Labo Fysica. Michael De Nil



Vergelijkbare documenten
Aan de slag met de nieuwe leerplannen fysica 2 de graad ASO GO!

6.1 Voortplanting en weerkaatsing van licht

Geometrische optica. Hoofdstuk Principe van Huygens. 1.2 Weerkaatsing van lichtgolven.

Practicum: Je kan ernaar vissen...

Hoofdstuk 3: Licht. Natuurkunde VWO 2011/

N A T U U R W E T E N S C H A P P E N V O O R H A N D E L 1 Copyright

Licht; Elektromagnetische straling een golf Licht; een deeltje (foto-elektrisch effect). Licht; als een lichtstraal Licht beweegt met de

Noorderpoort Beroepsonderwijs Stadskanaal. Reader. Reflectie en breking. J. Kuiper. Transfer Database

Hoofdstuk 4: Licht. Natuurkunde Havo 2011/2012.

Examen Fysica: Inleiding: Wat is fysica?

3HAVO Totaaloverzicht Licht

6.1 Voortplanting en weerkaatsing van licht 6.2 Spiegel en spiegelbeeld

Samenvatting Natuurkunde H3 optica

Invals-en weerkaatsingshoek + Totale terugkaatsing

Samenvatting Natuurkunde Hoofdstuk 2 Licht. Wat moet je leren/ kunnen voor het PW H2 Licht?

Basic Creative Engineering Skills

4.1.1 Lichtbronnen Benoem de onderstaande lichtbronnen. Opgelet, één van de figuren stelt geen lichtbron voor, welke?

Voorbereiding toelatingsexamen arts/tandarts. Fysica: Licht als golf en als deeltje. 4 november Brenda Casteleyn, PhD

Voorbereiding toelatingsexamen arts/tandarts. Fysica: Licht als golf en als deeltje. 24 juli dr. Brenda Casteleyn

Handleiding bij geometrische optiekset

3HV H2 breking.notebook October 28, 2015 H2 Licht

Invals en weerkaatsingshoek + Totale reflectie

3hv h2 kortst.notebook January 08, H2 Licht

Samenvatting Natuurkunde Hoofdstuk 3 Licht en Lenzen

Wet van Snellius. 1 Lichtbreking 2 Wet van Snellius 3 Terugkaatsing van licht tegen een grensvlak

Oefen-vt vwo4 B h6/7 licht 2007/2008. Opgaven en uitwerkingen vind je op

Hoofdstuk 2 De sinus van een hoek

Lenzen. N.G. Schultheiss

Deze toets bestaat uit 4 opgaven (33 punten). Gebruik eigen grafische rekenmachine en BINAS toegestaan. Veel succes! ZET JE NAAM OP DEZE

Samenvatting Natuurkunde Hoofdstuk 5 en 6

Samenvatting Hoofdstuk 5. Licht 3VMBO

R.T. Nadruk verboden 57

Faculteit Biomedische Technologie Tentamen OPTICA (8N040) 16 augustus 2012, 9:00-12:00 uur

De snelheid van de auto neemt eerst toe en wordt na zekere tijd constant. Bereken de snelheid die de auto dan heeft.

LENZEN. 1. Inleiding

a) Bepaal door middel van een constructie de plaats van het beeld van de scherf en bepaal daaruit hoe groot Arno de scherf door de loep ziet.

Tentamen Optica. 19 februari 2008, 14:00 uur tot 17:00 uur

Het tekenen van lichtstralen door lenzen (constructies)

Practicum: Ik zie dubbel?!

Benodigdheden Lichtkastje met één smalle spleet, half cirkelvormige schijf van perspex, blad met gradenverdeling

Technische Universiteit Eindhoven

FACULTEIT TECHNISCHE NATUURWETENSCHAPPEN. Opleiding Technische Natuurkunde TENTAMEN

Overal Natuurkunde 3V Uitwerkingen Hoofdstuk 6 Licht

Faculteit Technische Natuurkunde Tentamen OPTICA voor BMT (3D010) 22 juni 1999, 14:00-17:00 uur

jaar: 1994 nummer: 12

Uitwerkingen. Hoofdstuk 2 Licht. Verkennen

5.1 Voortplanting en weerkaatsing van licht

Spiegel. Herhaling klas 2: Spiegeling. Spiegel wet: i=t Spiegelen met spiegelbeelden. NOVA 3HV - H2 (Licht) November 15, NOVA 3HV - H2 (Licht)

