Bijlage 1. Contactpersonen



Vergelijkbare documenten
Analyse Autarkische woonboot

De batterij heeft toekomst?!

Elektriciteitsopslag:

/home/garfieldairlines/nl/storing_the_sun_and_the_wind_nl.doc. Auteur: N. Packer, Staffordshire University, VK, april 2011

UPS en batterij Meer en meer commodity of een hybride oplossing in een smart grid?

Grootschalige energie-opslag

Grootschalige energie-opslag

Chemische opslag van elektrische energie. Rudi Geerits ON7YT, Elien ON3EZ

Inleiding in de wereld van energieopslag

KCPK Jubileum, Nov 1, De Waterstof Bromide. Flow Batterij. Guido Dalessi, Elestor BV

Waterstofmobiliteit: status en uitdagingen

Waterstofmobiliteit: status en uitdagingen

Technische data AIB Aqueous Ion Exchange Battery

Ontwikkelingen op het gebied van Warmteopslag

Brandstofcel in Woning- en Utiliteitsbouw

Energieopslag en flexibiliteit - kansen en onzekerheden

Technische data Volledig geïntegreerd elektrisch opslagsysteem voor woning en werk

Thermische Centrales voor Elektriciteit College TB142Ea, 12 mei 2014

De noodzaak van waterstof. InnoTeP 2017 Jochem Huygen.

Een elektrisch opslag systeem voor PV panelen op een kantoor

Naar een hoogefficiënte en duurzame toekomstige energie-voorziening

De HBr Flow Batterij Technologie & Business Case

Vermijden van verliezen bij het gebruik van industriële restwarmte

Elektriciteitsopslag en de rol van waterstof in het energiesysteem van de toekomst H2NL symposium NWBA, 9 oktober 2013

Elektrische auto stoot evenveel CO 2 uit als gewone auto

CNES. Haalbaarheidsonderzoek. Michiel Geurds

Bluways reduceert het energiegebruik van een railvoertuig met 40 procent

Beheersing piekverbruik

Rijden op H2 is meer dan een andere bus Op weg naar een schone toekomst. Kivi Niria congres Sustainable Mobility

H2ECOb/Blm HOE KAN DE ENERGIETRANSITIE WORDEN GEREALISEERD? Probleemstelling

Duwen en trekken aan het distributienet. 15 december 2010

Lithium Ion Battery Technology name Description

Elektrische energie. Naam: Klas: Leerkracht: Mr. Verlinden INLEIDING

Zonnestroom en windstroom Samen meer


Amsterdam 9 mei 2017 Guy Konings, Joulz

OPSLAG VAN ELEKTRISCHE ENERGIE

Lithium- vs. Lood-accu s een storm in een glas water? GNB Industrial Power Exide Technologies B.V. Raf Bruggeman

Brandstofcellen in Japan: Beleid, Onderzoek en Productie

Wilt u warmte en elektriciteit. res-fc market

VERANDERENDE VERBINDINGEN ASSETMANAGEMENT VERBINDT NEDERLAND

[Samenvatting Energie]

WB Evolving Design Hybride systemen

6.2 Elektrische energie en vermogen; rendement

Alternatieve energiebronnen

Dr. J.M.H. Huynen. Dr. J.M.H. Huynen KIVI-EL Utrecht, 22 januari

Waterstof in de energietransitie Sleutelrol, maar geen heilige graal

Zonne-Energie voor Utrecht 2050

warmte en licht energie omzetting elektriciteit In een lamp wordt energie omgezet

Middels deze brochure bieden we inzicht in:

Notitie Betreft Power2Nijmegen Inleiding figuur 1: overzicht ecodorp Vraagstelling

SOLARCLARITY BV De slimme integratie van PV, opslag & monitoring. Bereid u voor op de energie van de toekomst!

