Dit examen bestaat uit 4 opgaven Bijlage: 1 antwoord papier.



Vergelijkbare documenten
2 V-14 EXAMEN VOORBEREIDEND WETENSCHAPPELIJK ONDERWIJS IN 1976 (GYMNASIUM EN ATHENEUM)

EXAMEN VOORBEREIDEND WETENSCHAPPELUK ONDERWIJS IN 1979 , I. Dit examen bestaat uit 4 opgaven. " '"of) r.. I r. ',' t, J I i I.

Woensdag 24 mei, uur

Woensdag 21 mei, uur

Vrijdag 8 juni, uur

Woensdag 30 augustus, uur

Deze opgaven zijn vastgesteld door de commissie bedoeld in artikel 24 van het Besluit eindexamens v.w.o.-h.a.v.o.-m.a.v.o.

EXAMEN HOGER ALGEMEEN VOORTGEZET ONDERWIJS IN 1977 NATUURKUNDE. Vrijdag 19 augustus, uur

Dit examen bestaat uit 4 opgaven

Woensdag 30 augustus, uur

EXAMEN VOORBEREIDEND WETENSCHAPPELIJK ONDERWIJS IN 1975 (GYMNASIUM EN ATHENEUM) Vrijdag 22 augustus, uur NATUURKUNDE

EXAMEN HOGER ALGEMEEN VOORTGEZET ONDERWIJS IN 1975

EXAMEN VOORBEREIDEND WETENSCHAPPELIJK ONDERWIJS IN 1976

2 H-ll EXAMEN HOGER ALGEMEEN VOORTGEZET ONDERWIJS IN 1974 NATUURKUNDE. Woensdag 28 augustus, uur. Zie ommezijde

Dit examen bestaat uit vier opgaven Bijlage: 1 antwoordpapier

Vrijdag 19 augustus, uur

EXAMEN HOGER ALGEMEEN VOORTGEZET ONDERWIJS IN 1973 NATUURKUNDE. Vrijdag 25 mei, uur

Voor de gewenste gegevens raadplege men het tabellenboekje. Gebruik van tabel I de kolom 'afgeronde waarde'.

EXAMEN MIDDELBAAR ALGEMEEN VOORTGEZET ONDERWIJS IN 1977 MAVO4 NATUUR- EN SCHEIKUNDE I. Zie ommezijde. Vrijdag 19 augustus,

EXAMEN VOORBEREIDEND WETENSCHAPPELIJK ONDERWIJS IN 1974

Y rijdag 14 mei, uur

TWEEDE RONDE NATUURKUNDE OLYMPIADE 2014 TOETS APRIL uur

Woensdag 24 mei, uur

Practicum complexe stromen

TWEEDE RONDE NATUURKUNDE OLYMPIADE 2013 TOETS APRIL :00 12:45 uur

TENTAMEN ELEKTROMAGNETISME

EXAMEN VOORBEREIDEND WETENSCHAPPELIJK ONDERWIJS IN 1975

Maandag 15 juni, uur

Opgave 1. Voor de grootte van de magnetische veldsterkte in de spoel geldt: = l

1. Een karretje op een rail

Woensdag 11 mei, uur

Eindronde Natuurkunde Olympiade 2018 theorietoets deel 1


Dit examen bestaat uit vier opgaven Bijlage: 1 antwoordpapier

MINISTERIE VAN ONDERWIJS, WETENSCHAP EN CULTUUR UNIFORM HEREXAMEN HAVO 2015

Dit examen bestaat uit 11 opgaven Bijlage: 1 antwoordblad

MINISTERIE VAN ONDERWIJS, WETENSCHAP EN CULTUUR UNIFORM EXAMEN HAVO 2015

TENTAMEN NATUURKUNDE

m C Trillingen Harmonische trilling Wiskundig intermezzo

3. Beschouw een zeer goede thermische geleider ( k ) in de vorm van een cilinder met lengte L en straal a

Dit examen bestaat uit 4 opgaven Bijlage: 2 antwoordpapieren

Examen VWO. natuurkunde 1. tijdvak 2 woensdag 24 juni uur. Bij dit examen hoort een uitwerkbijlage.

Eindexamen natuurkunde 1 vwo II

TWEEDE RONDE NATUURKUNDE OLYMPIADE 2019 TOETS APRIL 2019 Tijdsduur: 1h45

Dit examen bestaat uit 4 opgaven Bijlage: 1 antwoordpapier

Naam: examennummer:.

