld Email Onderwerp Sander de Haas en Cedrick Gijsbertsen sanderdehaas@samsamwater.com cedrickgijsbertsen@samsamwater.com

Nadere informatie

Legalisatie garage dhr. M. Wouters Wissengrachtweg 25 te Hulsberg Controleberekening sterkte en stabiliteit. 9 juni 2014 Revisie: 0

Legalisatie garage dhr. M. Wouters Wissengrachtweg 25 te Hulsberg Controleberekening sterkte en stabiliteit. 9 juni 2014 Revisie: 0 Hulsberg Revisie: 0 Pagina 2 / 10 Inhoudsopgave 1 Uitgangspunten 3 1.1 Normen & Voorschriften 3 1.2 Materialen 4 1.3 Ontwerpcriteria 4 1.4 Belastingen 4 1.5 Stabiliteit 5 1.6 Vervormingseisen 5 1.7 Referentiedocumenten

Nadere informatie

Postbus 554-2665 ZN Bleiswijk Brandpuntlaan Zuid 16-2665 NZ Bleiswijk 088 3473 723 nederland@efectis.com

Postbus 554-2665 ZN Bleiswijk Brandpuntlaan Zuid 16-2665 NZ Bleiswijk 088 3473 723 nederland@efectis.com Postbus 554-2665 ZN Bleiswijk Brandpuntlaan Zuid 16-2665 NZ Bleiswijk 088 3473 723 nederland@efectis.com Beoordeling van mogelijke uitbreidingen op het toepassingsgebied van de in rapport 2013-Efectis-R0409a

Nadere informatie

Funderingsherstel achter de plint met een minimum aan overlast

Funderingsherstel achter de plint met een minimum aan overlast Funderingsherstel achter de plint met een minimum aan overlast Funderingsherstel bij woningen en andere gebouwen is niet zelden zeer ingrijpend. In de regel moet de complete bestaande vloer worden verwijderd

Nadere informatie

S e v e n P h o t o s f o r O A S E. K r i j n d e K o n i n g

S e v e n P h o t o s f o r O A S E. K r i j n d e K o n i n g S e v e n P h o t o s f o r O A S E K r i j n d e K o n i n g Even with the most fundamental of truths, we can have big questions. And especially truths that at first sight are concrete, tangible and proven

Nadere informatie

Bachelor eindwerk Ontwerpformules voor ruimtelijke vakwerken

Bachelor eindwerk Ontwerpformules voor ruimtelijke vakwerken Bachelor eindwerk s voor ruimtelijke vakwerken Eduard van der Stap 4153537 TU Delft Faculteit Civiele Techniek en Geowetenschappen Eerste begeleider: Ir. J.W. Welleman Tweede begeleider: Dr. Ir. P.C.J.

Nadere informatie

Flexvloer. Inhoud presentatie. Inleiding Doelstelling Dwarskrachtcapaciteit Stijfheid Conclusies Aanbevelingen

Flexvloer. Inhoud presentatie. Inleiding Doelstelling Dwarskrachtcapaciteit Stijfheid Conclusies Aanbevelingen Flexvloer Onderzoek naar de constructieve aspecten van een nieuw vloersysteem Henco Burggraaf Presentatie DOV 31 oktober 6 Inhoud presentatie capaciteit 2 1 Flexvloer Nieuw vloersysteem met netwerk van

Nadere informatie

Rolhekken, rolluiken en schaarhekken

Rolhekken, rolluiken en schaarhekken Rolhekken, rolluiken en schaarhekken Rolluiken, rolhekken en schaarhekken kunnen een goed middel zijn om gevels te beschermen tegen vandalisme en inbraak. Door de vele verschillende soorten die er zijn

Nadere informatie

Naam: Klas Practicum elektriciteit: I-U-diagram van lampje Nodig: spanningsbron, schuifweerstand (30 Ω), gloeilampje, V- en A-meter, 6 snoeren

Naam: Klas Practicum elektriciteit: I-U-diagram van lampje Nodig: spanningsbron, schuifweerstand (30 Ω), gloeilampje, V- en A-meter, 6 snoeren Naam: Klas Practicum elektriciteit: I-U-diagram van lampje Nodig: spanningsbron, schuifweerstand (30 Ω), gloeilampje, V- en A-meter, 6 snoeren Schakeling In de hiernaast afgebeelde schakeling kan de spanning