Elektriciteitopslag ZX ronde 4 december 2016

Hoofdstuk 25 Elektrische stroom en weerstand

Compact Plus biogasinstallatie, Lierop, 600 kw

Het Nieuwe Telen van Amaryllis Amazone Amaryllis Deel 2 : energiemonitoring

van aardgasbuffer naar energiehub


1.6 Alternatieve aandrijving

Warmtekrachtkoppeling Wat, waarom en wanneer? Tine Stevens COGEN Vlaanderen Studiedag Slimme netten en WKK 29 februari 2012

Off grid Solar. Algemeen Toepassingen Systeemdesign Componentkeuze Service THE POWER TO BE INDEPENDENT

Werkingsprincipe van de brandstofcel... P. 37. Aanwijzingen ter bescherming van het milieu... P. 41

Presentatie TKI Urban Energy

Alliander Rol E- opslag

BACHELOR SCRIPTIE. Mogelijkheden voor elektrische energieopslag in Nederland in 2023

DE RENTABILITEIT VAN ELEKTRICITEITSOPSLAG IN BELGIE

Presenta/e door Jan de Kraker - 5 mei Energie in Beweging

Slimme keuzes beter resultaat

Energieopslaglabel. Een methode voor het vergelijken van het volledige spectrum van opslagsystemen

1 ELEKTRISCHE OPSLAG. 1.1 Inleiding. 1.2 Zelfconsumptie en zelfvoorziening

Power to gas onderdeel van de energietransitie

Zelf Duurzaam Stroom opwekken

Alliander. Grid companion or grid devil,that s the question. Jbozelie. Greener than green greenhouses. Workgroup 2013 AllStore

Hoge Temperatuur Opslag (HTO) Workshop Kopper Cress 4 juni 2019

Wereld in transitie. Drivers en trends

STORAGE & INTEGRATION OF RENEWABLE ENERGY (SIRE)

Samenvatting NaSk 1 Hoofdstuk 5

De (Lood-Zuur) batterij

Wat vraagt de energietransitie in Nederland?

Power to Power Energy management systems for local grids

Integratie van grootschalig windvermogen in het Nederlandse elektriciteitssysteem

Smart Grids & Elektrisch vervoer. Innovatie workshop. Delft, 7 januari Joris Knigge Innovatie Asset Management

GROEN GAS HEEFT DE TOEKOMST en de toekomst begint nu

Presentatiegehoudenop 11 april2017 tijdensde bijpraatsessiemet de burenvan Aardgasbuffer Zuidwending

Energie opslag. Potentiële energie van water HUMSTERLAND ENERGIE. October 29, 2018 Opgesteld door: Walther L. Walraven

Opslag en technische vereisten voor het net van de toekomst

Gas als zonnebrandstof. Verkenning rol gas als energiedrager voor hernieuwbare energie na 2030

COGEN Vlaanderen vzw. Doelstelling: actief meewerken aan de ontwikkeling van kwaliteitsvolle WKK Expertisecentrum Expertiseverstrekking naar leden

WAARSCHUWING! Alleen geschikt

De opkomst van all-electric woningen

NiMH accu s opladen. Voor het overgrote deel is dit hetzelfde als bij NiCad accu s.

Onderzoek binnen thermische systemen. Martijn van Essen

WARMTE-KRACHTKOPPELINGEN (WKK) - Stand van zaken. Koos Kerstholt Tobias Platenburg

Fotovoltaïsche systemen in de stad

IS ENERGIEOPSLAG HET ANTWOORD?

De potentie van diepe geothermie voor de transitie naar duurzame energie. Technologische kansen voor de Nederlandse industrie

Smart Grids Varianten en voorbeelden

NLT Energie-eiland. Veel wind? -> met overtollige energie wordt water uit het IJsselmeer in het Markermeer gepompt

Green Data Centers Energy efficiency vanaf de bron. Remco Sloothaak

Batterijen en laadsystemen voor een duurzaam magazijn. Michiel Adema

Transcriptie:

Bijlage 1. Contactpersonen Bijlage 1. Contactpersonen CCM Centre for Concepts in Mechatronics B.V. Dr.ir. F.J.M. Thoolen De Pinckart 24, 5674 CC Nuenen Tel: 040 263 5000 E-mail: Frans.Thoolen@ccm.nl ECN Mrs. Ir. M.C.C. Lafleur Energy in the Built Environment Business Unit Manager Westerduinweg 3, 1755 ZG Petten Tel: 0224 56 4904 E-mail: lafleur@ecn.nl Dr.ir. G.J. Schaeffer Energy in the Built Environment Westerduinweg 3, 1755 ZG Petten Tel: 0224 56 4904 Email: schaeffer@ecn.nl Drs. F.D.J. Nieuwenhout Energy in the Built Environment Westerduinweg 3, 1755 ZG Petten Tel 0224 564849 E-mail: nieuwenhout@ecn.nl Ecofys bv Dr. G.J. Zijlstra Kanaalweg 16-G, 3526 KL Utrecht Tel: 030 2808 404 E-mail: g.j.zijlstra@e-concern.com KEMA Ir. Ing. G.H.C.M. Thijssen Utrechtseweg 310, 6812 AR Arnhem Tel: 026 356 9111 E-mail: gerard.thijssen@kema.com Ir. J.W. Raadschelders Utrechtseweg 310, 6812 AR Arnhem Tel: 026 356 9111 E-mail: jillis.raadschelders@kema.com Tennet / TUDelft Prof.ir. W.L. Kling Utrechtseweg 310, 6812 AR Arnhem Tel: 026-3731466 E-mail: kling@tennet.org Opslag van elektriciteit: Status en toekomstperspectief voor Nederland 49