MAV04. NATUUR- EN SCHEIKUNDE I (Natuurkunde) EXAMEN MIDDELBAAR ALGEMEEN VOORTGEZET ONDERWIJS IN Woensdag 30 augustus,

AAN DE SLAG Arbeid verricht door de wrijvingskracht (thema 1)

TENTAMEN NATUURKUNDE

We willen dat de magnetische inductie in het punt K gelijk aan rul zou worden. Daartoe moet men door de draad AB een stroom sturen die gelijk is aan

Deze opgaven zijn vastgesteld door de commissie bedoeld in artikel 24 van het Besluit eindexamens v.w.o.-h.a.v.o.-m.a.v.0.

Dit examen bestaat uit 4 opgaven Bijlagen: 2 antwoordpapieren

aluminium 2,7 0, ,024 ijzer 7,9 0, ,012

ALGEMEEN 1. De luchtdruk op aarde is ongeveer gelijk aan. A 1mbar. B 1 N/m 2. C 13,6 cm kwikdruk. D 100 kpa.

Opgave 5 Een verwarmingselement heeft een weerstand van 14,0 Ω en is opgenomen in de schakeling van figuur 3.

Eindexamen havo natuurkunde pilot II

Augustus blauw Fysica Vraag 1

Augustus geel Fysica Vraag 1

Lees dit voorblad goed! Trek op alle blaadjes kantlijnen

TWEEDE RONDE NATUURKUNDE OLYMPIADE 2018 TOETS 1

Benodigdheden bekerglas, dompelaar (aan te sluiten op lichtnet), thermometer, stopwatch

10 Materie en warmte. Onderwerpen. 3.2 Temperatuur en warmte.

TWEEDE RONDE NATUURKUNDE OLYMPIADE 2017 TOETS APRIL :00 12:45 uur

Examen VWO. natuurkunde 1,2 Compex. Vragen 1 tot en met 14. In dit deel van het examen staan de vragen waarbij de computer niet wordt gebruikt.

TWEEDE RONDE NATUURKUNDE OLYMPIADE 2012 TOETS APRIL uur

Eindronde Natuurkunde Olympiade 2015 theorietoets deel 1

EXAMEN MIDDELBAAR ALGEMEEN VOORTGEZET ONDERWIJS IN 1985 MAVO-C NATUURKUNDE. Donderdag 13 juni, uur. MAVO-C Il

Oefenopgaven havo 5 et-4: Warmte en Magnetisme Doorgestreepte vraagnummers (Bijvoorbeeld opgave 2 vraag 7) zijn niet van toepassing.

d. Bereken bij welke hoek α René stil op de helling blijft staan (hij heeft aanvankelijk geen snelheid). NB: René gebruikt zijn remmen niet.

De snelheid van de auto neemt eerst toe en wordt na zekere tijd constant. Bereken de snelheid die de auto dan heeft.

Vraag 1 Vraag 2 Vraag 3 Vraag 4 Vraag 5

Thermodynamica. Daniël Slenders Faculteit Ingenieurswetenschappen Katholieke Universiteit Leuven

Leereenheid 7. Diagnostische toets: Vermogen en arbeidsfactor van een sinusvormige wisselstroom

Eindexamen wiskunde B havo II (oude stijl)

Elektro-magnetisme Q B Q A

XXX INTERNATIONALE NATUURKUNDE OLYMPIADE PADUA, ITALIË THEORIE-TOETS

Uitwerkingen VWO deel 1 H2 (t/m par. 2.5)

jaar: 1989 nummer: 25

Samenvatting Natuurkunde Samenvatting 4 Hoofdstuk 4 Trillingen en cirkelbewegingen

NATUURKUNDE. Donderdag 5 juni, uur. MAVO-C Il EXAMEN MIDDELBAAR ALGEMEEN VOORTGEZET ONDERWIJS IN C - niveau

Havo 5 oefen et

Eindexamen natuurkunde 1 havo 2000-II

In een U-vormige buis bevinden zich drie verschillende, niet mengbare vloeistoffen met dichtheden ρ1, ρ2 en ρ3. De hoogte h1 = 10 cm en h3 = 15 cm.

Voorbereidend Wetenschappelijk Onderwijs Tijdvak 1 Vrijdag 27 mei totale examentijd 3 uur

RBEID 16/5/2011. Een rond voorwerp met een massa van 3,5 kg hangt stil aan twee touwtjes (zie bijlage figuur 2).

