Algebra leren met deti-89
|
|
|
- Antoon Bos
- 8 jaren geleden
- Aantal bezoeken:
Transcriptie
1 Algebra leren met deti-89 Werkgroep T 3 -symposium Leuven augustus 2001 Doel Reflecteren op het leren van algebra in een computeralgebra-omgeving, en in het bijzonder op het omgaan met variabelen en parameters. LET OP: Deze werkgroep is een aangepaste herhaling van de gelijknamige werkgroep van het T3 symposium in Oostende in augustus Programma 1. Inleiding (15 ) 2. Werken in groepjes aan opgaven uit lesmateriaal (50 ) 3. Nabespreken paragraaf 1 aan de hand van leerlingenuitwerkingen en theorie over instrumentatie (25 ) Bij 2. Werken in groepjes aan opgaven uit lesmateriaal De opgaven uit paragraaf 1 en 2 komen uit het pakket Veranderlijke Algebra dat ontwikkeld is in het kader van het project Algebra leren in een computeralgebra omgeving dat aan het Freudenthal Instituut wordt uitgevoerd. De opgaven uit paragraaf 3 zijn afkomstig uit nascholingsmateriaal van het Freudenthal Instituut. De laatste opgave van 4 is overgenomen uit een experimenteel eindexamen in Denemarken. Werk deze fragmenten één voor één door in twee fasen: Eerst met de ogen van een leerling. Welke vaardigheid en deskundigheid heeft u bij het oplossen van de opgaven nodig? Let met name op het gebruik van letters hierbij. Ten tweede vanuit het perspectief van de docent. Bespreek met elkaar welk beeld de leerlingen moeten hebben van variabelen en parameters om de opgaven tot een goed einde te brengen. Voor de eerste paragraaf heeft u het programma schiet nodig. Paul Drijvers Freudenthal Instituut APS Bij 3. Nabespreking In de nabespreking wordt met name ingegaan op de opgaven uit de tweede paragraaf. Na afloop kunt u de belangrijkste bevindingen van het klasse-experiment waarop deze werkgroep is gebaseerd nalezen in de artikelen na de opgaven: Drijvers, P. en Van Herwaarden, O. (2000). Instrumentatie van ICT-gereedschap: algebra met computeralgebra. Nieuwe Wiskrant, tijdschrift voor Nederlands wiskundeonderwijs 20(1), Drijvers, P. (2001). Instrumentatie van algebraïsche substitutie met een computeralgebra machine. Paper gepresenteerd op de Onderwijs Research Dagen 2001, , Amsterdam. Paul Drijvers, FI / APS 1
2 1 Schieten en schuiven op de TI-89 Je gaat het spelletje Schiet spelen op de TI-89. Eerst speel je het spel. Daarna kijk je erop terug om het verband te leggen met de wiskunde. voorbereidingen 1 a. Zorg ervoor dat het spel op je TI-89 aanwezig is. b. Je gaat het spel samen met buurman/vrouw op één machine spelen. Typ in het HOME-scherm in: schiet(). Let op het sluithaakje! Je kunt het commando schiet() ook uit VAR-LINK halen. c. Meld de twee spelers aan met F1 optie 1 en voer de namen in. spelen zonder coördinaten d. Kies F2 optie 1: spelen zonder coördinaten. Je ziet een scherm van [0, 15] bij [0, 10] met aan de rechterzijde een doel. De loop van het geschut zie je links. Het is een stukje van de grafiek van de functie Y1 met Y1 = A*X + 5. Linksonder in beeld staat de huidige waarde van A. Linksboven zie je de naam van de speler die aan de beurt is. Met en kun je de loop richten op het doel. Daardoor verandert de waarde van A. Met ENTER schiet je. Raak je het doel, dan krijg je 10 punten. Een schampschot geeft 5 punten. De twee spelers lossen om de beurt een schot, elk 5 keer. Dan verschijnt de eindscore in beeld. 