Bijlage 1. Contactpersonen TU Delft Prof.dr. J. Schoonman Research Centre for Sustainable Energy Scientific Director Delft Julianalaan 136, 2628 BL Delft Tel: 015 278 2647 E-mail: J.Schoonman@tnw.tudelft.nl Dr. E.M. Kelder Research Centre for Sustainable Energy Managing Director Julianalaan 136, 2628 BL Delft Tel: 015 278 2647 E-mail: E.M.Kelder@tnw.tudelft.nl Dr.ir. G.C. Paap Power Systems Laboratory Head of DENLAB Mekelweg 4, 2628 CD Delft Tel: 015 27 81848 E-mail: g.c.paap@ewi.tudelft.nl TU Eindhoven / Philips Prof.dr. P.H.L. Notten Chemical Engineering and Chemistry Postbus PO Box 513, 5600 MB Eindhoven Tel: 040 247 4017 E-mail: p.h.l.notten@tue.nl en/of peter.notten@philips.com Universiteit Utrecht Prof.dr. K. P. De Jong Department of inorganic chemistry and catalysis Sorbonnelaan 16 3584 CA Utrecht Netherlands Tel 030 030 2536762 Email: K.P.deJong@chem.uu.nl Opslag van elektriciteit: Status en toekomstperspectief voor Nederland 50

Bijlage 2. Korte factsheets opslagtechnieken. In deze bijlage worden de verschillende opslagtechnologieën kort beschreven. Aangezien er vele tientallen goede overzichten beschikbaar zijn, wordt in dit rapport slechts een summier overzicht gegeven. Verschillende bronnen geven nogal eens verschillende kengetallen, waarbij het niet altijd duidelijk is of deze getallen betrekking hebben op de huidige stand van de techniek, of dat het een toekomstverwachting betreft. Dit overzicht heeft dan ook niet de pretentie om volledig te zijn, noch alle karakteristieken tot in detail te beschrijven, maar beoogt een eerste indicatie te geven van de verschillende opties. Het overzicht is vooral gebaseerd op de volgende bronnen: DTI (a), Status of Electrical Energy Storage, London, UK, 2004 de Groot, R.A.C.T., Thijssen, G.H.C.M., KEMA, Elektriciteitsopslag - techniek- en applicatie inventarisatie, Arnhem, 2001 INVESTIRE: Investigation of Storage Technologies for Intermittent Renewable Energies; Final Technical report, CEA-GENEC, February 2004 www.electricitystorage.org Inhoudsopgave Bijlage 2 Chemische energie opslag...52 1. Loodzuur batterij...52 2. Nikkel-Cadmium en Nikkel-metaalhybride batterij...53 3. Lithium batterij...54 4. Natrium-zwavel (NaS) batterij...55 5. Zink-bromide flow batterij...56 6. Vanadium-redox flow batterij...57 7. Regenesys flow batterij...58 8. Metaal-lucht batterij...59 9. Waterstof...60 Mechanische opslag...61 10. Compressed Air Energy Storage (CAES)...61 11. Pompaccumulatie...63 12. Vliegwielen...64 Elektrische energie opslag...65 13. Supercondensatoren...65 14. Superconducting Magnetic Energy Storage (SMES)...66 Opslag van elektriciteit: Status en toekomstperspectief voor Nederland 51

