werkcollege 6 - D&P9: Estimation Using a Single Sample
|
|
|
- Rebecca Martens
- 8 jaren geleden
- Aantal bezoeken:
Transcriptie
1 cursus 9 mei 2012 werkcollege 6 - D&P9: Estimation Using a Single Sample van frequentie naar dichtheid we bepalen frequenties van meetwaarden plot in histogram delen door totaal aantal meetwaarden > fracties (x100=percentages) plot in histogram som van waarden is 1 (100%) van discrete meetwaarden naar continue reeks de kans P op een waarde die kleiner is dan een bepaalde waarde, is gelijk aan de oppervlakte tot die waarde: kansdichtheidsfunctie standaard normale verdeling is een continue kansdichtheidsfunctie de oppervlakte tussen z 1 en z 2 geeft de kans op een observatie tussen z 1 en z 2 als z 1 = - dan kans op waarde < z 2 (dat is de tabelwaarde in de z-tabel) de kans op een exacte waarde is nul! daarom maakt < of geen verschil 1
2 gebruik van z-tabel waarden geven p(z<z*) dwz de kans op een waarde kleiner dan z* de kolommen geven honderdsten ook bruikbaar om bij gegeven p-waarde de bijbehorende z-waarde te vinden [indien alleen waarden voor z<0 gegeven] verdeling is symmetrisch dus p(z<1) = p(z> -1) = 1 p(z < -1) = = huiswerk opgaven Ch.7: 17, 30, 31 opgaven Ch.8: 1, 2, 7 (video), 16, 17 opgave 8.7 (zie ook video) 2
3 it s like magic! op grond van een enkele steekproef (N=1500) schatten we kenmerk van hele populatie (N=miljoenen) puntschatting schatting van kenmerk is zuiver (unbiased) als gemiddelde van herhaalde schattingen gelijk is aan waarde van kenmerk in populatie en anders onzuiver (biased) beste schatter heeft zelf kleinste sd gebruik wel n-1 bij berekening van sd van schatter! betrouwbaarheidsinterval hoe nauwkeurig is de schatting van het gemiddelde? het betrouwbaarheidsinterval met mate van betrouwbaarheid! 90%, 95%, 99% betrouwbaarheidsniveau in bv 99% van de gevallen zal een methode tot een betrouwbaarheidsinterval leiden waar het echte populatiegemiddelde werkelijk in ligt confidence interval, confidence level betrouwbaarheidsinterval plus/min 1 standaarddeviatie geeft betrouwbaarheidsniveau van 68% maar we willen naar bv 95% normale verdeling boven en onder 2.5% p(z)<0.025 > z = (z kritiek ) kies interval 1.96 x standaarddeviatie 3
4 steekproefgemiddelde n > 30 (maar kleiner mag ook nog wel) dan heeft x ongeveer een normale verdeling distributie van populatiewaarden zijn normaal verdeeld met gemiddelde µ en standaard deviatie σ voor x geldt dat µ x = µ en σ x = σ / n we kunnen voor x een gestandaardiseerde variabele (z) afleiden: z = ( x - µ) / (σ / n) op 95% betrouwbaarheidsniveau geldt dan x (σ / n) < µ < x (σ / n) x populatiegemiddelde µ schatting van het populatiegemiddelde µ met bepaald betrouwbaarheidsinterval uit een enkele steekproef is x ± z kritiek σ / n (kies z kritiek op basis van betrouwbaarheidsniveau) 4
5 steekproefgrootte voor populatie gemiddelde B = 1.96 (σ / n) (95% betrouwbaarheidsniveau) dus n = (1.96 σ / B ) 2 als σ onbekend is dan mag die geschat worden met σ ~ range/4 = (max-min)/4 (neem aan dat tussen max en min 4 standaard deviaties zitten) alsσonbekend is (wat meestal het geval is) gebruik s (de standaard deviatie van de steekproef) in plaats van σ maar nu wordt de gestandaardiseerde variabele, die eerst z was, iets anders: t t = ( x- µ) / (s/ n) leidt tot t-distributie t-distributie als x het steekproefgemiddelde is van een random sample de populatie normaal is verdeeld, of n groot is (n 30) en σ, de sd van de populatie, onbekend is dan is het betrouwbaarheidsinterval x ± t kritiek (s/ n) t-waarden zijn afhankelijk van vrijheidsgraden: df = n-1 voor grote n is t-distributie gelijk aan z-distributie bestudeer de t-tabel in Appendix Table 3 en in de voorkaft van P&D! 5