2 Speel het spel enkele keren met een medeleerling. spelen met coördinaten 3 a. Kies vervolgens F2 optie 2: Met coordinaten. Je krijgt dan ook de coördinaten van het doel in beeld. b. Speel het spel nu niet tegen elkaar maar met elkaar. Probeer samen een maximale score uit 5 schoten te halen. c. Hoe kun je geschikte A-waarde uit de coördinaten van het doel berekenen? het spel afsluiten 4 a. Sluit het spel netjes af met F3 optie 1: Stoppen. b. Tussentijds afbreken van het spel gaat met ON, gevolgd door ESC. Als je zo het spel afbreekt, moet je nog twee zaken goed instellen: - Kies in het HOME-scherm voor F6 optie 1: Clear a-z. - Kies MODE en stel bij F2 Exact/Approx in op 1:AUTO. nadenken over het spel 5 Welke wiskundige conclusies kun je trekken uit het spel? Schrijf die in je schrift. 6 Wat gebeurt er met de grafiek van y = a.x + 5 als a groter wordt? 2 Paul Drijvers, FI / APS
3 2 Substitutie 1 Het volume van een cilinder is gelijk aan de oppervlakte van het grondvlak keer de hoogte, afgekort tot v = g * h. De oppervlakte van het grondvlak is π maal het kwadraat van de straal r, dus g = π * r^2 Voer deze formules in en substitueer de formule van de oppervlakte in die van de inhoud. π krijg je met 2nd ^. straal hoogte 2 De inhoud van de kegel hiernaast is de oppervlakte van het grondvlak keer de hoogte gedeeld door 3, dus 1 3 inhoud = -- grondvlak hoogte De oppervlakte van het grondvlak is π maal het kwadraat van de straal, dus grondvlak = π straal 2 a. Bereken de inhoud van de kegel als de straal gelijk is aan 5 en de hoogte 9 is. b. Stel je kent de hoogte en de straal niet. Je weet wel dat de hoogte gelijk is aan het dubbele van de straal. Welke formule voor de inhoud kun je dan opstellen? straal hoogte 3 Twee rechthoekszijden van een rechthoekige driehoek zijn samen 31 lang. De schuine zijde heeft een lengte van 25. a. Hoe lang zijn de rechthoekszijden? b. Los het probleem ook op als de twee rechthoekszijden samen 35 zijn in plaats van 31. c. Los het probleem in het algemeen op, dat wil zeggen zonder dat de getallen 31 en 25 gegeven zijn Twee rechthoekszijden van een rechthoekige driehoek zijn samen 31 lang. De schuine zijde heeft een lengte van k. De vraag is, hoe lang de rechthoekszijden zijn. Voor welke waarden van k heeft dit probleem geen oplossing? 31 k Paul Drijvers, FI / APS 3
4 5 a. De ribben van twee kubussen zijn samen 20 lang. De totale inhoud van beide kubussen is Hoe groot is de ribbe van de grootste kubus? b. De som van twee getallen is s en de som van hun derdemachten is d. Druk die getallen uit in s en d. Schrijf de formules in zo eenvoudig mogelijke vorm. c. Hoe kun je in het antwoord van b zien, dat de twee oplossingen symmetrisch liggen rond --s? De ribben van twee kubussen zijn samen 20 lang. De totale inhoud van beide kubussen is d. Welke waarden kan de totale inhoud d aannemen? historische noot: De Babyloniers Hierboven zie je een Babylonische kleitablet waarin spijkerschrift is geschreven, toen de klei nog nat was. Dit tablet is waarschijnlijk tussen 1900 en 1600 voor Christus gemaakt. Sommige van dergelijke tabletten bevatten wiskundige problemen, bijvoorbeeld in de stijl van: Van een rechthoekig stuk land kennen we de oppervlakte (540 m 2 )ende lengte van de diagonaal (39 m). Bereken de afmetingen van het stuk land. 7 Probeer deze opgave op te lossen. 8 Een ander Babylonisch probleem, op eigentijdse manier geformuleerd: Voor welke waarden van x en y geldt: x + y = 28 x y + x.y = 183? Bron: pakket Veranderlijke Algebra, Freudenthal Instituut, Utrecht 4 Paul Drijvers, FI / APS
