Quantum Mechanics. P.J. Mulders

Maat: px
Weergave met pagina beginnen:

Download "Quantum Mechanics. P.J. Mulders"

Transcriptie

1 Quantum Mechanics P.J. Mulders Department of Physics and Astronomy, Faculty of Sciences, Vrije Universiteit Amsterdam De Boelelaan 1081, 1081 HV Amsterdam, the Netherlands January 011 (vs.) Lectures given in the academic year

2 Introduction Voorwoord Het college Quantummechanica wordt dit najaar verzorgd door Prof. Piet Mulders geassisteerd door Drs. Wilco den Dunnen bij het werkcollege. Het college volgt in grote lijnen het boek Introduction to Quantum Mechanics, second edition van D.J. Griffiths (Pearson). In parallel zullen er aantekeningen verschijnen, die samenvattend van aard zijn. Het gehele vak beslaat 8 studiepunten en wordt gegeven in periodes, 3 en 4. Wekelijks worden uur hoorcollege gegeven, 1 uur wordt besteed aan een presentatie van een van de studenten en vragen, terwijl er uur werkcollege zijn. Daarnaast moeten er opgaven worden ingeleverd, die worden beoordeeld. We plannen om na blok 3 een deeltentamen af te nemen (schriftelijk op ). De opgaven en het deeltentamen vormen onderdeel van de toetsing. Het geheel wordt afgesloten met een (mondeling) tentamen (in principe in de week 1 t/m 6 maart 011). Dit tentamen, waarbij boek en uitgewerkte opgaven geraadpleegd mogen worden, gaat behalve over theoretische aspecten (afleidingen niet van buiten leren!) ook over opgaven die tijdens het werkcollege zijn behandeld. De hierboven genoemde regeling geldt voor studenten die actief deelnemen aan colleges en werkcolleges. Piet Mulders November 010

3 Introduction 3 Schedule (indicative) Material in book Material in notes Week Week 45.1, Week 46.,.3 3 Week 47.3,.4,.5 3 Week 48.5,.6, 3.1, 3. 4 Week , 3.4, 3.5, 3.6 Week Week 1 4. Week 4.3 Week Week 4 deeltentamen Week Week 6 5.1, 5. 1 Week 7 6.1, 9.1 Week 8 6., 6.3, 6.4, , 15 Week Week 10 (9) (11) (17), 19 Week 11 Literature 1. D.J. Griffiths, Introduction to Quantum Mechanics, Pearson 005. F. Mandl, Quantum Mechanics, Wiley C. Cohen-Tannoudji, B. Diu and F. Laloë, Quantum Mechanics I and II, Wiley J.J. Sakurai, Modern Quantum Mechanics, Addison-Wesley E. Merzbacher, Quantum Mechanics, Wiley B. Bransden and C. Joachain, Quantum Mechanics, Prentice hall 000

4 Introduction 4 Contents 1 Basic concepts of quantum mechanics Introduction Operators and their expectation values Commutators and uncertainty relations Time evolution 5.1 Stationary states General time evolution Spectrum and basic behavior of solutions Boundary conditions and matching conditions Three elementary properties of one-dimensional solutions One-dimensional problems The infinite square well Harmonic oscillator Free particle states The delta potential Bound states and scattering solutions for a square well potential Reflection and transmission through a barrier The Hilbert space of QM using Dirac notation Space of states = ket-space (Hilbert space) Scalar product and the (dual) bra-space Orthonormal basis Operators and matrices in QM Adjoint operator Hermitean operators Unitary operators Representations of states Coordinate-representation or back to wave functions Momentum-representation Angular momentum and spherical harmonics Spherical harmonics The radial Schrödinger equation in three dimensions Several observables and commutation relations Compatibility of observables Compatibility of operators and commutators Constants of motion The uncertainty relations The uncertainty relation for noncompatible observables The Heisenberg energy-time uncertainty relation

5 Introduction 5 9 The hydrogen atom Transformation to the center of mass Solving the eigenvalue equation Appendix: Generalized Laguerre polynomials A note on Bohr quantization Spin Definition Rotation invariance Spin states Why is l integer Matrix representations of spin operators Rotated spin states Combination of angular momenta Quantum number analysis Clebsch-Gordon coefficients Identical particles and relation with spin Permutation symmetry and the Pauli principle The states of the Helium atom Atomic multiplets Perturbation theory Basic treatment of time-independent perturbation theory Time-independent perturbation theory for degenerate states Examples of Time independent Perturbation Theory Fine structure in hydrogen: the mass correction Fine structure in hydrogen: the spin-orbit interaction Fine structure in hydrogen: the hyperfine splitting Refinements for Helium The fine structure of atoms Magnetic effects in atoms and the electron spin The Zeeman effect Spin-orbit interaction and magnetic fields Variational approach Basic treatment Application: ground state of Helium atom Application: ionization energies and electron affinities Time-dependent perturbation theory Examples of time-dependent interactions Application: Electron in rotating magnetic field Application: emission and absorption of radiation by atoms

6 Introduction 6 19 Scattering theory Differential cross sections Cross section in Born approximation Applications to various potentials

7 Basic concepts of quantum mechanics 1 1 Basic concepts of quantum mechanics 1.1 Introduction A classical system is determined by x(t) from which we get the velocity v(t) = ẋ(t), etc. The motion is obtained from Newton s equation, m d x dt = dv dx. It determines how we get from x(0) x(t) (given sufficient boundary conditions x(0) and ẋ(0)). Quantum mechanically, one works with a wave function ψ(x, t) satisfying the Schrödinger equation, i ψ t = m ψ +V(x,t)ψ(x). (1) x This determines how the system evolves from ψ(x, 0) ψ(x, t). The constant appearing in this equation is Planck s constant, h = Js. or more precise the reduced Planck s constant = h/π = Js = evs. This also determines the domain where quantum mechanics is needed to get a good description of nature, namely the domain where appropriate quantities are of the order of this constant. In this respect, note that energy time and/or to momentum distance or angular momentum have the same dimension as. Togoanyfurther, oneneeds to knowwhatto dowith ψ(x,t). It turns out that its physicalsignificance comes in by doing something with it. In particular ψ(x,t) dx is the probability to find the system at time t in an interval of size dx around the point x, or for a finite domain, P ab = b The function itself and the various ways to denote it, like a dx ψ(x,t). () ψ(x,t) = x ψ(t) = x,t ψ, (3) is referred to as probability amplitude (NL: waarschijnlijkheidsamplitudo) for state (NL: toestand) ψ (or ψ ) to be at place x at time t. The use of the notation ψ will be specified later. Where the system was before time t cannot be answered, one would have to do a measurement for that at the earlier time. But as soon as a measurement is done and the particle is found at position a, the state is no longer described by the wave function ψ but by ψ a, which would be a function peaking around point a. This sharp function will then spread according to the Schrödinger equation. Pretty weird! 1. Operators and their expectation values Suppose we know (we ll see later how) that we have a lot of identical particles, all being described by the same wave function ψ, of which we measure the position x. If these positions would be discrete, i.e. just a collection of possibilities x i we would measure how many (n i ) particles end up in each of the positions. That probability is P i = n i /N, where N = i n i is the total number of measurements. One has 1 = i x = i x = i P i, (4) x i P i, (5) x i P i, (6)

8 Basic concepts of quantum mechanics which states that the probabilities add up to one, and weighing with x i or x i gives the average of x, x, etc., which can be extended to the average of any weight function w(x). The standard deviation (squared) is found by weighing with (x i x ). Since x is a number, one finds σ = x = i (x i x ) P i = x x. (7) For the quantum mechanical outcome of an x-measurements one has the continuous version of the above with all (real) possibilities for x, with probabilities ρ(x,t) = ψ(x,t). This implies the normalization and leads to specific expectation values (NL: verwachtingswaarden), 1 = dx ρ(x,t) = dx ψ (x,t)ψ(x,t), (8) x = dx xρ(x,t) = dx ψ (x,t)xψ(x,t), (9) x = dxx ρ(x,t) = dx ψ (x,t)x ψ(x,t), (10) which can be extended to any weight function and for which one has a standard deviation (NL: standaardafwijking) x of which the square is x = dx (x x ) ρ(x,t) = x x. (11) Thenotationontherighthandsidewithxbetweenthefunctionsψ andψ canbeconvenientlygeneralized to any operator Ô = dx ψ (x,t)ôψ(x,t), (1) where Ô is an operator acting on the function ψ. The left-handside is referred to as the expectation value of O. In the simple case above we would have the position operator ˆx that acts like ˆxψ(x,t) = xψ(x,t), but also the derivative d/dx is an example of an operation working on ψ and producing a new function (the derivative function). The normalization is in fact just the expectation value of the unit operator, ˆ1 = 1. Usually the hat on the operators will be omitted. Finally we note that an expectation value does depend on the state ψ, so the better notation would have been Ô ψ or ψ Ô ψ instead of just Ô. Just as one talks about the expectation value of ˆx, one now can talk about the expectation value of Ô (in state ψ). A first consistency check of quantum mechanics is the time independence of the normalization. This is straightforward, although it involves a bit of manipulation and doing partial integrations. One proves that d dx ψ (x,t)ψ(x,t) = 0, (13) dt for any normalizable function (Eq. 8) that satifies the Schrödinger equation (Eq. 1). A normalized continuous function must go to zero at x ±. For the probability in any finite interval one has a modified equation, dp ab = J(a,t) J(b,t), (14) dt where J(x,t) = i ( ψ ψ ) m x ψ x ψ is the probability current (NL: waarschijnlijkheidsstroom) or flux. (15)

9 Basic concepts of quantum mechanics 3 If we look at the time dependence of x, it is (in general) nonzero. We obtain d dt ˆx = i dx ψ (x,t) ψ(x,t) = ˆp x m x m, (16) with the momentum operator (NL: impulsoperator) ˆp given by ˆp x = i x. (17) The position and momentum are actually the basic quantities in quantum mechanical problems, as they are in classical mechanics. E.g. classically the energy can be written as a function of p and x. That same function is actually the righthand-side of the Schrödinger equation in Eq. 1, with i ψ(x,t) t = Ĥψ(x,t), (18) Ĥ = ˆp +V(ˆx,t) = +V(x,t). (19) m m x This is the energy operator or Hamiltonian, which is the most important operator because its role as time evolution operators. Other important operators are e.g. the angular momentum operators ˆl = ˆr ˆp, which in 3 dimensions play a key role. Explicitly, they are ( l x = i y z z ), (0) y ( l y = i z x x ), (1) z ( l z = i x y y ). () x 1.3 Commutators and uncertainty relations At this point, we just want to add a word of caution on the order of operators. Calculating  ˆBψ can be different from ˆBÂψ. Trying this for a simple wave function, for instance We have Applying the operatos once more, we get ψ(x) = N e αx / e iωt. ˆxψ(x) = xn e αx / e iωt ˆp x ψ(x) = i dψ dx = +i αxn e αx / e iωt ˆx ψ(x) = x N e αx / e iωt ˆp x ˆxψ(x) = i d ( xe αx / e iωt) = i ( 1 αx ) N e αx / e iωt, dx ˆxˆp x ψ(x) = i x d dx ( e αx / e iωt) = i αx N e αx / e iωt, ˆp xψ(x) = d ψ dx = ( α α x ) N e αx / e iωt,