JANNEKE SCHENK. Over de REGENBOOG. Regenbogen en andere lichtverschijnselen aan de hemel, natuurkundig verklaard voor iedereen

FACULTEIT TECHNISCHE NATUURKUNDE. Kenmerk: /Gor/Hsa/Rrk. Datum: TENTAMEN

Optica Optica onderzoeken met de TI-nspire

Eureka! 1A. Copyright EUREKA 1A. Eureka! bestaat in de tweede graad uit: Thema 2 Materiemodel

6.1 Voortplanting en weerkaatsing van licht 6.2 Spiegel en spiegelbeeld

Lenzen. Leerplandoel. Introductie. Voorwerps brandpunts - en beeldafstand

Lenzen. Leerplandoel. Introductie. Voorwerps brandpunts - en beeldafstand

Eindronde Natuurkunde Olympiade practicumtoets deel: Omvallend melkpak

Noorderpoort Beroepsonderwijs Stadskanaal. Reader. Lenzen. J. Kuiper. Transfer Database

Deze toets bestaat uit 4 opgaven (31 punten). Gebruik eigen grafische rekenmachine en BINAS toegestaan. Veel succes! ZET JE NAAM OP DEZE

Hertentamen Optica. 20 maart Zet je naam, studentennummer en studierichting bovenaan elk vel dat je gebruikt. Lees de 6 opgaven eerst eens door.

Uitwerkingen Hoofdstuk 2 Licht

Uitwerkingen Tentamen Optica

UITWERKINGEN VOOR HET VWO B2

7.1 Beeldvorming en beeldconstructie

Tentamen Optica. 20 februari Zet je naam, studentennummer en studierichting bovenaan elk vel dat je gebruikt. Lees de 6 opgaven eerst eens door.

6.1 Voortplanting en weerkaatsing van licht 6.2 Spiegel en spiegelbeeld

Opgave 1: Constructies (6p) In figuur 1 op de bijlage staat een voorwerp (doorgetrokken pijl) links van de lens.

FACULTEIT TECHNISCHE NATUURWETENSCHAPPEN Opleiding Technische Natuurkunde TENTAMEN

Suggesties voor demo s lenzen

SPIEGELTJE, SPIEGELTJE AAN DE WAND LICHT EN ZIEN

Faculteit Biomedische Technologie. 9 april 2018, 18:00-21:00 uur

Een lichtbundel kan evenwijdig, divergent (uit elkaar) of convergent (naar elkaar) zijn.

12 Bewijzen in de vlakke meetkunde

Om sommen met reflectie op te lossen zijn er twee mogelijkheden: 1. Met de terugkaatsingswet: hoek van inval = hoek van terugkaatsing

Stevin vwo deel 1 Uitwerkingen hoofdstuk 5 Spiegels en lenzen ( ) Pagina 1 van 23

Bepaling van de diameter van een haar

Reflectie. Om sommen met reflectie op te lossen zijn er twee mogelijkheden: 1. Met de terugkaatsingswet: hoek van inval = hoek van terugkaatsing

Opgave 3 De hoofdas is de lijn door het midden van de lens en loodrecht op de lens.

FACULTEIT TECHNISCHE NATUURKUNDE. Kenmerk: /vGr. Datum: 24 juli 2000 TENTAMEN

Newton 4vwo Natuurkunde Hoofdstuk 3 Lichtbeelden

Tussen een lichtbron en een scherm staat een voorwerp. Daardoor ontstaat een schaduw van het voorwerp op het scherm. lichtbron

2 Terugkaatsing en breking

Fysica 2 Practicum. Laser

Faculteit Technische Natuurkunde Proeftentamen OPTICA voor BMT (3D010) 8 maart 1999, 14:00-17:00 uur

1 Lichtbreking. Hoofdstuk 2. Licht

hoofdstuk 5 Lenzen (inleiding).