HerSE4 6V Natuurkunde 1 Periode Versie 10/4/2008

Eindexamen wiskunde b 1-2 havo II

Examen HAVO. Wiskunde B (oude stijl)

Eindronde Natuurkunde Olympiade 2014 theorietoets deel 1

koper hout water Als de bovenkant van het blokje hout zich net aan het wateroppervlak bevindt, is de massa van het blokje koper gelijk aan:

natuurkunde 1,2 Compex

TENTAMEN NATUURKUNDE

NATUURKUNDE. Bepaal de frequentie van deze toon. (En laat heel duidelijk in je berekening zien hoe je dat gedaan hebt, uiteraard!)

jaar: 1989 nummer: 10

Deze opgaven zijn vastgesteld door de commissie bedoeld in artikel 24 van het Besluit eindexamens v.w.o.-h.a.v.o.-m.a.v.o.

Naam Klas: Repetitie trillingen en geluid HAVO ( 1 t/m 6)

Hulpmiddelen: Niet grafische rekenmachine, binas 6 de druk. Let op dat je alle vragen beantwoordt.

Als de trapper in de stand van figuur 1 staat, oefent de voet de in figuur 2 aangegeven verticale kracht uit op het rechter pedaal.

Examen HAVO. Wiskunde B1,2 (nieuwe stijl)

Q l = 23ste Vlaamse Fysica Olympiade. R s. ρ water = 1, kg/m 3 ( ϑ = 4 C ) Eerste ronde - 23ste Vlaamse Fysica Olympiade 1

Transcriptie:

vwo 11 EXAMEN VOORBEREIDEND WETENSCHAPPELIJK ONDERWIJS IN 1980 Maandag 9 juni, 9.00-12.00 uur NATUURKUNDE Dit examen bestaat uit 4 opgaven Bijlage: 1 antwoord papier. Deze opgaven zijn vastgesteld door de commissie bedoeld in artikel 24 van het Besluit eindexamens v.w.o.-h.a.v.o.-m.a.v.o. 91931SF - 14

2 '; Benodigde gegevens kunnen worden opgezocht in het tabellenboekje Binas. Het is de bedoeling dat van tabel 7 de tussen haakjes geplaatste afgeronde waarden gebruikt worden. 1. Met een zonnecollector kan stralingsenergie van de zon worden opgevangen en opgeslagen in de vorm van inwendige energie. Op veel plaatsen wordt nagegaan of zonnecollectoren een bijdrage kunnen leveren tot de oplossing van het energieprobleem. Ingebouwd in de daken van de huizen zouden deze zonnecollectoren als warmtebron kunnen functioneren in de warmwatervoorziening en verwarming. zonnestraling lucht koperen plaat met buizen glasplaat fig. 1 pomp wa terreservoir In figuur 1 is het zijaanzicht (de doorsnede) van een kleine zonnecollector getekend met het reservoir dat ermee verbonden is. De collector bestaat uit een koperen plaat waarin een stelsel van buizen is aangebracht. De koperen plaat is aan de voorzijde gezwart. De plaat is omgeven door een behuizing die (Jan de voorkant bestaat uit een glazen plaat en voor de rest uit ander isolerend materiaal. Het water van het reservoir wordt via de buizen voortdurend rondgepompt. De toe- en afvoerleidingen en het waterreservoir zijn ook geïsoleerd. Het tot(jle volume van het wa ter bedraagt 1,7 dm 3. Allereerst plaatst men de zonnecollector in een laboratorium teneinde het thermische gedrag van de collector te kunnen bestuderen. Er valt nu geen zonnestraling op de collector. Met een dompelaar brengt men het water en de collector op 80 oe. Op het moment t = 0 min. zet men de dompelaar uit. Omdat de collector warmte aan de omgeving afstaat, daalt de temperatuur van het geheel. De temperatuur als functie van de tijd staat in figuur 2a weergegeven. a. I. Bepaal met behulp van deze grafiek de omgevingstemperatuur van de collector in het laboratorium. 2. Bepaal de temperatuurdaling per minuut van het water op het tijdstip t = 20 min. 3. Bereken de hoeveelheid warmte die het water per minuut afstaat op het tijdstip t = 20 min. od sîzûr. 91931SF - 14 \