10 Basic concepts of quantum mechanics 4 The various expectation values (familiarize yourselves with these type of integrals and see how you get them using Mathematica) are 1 = N e dx αx = N π ( α α = 1 N = π ˆx = N dx xe αx = 0, ˆp x = i N α ˆx = N ˆp x = N α dx xe αx = 0, dx x e αx = 1 α, dx ( 1 αx ) e αx = α. We note that for this wave function the expectation value of the position and momentum are zero, but the standard deviations are nonzero, x = 1/ α and p x = α/. This shows that in this particular case a wave function which is strongly peaked around zero (α is large) has a large standard deviation if one looks at the momentum. The product of expectation values is constant, however, x p x = /. In general, we will find for any wave function that ) 1/4, x p x. (3) This is an example (and the most famous one) of an uncertainty relation and as we will discover later, it is a property that is intimately connected with the fact that the operators ˆx and ˆp x do not commute, [ˆx, ˆp x ] = ˆxˆp x ˆp x ˆx = i. (4) This commutator is actually the most basic one in quantum mechanics, referred to as the canonical commutation relation. That it holds for any function is easily seen by calculating for an arbitrary function φ [ x, d ] φ(x) = x d dx dx φ d dφ dφ (xφ(x)) = x x φ(x) = φ(x). dx dx dx

11 Time evolution 5 Time evolution.1 Stationary states We return to our important Schrödinger equation, i ψ(x,t) t = Ĥ(ˆx, ˆp x)ψ(x,t) = m d ψ(x,t) dx +V(x)ψ(x,t). In the case that the potential in the Hamiltonian is independent of the time, one can easily see that the Schrödinger equation allows separable solutions of the form ψ(x,t) = φ(x)f(t). Inserting this ansatz in Eq. 1, one finds with ψ(x,t)/ t = φ(x)df/dt and ψ(x,t)/ x = f(t)dφ/dx, i df dt f(t) = E = m d φ dx +V(x)φ(x) φ(x), (5) where E must be t-independent but also x-independent, thus constant. We obtain two equations m the time-independent Schrödinger equation and a time dependence d φ +V(x)φ(x) = Eφ(x), (6) dx i df dt = Ef(t) = f(t) e iet/. (7) Thus we get (in general many) stationary states (NL: stationaire toestanden), ψ En (x,t) = φ n (x)e ient/, (8) where φ n (x) are eigenfunctions (NL: eigenfuncties) of the (time-independent) Hamiltonian with eigenvalues E n, Ĥ(x,p)φ n (x) = E n φ n (x). (9) It is easy to see that if φ n is normalized, then Ĥ φ n = E n, Ĥ φn = E n, and thus H φn = 0. (30) Thus, for an eigenstate φ n of Ĥ the standard deviation is zero and the state has a precise energy. To find real energies the Hamiltonian must satisfy certain conditions, to be precise it must be hermitean (to be discussed later). Actually, when measuring an energy, it must be one of the eigenvalues of Ĥ and the system is immediately after that measurement in a state φ n (x). The set of eigenvalues of Ĥ is known as its energy spectrum.. General time evolution The eigenvalues of the Hamiltonian form the energy spectrum of a quantum theory. One can show that normalizable solutions φ n (x) of the time-independent Hamiltonian can be choosen real, while the eigenvalues of the Hamiltonian E n must be real. Furthermore the eigenfunctions satisfy dx φ m (x)φ n(x) = δ mn, (31)

12 Time evolution 6 where δ mn is known as the Kronecker delta, which is 1 if m = n and δ mn = 0 if m n. Such functions are called orthogonal (NL: orthogonaal). The stationary states as in Eq. 8 have a well-determined energy and a known time dependence which is a simple phase. The probability ρ(x,t) is for a stationary state independent of the time. This is not true in general. But starting with a given function at t = 0, one can expand it in the set of eigenfunctions, which turn out to form a complete set of functions. This means that we can write ψ(x,0) = c n φ n (x) with c n = dx φ n (x)ψ(x,0). (3) n Since the Schrödinger equation is a linear equation and we know the time-dependence of ψ En (x,t) we immediately deduce that ψ(x,t) = c n φ n (x)e ient/. (33) Such solutions in general are complex and the probability is not time-independent. They show oscillations. If the initial state ψ(x,0) is a linear combination of φ 1 (x) and φ (x) the oscillations will be of the form with sine or cosine with argument cos((e 1 E )t/ ), hence have a frequency f = (E 1 E )/h or an angular frequency ω = πf = (E 1 E )/..3 Spectrum and basic behavior of solutions This is best illustrated by considering the one-dimensional hamiltonian H = ˆp x/m+v(ˆx), stationary solutions of the form ψ(x,t) = φ(x) exp( iet/ ), are obtained by solving [ d ] m dx +V(x) φ(x) = Eφ(x), rewritten as d dx φ = m (E V(x)) φ(x). (34) }{{} k (x) V(x) E ~k (x) ~κ (x) x φ (x) oscillatory exponential x We distinguish two situations: (i) k (x) 0 in the region where E V(x). In that case the change of slope is opposite to the sign of

13 Time evolution 7 the wave function, which implies that the solution always bends towards the axis. Looking at the case that k (x) = k = m(e V 0 )/ (constant potential V 0 ) one has: or φ(x) = A sinkx+b coskx, (35) φ(x) = A e ikx +B e ikx. (36) (ii) k (x) = q (x) 0 in the region where E V(x). In that case the change of slope has the same sign as the wave function, which implies that the solution always bends away from the axis. Looking at the case that k (x) = q = m(v 0 E)/ (constant potential V 0 ) one has: φ(x) = A sinhqx+b coshqx, (37) or φ(x) = A e qx +B e qx. (38).4 Boundary conditions and matching conditions In order to find proper solutions of the Schrödinger equation, which is a second order (linear) differential equation, one needs d φ/dx, hence φ(x) and dφ/dx must be continuous. The second condition implies dφ dx dφ a+ǫ dx = a ǫ a+ǫ a ǫ dx d φ dx = m a+ǫ a ǫ dx (V(x) E)φ(x) = 0 Thus continuity not necessarily requires a continuous potential, but it is necessary that the potential remains finite. In points where the potential becomes infinite one must be careful, e.g. by studying it as a limiting case. Cases in which the potential makes a jump are studied by imposing matching conditions from both sides, namely equating the wave function and its derivative. Because one in quantum mechanics often takes some freedom in the normalization (to be imposed later), one often chooses to equate the ratio of derivative and wave function, the socalled logarithmic derivative, lim ǫ 0 (dφ/dx) φ(x) (dφ/dx) = lim ǫ 0 a ǫ φ(x). (39) a+ǫ The behavior at infinity (let s simply assume the potential to be zero) depends on the energy, e.g. if E = q /m < 0 one must have lim φ(x) = x Ce qx 0, and lim φ(x) = x C e qx 0. (40) If the energy E = k /m > 0 one could have in case of an wave from the left with incoming flux k/m (allowing to be general for a reflected wave) the boundary condition lim φ(x) = x eikx +A R e ikx. (41) In a particular physics problem, one might look for a solution with only a transmitted wave lim φ(x) = A T e ikx. (4) x with a transmitted flux A T k/m and thus a transmission probability (transmitted/incoming flux) T = A T. With the above ingredients several one-dimensional problems can be solved. Some examples

14 Time evolution 8 of potential wells and barriers will be discussed below. Given a particular potential we note three domains: (i) No solutions exist when E V min. In that case one has everywhere k (x) 0 and there is no way that the exponentially behaving solutions at ± can be matched without a region where the solution bends back towards the axis, i.e. a region where E V(x). (ii) In the regin V min < E < V asym (where V asym is the lowest asymptotic value of the potential) one has a discrete energy spectrum corresponding to a discrete set of solutions: starting with a vanishing exponential at, say, x =, one will find in general a solution that at x = + behaves as a linear combination of two exponential functions (as in Eq. 38). Only for very specific energies the coefficient of the growing exponential e qx will be zero and one finds a normalizable solution. These localized solutions, found for discrete energies, are referred to as bound states. (iii) In the region E V asym one has a continuous spectrum of which the solutions at infinity oscillate or equivalently are complex-valued waves (with definite momentum). One always can find such a solution. This is even true if the asymptotic values of the potential at x = ± are not equal. Finally, considering an infinitely high potential (e.g. for x > 0) as the limit of a large potential V 0 for x > 0 one must match on to the solution e qx with q = mv 0 /, leading to (dφ/dx) mv0 lim = lim x 0 φ(x) V 0 =, (43) which requires φ(0) = 0 and a finite derivative as only nontrivial possibility..5 Three elementary properties of one-dimensional solutions Property 1: In one dimension any attractive potential has always at least one bound state. Property : For consecutive (in energy) solutions one has the node theorem, which states that the states can be ordered according to the number of nodes (zeros) in the wave function. The lowest energy solution has no node, the next has one node, etc. Property 3: Bound state solutions of the one-dimensional Schrödinger equation are nondegenerate. Proof: suppose that φ 1 and φ are two solutions with the same energy. Construct known as the Wronskian. It is easy to see that W(φ 1,φ ) = φ 1 (x) dφ dx φ (x) dφ 1 dx, (44) d dx W(φ 1,φ ) = 0. Hence one has W(φ 1,φ ) = constant, where the constant because of the asymptotic vanishing of the wave functions must be zero. Thus (dφ 1 /dx) = (dφ /dx) d φ 1 φ dx lnφ 1 = d dx lnφ d ( ) ( ) dx ln φ1 φ1 = 0 ln = constant φ 1 φ, φ and hence (when normalized) the functions are identical. φ

15 One-dimensional problems 9 3 One-dimensional problems 3.1 The infinite square well We start by considering the potential V(x) = 0 for x < a/ and V(x) = for x a/. As discussed in the previous section, the wave function is zero for x > a/. For E 0 one would have solutions of the form φ(x) = Ae qx +Be qx, with q = m E /, which does not have a solution (one finds A = B = 0 from the conditions φ(a/) = φ( a/) = 0). For E > 0 one has solutions, which in general are of the form φ(x) = A sin(kx)+b cos(kx), with k = me/, which leads to either A = 0 or B = 0. Check that the solutions separate into (including normalisation) the even solutions ( nπ ) φ n (x) = a cos a x with E n = n π ma (odd n values), (45) and the odd solutions φ n (x) = a sin ( nπ a x ) with E n = n π ma (even n values). (46) The number of nodes is given by n 1. It is easy to check that the solutions are orthogonal, 3. Harmonic oscillator dx φ n(x)φ m (x) = δ mn. (47) The harmonic oscillator potential is encountered in very many applications. It is a natural approximation for a system in equilibrium. Around the minimum of any potential function one can write V(x) = V(x min )+ 1 k(x x min) +..., and after a redefinition of the energy (shift) and the coordinates (choose x min = 0), one has V(x) = 1 kx 1 mω x. The latter involves the angular frequency ω = k/m, which appears in the classical solutions. From mẍ = F = dv/dx = kx one finds as classical solution The energy x(t) = A cos(ωt+ϕ), p(t) = mẋ(t) = mωa sin(ωt+ϕ) E = p m +V(x) = mω A, is time-independent. We note that it can be written as E = (mωx+ip)(mωx ip) m = A (t)a + (t), m