6 resumé: 95% betrouwbaarheidsinterval x- t kritiek,95% (s / n) < µ < x + t kritiek,95% (s / n) let op, dat t kritiek (een beetje) van n afhangt (n-1 vrijheidsgraden) in de praktijk kennen we uit een steekproef alleen x, s en n, dus moeten we t gebruiken! dit alles ging over de schatting van een gemiddelde van een populatie nu de schatting van een populatieproportie proportie van successen p = aantal successen n (boek gebruikt p-dak) noemen we π (pi) voor de populatie (boek: p) Het gemiddelde en standaarddeviatie van p (populatie) zijn µ p = π (mu) σ p = π(1- π)/n (sigma) [dit volgt direct uit de formules voor de binomiale verdeling: µ= np en σ= npq en deze delen door n] 6
7 kritieke waarde de kritieke waarde is de waarde van z die behoort bij het gekozen betrouwbaarheidsniveau Als de steekproefproportie p van een random sample afkomstig is n groot is (np 10) maar n maximaal 10% van populatie dan π ~ p ± z kritiek p(1- p)/n omgekeerd: steekproefgrootte bepalen B = 1.96 π(1- π)/n daaruit volgt n = π(1- π) (1.96 / B) 2 dat is de grootte die de steekproef tenminste moet hebben om een 95% betrouwbaarheid te hebben dat het resultaat minder dan B van π afwijkt als π onbekend is, kies π = 0.5 meest conservatief > grootste n samenvattend prototype betrouwbaarheidsinterval is puntschatting met specifieke schatter ± krititieke waarde x geschatte standaarddeviatie van de schatter geschatte standaarddeviatie van de schatter = standaard fout (standard error) 7
8 steekproef ~normaal verdeeld 95% betrouwbaarheid, dan: grens van de schattingsfout B = 1.96 * standard error van de schatter huiswerk opgaven Ch.9: 1, 8, 11, 12, 20, 26, 36, 37, 71 Activities 9.3 en 9.4 8
Hoofdstuk 5 Een populatie: parametrische toetsen
Hoofdstuk 5 Een populatie: parametrische toetsen 5.1 Gemiddelde, variantie, standaardafwijking: De variantie is als het ware de gemiddelde gekwadrateerde afwijking van het gemiddelde. Hoe groter de variantie
Hoofdstuk 5: Steekproevendistributies
Hoofdstuk 5: Steekproevendistributies Inleiding Statistische gevolgtrekkingen worden gebruikt om conclusies over een populatie of proces te trekken op basis van data. Deze data wordt samengevat door middel
Data analyse Inleiding statistiek
Data analyse Inleiding statistiek 1 Terugblik - Inductieve statistiek Afleiden van eigenschappen van een populatie op basis van een beperkt aantal metingen (steekproef) Kennis gemaakt met kans & kansverdelingen»
Toetsende Statistiek, Week 2. Van Steekproef naar Populatie: De Steekproevenverdeling
Toetsende Statistiek, Week 2. Van Steekproef naar Populatie: De Steekproevenverdeling Moore, McCabe & Craig: 3.3 Toward Statistical Inference From Probability to Inference 5.1 Sampling Distributions for
HOOFDSTUK 7: STATISTISCHE GEVOLGTREKKINGEN VOOR DISTRIBUTIES
HOOFDSTUK 7: STATISTISCHE GEVOLGTREKKINGEN VOOR DISTRIBUTIES 7.1 Het gemiddelde van een populatie Standaarddeviatie van de populatie en de steekproef In het vorige deel is bij de significantietoets uitgegaan
Hoofdstuk 3 Statistiek: het toetsen
Hoofdstuk 3 Statistiek: het toetsen 3.1 Schatten: Er moet een verbinding worden gelegd tussen de steekproefgrootheden en populatieparameters, willen we op basis van de een iets kunnen zeggen over de ander.
introductie populatie- steekproef- steekproevenverdeling pauze parameters aannames ten slotte
toetsende statistiek week 1: kansen en random variabelen week 2: de steekproevenverdeling Moore, McCabe, and Craig. Introduction to the Practice of Statistics Chapter 5: Sampling Distributions 5.1: The
Voorbeeldtentamen Statistiek voor Psychologie
Voorbeeldtentamen Statistiek voor Psychologie 1) Vul de volgende uitspraak aan, zodat er een juiste bewering ontstaat: De verdeling van een variabele geeft een opsomming van de categorieën en geeft daarbij
Data analyse Inleiding statistiek
Data analyse Inleiding statistiek 1 Doel Beheersen van elementaire statistische technieken Toepassen van deze technieken op aardwetenschappelijke data 2 1 Leerstof Boek: : Introductory Statistics, door
toetsende statistiek deze week: wat hebben we al geleerd? Frank Busing, Universiteit Leiden
toetsende statistiek week 1: kansen en random variabelen week 2: de steekproevenverdeling week 3: schatten en toetsen: de z-toets week 4: het toetsen van gemiddelden: de t-toets Moore, McCabe, and Craig.