Uitwerkingen tentamen Optica

ELEMENTAIRE EDELSTEENKUNDE DEEL m. Eigenschappen van het licht. Historische achtergronden

Soorten lijnen. Soorten rechten

Waarom zien veel mensen onscherp?

1 Lichtbreking. Hoofdstuk 2. Licht. Leerstof. Toepassing. 3 a Zie figuur 2. b Zie figuur 2. c Zie figuur t a bij B b bij A

Handleiding Oogfunctiemodel

Extra oefenopgaven licht (1) uitwerkingen

Handleiding Optiekset met bank

hoofdstuk 5 Lenzen (inleiding).

TECHNISCHE UNIVERSITEIT EINDHOVEN

Lichtsnelheid. 1 Inleiding. VWO Bovenbouwpracticum Natuurkunde Practicumhandleiding

Ruimtelijke oriëntatie: plaats en richting

DE XXXII INTERNATIONALE NATUURKUNDE OLYMPIADE

Naam: Klas: Toets Holografie VWO (versie A) Opgave 1 Geef van de volgende beweringen aan of ze waar (W) of niet waar (NW) zijn. Omcirkel je keuze.

Transcriptie:

Labo Fysica Michael De Nil 4 februari 2004

Inhoudsopgave 1 Foutentheorie 2 1.1 Soorten fouten............................ 2 1.2 Absolute & relatieve fouten..................... 2 2 Geometrische Optica 3 2.1 Inleiding................................ 3 2.2 Terugkaatsing aan een vlakke spiegel................ 3 2.2.1 Opstelling........................... 3 2.2.2 Meting............................. 4 2.2.3 Besluit............................. 4 2.3 Terugkaatsing aan een holle of concave spiegel........... 4 2.3.1 Opstelling........................... 4 2.3.2 Opmerking.......................... 5 2.3.3 Waarneming......................... 5 2.3.4 Werkblad 2.......................... 5 2.4 Terugkaatsing aan een bolle of convexe spiegel........... 6 2.4.1 Opstelling........................... 6 2.4.2 Waarneming......................... 6 2.4.3 Werkblad 3.......................... 7 2.5 Breking aan een vlak scheidingsvlak tussen twee media...... 7 2.5.1 Inleiding............................ 7 2.5.2 Wet van Snellius-Descartes................. 8 2.5.3 Totale inwendige weerkaatsing............... 10 2.5.4 Terugkaatsing er breking bij prisma s............ 12 2.5.5 Dispersie bij prisma s.................... 14 2.6 Breking aan een symmetrisch lensmodel.............. 15 2.6.1 Symmetrisch biconvexe ( dubbelbolle) lens....... 15 2.6.2 Symmetrisch biconcave ( dubbelholle) lens........ 17 2.6.3 Correctie van oogdefecten.................. 17 1

Hoofdstuk 1 Foutentheorie 1.1 Soorten fouten Toevallige fouten fouten te wijten aan oncontroleerbare of wisselende factoren wetten van waarschijnlijkheidsrekenen van toepassing hier kan iets aan gedaan worden. Systematische fouten men blijft steeds dezelfde fout tegenkomen bij het hernemen van de meting. Apparatuurfouten (bv: klok loopt verkeerd) Methodefouten de meting zelf beïnvloedt de te meten grootheid (bv: voltmeter belast bron zelf) Persoonlijke fouten (bv: reactietijd) 1.2 Absolute & relatieve fouten Absolute fout verschil x tussen werkelijke waarde X 0 en meetwaarde x men kan x enkel schatten Relatieve fout verhouding van absolute fout tot de meetwaarde δx = x x Procentuele fout relatieve fout in procenten uitgedrukt PF(x) = δx.100 2

Hoofdstuk 2 Geometrische Optica 2.1 Inleiding Goniometrische optica lichtverschijnselen waar licht kan worden voorgesteld als bestaande uit lichtstralen. Bij overgang naar een andere middenstof kunnen zich 2 dingen voordoen: reflectie spiegels breking prisma / lens 2.2 Terugkaatsing aan een vlakke spiegel 2.2.1 Opstelling Plaats het spiegelmodel met de vlakke kant aan de vertikale as zoals aangegeven in bovenstaand figuur 3