Nadere informatie

fundamentele verbetering voor woningbouw

fundamentele verbetering voor woningbouw fundamentele verbetering voor woningbouw KanaalBreedPlaat gecertificeerd KOMO Het beste van twee werelden De KanaalBreedPlaat combineert het beste van de kanaalplaatvloer en de breedplaatvloer. De KanaalBreedPlaat

Nadere informatie

Duofor zwaluwstaartplaat / staalplaat betonvloer

Duofor zwaluwstaartplaat / staalplaat betonvloer Omschrijving : In zwaluwstaart profiel gewalste stalen bekisting- en wapening plaat speciaal voor het dun construeren van betonvloeren op houten balklagen en slanke staalconstructies Door uniek zwaluwstaartprofiel

Nadere informatie

The observational method wat te doen?

The observational method wat te doen? The observational method wat te doen? Mandy Korff Wat is de Observational method? The Observational Method in ground engineering is a continuous, managed, integrated, process of design, construction control,

Nadere informatie

Afstudeeronderzoek. De krachtsverdeling in en sterkte van de pen-gat verbinding in houten sluisdeuren" J.R. van Otterloo 5-11-2013

Afstudeeronderzoek. De krachtsverdeling in en sterkte van de pen-gat verbinding in houten sluisdeuren J.R. van Otterloo 5-11-2013 Afstudeeronderzoek De krachtsverdeling in en sterkte van de pen-gat verbinding in houten sluisdeuren" J.R. van Otterloo 5-11-2013 Delft University of Technology Challenge the future Afstudeeronderzoek

Nadere informatie

Dakelementen (TT) in voorgespannen beton. Willy Naessens 75

Dakelementen (TT) in voorgespannen beton. Willy Naessens 75 Dakelementen (TT) in voorgespannen beton Willy Naessens 75 Algemene beschrijving Waarom TT-dakelementen kiezen De TT-dakelementen in voorgespannen beton worden gevormd door 3 ribben met een tussenafstand

Nadere informatie

Holle vloerplaten van spanbeton. Holle vloerplaten zijn onmisbaar bij het ontwerpen van een modern huis!

Holle vloerplaten van spanbeton. Holle vloerplaten zijn onmisbaar bij het ontwerpen van een modern huis! Holle vloerplaten van spanbeton Holle vloerplaten zijn onmisbaar bij het ontwerpen van een modern huis! 1. Algemeen Betonnen vloeren, die men holle vloerplaten noemt, zijn tegenwoordig onmisbare elementen

Nadere informatie

ontwerp- en adviesbureau voor lichtgewicht bouwen

ontwerp- en adviesbureau voor lichtgewicht bouwen ontwerp- en adviesbureau voor lichtgewicht bouwen 1 project onderwerp opdrachtgever rapportnummer auteur Totem Paal bank Ankerberekening Tribal Field Events 091903_RA03_Totempaal_V1 RH datum 15.07.09 projectnummer

Nadere informatie

Matthias Van Wonterghem, Pieter Vanhulsel Aluminium en hoge snelheid, een mooie toekomst?

Matthias Van Wonterghem, Pieter Vanhulsel Aluminium en hoge snelheid, een mooie toekomst? Matthias Van Wonterghem, Pieter Vanhulsel Aluminium en hoge snelheid, een mooie toekomst? Milieu is een hot topic. En terecht. Het is nu dat er moet gediscussieerd worden om onze huidige levenskwaliteit

Nadere informatie

Het groeiende beek concept

Het groeiende beek concept Het groeiende beek concept Een ontwikkelingsstrategie voor de Wilderbeek Aanleiding In juni 07 is de Wilderbeek verlegd ten behoeve van de aanleg van de A73. De Wilderbeek kent over het traject langs de

Nadere informatie

Eisen aan uw meterruimte en invoervoorzieningen Informatie voor aanvragers van een Lianderaansluiting

Eisen aan uw meterruimte en invoervoorzieningen Informatie voor aanvragers van een Lianderaansluiting Eisen aan uw meterruimte en invoervoorzieningen Informatie voor aanvragers van een Lianderaansluiting voor nieuwbouw iedereen energie eisen aan uw meterruimte en invoervoorzieningen Voor uw eigen veiligheid

Nadere informatie

Middels deze mail geven wij een korte toelichting op het project Groot Onderhoud en versterking Maasbrug Roermond.