Chemische energie opslag 1. Loodzuur batterij In een oplaadbare batterij wordt elektrische energie omgezet in chemische energie en omgekeerd. De eigenschappen van batterijen wordt bepaald door de gebruikte materialen en de configuratie hiervan. Meestal vindt er een uitruilplaats tussen de optimalisatie van de capaciteit, vermogen of de levensduur. Loodzuur batterijen worden al ruim 130 jaar gebruikt. Omdat dit type batterij relatief goedkoop en betrouwbaar is, zijn dit de meest toegepaste batterijen. De energiedichtheid van loodzuur batterijen zijn de laatste decennia fors toegenomen, maar blijft relatief laag door het grote gewicht van lood. Loodzuur batterijen zijn in staat hoge stromen te leveren en hebben beperkte levensduur. Ze worden o.a. toegepast in auto s, bij autonome duurzame energiebronnen en ter verbetering van de netkwaliteit, zie onderstaande tabel. Tabel B2.1 Grootschalige energie opslag door loodzuur batterijen Plant name and Year of Rated energy Rated Application location installation (MWh) power (MW) BEWAG, Berlin 1986 8.5 8.5 Spinning reserve Frequency control Crescent, North 1987 0.5 0.5 Peak demand reduction Carolina Chino, California 1988 40 10 Spinning reserve Load levelling PREPA, Puerto Rico 1994 14 20 Spinning reserve Frequency control Vernon, California 1995 4.5 3 Security of supply Power quality Metlakatla, Alaska 1997 1.4 1 Stabilization of island grid ESCAR, Madrid Early 4 1 Load levelling 1990s Status of Electrical Energy Storage, DTI, UK 2004 Vermogen: tot 20 MW Capaciteit: 1-40.000 kwh Levensduur: 200-1200 cycli Zelfontlading 2-5% per maand (ECN info) Rendement cyclus: 75-80% Typische (ont)laadtijd: 0,5 5 uur (ECN info) Capaciteit 20-50 Wh/kg, 75-300 W/kg Kosten 200-900 /kwh, 45-450 /kw Opslag van elektriciteit: Status en toekomstperspectief voor Nederland 52

2. Nikkel-Cadmium en Nikkel-metaalhybride batterij NiCd batterijen worden net zoals loodzuur batterijen op grote schaal toegepast. Ze hebben een grotere energie dichtheid en een korte laadtijd dan loodzuur batterijen. De kosten zijn echter hoger en daarom worden deze batterijen vooral gebruikt in hoogwaardiger toepassingen. Daarnaast heeft dit type batterij het nadeel van het zogenaamde geheugeneffect waardoor de cellen niet altijd volledig geladen kunnen worden. Tenslotte is het gebruik van het giftige cadmium een groot milieuprobleem. De industrie werkt daarom de vervanging van cadmium door metaalhybriden, de NiMHbatterij. Deze batterij heeft ook een hoge energiedichtheid, maar is relatief erg duur. Figuur B2.2 Reserve capaciteit door NiCd-systeem. Deze 13760 NiCd-cellen kunnen een vermogen leveren van 27 MW gedurende 15 minuten. Golden Valley Electric Association, Fairbanks, Alaska. Vermogen: tot 30 MW Capaciteit: 1-40000 kwh Levensduur: 1000-3000 cycli Zelfontlading 5-20% jaar Rendement cyclus: 60-70% Typische (ont)laadtijd: 0,2 1 uur Capaciteit 75 Wh/kg, 150-300 W/kg Kosten 600-1500 /kw Opslag van elektriciteit: Status en toekomstperspectief voor Nederland 53

3. Lithium batterij Lithium batterijen hebben een zeer hoge energie dichtheid en hoge laad efficiency. Ze worden vooral toegepast in draagbare elektronica, waar het marktaandeel boven de 50% ligt. Lithium batterijen zijn relatief duur vanwege de speciale eisen aan de batterij. Diverse fabrikanten werken aan kostenreductie en aan grotere systemen voor bijvoorbeeld toepassing in auto s. Figuur B2.3 Lithion batterijen als UPS Dit systeem kan enige minuten een vermogen leveren van 100 KW. Vermogen: tot 100 kw Capaciteit: tot 15 kwh Levensduur: 3000-5000 cycli Zelfontlading 1%/maand Rendement cyclus: 95% Typische (ont)laadtijd: 0,5 uren Capaciteit 200-300 W/kg, 100-150 W/kg Kosten 500-2500 /kwh Opslag van elektriciteit: Status en toekomstperspectief voor Nederland 54