Plaats de lichtbox met 1 straal zo, dat het achtereenvolgend invalt op de richtingen aangegeven op werkblad 1 Duid de gereflecteerde stralen aan 2.2.2 Meting In onderstaande tabel hebben we de invalshoek van de lichtstraal tov de normaal en de hoek waarmee de lichtstraal wordt gereflecteerd tov de normaal gemeten en voorgesteld als θ i en θ t : θ i θ t θ i θ t (relatie) 15 o 14 o 1,07 30 o 32 o 0,94 45 o 44 o 1,02 60 o 60 o 1,00 75 o 74 o 1,01 Hieruit blijkt dat θ i θ t. 2.2.3 Besluit Als een lichtstraal met een bepaalde hoek op een vlakke spiegel invalt, dan zal ze met dezelfde hoek weerkaatst worden. 2.3 Terugkaatsing aan een holle of concave spiegel 2.3.1 Opstelling In deze proef wordt een concave spiegel gebruikt spiegel waarvan het oppervlak een deel van de binnenkant van een bolvorm is. Zorg voor 1 lichtstraal De vertex ligt op het snijpunt van verticale en horizontale, zodat een lichtstraal op zichzelf wordt teruggekaatst op de horizontale Teken een lijn langs het spiegeloppervlak 4

Bepaal het kromtemidden door het midden van de cirkelboog te zoeken Verschuif de lichtbox zo, dat de straal evenwijdig met de optische as op ± ligt Duid het snijpunt met de optische as aan dit is het brandpunt 2.3.2 Opmerking Wij hebben het punt C gevonden door op een punt van de cirkelboog een raaklijn te tekenen en in datzelfde punt de loodrechte op de raaklijn te tekenen. Het snijpunt van de horizontale met de loodrechte van die raaklijn = C. 2.3.3 Waarneming Alle stralen die evenwijdig met de horizontale naar de spiegel toe gaan, lijken allen bij spiegeling door het brandpunt F te gaan. F lijkt ook in het midden te liggen van lijnstuk VC = R (de kromtestraal). VC 11 cm FC 5,7 cm Wanneer we de stralen echter laten invallen schuin vanuit f, blijken ze gespiegeld evenwijdig met de horizontale te lopen. Wanneer we de stralen schuin door C of V naar de concave spiegel laten gaan zullen de gespiegelde stralen niet meer evenwijdig met de horizontale lopen. 2.3.4 Werkblad 2 5

2.4 Terugkaatsing aan een bolle of convexe spiegel 2.4.1 Opstelling Zorg voor 1 lichtstraal De vertex ligt op het snijpunt van verticale en horizontale, zodat een lichtstraal op zichzelf wordt teruggekaatst op de horizontale Teken een lijn langs het spiegeloppervlak Bepaal het kromtemidden door het midden van de cirkelboog te zoeken Bepaal, zoals in vorige proef, het brandpunt en de brandpuntsafstand. De gereflecteerde straal zal wel verlengd moeten worden om zo het virtuele snijpunt van de gespiegelde stralen te vinden. Vergelijk brandpunt en brandpuntsafstand van holle en bolle spiegel 2.4.2 Waarneming Kromtemidden en brandpunt liggen beiden aan andere kant spiegel Eigenschappen aan die van concave spiegel 6

2.4.3 Werkblad 3 2.5 Breking aan een vlak scheidingsvlak tussen twee media 2.5.1 Inleiding Wanneer een lichtstraal overgaat van een medium naar een ander, blijft ze zich rechtlijnig voortbewegen, maar verandert ze van richting breking. θ i invalshoek, gemeten vanaf normaal θ r brekingshoek, gemeten vanaf normaal 7