5 3 Raken aan een bundel 1 Gegeven is de verzameling functies y n ( x) = x ( n + 1 x n ) met n = 1, 2, 3, 4,... a. Teken de grafieken van de functies y 1,..., y 9 op het scherm ( met x- interval [0, 2], y-interval [0, 10]). Wat valt op als je naar de toppen kijkt? Bewijs je vermoeden. b. Als we n niet alleen de natuurlijke getallen, maar alle reële postieve getallen laten doorlopen, dan omhullen de grafieken een nieuwe kromme die min of meer al op het scherm te zien is. Een standaard methode om een vergelijking van die kromme te vinden is: differentieer y n ( x) naar n elimineer n uit de vergelijkingen y n ( x) = x ( n + 1 x n ) en yn ( x) = 0 n Voer de eliminatie uit met de TI 89. c. Zet de verkregen expressie in x in het functiebestand en controleer (althans optisch) of de kromme aan de negen eerder getekende krommen raakt. 2 In de vorige opgave was de vraag om de formule te vinden van een kromme die aan een gegeven bundel raakt. Pas de daar gepresenteerde methode toe om in te laten zien dat de lijnen in onderstaande figuur een parabool omhullen. Welke vergelijking heeft deze parabool? (10, 10) Bron: nascholingsmateriaal van de cursus wiskunde en ICT van het Freudenthal Instituut Paul Drijvers, FI / APS 5
6 4 Toegift 1 Een waaier van lijnen Hierboven staat de grafiek van de functie y met y = 4x 2 8x + 1. Ook is een waaier van lijnen door de oorsprong getekend. Zoals je ziet, varieert het aantal snijpunten dat deze lijnen hebben met de parabool. Vragen zijn nu: Tussen welke waarden kan het aantal snijpunten variëren? Waarvan hangt het aantal snijpunten tussen lijn en kromme af? Bepaal een regel die aangeeft hoe je uit de vergelijking van de lijn het aantal snijpunten met de kromme kunt afleiden. 2 Gegeven zijn functies f en g met f ( x) = x 3 12x + 16 en gx ( ) = x 3 + 3x 2 + 9x + 5. In de figuur hieronder staat de grafiek van g. De grafiek van f is echter zodanig omhoog geschoven, dat deze de grafiek van g raakt. De vraag is in welk punt de grafieken elkaar raken omhooggeschoven grafiek van f grafiek van g Bron: experimenteel eindexamen waarbij leerlingen het computeralgebra pakket Mathematica gebruiken, Denemarken, Paul Drijvers, FI / APS
Veranderlijke Algebra
Veranderlijke Algebra versie TI-89 Algebra leren met computeralgebra Freudenthal Instituut Bij de voorkant: François Viète, geboren in 540 in Fontenay-le-Comte (Frankrijk) en gestorven in 603 in Parijs.
Eliminatie van parameters en substitutie met computeralgebra
Eliminatie van parameters en substitutie met computeralgebra Guido Herweyers, KHBO Campus Oostende Dirk Janssens, K.U.Leuven 1. Inleiding Uitgaande van parametervergelijkingen van rechten en vlakken illustreren
6.0 Differentiëren Met het differentiequotiënt bereken je de gemiddelde verandering per tijdseenheid.
6.0 Differentiëren Met het differentiequotiënt bereken je de gemiddelde verandering per tijdseenheid. f(x) = x x Differentiequotiënt van f(x) op [0, 3] = y f (3) f (0) 60 x 30 30 y x 1 Algemeen: Het differentiequotiënt
1.1 Lineaire vergelijkingen [1]
1.1 Lineaire vergelijkingen [1] Voorbeeld: Los de vergelijking 4x + 3 = 2x + 11 op. Om deze vergelijking op te lossen moet nu een x gevonden worden zodat 4x + 3 gelijk wordt aan 2x + 11. = x kg = 1 kg