4. Natrium-zwavel (NaS) batterij Natrium-zwavel batterij bevat gesmolten natrium en zwavel. De bedrijfstemperatuur is daarom zo n 300ºC. Dit vergt een extra isolatie en veiligheidsmaatregelen. De energieinhoud is zo n factor 4 groter dan die van loodzuur batterijen. Omdat de elektrolyt en de actieve materialen niet chemisch met elkaar reageren, kent de NaS geen zelf ontlading. Wel moet de batterij op temperatuur gehouden worden. Indien de laadcyclus eens per dag wordt doorlopen, komt hierbij genoeg warmte vrij om de cel op temperatuur te houden. Dit type cellen wordt vooral toegepast in Japan, waar meer dan 30 grote installaties staan, om de piekbelasting in het elektriciteitnet te reduceren. De grootse installatie is 6MW van Tokyo Electric Power Company en kan 8 uur vermogen leveren. Figuur B2.4 Schema van NaS batterij door het Japanse NGK Vermogen: 0,1-30 MW Capaciteit: 1-50000 kwh Levensduur: 1000-4000 cycli Rendement cyclus: 85-90% Typische (ont)laadtijd: 8 uur Capaciteit 100-200 Wh/kg, 150-250 W/kg Kosten 225 400 /kwh, 300 /kw Opslag van elektriciteit: Status en toekomstperspectief voor Nederland 55

5. Zink-bromide flow batterij Flow batterijen Een flowbatterij bestaat uit twee elektroden en twee reservoirs met elektrolyt. Deze reservoirs worden gescheiden door een membraan dat ionen kan uitwisselen. De elektrolyt wordt langs het membraam gepompt, waardoor een elektrochemische reactie plaats vindt en er een potentiaalverschil ontstaat. Figuur B2.5 Werking flow batterij Bron: Status of Electrical Energy Storage, DTI, UK 2004 Een belangrijk voor deel van flow batterijen is dat de capaciteit van de batterij eenvoudig vergroot kan worden door de reservoirs te vergoten. Er zijn momenteel drie verschillende type flow batterijen beschreven: vanadium redox, zinc bromide, en polysulfide bromide (regenesys). In de onderstaande tabel worden deze typen met elkaar vergeleken. Status of Electrical Energy Storage, DTI, UK 2004 De zink bromide batterij is in de begin jaren 70 ontwikkeld door Exxon. In het verleden zijn er een aantal multi-kwh gebouwd. De 45 patenten van deze technologie zijn thans in handen van de het Amerikaanse ZBB Energy Corporation, die koploper is. Zij passen de technologie toe bij voor een betere netkwaliteit en bij autonome duurzame energie systemen. Vermogen: 10 kw 250 kw Capaciteit: 50-500 kwh Levensduur: 1000 cycli Rendement cyclus: 65-75% Zelfontlading nihil Typische (ont)laadtijd: 0,5 3 uur Capaciteit 70-90 Wh/kg, 60-140 W/kg Kosten 1500 /kw, 1500 /kwh Opslag van elektriciteit: Status en toekomstperspectief voor Nederland 56

6. Vanadium-redox flow batterij De Vanadium batterij bestaat uit een reservoir van elektrolyt met daarin vanadiumatomen met verschillende elektrische ladingen in een zure oplossing. Het Canadese VRB power en het Japanse Sumitomo Electric Industries zijn de koplopers in deze technologie. Figuur B2,6 6. Vanadium-redox pieklast centrale in Castle Valley, Utah Deze centrale kan een vermogen leveren van 250kW gedurende 8 uur (2 MWh). Bron: www.vrbpower.com Vermogen: 5 kw 500 kw Capaciteit: 50-2000 kwh Levensduur: 5000-12000 cycli cycli Zelfontlading Nihil Rendement cyclus: 80-87% (Ont)laadtijd: uren Capaciteit 20-40 Wh/kg, 180W/kg Kosten 100-500 /kwh, 4000-10000 /kw Opslag van elektriciteit: Status en toekomstperspectief voor Nederland 57