2.5.2 Wet van Snellius-Descartes Opstelling Plaats de acrylglazen schijf zo, dat bij een invalshoek van 0 o de uitvalshoek ook 0 o is Laat de straal invallen volgens de verschillende richtingen aangegeven op het werkblad. Zorg ervoor dat het invalspunt steeds hetzelfde blijft Neem de schijf weg, vervolledig de stralengang en vervolledig de cirkel Waarneming De richting van de lichtstraal verandert wanneer deze het acrylglas binnenkomt. 8

a a (cm) b (cm) b 1,6 1,1 1,45 3,1 2,1 1,48 4,4 3,0 1,47 5,5 3,7 1,49 a sin θi b = sin θ r = θi θ r blijkt constante te zijn 1,47. Deze constante is afhankelijk van het type middenstof brekingsindex. Bij breking door lucht acrylglas θ r = n medium = c 0 c medium θ i 1,47 n medium brekingsindex van het medium c 0 lichtsnelheid in luchtledige c medium lichtsnelheid in het medium Opmerking Bij de overgang van het acrylglas lucht treedt er geen breking op omdat het acrylglas, aan de kant waar de lichtstraal terug naar buiten gaat, boogvormig is. 9

Werkblad 4 2.5.3 Totale inwendige weerkaatsing Inleiding In deze proef zal worden nagegaan wat er gebeurt wanneer de lichtstraal van acrylglas lucht. Opstelling Het acrylglas en de lichtbox worden opgesteld zoals aangegeven in onderstaande figuur: 10

Opm: bij de overgang van lucht acrylglas zal de lichtstraal geen breking ondervinden door de buiging van het glas. Waarneming 45 o < θ i < 45 o gebroken lichstraal θ i > 45 o of θ i < 45 o de lichtstraal breekt niet meer, maar weerkaatst 45 o = kritische hoek / grenshoek = hoek waarbij de lichtstraal niet meet doorgelaten (en dus gebroken) wordt treedt enkel op bij overgang van optisch dicht (medium met grootste brekingsindex) naar optisch ijl (medium met kleinste brekingsindex) de lichtstraal wordt van de normaal weggebroken bij een bepaalde invalshoek zal de brekingshoek 90 o zijn. 11

Werkblad 5 2.5.4 Terugkaatsing er breking bij prisma s Opstelling Plaats de lichtbox met 1 lichtstraal op het werkblad, zodat de lichtstraal op de horizontale loopt Leg het prisma met de matte zijde op het blad Plaats het prisma zo dat het met een rechthoekszijde op de horizontale ligt, en dat de lichtstraal (de vertikale) invalt in het midden van deze zijde 12

Waarneming De lichtstraal komt in het midden van de ene rechthoekszijde binnen en gaat er langs het midden van de andere rechthoekszijde weer uit de lichtstraal lijkt loodrecht gespiegeld te worden op de schuine zijde van het prisma. Opstelling 2 Plaats het prisma met schuine zijde op de vertikale Plaats de lichtbox met 2 stralen, zodat deze evenwijdig met de vertikale, op een rechthoekszijde invalt Onderbreek een van beide stralen Waarneming 2 De 2 stralen die binnenkomen lijken gewoon recht door het prisma te gaan, en bij het uitgaan te breken. Wanneer er echter 1 straal onderbroken wordt blijken de stralen gekruist te zijn in het prisma we spreken hier van een omkeerprisma. Werkblad 6 13

2.5.5 Dispersie bij prisma s Inleiding Licht elektromagnetische golf met golflengte λ, frequentie f en snelheid c. Licht hang af van golflengte: λ = 700nm rood λ = 400nm blauw Brekingsindex is afhankelijk van de golflengte kleurenshifting of dispersie verschillende golflengtes (dus verschillende kleuren) zullen dus anders gebroken worden θ i zelfde voor alle kleuren, maar θ r verschilt. Wit licht van termische bronnen (zon, gloeilamp,... ) mensgel van elektromagnetische golven met λ s tussen 400 nm en 800 nm. Opstelling Gebruik een gelijkzijdig flintprisma glassoort met een zeer grote dispersie Het prisma wordt met een zijde tegen de vertikale (de normaal) gelegd, en met het overstaande punt op de horizontale Plaats de lichtbox zo, dat de lichtstraal θ i op 50 o van de normaal invalt Waarneming De lichtstraal wordt tweemaal gebroken (bij intreden & uittreden) Bij de uittredende lichtstraal zijn verschillende kleuren merkbaar. De blauwe kleur wordt het sterkst gebroken, de rode het minst Op de figuur op pagina 11 van het laboschrift konden we niet duidelijk zien wat precies bedoeld werd met de hoeken θ r1, θ i2 & θ r2. Daarom hebben we deze niet kunnen narekenen met de wet van Snellius-Descartes en zijn we ook niet zeker van volgende resultaten: Kleur λ n θ r1 θ i2 θ r2 Blauw 400nm 1,636 24 o 34 o 61,5 o Geel 590nm 1,620 24 o 34 o 60 o Rood 700nm 1,607 24 o 34 o 58,5 o De rode kleur plant zich het snelste voort door flintglas, de blauwe kleur het traagste. De snelheid hebben we niet kunnen vaststellen. 14