16 One-dimensional problems 10 where A ± (t) = (mωx±ip) = mωae ±i(ωt+ϕ). For the time-independent Schrödinger equation for the harmonic oscillator in one dimension the energy expression is taken as the Hamiltonian with x and p operators. It is written as [ ] p H φ(x) = m +V(x) φ(x) = [ m d dx + 1 mω x ] φ(x) = Eφ(x). (48) To handle it mathematically, it is conventient to make this equation dimensionless by introducing ξ = α x, leading to [ α d ] m dξ + mω α ξ φ(ξ) = Eφ(ξ). To fix α one can equate the multiplicative factors in both terms, α /m = mω /α which gives α = mω/, leading to [ ω 1 d dξ + 1 ] ξ φ(ξ) = Eφ(ξ). (49) Rather than solving this as a differential equation (done in the appendix below), we use an algebraic approach to solve this problem. For this we write the Hamiltonian as a product of two (conjugate) operators, but one must be careful in this case, since the operators x and p (or equivalently ξ and d/dξ do not commute. To be precise we have the basic canonical commutation relation [x,p] xp px = i (see Eq. 4). This also means that the classical quantities A and A + mentioned above, do not commute after replacing the position and momentum by operators. Introducing a ± = 1 ( ξ d ) 1 = (mωx ip), (50) dξ mω one then finds that these operators satisfy [a,a + ] = 1 (51) and one must be careful to rewrite H. The correct result is ( H = ω a + a + 1 ). (5) Finding the eigenvaluesofthis is donein afew steps. It is sufficient tostudy the eigenvaluesofn a + a, which means that we are looking for (normalized) eigenfunctions φ n satisfying Nφ n = a + a φ n nφ n. (53) It is easy to see that the eigenvalue n satisfies n = dx φ n Nφ n = dx φ n (a +a φ n ) = dx (a φ n ) (a φ n ) 0. Here one must realize that while dx φ (xφ) = dx (xφ) φ and dx φ (pφ) = dx (pφ) φ (x and p are hermiteanoperators)thisisnottrueforthea ± operators,forwhichonehas dxφ (a ± φ) = dx(a φ) φ. Returning to the eigenvalue n, we thus know it is real and non-negative. The beauty of a ± is that they can be used to construct new eigenfunctions, N(a + φ n ) = a + a a + φ n = a + (a + a +1)φ n = (n+1)a + φ n, (54) N(a φ n ) = a + a a φ n = (a a + 1)a φ n = (n 1)a + φ n. (55)

17 One-dimensional problems 11 Thus a ± φ n = c ± φ n±1. From Eq. 3. we see that c = n. Similarly one easily sees that c + = n+1. Thus if φ n is a solution of the Hamiltonian, a + φ n = n+1φ n+1 and a φ n = nφ n 1 (56) are also eigenfunctions of the Hamiltonian with energies increased or lowered by ω. But this poses a problem with Eq. 3.. We may end up with negative eigenvalues, unless there is a solution such that a φ = 0. This solution exist, namely φ 0. Thus n = 0 is necessarily one of the eigenvalues of N. All other solutions then can be constructed from this. Summarizing, we have find that ( Hφ n = n+ 1 ) ωφ n, (57) with n = 0,1,,... and eigenfunctions satisfying φ n = (a +) n n! φ 0, (58) where φ 0 satisfies a φ 0 = 0 of which the solution is easily found, ( a φ 0 = ξ + d ) φ 0 (ξ) = 0 = φ 0 (ξ) e ξ /. (59) dξ Note actually that the functional form of the solutions is not needed to find the spectrum (eigenvalues of Hamiltonian) or to find expectation values of x, p, or combinations of them. The operators x and p can simply be expressed in a ± of which the action on the φ n s is known. Appendix: Hermite polynomials The problem of the one-dimensional harmonic oscillator in essence reduces to the differential equation for which the solutions are given by y +g 0 (x)y = 0 with g 0 (x) = n+1 x (60) where H n are polynomials of degree n. They are normalized as y(x) = e x / H n (x). (61) dx e x [H n (x)] = n n! π, (6) and satisfy the differential equation [ d dx x d ] dx +n H n (x) = 0. (63) Some useful properties are H n (x) = ( ) n dn x e dx n e x (Rodrigues formula), (64) xh n (x) = 1 H n+1(x)+nh n 1 (x), (65) d dx H n(x) = nh n 1 (x). (66)

18 One-dimensional problems 1 4 Some explicit polynomials are H 0 (x) = 1, H 1 (x) = x, H (x) = 4x, H 3 (x) = 8x 3 1x Free particle states Plots of the H n (x) or HermiteH[n,x] functions for n = 0, 1,, and 3. The next example is the case that V(x) = 0. In this case one only has positive energy solutions that do not vanish asymptotically, but oscillate. We will see that there is a continuous spectrum. Introducing E k ω k k /m or k = me, the Schrödinger equation takes the form d dx φ(x) = k φ(x), (67) with as in Eq. 35 or 36 simple solutions, for the case V = 0 generally referred to as plane waves, φ k (x) = Ae ikx. (68) The stationary time-dependent solutions are ) ψ k (x,t) = A exp (ikx k m t = Ae ikx iωkt) = Ae ik(x vphaset), (69) where v phase = ω k /k = k/m is the phase velocity. We note that the density of this solution is constant, ρ = A. Thefunctionscorrespondtodefinitemomentap = k (theyareeigenfunctionsofthemomentum operator). Using the expression for the current (Eq. 15) one gets J(x,t) = A k/m = ρp/m = ρv, where v is the normal classical velocity, v = p/m = k/m, not to be confused with the phase velocity. As discussed before, we now also know the evolution of any system, described by an arbitrary wave function ψ(x,0) = φ(x) at time t = 0. We have to expand this solution into plane waves, dk φ(x) = π φ(k)e ikx with φ(k) = dx φ(x)e ikx, (70) where the second equation tells us how to find the coefficient. This is just the continuous versionof Eq. 3 with n dk/π and c n φ(k). The procedure is know as Fourier transformation and its inverse. The use of π versus π in the integrations is just a matter of convention. The full time-dependent solution becomes the wave packet dk ψ(x,t) = π φ(k)e ikx iωkt. (71) One might ask what the velocity is of the corresponding density ψ(x,t). This can be studied, generalizing the case of ω k = k /m to an arbitrary situation where ω(k) is the dispersion relation. Suppose

19 One-dimensional problems 13 the wave packet is strongly peaked around k k 0, in that case p k 0. By expanding the frequencies around k 0 one finds ω(k) ω(k 0 )+ dω dk (k k 0 ) ω 0 +v g (k k 0 ). (7) k0 Here the group velocity v g = dω/dk = de/dp has been introduced, which is also the classical velocity from basic classical mechanics. We get ψ(x, t) dk π e i(ω0 vgk0)t φ(k)e ikx i(ω0+vg(k k0))t dk π φ(k)e ik(x vgt) e i(ω0 vgk0)t φ(x v g t) (73) which up to a phase that doesn t affect ψ is the same wave function as at t = 0, but shifted as if moving with the group velocity v g. 3.4 The delta potential First, let s discuss the properties of the delta-function. The Dirac delta-function is in fact a distribution (mapping functions into numbers), defined via dx f(x)δ(x) = f(0), (74) or dx f(x)δ(x a) = f(a). It can be considered as the limit of a peaked function, e.g. δ(x) = lim ǫ 0 φ ǫ (x), (75) where φ ǫ (x) = 0 if x > ǫ/ and φ ǫ (x) = ǫ if x ǫ/. Other examples are Some properties are δ(x) = lim Λ sinλx δ(x) = lim Λ πx = lim Λ Λ π e Λ x, (76) Λ Λ dk dk π eikx = π eikx. (77) δ( x) = δ(x), δ(ax) = 1 a δ(x), xδ(x) = 0, dx f(x)δ(x a) = f(a), d θ(x) = δ(x), dx where θ(x) is the Heaviside function, θ(x) = 0 for x < 0 and θ(x) = 1 for x 0. Note that Mathematica can work with this function, e.g. to define a square well potential with depth V 0 using the expression V(x) = V 0 θ( 1 a+x)θ(1 a x).

20 One-dimensional problems 14 Bound state(s) of the delta potential Given a one-dimensional potential of the form The Schrödinger equation becomes φ (x) a V(x) = δ(x). (78) ma δ(x)φ(x) = me φ(x). (79) By integrating from (0 ǫ) tot (0+ǫ) one shows that for a solution of the Schrödinger equation limφ (x) limφ (x) = φ(0). (80) x 0 x 0 a For this potential there (always) exist one bound state solution. For E = q /m we get φ(x) = e qx voor x < 0, φ(x) = e qx voor x > 0. The condition in Eq. 80 gives q = 1/a. Thus we find a bound state with energy E = /ma. Scattering states of the delta potential For positive energies we have plane wave solutions except for x = 0 and we can calculate the transmission and reflection coefficient (A T en A R ) for a wave coming from the left (from x ). The wave function corresponding to this problem is ( taking E = k /m) φ(x) = e ikx +A R e ikx for x < 0, φ(x) = A T e ikx for x > 0. The boundary conditions at x = 0 become (using continuity and for derivatives Eq. 80), 1+A R = A T, ikaa T (ika ikaa R ) = A T. From this one obtains A R = 1 1 ika, A T = ika 1 ika. One can easily show that the flux is conserved. Calculating the flux for plane waves e ±ikx one has J(x) = ± k/m, we find that flux for x < 0 is k(1 A R )/m and for x > 0 is k A T /m. Indeed the results satisfy 1 A R = A T. 3.5 Bound states and scattering solutions for a square well potential We consider the potential V(x) = V 0 for x < a and V(x) = 0 for x a.

21 One-dimensional problems 15 One does not find a finite solution for E < V 0. One would have exponential behavior in all x-ranges and since k (x) < 0 everywhere, one must have a solution which everywhere either has a positive or a negative derivative. For V 0 < E < V 0, finite solutions are of the form φ(x) = C e qx for x a, (81) φ(x) = A sin(kx)+b cos(kx) for x a, (8) φ(x) = Ce qx for x a (83) (see Eq. 40), where E = q /m and E+V 0 = k /m. The matching conditions for wave functions and derivatives give C e qa = A sin(ka)+b cos(ka), A sin(ka)+b cos(ka) = Ce qa, (q/k)c e qa = A cos(ka)+b sin(ka), A cos(ka) B sin(ka) = (q/k)ce qa. It is easy to convince one self that there are two classes of solutions, even solutions with A = 0 and C = C, odd solutions with B = 0 and C = C. For the solutions one obtains from the matching of logarithmic derivatives in the point x = a k tan(ka) = q (even), (84) k cot(ka) = q (odd). (85) Introducing the dimensionless variable ξ = ka and writing ξ 0 = mv 0 a /, one has qa = ξ0 ξ and E = (ξ0 ξ )/ma. The variable ξ runs from 0 ξ ξ 0. The conditions become ξ tan(ξ) = 0 ξ ξ (even), (86) ξ tan(ξ) = ξ 0 ξ (odd). (87) One sees that there always is an even bound state in the region 0 ξ minimum{ξ 0,π/}, and then depending on the depth of the potential (i.e. as long as ξ ξ 0 ) a first odd bound state (with one node) between π/ ξ π, a second even bound state (with two nodes) between π ξ 3π/, etc. Next one might look for solutions with positive energy, in particular of the kind with boundary conditions as in Eqs. 41 and 4, φ(x) = e ikx +A R e ikx for x a, (88) φ(x) = A sin(kx)+b cos(kx) for x a, (89) φ(x) = A T e ikx for x a, (90) where E = k /m and E +V 0 = K /m. The matching conditions become e ika +A R e ika = A sin(ka)+b cos(ka), A sin(ka)+b cos(ka) = A T e ika, i k k K e ika ia R K eika = A cos(ka)+b sin(ka), A cos(ka) B sin(ka) = ia T k K eika.