Examen Statistiek I Feedback
Examen Statistiek I Feedback Bij elke vraag is alternatief A correct. Bij de trekking van een persoon uit een populatie beschouwt men de gebeurtenissen A (met bril), B (hooggeschoold) en C (mannelijk).
HOOFDSTUK 6: INTRODUCTIE IN STATISTISCHE GEVOLGTREKKINGEN
HOOFDSTUK 6: INTRODUCTIE IN STATISTISCHE GEVOLGTREKKINGEN Inleiding Statistische gevolgtrekkingen (statistical inference) gaan over het trekken van conclusies over een populatie op basis van steekproefdata.
Hoofdstuk 7: Statistische gevolgtrekkingen voor distributies
Hoofdstuk 7: Statistische gevolgtrekkingen voor distributies 7.1 Het gemiddelde van een populatie Standaarddeviatie van de populatie en de steekproef In het vorige deel is bij de significantietoets uitgegaan
Vandaag. Onderzoeksmethoden: Statistiek 3. Recap 2. Recap 1. Recap Centrale limietstelling T-verdeling Toetsen van hypotheses
Vandaag Onderzoeksmethoden: Statistiek 3 Peter de Waal (gebaseerd op slides Peter de Waal, Marjan van den Akker) Departement Informatica Beta-faculteit, Universiteit Utrecht Recap Centrale limietstelling
Oefenvragen bij Statistics for Business and Economics van Newbold
Oefenvragen bij Statistics for Business and Economics van Newbold Hoofdstuk 1 1. Wat is het verschil tussen populatie en sample? De populatie is de complete set van items waar de onderzoeker in geïnteresseerd
Formuleblad. Hoofdstuk 1: Gemiddelde berekenen: = x 1 + x 2 + x 3 + +x n / n Of: = 1/n Σ x i
Formuleblad Hoofdstuk 1: Gemiddelde berekenen: = x 1 + x 2 + x 3 + +x n / n Of: = 1/n Σ x i Plaats van de median berekenen: Oneven aantal observaties: (n+1)/2 Even aantal observaties: gemiddelde van de
We illustreren deze werkwijze opnieuw a.h.v. de steekproef van de geboortegewichten
Hoofdstuk 8 Betrouwbaarheidsintervallen In het vorige hoofdstuk lieten we zien hoe het mogelijk is om over een ongekende karakteristiek van een populatie hypothesen te formuleren. Een andere manier van
Inleiding Applicatie Software - Statgraphics
Inleiding Applicatie Software - Statgraphics Beschrijvende Statistiek /k 1/35 OPDRACHT OVER BESCHRIJVENDE STATISTIEK Beleggen Door een erfenis heeft een vriend van u onverwacht de beschikking over een
Inhoudsopgave. Deel I Schatters en toetsen 1
Inhoudsopgave Deel I Schatters en toetsen 1 1 Hetschattenvanpopulatieparameters.................. 3 1.1 Inleiding:schatterversusschatting................. 3 1.2 Hetschattenvaneengemiddelde..................
DEEL 3 INDUCTIEVE STATISTIEK INLEIDING TOT DE INDUCTIEVE STATISTIEK 11.2 DE GROOTSTE AANNEMELIJKHEID - METHODE
DEEL 3 INDUCTIEVE STATISTIEK INHOUD H 10: INLEIDING TOT DE INDUCTIEVE STATISTIEK H 11: PUNTSCHATTING 11.1 ALGEMEEN 11.1.1 Definities 11.1.2 Eigenschappen 11.2 DE GROOTSTE AANNEMELIJKHEID - METHODE 11.3
Inleiding Applicatie Software - Statgraphics. Beschrijvende Statistiek
Inleiding Applicatie Software - Statgraphics Beschrijvende Statistiek OPDRACHT OVER BESCHRIJVENDE STATISTIEK Beleggen Door een erfenis heeft een vriend van u onverwacht de beschikking over een klein kapitaaltje
SOCIALE STATISTIEK (deel 2)
SOCIALE STATISTIEK (deel 2) D. Vanpaemel KU Leuven D. Vanpaemel (KU Leuven) SOCIALE STATISTIEK (deel 2) 1 / 57 Hoofdstuk 5: Schatters en hun verdeling 5.1 Steekproefgemiddelde als toevalsvariabele D. Vanpaemel
Hoofdstuk 12: Eenweg ANOVA
Hoofdstuk 12: Eenweg ANOVA 12.1 Eenweg analyse van variantie Eenweg en tweeweg ANOVA Wanneer we verschillende populaties of behandelingen met elkaar vergelijken, dan zal er binnen de data altijd sprake
Toetsende Statistiek Week 3. Statistische Betrouwbaarheid & Significantie Toetsing
Toetsende Statistiek Week 3. Statistische Betrouwbaarheid & Significantie Toetsing M, M & C, Chapter 6, Introduction to Inference 6.1 Estimating with Confidence 6.2 Tests of Significance 6.3 Use and Abuse
Statistiek voor A.I.