Middels deze mail geven wij een korte toelichting op het project Groot Onderhoud en versterking Maasbrug Roermond. Toelichting Betreft Toelichting werkzaamheden Maasbrug t.b.v. APV-geluid Ons kenmerk ROE000 Datum 8 februari 2013 Behandeld door De heer R. Peeten Middels deze mail geven wij een korte toelichting op het

Nadere informatie

CONCLUSIE KOSTENVERGELIJK 8 VLOERSYSTEMEN

CONCLUSIE KOSTENVERGELIJK 8 VLOERSYSTEMEN 6903 Vergelijk vloersystemen t.o.v. Slimline 18 januari 2011 CONCLUSIE KOSTENVERGELIJK 8 VLOERSYSTEMEN Omschrijving eh Vloersystemen overspanning 8,1 m¹ overspanning 16,2 m¹ Code SLB-S/8100-F SLB-B/8100-F

Nadere informatie

Voegovergangen voor verkeersbruggen

Voegovergangen voor verkeersbruggen Voegovergangen voor verkeersbruggen J.S. Leendertz, Rijkswaterstaat 12/10/2011 1 1. Inleiding Belangrijke maar kwetsbare onderdelen 12/10/2011 2 2. Basiseisen Voegovergangen moeten de ruimte tussen de

Nadere informatie

Lichamelijke factoren als voorspeller voor psychisch. en lichamelijk herstel bij anorexia nervosa. Physical factors as predictors of psychological and

Lichamelijke factoren als voorspeller voor psychisch. en lichamelijk herstel bij anorexia nervosa. Physical factors as predictors of psychological and Lichamelijke factoren als voorspeller voor psychisch en lichamelijk herstel bij anorexia nervosa Physical factors as predictors of psychological and physical recovery of anorexia nervosa Liesbeth Libbers

Nadere informatie

WIJZIGINGEN BRANDVEILIGE DOORVOERINGEN

WIJZIGINGEN BRANDVEILIGE DOORVOERINGEN WIJZIGINGEN BRANDVEILIGE DOORVOERINGEN Wijziging in tabellen hoofdstuk 2 Tabel 1 Uitbreiding toepassingsgebied doorvoeringen van kunststof leidingen (pg. 11 publicatie) Verandering van leidingmateriaal

Nadere informatie

Bergingsberekeningen en controle afvoercapaciteit Plangebied Haatland

Bergingsberekeningen en controle afvoercapaciteit Plangebied Haatland Bergingsberekeningen en controle afvoercapaciteit Plangebied Haatland Definitief Gemeente Kampen Grontmij Nederland bv Zwolle, 29 november 2005 @ Grontmij 11/99014943, rev. d1 Verantwoording Titel : Bergingsberekeningen

Nadere informatie

Lifetime solutions with fiberglass

Lifetime solutions with fiberglass Lifetime solutions with fiberglass Inhoudsopgave Bedrijfsinformatie 4 Composiet materiaal 5 Bruggen 7 Brugliggers 9 Brugdekken 10 Slijtlaag 12 Leuningen 13 Drijvende fundaties 14 Woning en utiliteitsbouw

Nadere informatie

TNO-rapport WATERSTOFDIFFUSIE IN EEN CONSTRUCTIEDETAIL VAN STAAL VOORZIEN VAN EEN ZINKLAAG

TNO-rapport WATERSTOFDIFFUSIE IN EEN CONSTRUCTIEDETAIL VAN STAAL VOORZIEN VAN EEN ZINKLAAG IT 00 * * FI _ NO 4 5 ilzm 1 W. - j r* * * * * * Ri.:istaaI Pctu' 20.)(iO 3'2 LA U'çhi TNO-rapport 99M1-00809ISCAJVIS WATERSTOFDIFFUSIE IN EEN CONSTRUCTIEDETAIL VAN STAAL VOORZIEN VAN EEN ZINKLAAG TNO

Nadere informatie

Vrijesectorwoningen hebben vandaag de dag soms

Vrijesectorwoningen hebben vandaag de dag soms In de wijk Overgooi in Almere staat sinds kort een woonhuis annex meditatieruimte in de vorm van twee piramides. Piramides op schaal nagebouwd volgens de afmetingen van de wereldberoemde Cheopsversie uit

Nadere informatie

Bijl Bruggen. specialist in dragende composietconstructies

Bijl Bruggen. specialist in dragende composietconstructies Bijl Bruggen specialist in dragende composietconstructies BIJL BRUG VOLLEDIG COMPOSIET BIJL kwaliteit Het Dintelmondse Bijl Profielen produceert glasvezelversterkte polyester profielen én complete bruggen.

Nadere informatie