22 One-dimensional problems 16 Eliminating A and B one obtains for the (complex) amplitudes of the reflected and transmitted waves, A R = e ika i(k k ) sin(ka) kk cos(ka) i(k +K ) sin(ka), (91) A T = e ika kk kk cos(ka) i(k +K ) sin(ka). (9) In contrast to negative energies, one has always solutions for positive energy. The interpretation of the specific ansatzofthe wavefunction isanincomingwavefromthe left, φ i (x) = e ikx (with fluxj i = k/m), a reflected wave, φ r (x) = A R e ikx (with flux j r = A R k/m), and a transmitted wave, φ r (x) = A T e ikx (with flux j t = A T k/m). The probabilities for reflection and transmission are R = A R = = T = A T = = (K k ) sin (Ka) 4k K cos (Ka)+(k +K ) sin (Ka) (K k ) sin (Ka) 4k K +(K k ) sin (Ka) 4k K 4k K cos (Ka)+(k +K ) sin (Ka) (93) 4k K 4k K +(K k ) sin (Ka), (94) satisfying 1 R = T (flux from the left = flux to the right). Note that there exists particular energies, for which the wave vector K satisfies Ka = nπ, in which case R = 0 and T = 1, i.e. the potential is invisible for those particular waves. 3.6 Reflection and transmission through a barrier We consider the situation of a positive square potential, also called a barrier potential, V(x) = +V 0 for x < a and V(x) = 0 for x a. In this case we only have scattering solutions for E > 0. The case E V 0 is even completely similar to the scattering solutions in the previous section. We have the same expression for k = me/, but now K = m(e V 0 )/. The quantities k and K are the wave numbers in the different regions, respectively. In terms of k and K the expressions for reflection and transmission remain the same as in Eqs. 93 and 94. One again has the situation that there are energies for which Ka = nπ and the barrier is invisible. The case0 E V 0 appearsat first sightdifferent becausethe wavefunctions in the region a x a become exponentional, e.g. linear combinations of cosh(qx) and sinh(qx) with q = m(v 0 E)/. But this in fact is nothing else than using complex wave numbers, K iq (note that sign doesn t matter), leading instead of Eqs. 91 and 9 to A R = e ika i(k +q ) sinh(qa) kq cosh(qa) i(k q ) sin(qa), (95) A T = e ika kq kq cosh(qa) i(k q ) sinh(qa). (96) leading to the reflection and transmission probabilities through a barrier, R = A R = T = A T = (k +q ) sinh (qa) 4k q +(k +q ) sinh (qa) (97) 4k q 4k q +(k +q ) sinh (qa). (98)

23 One-dimensional problems 17 In this situation one always has T < 1. In the case that qa 1, which is the case if E V 0 and mv 0 a / 1, the transmission coefficient reduces to the tiny probability T 16k q (k +q ) e 4qa 16 E V 0 e 4qa. In fact, only the exponential is the important part in this probability. For a barrier with a variable potential, the result becomes the famous WKB formula for tunneling, which is the product of the consecutive exponential factors for small barriers, ( x ( ) ) 1/ m T exp dx x 1 [V(x) E] 1/, (99) where x 1 and x are the points where V(x 1 ) = V(x ) = E with V(x) E in the region x 1 x x. Hitting a barrier Considering the situation of a potential V(x) = +V 0 for x < 0 and V(x) = 0 for x 0. For the solutions with 0 E = k /m V 0, one can find solutions of the form φ(x) = Ce qx for x 0, (100) φ(x) = e ikx A R e ikx for x 0, (101) where q = m(v 0 E) and we have already eliminated one overall constant by choosing the coefficient before e ikx, the incoming wave (from the right), to be unity. By equating the logarithmic derivatives from right and left, one finds the solution for A R, which can be written as A R = q +ik q ik = eiδ with tanδ(e) = k q = E V 0 E. (10) We see as expected from flux conservation that A R = 1 (there is no transmission) and can be expressed in terms of a phase shift δ(e). When V 0, the phase shift disappears and the wave function on the right-hand side becomes a sin(kx) with φ(0) = 0. For energies E > V 0 one will have both reflection and transmission.

24 The Hilbert space of QM using Dirac notation 18 4 The Hilbert space of QM using Dirac notation 4.1 Space of states = ket-space (Hilbert space) Quantum mechanical states are denoted u and form a linear vector space over the complex numbers (C), the Hilbert space H = { u }, u 1 H u H c 1 u 1 +c u H (103) c 1,c C Given a basis { u 1,..., u 1 } for an N-dimensional Hilbert-space (N can be infinite!) consisting of a collection linearly independent kets, we can express every ket in this basis (completeness), u H u = 4. Scalar product and the (dual) bra-space N c n u n. (104) For elements u, v H we can construct the complex number u v C, for which u v = v u, If u = c 1 u 1 +c u then v u = c 1 v u 1 +c v u. Note that this implies u u 0. n=1 u v = v u = c 1 v u 1 +c v u = c 1 u 1 v +c u v. Beside the ket-space we can also introduce the dual bra-space, H = { u }, which is anti-linear meaning that u = c 1 u 1 +c u u = c 1 u 1 +c u. (105) The scalar product is constructed from a bra-vector and a ket-vector ( bra(c)ket ). 4.3 Orthonormal basis A state u is normalized when u u = 1. Two states u and v are orthogonal when u v = 0. In a linear vector space an orthonormal basis can be constructed, in which every state can be expanded, Basis { u 1, u,...} with u m u n = δ mn. If u = n c n u n, then c n = u n u (proof) and we can write u = n u n u n u = }{{} c n c 1 c.. (106) Note that u u = 1 n c n = 1, (107) hence the name probability amplitude for c n.

25 The Hilbert space of QM using Dirac notation 19 The collection { u 1, u,...} forms an orthonormal basis for the bra-space. In most one dimensional examples that we considered so far, the Hilbert space was the space of square integrable functions on the real axis, with the scalar product φ 1 φ It is straightforward to check all properties of a scalar product. 4.4 Operators and matrices in QM dx φ 1 (x)φ (x). (108) An operator A acts in the Hilbert-space H, i.e. v = A u = Au H. If u = c 1 u 1 +c u then A u = c 1 A u 1 +c A u (A is linear). The matrix element of A in states u and v is given by u A v. If u = v we call this expectation value of A, if u v we call this transition matrix element. The unit operator acts as I u = u and can with the help of a complete orthornormal basis { u n } be written as I = u n u n, (109) n directly following from Eq. 106 and known as completeness relation. If u = n c n u n = n u n u n u then we can write for A u A u = A u n u n u n = ( ) u m u m A u n u n u = u m A mn c n }{{}}{{} m,n m n A mn c n A 11 A 1... c 1 = A 1 A... c and the matrix element of A is given by (110) u A u = m u m A u n u n u m,n u u }{{}}{{}}{{} c m A mn c n A 11 A 1... = (c 1 c...) A 1 A..... c 1 c. (111) 4.5 Adjoint operator The adjoint operator A is defined by giving its matrix elements in terms of those of the operator A, u A v v A u. (11) We note that de bra-state Au = u A. This is proven in the following way: for every v is Au v = v Au = v A u = u A v. In matrix language one thus has that A = A T.

26 The Hilbert space of QM using Dirac notation Hermitean operators Definition: An operator A is hermitean when u Au = Au u. By applying this to a state c 1 u + c v with arbitrary coefficients one sees that this is equivalent with i.e. A is self-adjoint. u Av = Au v u A v = u A v A = A, The consequences of A = A for transition matrix elements and expectation values are u A v = u A v = v A u (113) u A u = u A u real expectation values (114) For the eigenvalues (a n ) and eigenstates ( n ), of a hermitean operator, A n = a n n we have n A n = a n are the (real) eigenvalues. Eigenstates corresponding with nondegenerate eigenvalues are orthogonal, A n = a n n A m = a m m m n = 0. a m a n If eigenvalues are degenerate, we can construct orthogonal eigenstates (possibly by using other, commuting, operators). Eigenstates can be normalized, n n = 1. Thus, eigenstates form an orthonormal basis, m n = δ mn. Using this basis A is diagonal, A = a n a n n = 0 a... (115) n..... The expectation value of a hermitean operator can be written as u A u = u n a n n u = a n c n. (116) }{{}}{{} n c n n c n This coincides with the interpretation of c n as the probability to find the state n and obtain the result a n in a measurement. 4.7 Unitary operators Definition: An operator U is unitary when U 1 = U, or UU = U U = I. It is easy to prove that a unitary operator conserves scalar products, Uv Uw = v w (117) With a unitary matrix we can transform an orthonormal basis { u n } in another such basis {U u n }.

27 Representations of states 1 5 Representations of states 5.1 Coordinate-representation or back to wave functions With the Dirac notation at hand, we can formalize some issues on wave mechanics. We have used ψ and ψ(r) more or less interchangeable. To formalize we simply write down the eigenvalue equation for the hermitean operator operator ˆr, denoting the eigenstates as r and the eigenvalues as r. Thus We have the following properties: ˆr r = r r, (118) (i) Orthogonality: r r = δ 3 (r r ) (See section 3.4 for the definition) (ii) The value ψ(r) C is simply the coefficient in the expansion ψ = (iii) The identity: I = d 3 r r r (iv) The operator expansion: ˆr = d 3 r r r r d 3 r r r ψ. }{{} ψ(r) We of course should check that the above is consistent and agrees with the wave formulation of quantum mechanics. The most important check is to calculate the behavior of the function ˆrψ. Using property (ii) and the definition 118 in the form r ˆr = r r (hermiticity) we get ˆrψ(r) = r ˆr ψ = r r ψ = rψ(r), so indeed the operator does what we already saw before. We can check other consistency requirements, Normalization of ψ(r): ψ ψ = d 3 r ψ r r ψ = d 3 r ψ(r) = 1 }{{} ψ (r) }{{} ψ(r) Scalar product of two states: ψ φ = d 3 r ψ r r φ = d 3 r ψ (r)φ(r) }{{} ψ (r) }{{} φ(r) Expectation value: ψ ˆr ψ = d 3 r ψ r r r ψ = d 3 r r ψ(r) Knowing that V(ˆr)ψ(r) = V(r)ψ(r) and ˆpψ(r) = i ψ(r) we have among others V(ˆr) = d 3 r r V(r) r, (119) ˆp = d 3 r r ( i ) r. (10) 5. Momentum-representation Consider the hermitean operator ˆp and denote the eigenstates as p and the eigenvalues as p. Thus ˆp p = p p. (11) We already have seen that in the coordinate representation for p : ˆpφ p (r) = pφ p (r) φ p (r) = ( ) i ρ exp }{{} p r r p (1)

28 Representations of states (This defines ρ). We then have the following properties: (i) Orthogonality: p p = ρ(π ) 3 δ 3 (p p ) d 3 p (ii) Expansion of state: ψ = (π ) 3 ρ p p ψ }{{} ψ(p) d 3 p (iii) Identity: I = (π ) 3 ρ p p d 3 p (iv) Operator expansion: ˆp = (π ) 3 ρ p p p Switching of representation is achieved via, d 3 p ψ(r) = r ψ = (π ) 3 ρ r p p ψ = d 3 ( ) p i ρ exp (π ) 3 ρ p r ψ(p), (13) ψ(p) = p ψ = d 3 r p r r ψ = d 3 r ρ exp ( i ) p r ψ(r), (14) as we have seen before being Fourier transforming. Choices for the normalization of plane waves are ρ = 1 or ρ = (π ) 3 (non-relativistic) or ρ = E (relativistic). For instance consistency of Eq. 1 and (iv) can be checked, d 3 p r ˆp ψ = (π ) 3 ρ r p p p ψ = d 3 ( ) p i (π ) 3 ρ p ρ exp p r ψ(p) d 3 ( ) p i = i ρ exp (π ) 3 ρ p r ψ(p) = i ψ(r) (15) and finally we note that the expectation value of the momentum squared can be calculated from ψ(r) or from ψ(k), p = d 3 r ψ (r) ( ) d 3 k ψ(r) = (π) 3 ρ k ψ(k). (16)