Statistiek voor A.I. College 13 Donderdag 25 Oktober 1 / 28 2 Deductieve statistiek Orthodoxe statistiek 2 / 28 3 / 28 Jullie - onderzoek Tobias, Lody, Swen en Sander Links: Aantal broers/zussen van het
Formules Excel Bedrijfsstatistiek
Formules Excel Bedrijfsstatistiek Hoofdstuk 2 Data en hun voorstelling AANTAL.ALS vb: AANTAL.ALS(A1 :B6,H1) Telt hoeveel keer (frequentie) de waarde die in H1 zit in A1:B6 voorkomt. Vooral bedoeld voor
Vandaag. Onderzoeksmethoden: Statistiek 2. Basisbegrippen. Theoretische kansverdelingen
Vandaag Onderzoeksmethoden: Statistiek 2 Peter de Waal (gebaseerd op slides Peter de Waal, Marjan van den Akker) Departement Informatica Beta-faculteit, Universiteit Utrecht Theoretische kansverdelingen
Hoofdstuk 10: Regressie
Hoofdstuk 10: Regressie Inleiding In dit deel zal uitgelegd worden hoe we statistische berekeningen kunnen maken als sprake is van één kwantitatieve responsvariabele en één kwantitatieve verklarende variabele.
Deze week: Steekproefverdelingen. Statistiek voor Informatica Hoofdstuk 7: Steekproefverdelingen. Kwaliteit van schatter. Overzicht Schatten
Deze week: Steekproefverdelingen Statistiek voor Informatica Hoofdstuk 7: Steekproefverdelingen Cursusjaar 29 Peter de Waal Zuivere Schatters Betrouwbaarheidsintervallen Departement Informatica Hfdstk
Hoeveel vertrouwen heb ik in mijn onderzoek en conclusie? Les 1
Hoeveel vertrouwen heb ik in mijn onderzoek en conclusie? Les 1 1 Onderwerpen van de lessenserie: De Normale Verdeling Nul- en Alternatieve-hypothese ( - en -fout) Steekproeven Statistisch toetsen Grafisch
4.1 Eigenschappen van de normale verdeling [1]
4.1 Eigenschappen van de normale verdeling [1] Relatief frequentiepolygoon van de lengte van mannen in 1968 1 4.1 Eigenschappen van de normale verdeling [1] In dit plaatje is een frequentiepolygoon getekend.