Eveneens is in het laboratorium opgemeten hoeveel warmte per seconde door de collector aan de omgeving wordt afgestaan (warmtestroom) als functie van het temperatuurverschil tussen collector en omgeving (T - T omgeving)' Deze warmte is onder andere van het water afkomstig. Het resultaat van deze metingen staat in figuur 2b.. 3 80 t temperatuur ( oe) 400 lif.:i' I l! 1. i" i i." ", 1 -... 1 t warmte- '1>,1'.. 11".. 1 J, I -1-;, i T J III "Hili I,,:. :. stroom (.r /a fl ".,f.,. '''. -I i I1 IUllI' lijij! lij fbl l,u: : ti f'l l;"!, d ii: 1'1 " liil lr. H, I1 }I, jf!i i1 i 'I ::!!!, : 60 20 o 300 200 100, I, " n ;1 I' i,! 11 11 'I Hl, Wil lil rj ; Iji: 1 ' '::. :; :', I I' } ', r ll! I!" II :1 Ili:I!I:! lil 11 i IF 1,1 I Ij I,!, " 1'1:... ilf,i : lllj, I I 11, 1!" ;f II "i r1' '' H i!:' lili 'I 'I!i il! '111"!I!Ii I ' " I: lil I' I1 I;: ti lil :il II I i!l] T - Tomgcving Ij I, : 1 1,I ij :ct," I il h, Si tt "t, o 60 80 20 40 60, fig.2a fig.2b Vervolgens plaatst men de zonnecollector in de zon, zodanig dat er een constante zonnestraling loodrecht op de glasplaat invalt. De temperatuur van het water blijkt te stijgen tot een zekere waarde, waarna de temperatuur constant blijft. Deze temperatuur is lager dan het kookpunt van water. b. Leg uit waarom de temperatuur van het water aanvankelijk stijgt en na verloop van 7"" zekere tijd een constante waarde bereikt. De zonnestraling kan bij benadering worden opgevat als straling van een zwart lichaam met een oppervlaktetemperatuur van 5500 K. Voor een zwarte straler gelden onder meer de volgende wetten: - Verschuivingswet van Wien: Àmax.T = kw (kw = constante van Wien). - Wet van Stefan-Boltzmann: P = 0.T 4 (a = constante van Stefan-Boltzmann). c. Bij welke golflengte zendt de zon zijn grootste vermogen uit? 91931SF-14

Onder de doorlatingsfactor 't van glas verstaan we de verhouding tussen het door het glas doorgelaten vermogen van de zonnestraling en het op het glas vallende vermogen van de zonnestraling. In figuur 3 is de doorlatingsfactor 1: (in % uitgedrukt) als functie van de golflengte weergegeven. Horizontaal is een logaritmische schaalverdeling genomen om een groot golflengtegebied te kunnen onderbrengen. 4 - E t T(%).-,-- 80 --,-.. - "'ft -U A(nm) ft Ll: r... è, i! a u i i ii J f ; H.,:J... ;!a: It J) I,l n r2 :; i! fig. 3 De straling van de zon kan wel in de collector doordringen, maar de straling die de zwarte plaat van de collector uitzendt wordt nauwelijks door het glas doorgelaten. d. 1. Verklaar dit met behulp van figuur 3. De voorkant van de glasplaat heeft een oppervlakte van 0,40 m 2 Het vermogen van de zonnestraling, dat per m 2 op de glasplaat valt.. bedraagt 600 W. De temperatuur van de omgeving bedraagt 28 C. d. 2. Bepaal de hoogst mogelijke temperatuur die het water kan bereiken bij het genoemde vermogen van de zonnestraling. ; 91931SF-14

5 2. Een condensator C en een ohmse weerstand R zijn in serie aangesloten op een toongenerator. R = 1000.Q. De toongenerator levert een sinusvormige wisselspanning V Ct). V (t) = V max. sin w t = V max. sin 2rr ft. Bij de volgende experimenten maken we gebruik van een dubbelstraalsoscilloscoop. Dit is een oscilloscoop waaraan tegelijkertijd twee verschillende signalen kunnen worden toegevoerd via verschillende kanalen. Op het scherm ontstaan dan twee verschillende figuren. De uitgang van de toongenerator is aangesloten op een van de kanalen; de ui teinden van de condensator zijn aangesloten op het andere kanaal. Zie figuur 4. toongen erator naar kanaal 1 fig. 4 C naar kanaal 2 T Het oscilloscoopbeeld is gefotografeerd en in figuur 5 op ware grootte weergegeven. De instelling van de oscilloscoop is zo dat voor elk kanaal de tijdbasis is ingesteld op 5.10-6 s/cm en de vertikale afbuiging op 1,0 V/cm. fig. 5 919315F - 14