29 Angular momentum and spherical harmonics 3 6 Angular momentum and spherical harmonics In this section we study the (three) angular momentum operators ˆl = ˆr ˆp = i r, looking for eigenvalues and eigenstates. The angular momentum operators are best studied in polar coordinates, x = r sinθ cosϕ, (17) y = r sinθ sinϕ, (18) z = r cosθ, (19) from which one gets r x/r y/r z/r x θ ϕ = x cotθ y cotθ r sinθ y x 0 The ˆl operators are given by ( ˆl x = i y z z ) y ( ˆl y = i z x x ) = i z ( ˆl z = i x y y ) x and the square ˆl becomes ˆl = l x +l y +l z = [ 1 sinθ ( = i y z. ) +cotθ cosϕ ϕ sinϕ θ ( cosϕ +cotθ sinϕ θ ϕ, (130) ), (131) = i ϕ, (13) ( sinθ ) + 1 θ θ sin θ ] ϕ. (133) From the expressions in polar coordinates, one immediately sees that the operators only acts on the angular dependence. One has ˆl i f(r) = 0 for i = x,y,z and thus also ˆl f(r) = 0. Being a simple differential operator (with respect to azimuthal angle about one of the axes) one has ˆl i (fg) = f (ˆl i g)+ (ˆl i f)g. 6.1 Spherical harmonics We first study the action of the angular momentum operator on the Cartesian combinations x/r, y/r and z/r (only angular dependence). One finds ( x ) ( y ( y ) ( x ( z ) ˆl z = i, ˆlz = i, ˆlz = 0, r r) r r) r which shows that the l operators acting on polynomials of the form ( x ) n1 ( y ) n ( z n3 r r r) do not change the total degree n 1 +n +n 3 l. They only change the degrees of the coordinates in the expressions. For a particular degree l, there are l+1 functions. This is easy to see for l = 0 and l = 1. For l = one must take some care and realize that (x +y +z )/r = 1, i.e. there is one function less than the six that one might have expected at first hand. The symmetry of ˆl in x, y and z immediately

30 Angular momentum and spherical harmonics 4 implies that polynomials of a particular total degree l are eigenfunctions of ˆl with the same eigenvalue λ. Usingpolarcoordinatesoneeasilyseesthatfortheeigenfunctionsofl z onlytheϕdependencematters, since The eigenfunctions are of the form f m (ϕ) e imϕ, where the actual eigenvalue is m and in order that the eigenfunction is univalued m must be integer. For fixed degree l of the polynomials m can at most be equal to l, in which case the θ-dependence is sin l θ. It is easy to calculate the ˆl eigenvalue for this function, for which one finds l(l+1). The rest is a matter of normalisation and convention and can be found in many books. In particular, the eigenfunctions of l and l z, referred to as the spherical harmonics, are given by ˆl Yl m Yl m (θ,ϕ), (134) ˆl z Yl m (θ,ϕ) = m Yl m (θ,ϕ), (135) with the value l = 0,1,,... and for given l (called orbital angular momentum) l+1 possibilities for the value of m (the magnetic quantum number), m = l, l+1,...,l. Given one of the operators, l or l z, there are degenerate eigenfunctions, but with the eigenvalues of both operators one has a unique labeling (we will come back to this). Note that these functions are not eigenfunctions of l x and l y. Using kets to denote the states one uses l,m rather than Y l m. From the polynomial structure, one immediately sees that the behavior of the spherical harmonics under space inversion (r r) is determined by l. This behavior under space inversion, known as the parity, of the Y m l s is ( )l. The explicit result for l = 0 is Explicit results for l = 1 are Y 0 0 (θ,ϕ) = 1 4π. (136) 3 Y1 1 (θ,ϕ) = x+iy 8π r 3 Y1 0 (θ,ϕ) = 4π Y 1 1 (θ,ϕ) = 3 4π z r = 3 x iy = 8π r 3 = 8π sinθeiϕ, (137) cos θ, (138) 3 8π sinθe iϕ. (139) The l = spherical harmonics are the(five!) quadratic polynomials of degree two, Y ± (x y )±ixy 15 (θ,ϕ) = 3π r = 3π sin θe ±iϕ, (140) 15 Y ±1 z(x±iy) 15 (θ,ϕ) = 8π r = 8π sinθ cos θe±iϕ. (141) 5 Y 0 3z r 5 ( (θ,ϕ) = 16π r = 3cos θ 1 ), (14) 16π where the picture of Y 0 is produced using Mathematica, SphericalPlot3D[Abs[SphericalHarmonicY[,0,theta,phi]], {theta,0,pi},{phi,0,*pi}]. The spherical harmonics form a complete set of functions on the sphere, satisfying the orthonormality

Deeltentamen Quantum mechanics

Deeltentamen Quantum mechanics page 1/2 1 Deeltentamen Quantum mechanics 1 February 28 Students are allowed to use one A4-page (double sided) with notes. Give short answers. Do not give additional answers. If you give correct and wrong

Nadere informatie

FOR DUTCH STUDENTS! ENGLISH VERSION NEXT PAGE

FOR DUTCH STUDENTS! ENGLISH VERSION NEXT PAGE FOR DUTCH STUDENTS! ENGLISH VERSION NEXT PAGE Tentamen Bewijzen en Technieken 1 7 januari 211, duur 3 uur. Voeg aan het antwoord van een opgave altijd het bewijs, de berekening of de argumentatie toe.

Nadere informatie

FOR DUTCH STUDENTS! ENGLISH VERSION NEXT PAGE. Toets Inleiding Kansrekening 1 8 februari 2010

FOR DUTCH STUDENTS! ENGLISH VERSION NEXT PAGE. Toets Inleiding Kansrekening 1 8 februari 2010 FOR DUTCH STUDENTS! ENGLISH VERSION NEXT PAGE Toets Inleiding Kansrekening 1 8 februari 2010 Voeg aan het antwoord van een opgave altijd het bewijs, de berekening of de argumentatie toe. Als je een onderdeel

Nadere informatie

Esther Lee-Varisco Matt Zhang

Esther Lee-Varisco Matt Zhang Esther Lee-Varisco Matt Zhang Want to build a wine cellar Surface temperature varies daily, seasonally, and geologically Need reasonable depth to build the cellar for lessened temperature variations Building

Nadere informatie

FOR DUTCH STUDENTS! ENGLISH VERSION NEXT PAGE

FOR DUTCH STUDENTS! ENGLISH VERSION NEXT PAGE FOR DUTCH STUDENTS! ENGLISH VERSION NEXT PAGE Tentamen Analyse 6 januari 203, duur 3 uur. Voeg aan het antwoord van een opgave altijd het bewijs, de berekening of de argumentatie toe. Als je een onderdeel

Nadere informatie

SAMPLE 11 = + 11 = + + Exploring Combinations of Ten + + = = + + = + = = + = = 11. Step Up. Step Ahead

SAMPLE 11 = + 11 = + + Exploring Combinations of Ten + + = = + + = + = = + = = 11. Step Up. Step Ahead 7.1 Exploring Combinations of Ten Look at these cubes. 2. Color some of the cubes to make three parts. Then write a matching sentence. 10 What addition sentence matches the picture? How else could you

Nadere informatie

FOR DUTCH STUDENTS! ENGLISH VERSION NEXT PAGE

FOR DUTCH STUDENTS! ENGLISH VERSION NEXT PAGE FOR DUTCH STUDENTS! ENGLISH VERSION NEXT PAGE Tentamen Analyse 8 december 203, duur 3 uur. Voeg aan het antwoord van een opgave altijd het bewijs, de berekening of de argumentatie toe. Als jeeen onderdeel

Nadere informatie

FOR DUTCH STUDENTS! ENGLISH VERSION NEXT PAGE. Toets Inleiding Kansrekening 1 7 februari 2011

FOR DUTCH STUDENTS! ENGLISH VERSION NEXT PAGE. Toets Inleiding Kansrekening 1 7 februari 2011 FOR DUTCH STUDENTS! ENGLISH VERSION NEXT PAGE Toets Inleiding Kansrekening 1 7 februari 2011 Voeg aan het antwoord van een opgave altijd het bewijs, de berekening of de argumentatie toe. Als je een onderdeel

Nadere informatie

Pure Bending. A beam satisfying above given requirements are shown below: Why this surface is called neutral will be explained later in the lecture.

Pure Bending. A beam satisfying above given requirements are shown below: Why this surface is called neutral will be explained later in the lecture. In this section we will derive a formula to analyze a the deformation and stress distribution of a beam under flexural action. Theformulatobederivedinthis section will be used for straight beams with sections

Nadere informatie

Add the standing fingers to get the tens and multiply the closed fingers to get the units.

Add the standing fingers to get the tens and multiply the closed fingers to get the units. Digit work Here's a useful system of finger reckoning from the Middle Ages. To multiply $6 \times 9$, hold up one finger to represent the difference between the five fingers on that hand and the first

Nadere informatie

Deeltentamen Quantummechanica

Deeltentamen Quantummechanica 1 Deeltentamen Quantummechanica 30 januari 009 Bij het tentamen mag gebruik gemaakt worden van een A4-blad, dubbelzijdig beschreven, met eigen aantekeningen. Beantwoord de vragen kort en bondig. Geef geen

Nadere informatie

ANGSTSTOORNISSEN EN HYPOCHONDRIE: DIAGNOSTIEK EN BEHANDELING (DUTCH EDITION) FROM BOHN STAFLEU VAN LOGHUM

ANGSTSTOORNISSEN EN HYPOCHONDRIE: DIAGNOSTIEK EN BEHANDELING (DUTCH EDITION) FROM BOHN STAFLEU VAN LOGHUM Read Online and Download Ebook ANGSTSTOORNISSEN EN HYPOCHONDRIE: DIAGNOSTIEK EN BEHANDELING (DUTCH EDITION) FROM BOHN STAFLEU VAN LOGHUM DOWNLOAD EBOOK : ANGSTSTOORNISSEN EN HYPOCHONDRIE: DIAGNOSTIEK STAFLEU

Nadere informatie

i(i + 1) = xy + y = x + 1, y(1) = 2.

i(i + 1) = xy + y = x + 1, y(1) = 2. Kenmerk : Leibniz/toetsen/Re-Exam-Math A + B-45 Course : Mathematics A + B (Leibniz) Date : November 7, 204 Time : 45 645 hrs Motivate all your answers The use of electronic devices is not allowed [4 pt]

Nadere informatie

2DM10 Studeerwijzer

2DM10 Studeerwijzer 2DM10 Studeerwijzer 2011 2012 Version: January 9, 2012 Algemene Informatie Assistenten begeleide zelfstudie 2DM10 2011-2012: Rik Kaasschieter: e.f.kaasschieter@tue.nl Adrian Muntean: a.muntean@tue.nl Frans

Nadere informatie

FOR DUTCH STUDENTS! ENGLISH VERSION NEXT PAGE. Toets Inleiding Kansrekening 1 22 februari 2013

FOR DUTCH STUDENTS! ENGLISH VERSION NEXT PAGE. Toets Inleiding Kansrekening 1 22 februari 2013 FOR DUTCH STUDENTS! ENGLISH VERSION NEXT PAGE Toets Inleiding Kansrekening 1 22 februari 2013 Voeg aan het antwoord van een opgave altijd het bewijs, de berekening of de argumentatie toe. Als je een onderdeel

Nadere informatie

Linear Algebra I. Ronald van Luijk, 2011

Linear Algebra I. Ronald van Luijk, 2011 Linear Algebra I Ronald van Luijk, 2011 With many parts from Linear Algebra I by Michael Stoll, 2007 Contents 1. Vector spaces 2 1.1. Examples 2 1.2. Fields 2 1.3. The field of complex numbers. 2 1.4.