introductie toetsen power pauze hypothesen schatten ten slotte introductie toetsen power pauze hypothesen schatten ten slotte
toetsende statistiek week 1: kansen en random variabelen week 2: de steekproevenverdeling week 3: schatten en toetsen: de z-toets Moore, McCabe, and Craig. Introduction to the Practice of Statistics Chapter
Statistiek II. Sessie 1. Verzamelde vragen en feedback Deel 1
Statistiek II Sessie 1 Verzamelde vragen en feedback Deel 1 VPPK Universiteit Gent 2017-2018 Feedback Oefensessie 1 1 Staafdiagram 1. Wat is de steekproefgrootte? Op de horizontale as vinden we de respectievelijke
. Dan geldt P(B) = a. 1 4. d. 3 8
Tentamen Statistische methoden 4052STAMEY juli 203, 9:00 2:00 Studienummers: Vult u alstublieft op het meerkeuzevragenformulier uw Delftse studienummer in (tbv automatische verwerking); en op het open
c Voorbeeldvragen, Methoden & Technieken, Universiteit Leiden TS: versie 1 1 van 6
c Voorbeeldvragen, Methoden & Technieken, Universiteit Leiden TS: versie 1 1 van 6 1. Iemand kiest geblinddoekt 4 paaseitjes uit een mand met oneindig veel paaseitjes. De helft is melkchocolade, de andere
Kansrekening en statistiek wi2105in deel 2 16 april 2010, uur
Kansrekening en statistiek wi205in deel 2 6 april 200, 4.00 6.00 uur Bij dit examen is het gebruik van een (evt. grafische) rekenmachine toegestaan. Tevens krijgt u een formuleblad uitgereikt na afloop
Kansrekening en Statistiek
Kansrekening en Statistiek College 11 Dinsdag 25 Oktober 1 / 27 2 Statistiek Vandaag: Hypothese toetsen Schatten 2 / 27 Schatten 3 / 27 Vragen: liegen 61 Amerikanen werd gevraagd hoeveel % van de tijd
Kansrekening en Statistiek
Kansrekening en Statistiek College 14 Donderdag 28 Oktober 1 / 37 2 Statistiek Indeling: Hypothese toetsen Schatten 2 / 37 Vragen 61 Amerikanen werd gevraagd hoeveel % van de tijd zij liegen. Het gevonden
VOOR HET SECUNDAIR ONDERWIJS. Kansmodellen. 4. Het steekproefgemiddelde. Werktekst voor de leerling. Prof. dr. Herman Callaert
VOOR HET SECUNDAIR ONDERWIJS Kansmodellen 4. Werktekst voor de leerling Prof. dr. Herman Callaert Hans Bekaert Cecile Goethals Lies Provoost Marc Vancaudenberg . Een concreet voorbeeld.... Een kansmodel
Populatie: De gehele groep elementen waarover informatie wordt gewenst.
Statistiek I Werkcollege 1 Populatie: De gehele groep elementen waarover informatie wordt gewenst. Steekproef: Gedeelte van de populatie dat feitelijk wordt onderzocht om informatie te vergaren. Eenheden:
Kansrekening en Statistiek
Kansrekening en Statistiek College 8 Donderdag 13 Oktober 1 / 23 2 Statistiek Vandaag: Stochast en populatie Experimenten herhalen Wet van de Grote Getallen Centrale Limietstelling 2 / 23 Stochast en populatie
introductie Wilcoxon s rank sum toets Wilcoxon s signed rank toets introductie Wilcoxon s rank sum toets Wilcoxon s signed rank toets
toetsende statistiek week 1: kansen en random variabelen week : de steekproevenverdeling week 3: schatten en toetsen: de z-toets week : het toetsen van gemiddelden: de t-toets week 5: het toetsen van varianties:
Hoofdstuk 4 Kansen. 4.1 Randomheid
Hoofdstuk 4 Kansen 4.1 Randomheid Herhalingen en kansen Als je een munt opgooit (of zelfs als je een SRS trekt) kunnen de resultaten van tevoren voorspeld worden, omdat de uitkomsten zullen variëren wanneer
Meten en experimenteren
Meten en experimenteren Statistische verwerking van gegevens Een korte inleiding 3 oktober 006 Deel I Toevallige veranderlijken Steekproef Beschrijving van gegevens Histogram Gemiddelde en standaarddeviatie
Kansrekening en statistiek WI2211TI / WI2105IN deel 2 2 februari 2012, uur
Kansrekening en statistiek WI22TI / WI25IN deel 2 2 februari 22, 4. 6. uur VOOR WI22TI: Bij dit examen is het gebruik van een (evt. grafische) rekenmachine toegestaan. Een formuleblad is niet toegestaan.
Hoofdstuk 6 Twee populaties: parametrische toetsen
Hoofdstuk 6 Twee populaties: parametrische toetsen 6.1 De t-toets voor het verschil tussen twee gemiddelden: In veel onderzoekssituaties zijn we vooral in de verschillen tussen twee populaties geïnteresseerd.
9. Lineaire Regressie en Correlatie
9. Lineaire Regressie en Correlatie Lineaire verbanden In dit hoofdstuk worden methoden gepresenteerd waarmee je kwantitatieve respons variabelen (afhankelijk) en verklarende variabelen (onafhankelijk)
Toetsen van Hypothesen. Het vaststellen van de hypothese
Toetsen van Hypothesen Wisnet-hbo update maart 2008 1. en Het vaststellen van de hypothese De nulhypothese en de Alternatieve hypothese. Het gaat in deze paragraaf puur alleen om de formulering. Er wordt
Statistiek voor Natuurkunde Opgavenserie 1: Kansrekening
Statistiek voor Natuurkunde Opgavenserie 1: Kansrekening Inleveren: 12 januari 2011, VOOR het college Afspraken Serie 1 mag gemaakt en ingeleverd worden in tweetallen. Schrijf duidelijk je naam, e-mail