6 'i a. 1. Welk signaal (a of b) in figuur 5 is afkomstig van de condensator? Licht het antwoord toe. 2. Bepaal de effectieve spanning van de toongenerator. 3. Bepaal de frequentie van de spanning van de toongenerator. Op een bepaald tijdstip is het potentiaalverschil over de condensator maximaal. b. Hoe groot is op dat tijdstip de stroomsterkte in de keten? Licht het antwoord toe. Op het bijgevoegd antwoord papier is figuur 5 vergroot weergegeven. c. Teken op dit antwoord papier het potentiaalverschil over de weerstand R als functie van de tijd. d. Bepaal met behulp van de vergrote figuur 5 het faseverschil tussen de spanning van de toongenerator en de stroomsterkte in de keten. e. Bepaal de capaciteit van de condensator C. De frequentie van het signaal van de toongenerator wordt verhoogd. De waarde van de maximale spanning blijft hetzelfde. De instelling van de oscilloscoop wordt niet gewijzigd. Het beeld dat nu op het oscilloscoopscherm verschijnt is gefotografeerd en op ware grootte weergegeven in figuur 6. a b fig. 6 f J. Is de maximale stroomsterkte in de keten nu groter, kleiner of gelijk aan de maximale stroomsterkte in de situatie van figuur 5? Licht het antwoord toe. 2. Verklaar waarom de amplitudo van signaal a in figuur 6 zo veel kleiner is dan de amplitudo van signaal a in figuur 5. 919315F-14

7 '. 3. Een rechthoekige U-vormige draadfiguur ABCD (AB = BC = CD = 6,0 cm) hangt aan een gelijkarmige balans. Onder de draadfiguur bevindt zich een bakje met een zeepoplossing. De punten A en D van de draad maken nét contact met de vloeistofspiegel in het bakje. De balans is in evenwicht doordat er op het schaaltje S een voorwerp geplaatst is. De armen van de balans staan horizontaal. Zie figuur 7. B,..... ----... C s fig. 7 Men duwt de draad naar beneden tot de zijde BC in de zeepoplossing is ondergedompeld. Men brengt de balans terug in de oorspronkelijke stand. Er bevindt zich nu binnen de draadfiguur een dun zeepvlies. Om de balans in evenwicht te brengen moet men op het schaaltje S een voorwerp bijplaatsen met een massa 0,30 gram. Zie figuur 8. De gemiddelde dikte van het zeepvlies bedraagt 1,00,10-4 cm ; de dichtheid van de zeepoplossing bedraagt 1,00' I 0 3 kg/m 3. Bij deze opgave moeten opwaartse krachten op ondergedompelde delen worden verwaarloosd. fig. 8 a. Bereken de massa van het zeepvlies binnen de draad figuur ABCD. Indien de massa, gevraagd bij a juist berekend is, blijkt deze beduidend minder te zijn dan 0,30 gram. Er wordt dus door het zeepvlies nog een kracht op ABCD naar beneden uitgeoefend. b. Bereken de grootte van deze kracht die het zeepvlies op de draadfiguur uitoefent. 91931SF-14