Nadere informatie

z x 1 x 2 x 3 x 4 s 1 s 2 s 3 rij rij rij rij

z x 1 x 2 x 3 x 4 s 1 s 2 s 3 rij rij rij rij ENGLISH VERSION SEE PAGE 3 Tentamen Lineaire Optimalisering, 0 januari 0, tijdsduur 3 uur. Het gebruik van een eenvoudige rekenmachine is toegestaan. Geef bij elk antwoord een duidelijke toelichting. Als

Nadere informatie

Opgave 2 Geef een korte uitleg van elk van de volgende concepten: De Yield-to-Maturity of a coupon bond.

Opgave 2 Geef een korte uitleg van elk van de volgende concepten: De Yield-to-Maturity of a coupon bond. Opgaven in Nederlands. Alle opgaven hebben gelijk gewicht. Opgave 1 Gegeven is een kasstroom x = (x 0, x 1,, x n ). Veronderstel dat de contante waarde van deze kasstroom gegeven wordt door P. De bijbehorende

Nadere informatie

Group work to study a new subject.

Group work to study a new subject. CONTEXT SUBJECT AGE LEVEL AND COUNTRY FEATURE OF GROUP STUDENTS NUMBER MATERIALS AND TOOLS KIND OF GAME DURATION Order of operations 12 13 years 1 ste year of secundary school (technical class) Belgium

Nadere informatie

Preschool Kindergarten

Preschool Kindergarten Preschool Kindergarten Objectives Students will recognize the values of numerals 1 to 10. Students will use objects to solve addition problems with sums from 1 to 10. Materials Needed Large number cards

Nadere informatie

MyDHL+ Van Non-Corporate naar Corporate

MyDHL+ Van Non-Corporate naar Corporate MyDHL+ Van Non-Corporate naar Corporate Van Non-Corporate naar Corporate In MyDHL+ is het mogelijk om meerdere gebruikers aan uw set-up toe te voegen. Wanneer er bijvoorbeeld meerdere collega s van dezelfde

Nadere informatie

Draft solutions to examen Molecular Simulations, March 22, 2004

Draft solutions to examen Molecular Simulations, March 22, 2004 1. (a) Als van een collectie van N deeltjes de gegeneraliseerde coordinaten en snelheden gegeven zijn door q q 1,..., q N respectievelijk q q 1,..., q N geef dan de definitie van de Lagrangiaan. (b) Wat

Nadere informatie

ALGORITMIEK: answers exercise class 7

ALGORITMIEK: answers exercise class 7 Problem 1. See slides 2 4 of lecture 8. Problem 2. See slides 4 6 of lecture 8. ALGORITMIEK: answers exercise class 7 Problem 5. a. Als we twee negatieve (< 0) getallen bij elkaar optellen is het antwoord

Nadere informatie

Meetkunde en Lineaire Algebra

Meetkunde en Lineaire Algebra Hoofdstuk 1 Meetkunde en Lineaire Algebra Vraag 1.1 Het trapoppervlak is een afwikkelbaar oppervlak met oneindig veel singuliere punten. Vraag 1.2 Het schroefoppervlak is een afwikkelbaar oppervlak met

Nadere informatie

Calculus I, 20/11/2017

Calculus I, 20/11/2017 . a. Bepaal de oplossing van volgende differentiaalvergelijking met beginvoorwaarde y(0) = 2. dy = xy x, dx In het vervolg beschouwen we de functie f(x) = + e x 2 2 ln( x ). b. Bepaal het domein van f.

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Examination 2DL04 Friday 16 november 2007, hours.

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Examination 2DL04 Friday 16 november 2007, hours. TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Examination 2DL04 Friday 16 november 2007, 14.00-17.00 hours. De uitwerkingen van de opgaven dienen duidelijk geformuleerd en overzichtelijk

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamen Calculus B (2WBB1) op maandag 28 januari 2013, 14:00 17:00 uur

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamen Calculus B (2WBB1) op maandag 28 januari 2013, 14:00 17:00 uur ENGLISH VERSION: SEE PAGE 7 TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Calculus B (WBB) op maandag 8 januari 03, 4:00 7:00 uur Maak dit vel los van de rest van het tentamen.

Nadere informatie

S e v e n P h o t o s f o r O A S E. K r i j n d e K o n i n g

S e v e n P h o t o s f o r O A S E. K r i j n d e K o n i n g S e v e n P h o t o s f o r O A S E K r i j n d e K o n i n g Even with the most fundamental of truths, we can have big questions. And especially truths that at first sight are concrete, tangible and proven

Nadere informatie

Ae Table 1: Aircraft data. In horizontal steady flight, the equations of motion are L = W and T = D.

Ae Table 1: Aircraft data. In horizontal steady flight, the equations of motion are L = W and T = D. English Question 1 Flight mechanics (3 points) A subsonic jet aircraft is flying at sea level in the International Standard Atmosphere ( = 1.5 kg/m 3 ). It is assumed that thrust is independent of the

Nadere informatie

Continuum Mechanics. Chapter10 Ideal Fluids. C. Agelet de Saracibar

Continuum Mechanics. Chapter10 Ideal Fluids. C. Agelet de Saracibar Continuum Mechanics Chapter10 Ideal Fluids C. Agelet de Saracibar ETS Ingenieros de Caminos, Canales y Puertos, Universidad Politécnica de Cataluña (UPC), Barcelona, Spain International Center for Numerical

Nadere informatie

Concept of Feedback. P.S. Gandhi Mechanical Engineering IIT Bombay

Concept of Feedback. P.S. Gandhi Mechanical Engineering IIT Bombay Concept of Feedback P.S. Gandhi Mechanical Engineering IIT Bombay Recap Goal of the course: understanding and learning Assignments: optional to start with Contact hour with TAs: Monday AN: time? Meeting

Nadere informatie

(1) De hoofdfunctie van ons gezelschap is het aanbieden van onderwijs. (2) Ons gezelschap is er om kunsteducatie te verbeteren

(1) De hoofdfunctie van ons gezelschap is het aanbieden van onderwijs. (2) Ons gezelschap is er om kunsteducatie te verbeteren (1) De hoofdfunctie van ons gezelschap is het aanbieden van onderwijs (2) Ons gezelschap is er om kunsteducatie te verbeteren (3) Ons gezelschap helpt gemeenschappen te vormen en te binden (4) De producties

Nadere informatie

Meetkunde en Lineaire Algebra

Meetkunde en Lineaire Algebra Hoofdstuk 1 Meetkunde en Lineaire Algebra Vraag 1.1 De samenstelling van rotaties in het vlak is commutatief. Vraag 1.2 De samenstelling van de orthogonale spiegelingen t.o.v. twee gegeven vlakken in de

Nadere informatie

Basic operations Implementation options

Basic operations Implementation options Priority Queues Heaps Heapsort Student questions EditorTrees WA 6 File Compression Graphs Hashing Anything else Written Assignments 7 and 8 have been updated for this term. Each of them is smaller than

Nadere informatie

De grondbeginselen der Nederlandsche spelling / Regeling der spelling voor het woordenboek der Nederlandsche taal (Dutch Edition)

De grondbeginselen der Nederlandsche spelling / Regeling der spelling voor het woordenboek der Nederlandsche taal (Dutch Edition) De grondbeginselen der Nederlandsche spelling / Regeling der spelling voor het woordenboek der Nederlandsche taal (Dutch Edition) L. A. te Winkel Click here if your download doesn"t start automatically

Nadere informatie

Cover Page. The handle holds various files of this Leiden University dissertation

Cover Page. The handle   holds various files of this Leiden University dissertation Cover Page The handle http://hdl.handle.net/1887/22618 holds various files of this Leiden University dissertation Author: Schans, Martin van der Title: Blowup in the complex Ginzburg-Landau equation Issue

Nadere informatie

FOR DUTCH STUDENTS! ENGLISH VERSION NEXT PAGES. Tentamen Inleiding Kansrekening 1 27 maart 2013

FOR DUTCH STUDENTS! ENGLISH VERSION NEXT PAGES. Tentamen Inleiding Kansrekening 1 27 maart 2013 FOR DUTCH STUDENTS! ENGLISH VERSION NEXT PAGES Tentamen Inleiding Kansrekening 1 27 maart 2013 Voeg aan het antwoord van een opgave altijd het bewijs, de berekening of de argumentatie toe. Als je een onderdeel

Nadere informatie

Meetkunde en Lineaire Algebra

Meetkunde en Lineaire Algebra Hoofdstuk 1 Meetkunde en Lineaire Algebra Vraag 1.1 Het trapoppervlak is een afwikkelbaar oppervlak met oneindig veel singuliere punten. vals Vraag 1.2 Het schroefoppervlak is een afwikkelbaar oppervlak

Nadere informatie

Bin packing and scheduling

Bin packing and scheduling Sanders/van Stee: Approximations- und Online-Algorithmen 1 Bin packing and scheduling Overview Bin packing: problem definition Simple 2-approximation (Next Fit) Better than 3/2 is not possible Asymptotic

Nadere informatie

Borstkanker: Stichting tegen Kanker (Dutch Edition)

Borstkanker: Stichting tegen Kanker (Dutch Edition) Borstkanker: Stichting tegen Kanker (Dutch Edition) Stichting tegen Kanker Click here if your download doesn"t start automatically Borstkanker: Stichting tegen Kanker (Dutch Edition) Stichting tegen Kanker

Nadere informatie

The genesis of the game is unclear. Possibly, dominoes originates from China and the stones were brought here by Marco Polo, but this is uncertain.

The genesis of the game is unclear. Possibly, dominoes originates from China and the stones were brought here by Marco Polo, but this is uncertain. Domino tiles Dominoes is a game played with rectangular domino 'tiles'. Today the tiles are often made of plastic or wood, but in the past, they were made of real stone or ivory. They have a rectangle

Nadere informatie

EERSTE DEELTENTAMEN WISB 212 Analyse in Meer Variabelen

EERSTE DEELTENTAMEN WISB 212 Analyse in Meer Variabelen EERSTE DEELTENTAMEN WISB 212 Analyse in Meer Variabelen 20 04 2005 9 12 uur Zet uw naam en collegekaartnummer op elk blad, en op het eerste blad de naam van uw practicumleider (Alex Boer of Richard Cushman)

Nadere informatie

RECEPTEERKUNDE: PRODUCTZORG EN BEREIDING VAN GENEESMIDDELEN (DUTCH EDITION) FROM BOHN STAFLEU VAN LOGHUM

RECEPTEERKUNDE: PRODUCTZORG EN BEREIDING VAN GENEESMIDDELEN (DUTCH EDITION) FROM BOHN STAFLEU VAN LOGHUM Read Online and Download Ebook RECEPTEERKUNDE: PRODUCTZORG EN BEREIDING VAN GENEESMIDDELEN (DUTCH EDITION) FROM BOHN STAFLEU VAN LOGHUM DOWNLOAD EBOOK : RECEPTEERKUNDE: PRODUCTZORG EN BEREIDING VAN STAFLEU

Nadere informatie

4 cos. Intermediate exam: Mechanics for MWT: 8TB00. February 25, 2014, 13:45-14:30. Code 8TB00, MWT bachelor. Biomedical Engineering

4 cos. Intermediate exam: Mechanics for MWT: 8TB00. February 25, 2014, 13:45-14:30. Code 8TB00, MWT bachelor. Biomedical Engineering Intermediate exam: Mechanics for MWT: 8TB00 February 5, 04, 3:45-4:30 Code 8TB00, MWT bachelor Biomedical Engineering Eindhoven University of Technology This is a closed book exam. The use of a laptop

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamen Calculus B (2WBB1) op maandag 4 november 2013, 9:00 12:00 uur

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamen Calculus B (2WBB1) op maandag 4 november 2013, 9:00 12:00 uur ENGLISH VERSION: SEE PAGE 7 TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Calculus B (WBB) op maandag 4 november 03, 9:00 :00 uur Maak dit vel los van de rest van het tentamen.