6.1 Beschouw de populatie die wordt beschreven door onderstaande kansverdeling.
Opgaven hoofdstuk 6 I Learning the Mechanics 6.1 Beschouw de populatie die wordt beschreven door onderstaande kansverdeling. De random variabele x wordt tweemaal waargenomen. Ga na dat, indien de waarnemingen
Toetsen van hypothesen
Les 4 Toetsen van hypothesen We hebben tot nu toe enigszins algemeen naar grootheden van populaties gekeken en bediscussieerd hoe we deze grootheden uit steekproeven kunnen schatten. Vaak hebben we echter
Statistiek I Samenvatting. Prof. dr. Carette
Statistiek I Samenvatting Prof. dr. Carette Opleiding: bachelor of science in de Handelswetenschappen Academiejaar 2016 2017 Inhoudsopgave Hoofdstuk 1: Statistiek, gegevens en statistisch denken... 3 De
Feedback examen Statistiek II Juni 2011
Feedback examen Statistiek II Juni 2011 Bij elke vraag is alternatief A correct. 1 De variabele X is Student verdeeld in een bepaalde populatie, met verwachting µ X en variantie σ 2 X. Je trekt steekproeven
Kansrekening en Statistiek
Kansrekening en Statistiek College 7 Dinsdag 11 Oktober 1 / 33 2 Statistiek Vandaag: Populatie en steekproef Maten Standaardscores Normale verdeling Stochast en populatie Experimenten herhalen 2 / 33 3
Hoofdstuk 3 : Numerieke beschrijving van data. Marnix Van Daele. Vakgroep Toegepaste Wiskunde en Informatica Universiteit Gent
Hoofdstuk 3 : Numerieke beschrijving van data Marnix Van Daele MarnixVanDaele@UGentbe Vakgroep Toegepaste Wiskunde en Informatica Universiteit Gent Numerieke beschrijving van data p 1/31 Beschrijvende
Kansrekening en Statistiek
Kansrekening en Statistiek College 15 Dinsdag 2 November 1 / 16 2 Statistiek Indeling: Filosofie Schatten Centraal Bureau voor Statistiek 2 / 16 Schatten Vb. Het aantal tenen plus vingers in jullie huishoudens:
Tentamen Kansrekening en Statistiek MST 14 januari 2016, uur
Tentamen Kansrekening en Statistiek MST 14 januari 2016, 14.00 17.00 uur Het tentamen bestaat uit 15 meerkeuzevragen 2 open vragen. Een formuleblad wordt uitgedeeld. Normering: 0.4 punt per MC antwoord
14.1 Kansberekeningen [1]
14.1 Kansberekeningen [1] Herhaling kansberekeningen: Somregel: Als de gebeurtenissen G 1 en G 2 geen gemeenschappelijke uitkomsten hebben geldt: P(G 1 of G 2 ) = P(G 1 ) + P(G 2 ) B.v. P(3 of 4 gooien
College 2 Enkelvoudige Lineaire Regressie
College Enkelvoudige Lineaire Regressie - Leary: Hoofdstuk 7 tot p. 170 (Advanced Correlational Strategies) - MM&C: Hoofdstuk 10 (Inference for Regression) - Aanvullende tekst 3 Jolien Pas ECO 011-01 Correlatie:
VOOR HET SECUNDAIR ONDERWIJS
VOOR HET SECUNDAIR ONDERWIJS Steekproefmodellen en normaal verdeelde steekproefgrootheden 5. Werktekst voor de leerling Prof. dr. Herman Callaert Hans Bekaert Cecile Goethals Lies Provoost Marc Vancaudenberg
Hierbij is het steekproefgemiddelde x_gemiddeld= en de steekproefstandaardafwijking
Opdracht 9a ----------- t-procedures voor een enkelvoudige steekproef Voor de meting van de leesvaardigheid van kinderen wordt als toets de Degree of Reading Power (DRP) gebruikt. In een onderzoek onder
Statistiek ( ) eindtentamen
Statistiek (200300427) eindtentamen studiejaar 2010-11, blok 4; Taalwetenschap, Universiteit Utrecht. woensdag 29 juni 2011, 17:15-19:00u, Educatorium, zaal Gamma. Schrijf je naam en student-nummer op
Vandaag. Onderzoeksmethoden: Statistiek 4. Recap: Hypothese toetsen. Recap: One-sample t-toets
Vandaag Onderzoeksmethoden: Statistiek 4 Peter de Waal (gebaseerd op slides Peter de Waal, Marjan van den Akker) Departement Informatica Beta-faculteit, Universiteit Utrecht Recap: Hypothese toetsen t-toets
11.0 Voorkennis. Wanneer je met binomcdf werkt, werk je dus altijd met een kans van de vorm P(X k)
11.0 Voorkennis Let op: Cumulatieve binomiale verdeling: P(X k) = binomcdf(n,p,k) Wanneer je met binomcdf werkt, werk je dus altijd met een kans van de vorm P(X k) Voorbeeld 1: Binomiaal kanseperiment
Examen Statistiek I Januari 2010 Feedback
Examen Statistiek I Januari 2010 Feedback Correcte alternatieven worden door een sterretje aangeduid. 1 Een steekproef van 400 personen bestaat uit 270 mannen en 130 vrouwen. Twee derden van de mannen
Cursus Statistiek Hoofdstuk 4. Statistiek voor Informatica Hoofdstuk 4: Verwachtingen. Definitie (Verwachting van discrete stochast) Voorbeeld (1)
Cursus Statistiek Hoofdstuk 4 Statistiek voor Informatica Hoofdstuk 4: Verwachtingen Cursusjaar 29 Peter de Waal Departement Informatica Inhoud Verwachtingen Variantie Momenten en Momentengenererende functie
Klantonderzoek: statistiek!