8 '. Een molekuul MI dat zich in de vloeistof bevindt, ondervindt van alle kanten aantrekkende krachten van de omgevende molekulen. Zie figuur 9. De resulterende kracht is nul. Een molekuul M 2 op zeer kleine afstand van het oppervlak van de vloeistof ondervindt wel een resulterende kracht ten gevolge van de aantrekkingskracht van de buren. Deze resulterende kracht is de vloeistof in gericht. vloeistofoppervlak fig. 9 Om een molekuul van binnen de vloeistof naar het oppervlak van de vloeistof te brengen moet arbeid verricht worden. Dit betekent dat molekulen aan het oppervlak van de vloeistof een grotere potentiële energie hebben dan molekulen in de vloeistof. Om het oppervlak van een vloeistof te vergroten moet er dus arbeid verricht worden. De energie per m 2 vloeistofoppervlak noemt men de specifieke oppervlakte-energie a (eenheid J/m 2 ). De specifieke oppervlakte-energie van de zeepoplossing is 2,5.10-2 11m 2. c. Bereken de arbeid die verricht moet worden om BC van de ondergedompelde toestand tot h cm boven het vloeistofoppervlak te brengen. (h < 6,0 cm). Omdat er bij de vergroting van het vloeistofoppervlak arbeid verricht wordt is de potentiële energie van een hoeveelheid vloeistof groter naarmate het oppervlak groter is. Een systeem in de natuur streeft er altijd naar zijn potentiële energie zo klein mogelijk te laten worden. Dat betekent voor een zeepbel dat deze probeert zich samen te trekken. Als een gesloten zeepbel zich samentrekt wordt de druk in de bel groter. Bij een bepaald drukverschil tussen de lucht binnen de bel en de lucht buiten de bel ontstaat er een evenwicht. Voor deze overdruk binnen de bel geldt: 6. p = j waarin R de straal van de bel is. R Iemand die een zeepbel probeert te blazen vanuit een dun pijpje moet deze overdruk leveren met zijn longen. In figuur 10 zijn een aantal schetsjes getekend van verschillende fasen bij het bellenblazen. fig. 10 d. Teken de situatie op het moment dat de grootste druk geleverd moet worden tijdens het bellenblazen. Licht het antwoord toe. 91931SF-14

Iemand heeft twee zeepbellen geblazen, uit dezelfde zeepoplossing, aan de uiteinden van een buisje. Zie figuur 11. De kranen K, Kl en K 2 zijn gesloten. 9 fig. 11 e. Is de druk in de linker bel groter, kleiner of gelijk aan de druk in de rechter bel? Licht het antwoord toe. Men opent de kranen Kl en K 2 f Schets de situatie die nu ontstaat. Licht het antwoord toe. g. Is het totale zeepvliesoppervlak groter geworden, kleiner geworden of gelijk gebleven? Licht het antwoord toe. 91931SF - 14

4. Het ene uiteinde van een schroefveer is aan een vast punt bevestigd. Naast de veer bevindt zich een liniaal met millimeter-verdeling. 10 111 lil.:.. " i!: Ö c " 0 :t lil "'" I'.l N Cl Cl C :;: fig. l2a fig. l2b fig. l3a fig. l3b Figuur l2a toont de situatie waarbij de veer onbelast is, figuur l2b toont de situatie waarbij aan de veer een voorwerp met een massa van 200 g is bevestigd. a. Bepaal de veerconstante C van de veer. Men zet nu het midden van deze veer vast. Figuur l3a toont de onbelaste halve veer en figuur 13b toont de belaste halve veer, waarbij de massa van het voorwerp weer 200 gis. b. Bepaal de veerconstan te van de halve veer. c. Indien men de oorspronkelijke veer in drie gelijke delen knipt, hoe groot is dan de veerconstante van elk deel?, 91931SF-14

11 'i fig. 14a fig. 14b Men neemt nu een andere veer waarvan de veerconstante 40 Nim bedraagt. Men verbindt twee karretjes door deze veer. Het geheel wordt op een horizontale rail geplaatst. Het linker (verzwaarde) karretje heeft een massa mi en het rechter karretje een massa m2. mi +m2 = 1500g. De karretjes worden naar elkaar toegedrukt zodat de veer word t ingedruk t. Deze toestand blijft gehandhaafd door de karretjes met een touwtje aan elkaar te verbinden. Het geheel is in rust. Zie figuur 14a. Het touwtje tussen de karretjes wordt doorgebrand. Het blijkt dat de karretjes dan harmonisch gaan trillen. Dit trillend systeem is gefotografeerd, zie figuur 14b; hierbij was cl e belichtingstijd groter dan de trillingstijd van het systeem. Het blijkt dat één punt van de veer in rust blijft. Dat punt noemen we A. De veer bestaat als het ware uit twee delen: - een gedeelte links van A met veerconstante Cl; - een gedeelte rechts van A met veerconstante C 2 91931SF-14

d.i. Beredeneer dat op geen enkel tijdstip, na het doorbranden van het touwtje, beide karretjes naar rechts gaan. 2. Toon aan dat de trillingstijden van de karretjes gelijk zijn. 3. De amplitudo van het linker karretje is'1 en van het rechterkarretje '2. Toon aan dat geldt: = mi. 'I m 2 4. Toon aan dat geldt: s;. =!?!..l. C 2 m2 e. Bepaal de trillingstijd van de karretjes met behulp van de foto's van figuur 14. 12 91931SF-14*