Nadere informatie

L.Net s88sd16-n aansluitingen en programmering.

L.Net s88sd16-n aansluitingen en programmering. De L.Net s88sd16-n wordt via één van de L.Net aansluitingen aangesloten op de LocoNet aansluiting van de centrale, bij een Intellibox of Twin-Center is dat de LocoNet-T aansluiting. L.Net s88sd16-n aansluitingen

Nadere informatie

Engels op Niveau A2 Workshops Woordkennis 1

Engels op Niveau A2 Workshops Woordkennis 1 A2 Workshops Woordkennis 1 A2 Workshops Woordkennis 1 A2 Woordkennis 1 Bestuderen Hoe leer je 2000 woorden? Als je een nieuwe taal wilt spreken en schrijven, heb je vooral veel nieuwe woorden nodig. Je

Nadere informatie

Introductie in flowcharts

Introductie in flowcharts Introductie in flowcharts Flow Charts Een flow chart kan gebruikt worden om: Processen definieren en analyseren. Een beeld vormen van een proces voor analyse, discussie of communicatie. Het definieren,

Nadere informatie

HANDBOEK HARTFALEN (DUTCH EDITION) FROM BOHN STAFLEU VAN LOGHUM

HANDBOEK HARTFALEN (DUTCH EDITION) FROM BOHN STAFLEU VAN LOGHUM HANDBOEK HARTFALEN (DUTCH EDITION) FROM BOHN STAFLEU VAN LOGHUM READ ONLINE AND DOWNLOAD EBOOK : HANDBOEK HARTFALEN (DUTCH EDITION) FROM BOHN Click button to download this ebook READ ONLINE AND DOWNLOAD

Nadere informatie

The first line of the input contains an integer $t \in \mathbb{n}$. This is followed by $t$ lines of text. This text consists of:

The first line of the input contains an integer $t \in \mathbb{n}$. This is followed by $t$ lines of text. This text consists of: Document properties Most word processors show some properties of the text in a document, such as the number of words or the number of letters in that document. Write a program that can determine some of

Nadere informatie

Table 1: Aircraft data. Figure 1: Glider

Table 1: Aircraft data. Figure 1: Glider English Question 1 Flight mechanics (0 points) A glider is flying at,000 m altitude in the International Standard Atmosphere ( 0 = 1.0065 kg/m ). ata for this glider are given in Table 1. Aircraft weight

Nadere informatie

B1 Woordkennis: Spelling

B1 Woordkennis: Spelling B1 Woordkennis: Spelling Bestuderen Inleiding Op B1 niveau gaan we wat meer aandacht schenken aan spelling. Je mag niet meer zoveel fouten maken als op A1 en A2 niveau. We bespreken een aantal belangrijke

Nadere informatie

04/11/2013. Sluitersnelheid: 1/50 sec = 0.02 sec. Frameduur= 2 x sluitersnelheid= 2/50 = 1/25 = 0.04 sec. Framerate= 1/0.

04/11/2013. Sluitersnelheid: 1/50 sec = 0.02 sec. Frameduur= 2 x sluitersnelheid= 2/50 = 1/25 = 0.04 sec. Framerate= 1/0. Onderwerpen: Scherpstelling - Focusering Sluitersnelheid en framerate Sluitersnelheid en belichting Driedimensionale Arthrokinematische Mobilisatie Cursus Klinische Video/Foto-Analyse Avond 3: Scherpte

Nadere informatie

Chromosomal crossover

Chromosomal crossover Chromosomal crossover As one of the last steps of genetic recombination two homologous chromosomes can exchange genetic material during meiosis in a process that is referred to as synapsis. Because of

Nadere informatie

WISB134 Modellen & Simulatie. Lecture 4 - Scalaire recursies

WISB134 Modellen & Simulatie. Lecture 4 - Scalaire recursies WISB34 Modellen & Simulatie Lecture 4 - Scalaire recursies Overzicht van ModSim Meeste aandacht (t/m apr.) Basisbegrippen dynamische modellen Definities recursies, DVs, numerieke methoden Oplossingen DVs

Nadere informatie

Recap. Topics. CT Sampling Requirements. Sampling Requirements in CT Sampling Theory Aliasing. Bioengineering 280A Principles of Biomedical Imaging

Recap. Topics. CT Sampling Requirements. Sampling Requirements in CT Sampling Theory Aliasing. Bioengineering 280A Principles of Biomedical Imaging Recap Bioengineering 280A Principles of Biomedical Imaging Fall Quarter 2013 CT/Fourier Lecture 5 Prince and Links 2005 Topics Sampling Requirements in CT Sampling Theory Aliasing Seutens 2002 CT Sampling

Nadere informatie

!!!! Wild!Peacock!Omslagdoek!! Vertaling!door!Eerlijke!Wol.!! Het!garen!voor!dit!patroon!is!te!verkrijgen!op! Benodigdheden:!!

!!!! Wild!Peacock!Omslagdoek!! Vertaling!door!Eerlijke!Wol.!! Het!garen!voor!dit!patroon!is!te!verkrijgen!op!  Benodigdheden:!! WildPeacockOmslagdoek VertalingdoorEerlijkeWol. Hetgarenvoorditpatroonisteverkrijgenopwww.eerlijkewol.nl Benodigdheden: 4strengenWildPeacockRecycledSilkYarn rondbreinaaldnr8(jekuntnatuurlijkookgewonebreinaaldengebruiken,maar

Nadere informatie

MyDHL+ ProView activeren in MyDHL+

MyDHL+ ProView activeren in MyDHL+ MyDHL+ ProView activeren in MyDHL+ ProView activeren in MyDHL+ In MyDHL+ is het mogelijk om van uw zendingen, die op uw accountnummer zijn aangemaakt, de status te zien. Daarnaast is het ook mogelijk om

Nadere informatie

Hertentamen 8D040 - Basis beeldverwerking

Hertentamen 8D040 - Basis beeldverwerking Hertentamen 8D040 - Basis beeldverwerking 6 augustus 203, 4:00-7:00 Opmerkingen: Maak elke opgave op een apart vel. Antwoord op vraag 4 mag gewoon in het Nederlands. Een gewone rekenmachine is toegestaan.

Nadere informatie

Meetkunde en Lineaire Algebra

Meetkunde en Lineaire Algebra Hoofdstuk 1 Meetkunde en Lineaire Algebra Vraag 1.1 De samenstelling van rotaties in het vlak is commutatief. Vraag 1.2 De samenstelling van de orthogonale spiegelingen t.o.v. twee gegeven vlakken in de

Nadere informatie

After that, the digits are written after each other: first the row numbers, followed by the column numbers.

After that, the digits are written after each other: first the row numbers, followed by the column numbers. Bifid cipher The bifid cipher is one of the classical cipher techniques that can also easily be executed by hand. The technique was invented around 1901 by amateur cryptographer Felix Delastelle. The cipher

Nadere informatie

Read this story in English. My personal story

Read this story in English. My personal story My personal story Netherlands 32 Female Primary Topic: SOCIETAL CONTEXT Topics: CHILDHOOD / FAMILY LIFE / RELATIONSHIPS IDENTITY Year: 1990 2010 marriage/co-habitation name/naming court/justice/legal rights

Nadere informatie

Gravitatie en kosmologie

Gravitatie en kosmologie Gravitatie en kosmologie FEW cursus Jo van den Brand & Joris van Heijningen Kromlijnige coördinaten: 28 oktober 2013 Inhoud Inleiding Overzicht Klassieke mechanica Galileo, Newton Lagrange formalisme Quantumfenomenen

Nadere informatie

Classification of triangles

Classification of triangles Classification of triangles A triangle is a geometrical shape that is formed when 3 non-collinear points are joined. The joining line segments are the sides of the triangle. The angles in between the sides

Nadere informatie

Een vrouw, een kind en azijn (Dutch Edition)

Een vrouw, een kind en azijn (Dutch Edition) Een vrouw, een kind en azijn (Dutch Edition) D.J. Peek Click here if your download doesn"t start automatically Een vrouw, een kind en azijn (Dutch Edition) D.J. Peek Een vrouw, een kind en azijn (Dutch

Nadere informatie

2019 SUNEXCHANGE USER GUIDE LAST UPDATED

2019 SUNEXCHANGE USER GUIDE LAST UPDATED 2019 SUNEXCHANGE USER GUIDE LAST UPDATED 0 - -19 1 WELCOME TO SUNEX DISTRIBUTOR PORTAL This user manual will cover all the screens and functions of our site. MAIN SCREEN: Welcome message. 2 LOGIN SCREEN:

Nadere informatie

Illustrator Tutorial - How to Create a Watch

Illustrator Tutorial - How to Create a Watch Illustrator Tutorial - How to Create a Watch «Andrew Bannecker - Simple, True and Tender Vector Movie Posters by GABZ» Categories: Tutorials Have you ever seen print advertising of some watch brand before?

Nadere informatie

It s all about the money Group work

It s all about the money Group work It s all about the money Group work Tijdsduur: 45 minuten Kernwoorden: money (geld) coin (munt), banknote (bankbiljet), currency (munteenheid) Herhalings-/uitbreidingswoorden: debate (debat), proposal

Nadere informatie

CHROMA STANDAARDREEKS

CHROMA STANDAARDREEKS CHROMA STANDAARDREEKS Chroma-onderzoeken Een chroma geeft een beeld over de kwaliteit van bijvoorbeeld een bodem of compost. Een chroma bestaat uit 4 zones. Uit elke zone is een bepaald kwaliteitsaspect

Nadere informatie

Calculator spelling. Assignment

Calculator spelling. Assignment Calculator spelling A 7-segmentdisplay is used to represent digits (and sometimes also letters). If a screen is held upside down by coincide, the digits may look like letters from the alphabet. This finding

Nadere informatie

Uitwerking van opgaven in Sipser

Uitwerking van opgaven in Sipser Uitwerking van opgaven in Sipser Opgave 4.10 Laat zien dat INFINITE P DA = { M M is een PDA en L(M) is oneindig } beslisbaar is. De volgende TM beslist INFINITE P DA : Op input M waarbij M een PDA is,

Nadere informatie

Luister alsjeblieft naar een opname als je de vragen beantwoordt of speel de stukken zelf!