Klantonderzoek: statistiek! Statistiek bij klantonderzoek Om de resultaten van klantonderzoek juist te interpreteren is het belangrijk de juiste analyses uit te voeren. Vaak worden de mogelijkheden van
Kansrekening en Statistiek
Kansrekening en Statistiek College 16 Donderdag 4 November 1 / 25 2 Statistiek Indeling: Schatten Correlatie 2 / 25 Schatten 3 / 25 Schatters: maximum likelihood schatters Def. Zij Ω de verzameling van
TECHNISCHE UNIVERSITEIT EINDHOVEN
TECHNISCHE UNIVERSITEIT EINDHOVEN Tentamen Biostatistiek voor BMT (2S390) op 17-11-2003 U mag alleen gebruik maken van een onbeschreven Statistisch Compendium (dikt. nr. 2218) en van een zakrekenmachine.
10. De simultane kansverdeling van twee stochasten X en Y is gegeven door de volgende (onvolledige) tabel: X / /4 1. d. 0 e.
Tentamen Statistische methoden MST-STM 1 april 2011, 9:00 12:00 Studienummers: Vult u alstublieft op het MC formulier uw Delftse studienummer in; en op het open vragen formulier graag beide, naar volgend
Tentamen Inleiding Statistiek (WI2615) 10 april 2013, 9:00-12:00u
Technische Universiteit Delft Mekelweg 4 Faculteit Elektrotechniek, Wiskunde en Informatica 2628 CD Delft Tentamen Inleiding Statistiek (WI2615) 10 april 2013, 9:00-12:00u Formulebladen, rekenmachines,
Toegepaste Statistiek, Week 3 1
Toegepaste Statistiek, Week 3 1 In Week 2 hebben we toetsingstheorie besproken mbt een kwantitatieve (ordinale) variabele G, en met name over zijn populatiegemiddelde E(G). Er waren twee gevallen: Er is
Paragraaf 10.1 : Populatie en Steekproef
Hoofdstuk 10 Statistische Variabelen (H5 Wis A) Pagina 1 van 8 Paragraaf 10.1 : Populatie en Steekproef Les 1 : Herhaling Definitie Betrouwbaarheidsinterval (BI) Betrouwbaarheidsinterval (BI) = { de waarden
Kansrekenen en statistiek. Daniël Slenders Faculteit Ingenieurswetenschappen Katholieke Universiteit Leuven
Kansrekenen en statistiek Daniël Slenders Faculteit Ingenieurswetenschappen Katholieke Universiteit Leuven Academiejaar 2010-2011 Hoofdstuk 2 Beschrijvende statistiek Meerkeuzevraag 1 Opeenvolgende metingen
Cursus Statistiek 2. Fellowonderwijs Opleiding Intensive Care. UMC St Radboud, Nijmegen
Cursus Statistiek 2 Fellowonderwijs Opleiding Intensive Care UMC St Radboud, Nijmegen Cursus Statistiek 2 Steekproefgrootte en power berekening Vergelijken van gemiddelden (T-testen) Niet-parametrische
Statistiek. Beschrijvende Statistiek Hoofdstuk 1 1.1, 1.2, 1.5, 1.6 lezen 1.3, 1.4 Les 1 Hoofdstuk 2 2.1, 2.3, 2.5 Les 2
INHOUDSOPGAVE Leswijzer...3 Beschrijvende Statistiek...3 Kansberekening...3 Inductieve statistiek, inferentiele statistiek...3 Hoofdstuk...3. Drie deelgebieden...3. Frequentieverdeling....3. Frequentieverdeling....4.5
Niet de hoogte, wel de oppervlakte. Aandachtspunten bij. - statistische technieken voor een continue veranderlijke
Niet de hoogte, wel de oppervlakte Prof. dr. Herman Callaert Aandachtspunten bij - statistische technieken voor een continue veranderlijke - de interpretatie van een histogram - de normale dichtheidsfunctie
Statistiek ( ) ANTWOORDEN eerste tentamen