7. Regenesys flow batterij Het regenesys systeem maakt gebruik van de reversibele elektrochemische reactie tussen natriumbromide en natriumpolysulfide. De technologie is in begin jaren 90 ontwikkeld door RWE Innogy. Momenteel zijn alle patenten verkocht aan VRB Power systems. VRB is echter gestopt met de verdere ontwikkeling van deze technologie. Het is daarom de vraag of deze technologie ooit op grote schaal toegepast gaat worden. In het verleden is in opdracht door Tennessee Valley Authority, een zeer grote elektriciteitsproducent, een 120 MWh installatie gebouwd. Deze is echter nooit volledig voltooid en operationeel geworden. Vermogen: 10 kw - 15MW Capaciteit: 1 kwh-120mwh Efficiency: 70-85% (Ont)laadtijd: 1-8 uren Zelfontlading: nihil Levensduur: 1500-3000 cycli (15 jaar) Capaciteit 20-28Wh/kg Kosten: 600-3000 /kw Opslag van elektriciteit: Status en toekomstperspectief voor Nederland 58

8. Metaal-lucht batterij Metaal-lucht batterijen hebben een erg hoge energiedichtheid en hebben de potentie om erg goedkoop te worden. Het grootste nadeel is echter dat het laden van de batterijen erg moeilijk is en daarmee ook erg inefficiënt is. De huidige batterijen hebben slechts een levensduur van een paar 100 cycli en een efficiency van 50%. De anode bestaat uit eenvoudig metaal, zoals aluminium of zink die elektronen afstaan bij oxidatie. Deze reactie is moeilijk omkeerbaar, waardoor de batterij vaak niet herlaadbaar is. Een aantal fabrikanten levert wel hervulbare batterijen, waarin de metalen anodes vervangen kunnen worden. Het bedrijf evionyx die deze batterijen maakt, en meer dan 50 patenten bezit, spreekt daarom zinc-based fuel. Zij zien de batterij meer als productie-unit dan als opslagsysteem. Wel wordt opgemerkt dat de anodes elders, dus buiten de batterij, weer opnieuw gereduceerd worden, van zinkoxide tot zink. Deze zink anode kan dan weer in de batterij geplaatst worden. Scooter met evionyx hervulbare zink-lucht batterij www.evonyx.com Vermogen: 1 kw 10kW Capaciteit: 1 kwh-10kwh Efficiency: 40-50% Zelfontlading 7-10%-maand (Ont)laadtijd: 1-8 uren Levensduur: 100 cycli Capaciteit 150-500 W/kg, 200 700 Wh/kg (niet herlaadbaar) Opslag van elektriciteit: Status en toekomstperspectief voor Nederland 59

9. Waterstof Opslagsystemen gebaseerd op waterstof zijn momenteel erg in de aandacht. In dit systeem wordt door elektrolyse waterstof geproduceerd. De waterstof wordt daarna opgeslagen, om vervolgens in een brandstofcel weer te worden omgezet in elektriciteit. Waterstof heeft een hoge energiedichtheid waardoor compacte batterijen mogelijk zijn. Het systeem is echter complex en heeft een laag rendement, (momenteel) maximaal zo n 50%. Het lijkt daarom meer voor de hand te liggen waterstof te zien als een volwaardige energiedrager en niet als een afgeleide die dient om elektriciteit op te slaan, zoals bijvoorbeeld Ulf Bossel dat stelt [Bossel, 2004]. Opslag van elektriciteit: Status en toekomstperspectief voor Nederland 60

Mechanische opslag 10. Compressed Air Energy Storage (CAES) Bij Compressed Air Energy Storage (CAES) wordt lucht samengeperst en ondergronds opgeslagen. Hiervoor zijn specifieke luchtdichte geologische structuren, zoals zoutkoepels, rotsholtes of aquifers nodig. Het opslagsysteem wordt gekoppeld aan een gasturbine, waarin de energie in de samengeperste lucht weer omgezet wordt in elektriciteit. Bij compressie van lucht komt warmte vrij en bij expansie van lucht moet warmte toegevoegd worden, daarom wordt het CAES systeem efficiënter indien ook een thermische opslag wordt toegevoegd, die bij compressie wordt verhit en bij expansie zijn warmte weer afgeeft aan de expanderende lucht. CEAS wordt niet veel toegepast, maar is wel een volwassen techniek. Er is een centrale in Duitsland en een in Amerika operationeel, beiden grootschalige netgekoppelde opslagsystemen. Daarnaast wordt er ook onderzoek gedaan naar kleinere CAES systemen ( 10 MW) Figuur B2.10 schematische weergave van Compressed Air Energy Storage (Bron: CAES Development Company) : Vermogen: 0.1-1GW Capaciteit: 100-3000 MWh Efficiency: 80% (zie toelichting op volgende bladzijde) Ontlaadtijd: uren, maar gebruikte cyclus is vaak 1 dag Levensduur: tientallen jaren Zelfontlading: nihil Kosten 500 900 /kw Opslag van elektriciteit: Status en toekomstperspectief voor Nederland 61