Luister alsjeblieft naar een opname als je de vragen beantwoordt of speel de stukken zelf! Martijn Hooning COLLEGE ANALYSE OPDRACHT 1 9 september 2009 Hierbij een paar vragen over twee stukken die we deze week en vorige week hebben besproken: Mondnacht van Schumann, en het eerste deel van het

Nadere informatie

Travel Survey Questionnaires

Travel Survey Questionnaires Travel Survey Questionnaires Prot of Rotterdam and TU Delft, 16 June, 2009 Introduction To improve the accessibility to the Rotterdam Port and the efficiency of the public transport systems at the Rotterdam

Nadere informatie

Quality requirements concerning the packaging of oak lumber of Houthandel Wijers vof (09.09.14)

Quality requirements concerning the packaging of oak lumber of Houthandel Wijers vof (09.09.14) Quality requirements concerning the packaging of oak lumber of (09.09.14) Content: 1. Requirements on sticks 2. Requirements on placing sticks 3. Requirements on construction pallets 4. Stick length and

Nadere informatie

Four-card problem. Input

Four-card problem. Input Four-card problem The four-card problem (also known as the Wason selection task) is a logic puzzle devised by Peter Cathcart Wason in 1966. It is one of the most famous tasks in the study of deductive

Nadere informatie

Academisch schrijven Inleiding

Academisch schrijven Inleiding - In this essay/paper/thesis I shall examine/investigate/evaluate/analyze Algemene inleiding van het werkstuk In this essay/paper/thesis I shall examine/investigate/evaluate/analyze To answer this question,

Nadere informatie

Risico s van Technologisch Succes in digitale transformatie S T R A T E G I C A D V I S O R

Risico s van Technologisch Succes in digitale transformatie S T R A T E G I C A D V I S O R Risico s van Technologisch Succes in digitale transformatie 2e Risk Event 2019 11 april 2019 The S T R A T E G I C A D V I S O R Ymanagement school of the autonomous University of Antwerp 2 Prof. dr. Hans

Nadere informatie

The colour of a pixel in a bit map picture can be presented in different ways. For this assignment, we distinguish two categories:

The colour of a pixel in a bit map picture can be presented in different ways. For this assignment, we distinguish two categories: Bitmap conversion A bit map picture is exactly what the name makes one suspect: a sequence of bits (0 or 1) that together represent a digital photo. The picture consists of a matrix (rectangle grid) of

Nadere informatie

Alle opgaven tellen even zwaar, 10 punten per opgave.

Alle opgaven tellen even zwaar, 10 punten per opgave. WAT IS WISKUNDE (English version on the other side) Maandag 5 november 2012, 13.30 1.30 uur Gebruik voor iedere opgave een apart vel. Schrijf je naam en studentnummer op elk vel. Alle opgaven tellen even

Nadere informatie

Impact en disseminatie. Saskia Verhagen Franka vd Wijdeven

Impact en disseminatie. Saskia Verhagen Franka vd Wijdeven Impact en disseminatie Saskia Verhagen Franka vd Wijdeven Wie is wie? Voorstel rondje Wat hoop je te leren? Heb je iets te delen? Wat zegt de Programma Gids? WHAT DO IMPACT AND SUSTAINABILITY MEAN? Impact

Nadere informatie

Vraag 1.3 A point source emits sound waves with a power output of 100 watts. What is the sound level (in db) at a distance

Vraag 1.3 A point source emits sound waves with a power output of 100 watts. What is the sound level (in db) at a distance Hoofdstuk 1 Natuurkunde I Vraag 1.1 It is possible to hear an approaching train before you can see it by listening to the sound wave through the track. If the elastic modulus is 2.0 10 11 N/m 2 and the

Nadere informatie

AE1103 Statics. 25 January h h. Answer sheets. Last name and initials:

AE1103 Statics. 25 January h h. Answer sheets. Last name and initials: Space above not to be filled in by the student AE1103 Statics 09.00h - 12.00h Answer sheets Last name and initials: Student no.: Only hand in the answer sheets! Other sheets will not be accepted Write

Nadere informatie

01/ M-Way. cables

01/ M-Way. cables 01/ 2015 M-Way cables M-WaY Cables There are many ways to connect devices and speakers together but only few will connect you to the music. My Way of connecting is just one of many but proved it self over

Nadere informatie

L.Net s88sd16-n aansluitingen en programmering.

L.Net s88sd16-n aansluitingen en programmering. De L.Net s88sd16-n wordt via één van de L.Net aansluitingen aangesloten op de LocoNet aansluiting van de centrale, bij een Intellibox of Twin-Center is dat de LocoNet-T aansluiting. L.Net s88sd16-n aansluitingen

Nadere informatie

Never trust a bunny. D. J. Bernstein University of Illinois at Chicago. Tanja Lange Technische Universiteit Eindhoven

Never trust a bunny. D. J. Bernstein University of Illinois at Chicago. Tanja Lange Technische Universiteit Eindhoven Never trust a bunny D. J. Bernstein University of Illinois at Chicago Tanja Lange Technische Universiteit Eindhoven The HB(n; ; 0 ) protocol (2001 Hopper Blum) Secret s 2 F n 2. Reader sends random C 2

Nadere informatie

OPEN TRAINING. Onderhandelingen met leveranciers voor aankopers. Zeker stellen dat je goed voorbereid aan de onderhandelingstafel komt.

OPEN TRAINING. Onderhandelingen met leveranciers voor aankopers. Zeker stellen dat je goed voorbereid aan de onderhandelingstafel komt. OPEN TRAINING Onderhandelingen met leveranciers voor aankopers Zeker stellen dat je goed voorbereid aan de onderhandelingstafel komt. Philip Meyers Making sure to come well prepared at the negotiation

Nadere informatie

LONDEN MET 21 GEVARIEERDE STADSWANDELINGEN 480 PAGINAS WAARDEVOLE INFORMATIE RUIM 300 FOTOS KAARTEN EN PLATTEGRONDEN

LONDEN MET 21 GEVARIEERDE STADSWANDELINGEN 480 PAGINAS WAARDEVOLE INFORMATIE RUIM 300 FOTOS KAARTEN EN PLATTEGRONDEN LONDEN MET 21 GEVARIEERDE STADSWANDELINGEN 480 PAGINAS WAARDEVOLE INFORMATIE RUIM 300 FOTOS KAARTEN EN PLATTEGRONDEN LM2GS4PWIR3FKEP-58-WWET11-PDF File Size 6,444 KB 117 Pages 27 Aug, 2016 TABLE OF CONTENT

Nadere informatie

Gravitatie en kosmologie

Gravitatie en kosmologie Gravitatie en kosmologie FEW cursus Jo van den Brand & Joris van Heijningen Kromlijnige coördinaten: 13 oktober 2015 Copyright (C) Vrije Universiteit 2009 Inhoud Inleiding Overzicht Klassieke mechanica

Nadere informatie

Chapter 4 Understanding Families. In this chapter, you will learn

Chapter 4 Understanding Families. In this chapter, you will learn Chapter 4 Understanding Families In this chapter, you will learn Topic 4-1 What Is a Family? In this topic, you will learn about the factors that make the family such an important unit, as well as Roles

Nadere informatie

BISL EEN FRAMEWORK VOOR BUSINESS INFORMATIEMANAGEMENT (DUTCH LANGUAGE) (GERMAN EDITION) (DUTCH EDITION) BY REMKO VAN DER POLS, RALPH DONA

BISL EEN FRAMEWORK VOOR BUSINESS INFORMATIEMANAGEMENT (DUTCH LANGUAGE) (GERMAN EDITION) (DUTCH EDITION) BY REMKO VAN DER POLS, RALPH DONA Read Online and Download Ebook BISL EEN FRAMEWORK VOOR BUSINESS INFORMATIEMANAGEMENT (DUTCH LANGUAGE) (GERMAN EDITION) (DUTCH EDITION) BY REMKO VAN DER POLS, RALPH DONA DOWNLOAD EBOOK : BISL EEN FRAMEWORK

Nadere informatie

voltooid tegenwoordige tijd

voltooid tegenwoordige tijd SirPalsrok @meestergijs It has taken me a while to make this grammar explanation. My life has been quite busy and for that reason I had little time. My week was full of highs and lows. This past weekend

Nadere informatie

Comics FILE 4 COMICS BK 2

Comics FILE 4 COMICS BK 2 Comics FILE 4 COMICS BK 2 The funny characters in comic books or animation films can put smiles on people s faces all over the world. Wouldn t it be great to create your own funny character that will give

Nadere informatie

Puzzle. Fais ft. Afrojack Niveau 3a Song 6 Lesson A Worksheet. a Lees de omschrijvingen. Zet de Engelse woorden in de puzzel.

Puzzle. Fais ft. Afrojack Niveau 3a Song 6 Lesson A Worksheet. a Lees de omschrijvingen. Zet de Engelse woorden in de puzzel. Puzzle a Lees de omschrijvingen. Zet de Engelse woorden in de puzzel. een beloning voor de winnaar iemand die piano speelt een uitvoering 4 wat je wil gaan doen; voornemens 5 niet dezelfde 6 deze heb je

Nadere informatie

Het is geen open boek tentamen. Wel mag gebruik gemaakt worden van een A4- tje met eigen aantekeningen.

Het is geen open boek tentamen. Wel mag gebruik gemaakt worden van een A4- tje met eigen aantekeningen. Examen ET1205-D1 Elektronische Circuits deel 1, 5 April 2011, 9-12 uur Het is geen open boek tentamen. Wel mag gebruik gemaakt worden van een A4- tje met eigen aantekeningen. Indien, bij het multiple choice

Nadere informatie

Ontpopping. ORGACOM Thuis in het Museum

Ontpopping. ORGACOM Thuis in het Museum Ontpopping Veel deelnemende bezoekers zijn dit jaar nog maar één keer in het Van Abbemuseum geweest. De vragenlijst van deze mensen hangt Orgacom in een honingraatpatroon. Bezoekers die vaker komen worden

Nadere informatie

AE1103 Statics. 3 November h h. Answer sheets. Last name and initials:

AE1103 Statics. 3 November h h. Answer sheets. Last name and initials: Space above not to be filled in by the student AE1103 Statics 09.00h - 12.00h Answer sheets Last name and initials: Student no.: Only hand in the answer sheets! Other sheets will not be accepted Write

Nadere informatie

Settings for the C100BRS4 MAC Address Spoofing with cable Internet.

Settings for the C100BRS4 MAC Address Spoofing with cable Internet. Settings for the C100BRS4 MAC Address Spoofing with cable Internet. General: Please use the latest firmware for the router. The firmware is available on http://www.conceptronic.net! Use Firmware version

Nadere informatie

The upside down Louisa tutorial by Dorothée: Noortjeprullemie.blogspot.be Written for Compagnie M.: m.com

The upside down Louisa tutorial by Dorothée: Noortjeprullemie.blogspot.be Written for Compagnie M.:  m.com The upside down Louisa tutorial by Dorothée: Noortjeprullemie.blogspot.be Written for Compagnie M.: www.compagnie- m.com Dorothée heeft een unieke Compagnie M. hack gemaakt: de Louisa op zijn kop. Als

Nadere informatie

Zo werkt het in de apotheek (Basiswerk AG) (Dutch Edition)

Zo werkt het in de apotheek (Basiswerk AG) (Dutch Edition) Zo werkt het in de apotheek (Basiswerk AG) (Dutch Edition) C.R.C. Huizinga-Arp Click here if your download doesn"t start automatically Zo werkt het in de apotheek (Basiswerk AG) (Dutch Edition) C.R.C.

Nadere informatie