Statistiek (200300427) ANTWOORDEN eerste tentamen studiejaar 2010-11, blok 4; Taalwetenschap, Universiteit Utrecht. woensdag 18 mei 2011, 17:15-19:00u, Kromme Nieuwegracht 80, zaal 0.06. Schrijf je naam
Kansrekening en statistiek wi2105in deel 2 27 januari 2010, uur
Kansrekening en statistiek wi2105in deel 2 27 januari 2010, 14.00 16.00 uur Bij dit examen is het gebruik van een (evt. grafische) rekenmachine toegestaan. Tevens krijgt u een formuleblad uitgereikt na
13.1 Kansberekeningen [1]
13.1 Kansberekeningen [1] Herhaling kansberekeningen: Somregel: Als de gebeurtenissen G 1 en G 2 geen gemeenschappelijke uitkomsten hebben geldt: P(G 1 of G 2 ) = P(G 1 ) + P(G 2 ) B.v. P(3 of 4 gooien
Statistiek in HBO scripties
Statistiek in HBO scripties Wim Krijnen Lector Analyse Technieken voor Praktijkonderzoek Lectoraat Transparante Zorgverlening Hanze University of Applied Sciences January 29, 2015 Wim Krijnen Lector Analyse
+ ( 1 4 )2 σ 2 X σ2. 36 σ2 terwijl V ar[x] = 11. Aangezien V ar[x] het kleinst is, is dit rekenkundig gemiddelde de meest efficiënte schatter.
STATISTIEK OPLOSSINGEN OEFENZITTINGEN 5 en 6 c D. Keppens 2004 5 1 (a) Zij µ de verwachtingswaarde van X. We moeten aantonen dat E[M i ] = µ voor i = 1, 2, 3 om te kunnen spreken van zuivere schatters.
Antwoorden bij 4 - De normale verdeling vwo A/C (aug 2012)
Antwoorden bij - De normale verdeling vwo A/C (aug 0) Opg. a Aflezen bij de 5,3 o C grafiek:,3% en bij de,9 o C grafiek: 33,3% b Het tweede percentage is 33,3 /,3 = 5, maal zo groot. c Bij de 5,3 o C grafiek
Algemeen overzicht inleiding kansrekening en statistiek
Algemeen overzicht inleiding kansrekening en statistiek Robert Fitzner Tim Hulshof 7 Oktober 202 v.3 Voorwoord Deze tekst geeft een overzicht van de stof die behandeld wordt in de meeste cursussen inleiding
Een Bernoulli experiment is een experiment met slechts twee mogelijke uitkomsten, die we succes ( S ) en mislukking ( M ) noemen.
Hoofdstuk 6 Kansverdelingen 6.1 Discrete stochasten 6.1.1 De Bernoulli verdeling Een Bernoulli experiment is een experiment met slechts twee mogelijke uitkomsten, die we succes ( S ) en mislukking ( M
Betrouwbaarheid van een steekproefresultaat m.b.t. de hele populatie
Betrouwbaarheid van een steekproefresultaat m.b.t. de hele populatie Verschillende steekproeven uit eenzelfde populatie leveren verschillende (steekproef) resultaten op. Dit onvermijdelijke verschijnsel
Meten en experimenteren
Meten en experimenteren Statistische verwerking van gegevens Een korte inleiding 6 oktober 009 Catherine De Clercq Statistische verwerking van gegevens Kursus statistiek voor fysici door Jorgen D Hondt
Les 1: Waarschijnlijkheidrekening
Les 1: Waarschijnlijkheidrekening A Men neemt een steekproef van 1000 appelen. Deze worden ingedeeld volgens gewicht en volgens symptomen van een bepaalde schimmel: geen, mild, gematigd of ernstig. Het
Vertaling van enkele termen uit de kansrekening en statistiek alternative hypothesis alternatieve hypothese approximate methods benaderende methoden asymptotic variance asymptotische variantie asymptotically