Werkblad 7 2.6 Breking aan een symmetrisch lensmodel 2.6.1 Symmetrisch biconvexe ( dubbelbolle) lens Inleiding We gebruiken een sferische lens beide kanten zijn delen van een boloppervlak met stralen R 1 en R 2. De dikte van de lens wordt verwaarloosd dunne lens benadering. F b beeldbrandpunt punt waarop stralen, die voor de lens evenwijdig liepen, elkaar kruisen (achter de lens) F v voorwerpsbrandpunt punt voor de lens waarbij stralen uit dat punt achter de lens evenwijdig lopen 15

Opstelling Plaats het lensmodel zo dat de optische as samenvalt met de horizontale Plaats de lichtbox met 3 stralen zo, dat de middelste lichtstraal op de optische as ligt en niet breekt Duidt de stralengang aan op het werkblad Waarneming De 3 stralen komen samen in 1 punt F b, het brandpunt. Opstelling 2 Plaats de lichtbox met 1 straal aan de andere zijde van de lens zodat ze over de aangeduide stralengang loopt Duid opnieuw de stralengang aan Waarneming 2 De lichtstralen die uit de lens komen lijken opnieuw evenwijdig te lopen. Opmerking Deze lens wordt ook positieve lens of convergerende lens genoemd omdat ze de lichtstralen bundelt tot 1 punt. Met genoeg stralen kan het brandpunt zelfs letterlijk worden genomen. Werkblad 8 16

2.6.2 Symmetrisch biconcave ( dubbelholle) lens Opstelling Plaats het lensmodel zo dat de optische as als horizontale fungeert en get punt O het middelpunt is van het lensmodel Plaats de lichtbox met 3 stralen zo, dat de middelste lichtstraal op de optische as ligt en niet breekt Opmerking De stralen splitsen uit elkaar. Wanneer men de stralengang echter verlengt tot voor de lens, komen we tot een virtueel beeldbrandpunt F b. Het brandpunt ligt bij deze lens 12 cm van het middelpunt van de lens vandaan (aan de kant van de inkomende stralen). Bij de dubbelbolle lens lag het brandpunt ook 12 cm van het middelpunt van de lens, maar dan aan de andere kant van de lens (aan de kant van de uitgaande stralen). 2.6.3 Correctie van oogdefecten Opstelling Gebruik de lichtbox met 3 stralen Plaats het plano-convex lensmodel (halve schijf) met vlakke zijde langsheen de verticale door O (punt op werkblad 10) Plaats enkele verschillende lensmodellen voor de ooglens Waarneming De lijn door N (punt op werkblad 10) stelt het netvlies voor, het ene lensmodel de ooglens en het andere lensmodel de bril. Zonder het laatste lensmodel (de bril), ligt het brandpunt achter het netvlies wazig zicht 17

Bij het plaatsen van een biconvexe lens (positieve lens) wordt het brandpunt naar voren verplaatst en ligt het dus op (of dichter bij) het netvlies Verziendheid / hypermyopie de persoon in kwestie kan perfect alles op grote afstand zien, maar wanneer de afstand kleiner wordt zullen dingen minder scherp worden. Mensen met verziendheid zullen zonder bril een magazine steeds met gestrekte arm lezen (de tekst wordt scherper hoe verder ze van het oog verwijdert is). Een bril is dan enkel nodig bij het lezen. Bijziendheid / myopie iemand met myopie kan perfect teksten en dingen op korte afstand zien / lezen, maar zal bij bv het autorijden een bril nodig hebben met negatieve lenzen. 18