Het rendement van een CAES systeem hangt af van de wijze waarop het berekend wordt en kan daarmee in de literatuur variëren tussen waarden onder de 45% boven de 80%. De heer Thijssen van KEMA geeft de volgende toelichting [Thijssen, 2006]: Indien we alleen naar de ingaande elektriciteit kijken en daarvan bepalen hoeveel elektriciteit daarvan weer terug in het net komt, (batterij-equivalent) dan is het rendement hoog, hoger dan de meeste loodzuur batterijsystemen (> 80%). Echter, om een CAES te laten werken moet ook gas worden bijgestookt. Indien we naar de CAES kijken alsof het een batterij-equivalent is, dan wordt gasgebruik aan de opwekking toegerekend, niet aan de opslag. Daar zit nu exact het verschil, want het gasgebruik zou er immers niet zijn als er geen CAES was. Indien we het gas meerekenen in het rendement van het CAES systeem, dan is het rendement lager, en afhankelijk van de exacte dimensionering kan het onder 50% komen. Bij KEMA kijken we overigens liever niet vanuit rendement, maar vanuit kosten van het gehele elektriciteitsvoorzieningsysteem, dus de vaste en de operationele kosten. Rendement is minder interessant, waar het om gaat is voor welke prijs de stroom wordt gekocht, niet of die stroom is opgewekt met een hoog rendement. Als je naar CAES kijkt als een opslagsysteem, dan is het batterij-equivalent zuiverder om met andere systemen te vergelijken. Nog beter is om het vergelijken op basis van 'financieel rendement. Een CAES kan in de keten van opwekking tot eindgebruik de kosten verlagen, dit zijn de baten. Uiteraard moet er in een CAES worden geïnvesteerd en er moet gas worden gekocht, dit zijn de kosten. Als de kosten lager zijn dan de baten hebben we een interessante toepassing, die geld bespaart. Indien we de CAES opladen met overschot aan wind bijvoorbeeld, dan verminderen we de benodigde hoeveelheid fossiele brandstof, ook al is er gas nodig om de CAES te laten werken. Opslag van elektriciteit: Status en toekomstperspectief voor Nederland 62

11. Pompaccumulatie Pomp accumulatie is de meest gebuikte methode om grote hoeveelheden energie op te slaan. Er staat wereldwijd 50 GW opgesteld. Het systeem bestaat uit twee reservoirs, een lage en een hoge. Tijdens de daluren pompt men het water met behulp van een turbinepomp uit het lage reservoir naar het hoge reservoir. Pompcentrales staan daarom vrijwel altijd in bergachtig terrein. In de piekuren wordt de waterstroom omgedraaid en genereert de turbine stroom. Het is ook mogelijk ondergrondse reservoirs te gebruiken. Tevens kan de zee kan worden gebruikt als reservoir. Dit is bijvoorbeeld gedaan in Japan, zie onderstaande foto. Een 30 MW zoutwater pomp accumulatie systeem in Japan. (Bron: Agency of Natural Resources and Energy, Japan) Vermogen: 0.1-2.7 GW Capaciteit: ~10 MWh tot 100 GWh Efficiency: 70-85% (Ont)laadtijd: uren Zelfontlading nihil Levensduur: 15000-30000 cycli (of: 30 jaar) Capaciteit: 0.1 1 Wh/kg Kosten 3,5 /kwh, 600 1800 /kw Opslag van elektriciteit: Status en toekomstperspectief voor Nederland 63

12. Vliegwielen Vliegwielen kunnen kinetische energie opslaan. De hoeveel energie die opslagen wordt, wordt vooral bepaald door het gewicht en de draaisnelheid van de rotor. Hierbij is de draaisnelheid het belangrijkste is, aangezien de capaciteit kwadratisch afhangt van de draaisnelheid. Bij een vliegwiel wordt via een motor-generator eenheid de elektriciteit rechtstreeks omgezet in kinetische energie en visa versa. Traditioneel worden vliegwielen gemaakt van staal, moderne vliegwielen worden gemaakt van koolstofvezel. Ondanks het feit dat koolstof ongeveer slechts een derde weegt van staal, kan er toch een factor 5 meer energie opgeslagen worden, omdat de treksterkte van koolstofvezels hoger is dan die van staal, zodat de draaisnelheid veel groter kan zijn. Deze hogere draaisnelheid stel echter wel extra eisen aan de lagering en het vacuüm waarin het vliegwiel draait. Vliegwielen kunnen snel een hoog vermogen leveren, de opslag capaciteit is echter beperkt. Ze worden momenteel commercieel toegepast in stationaire netgekoppelde toepassingen om korte netfluctuatie en netstoringen op te vangen. Het Centre for Concepts in Mechatronics werkt daarentegen juist aan mobiele toepassingen voor vliegwielen. Figuur B2.12 een 6 kwh vliegwiel van Beacon Power Vermogen: 100-2000 kw Capaciteit: 1-10 kwh Levensduur: 10 5-10 7 cycli Zelfontlading 30-40 %/uur Rendement cyclus: 90% Typische (Ont)laadtijd: seconden - minuten Capaciteit 1 10 Wh/kg, 200 1500 W/kg Kosten 1500 /kwh, 350 500 /kw Opslag van elektriciteit: Status en toekomstperspectief voor Nederland 64

Elektrische energie opslag 13. Supercondensatoren Supercondensatoren combineren de eigenschappen van traditionele condensatoren en batterijen. De elektrische energie wordt opgeslagen in een vloeistoflaag op het grensvlak van een geleidend geïoniseerde elektrolyt en een geleidende elektrode. Aangezien de capaciteit afhankelijk is van de oppervlakte wordt poreus materiaal wordt gebruikt om het oppervlak te maximaliseren. De spanning van een supercondensatoor is laag, daarom worden deze geschakeld. Momenteel is de opslagcapaciteit van dit type condensatoren nog laag. Ze hebben wel een lange levensduur en kunnen hoge vermogens leveren. De toepassingen liggen momenteel vooral als energiebuffer voor elektronica toepassingen. Ook wordt gewerkt aan toepassingen elektrisch/hybride voertuigen. Figuur B2.13 supercondensator van Maxwell Technologies Vermogen: 10-100 kw Capaciteit: 1Wh-100Wh Efficiency: 90% Zelfontlading 20-30% /maand Levensduur: 10 5-10 7 cycli (Ont)laadtijd: seconden Capaciteit 4-20 Wh/kg, 0,1-10 kw/kg Kosten 10000 + /kwh, 200 1000 /kw Opslag van elektriciteit: Status en toekomstperspectief voor Nederland 65

14. Superconducting Magnetic Energy Storage (SMES) Bij Superconducting Magnetic Energy Storage wordt de elektrische energie opgeslagen in een supergeleidende spoel. Dit gebeurt door gelijkstroom in de supergeleide spoel in te voeren en uiteindelijk kort te sluiten. Door het ontbreken van weerstand zal de stroom eindeloos doorlopen. Supergeleiding treedt pas op bij zeer lage temperaturen, hierdoor moet de spoel cryogeen gekoeld worden. De SMES produceert een zeer sterk magnetisch veld waardoor een afgesloten veiligheidszone van enkele meters nodig is. SMES systemen kunnen zeer snel vermogen leveren. Kleinschalige SMES-systemen worden al op ruime schaal toegepast bij netgekoppelde systemen op het gebied van UPS en spanningskwaliteit. Grootschalige SMES systemen worden vanwege de kosten nog niet toegepast. Figuur een SMES van Accel met een capaciteit van 0,6 kwh en een maximaal vermogen van 800 kw (Bron: www.accel.de). Vermogen: 1-100 MW Capaciteit: 0.1-3 kwh Efficiency: 95% Typische (ont)laadtijd: seconden Zelfontlading geen (wel is er energie nodig om de SMES te koelen) Levensduur: 10 tallen jaren * Capaciteit 7 Wh/kg, 120 W/kg Kosten 300-2000 /kw * De levensduur van de SMES is meer dan 30 jaar, de levensduur van de omvormer, het koelsysteem en de vermogenselektronica is korter. Opslag van elektriciteit: Status en toekomstperspectief voor Nederland 66