1.0 Voorkennis. Voorbeeld 1: Los op: 6x + 28 = 30 10x.
1.0 Voorkennis Voorbeeld 1: Los op: 6x + 28 = 30 10x. 6x + 28 = 30 10x +10x +10x 16x + 28 = 30-28 -28 16x = 2 :16 :16 x = 2 1 16 8 Stappenplan: 1) Zorg dat alles met x links van het = teken komt te staan;
2010-I. A heeft de coördinaten (4 a, 4a a 2 ). Vraag 1. Toon dit aan. Gelijkstellen: y= 4x x 2 A. y= ax
00-I De parabool met vergelijking y = 4x x en de x-as sluiten een vlakdeel V in. De lijn y = ax (met 0 a < 4) snijdt de parabool in de oorsprong en in punt. Zie de figuur. y= 4x x y= ax heeft de coördinaten
6.1 Kwadraten [1] HERHALING: Volgorde bij berekeningen:
6.1 Kwadraten [1] HERHALING: Volgorde bij berekeningen: 1) Haakjes wegwerken 2) Vermenigvuldigen en delen van links naar rechts 3) Optellen en aftrekken van links naar rechts Schrijf ALLE stappen ONDER
2.1 Lineaire functies [1]
2.1 Lineaire functies [1] De lijn heeft een helling (richtingscoëfficiënt) van 1; De lijn gaat in het punt (0,2) door de y-as; In het plaatje is de lijn y = x + 2 getekend. Omdat de grafiek een rechte
Lesbrief GeoGebra. 1. Even kennismaken met GeoGebra (GG)
Lesbrief GeoGebra Inhoud: 1. Even kennismaken met GeoGebra 2. Meetkunde: 2.1 Punten, lijnen, figuren maken 2.2 Loodlijn, deellijn, middelloodlijn maken 2.3 Probleem M1: De rechte van Euler 2.4 Probleem
10.0 Voorkennis. Herhaling van rekenregels voor machten: a als a a 1 0[5] [6] Voorbeeld 1: Schrijf als macht van a:
10.0 Voorkennis Herhaling van rekenregels voor machten: p p q pq a pq a a a [1] a [2] q a q p pq p p p a a [3] ( ab) a b [4] Voorbeeld 1: Schrijf als macht van a: 1 8 : a a : a a a a 3 8 3 83 5 Voorbeeld
Opgave 1 Bestudeer de Uitleg, pagina 1. Laat zien dat ook voor punten buiten lijnstuk AB maar wel op lijn AB geldt: x + 3y = 5
2 Vergelijkingen Verkennen Meetkunde Vergelijkingen Inleiding Verkennen Beantwoord de vragen bij Verkennen. Uitleg Meetkunde Vergelijkingen Uitleg Opgave Bestudeer de Uitleg, pagina. Laat zien dat ook
Achter het correctievoorschrift is een aanvulling op het correctievoorschrift opgenomen.
Examen HAVO 05 tijdvak donderdag 8 juni 3.30-6.30 uur wiskunde B Bij dit examen hoort een uitwerkbijlage. Achter het correctievoorschrift is een aanvulling op het correctievoorschrift opgenomen. Dit examen
wiskunde B havo 2015-II
Veilig vliegen De minimale en de maximale snelheid waarmee een vliegtuig veilig kan vliegen, zijn onder andere afhankelijk van de vlieghoogte. Deze hoogte wordt vaak weergegeven in de Amerikaanse eenheid
Met behulp van deze gegevens kan worden berekend welke maximale totale behoefte aan elektrische energie in Nederland er voor 2050 wordt voorspeld.
Windenergie Er wordt steeds meer gebruikgemaakt van windenergie. Hoewel de bijdrage van windenergie nu nog klein is, kan windenergie in de toekomst een grote bijdrage aan onze elektriciteitsvoorziening
IJkingstoets september 2015: statistisch rapport
IJkingstoets burgerlijk ingenieur 4 september 05 - reeks - p. IJkingstoets september 05: statistisch rapport In totaal namen studenten deel aan deze toets. Hiervan waren er 06 geslaagd. Verdeling van de
Verbanden en functies
Verbanden en functies 0. voorkennis Stelsels vergelijkingen Je kunt een stelsel van twee lineaire vergelijkingen met twee variabelen oplossen. De oplossing van het stelsel is het snijpunt van twee lijnen.
IJkingstoets september 2015: statistisch rapport
IJkingstoets burgerlijk ingenieur 4 september 05 - reeks - p. IJkingstoets september 05: statistisch rapport In totaal namen 33 studenten deel aan deze toets. Hiervan waren er 06 geslaagd. Verdeling van
IJkingstoets september 2015: statistisch rapport
IJkingstoets burgerlijk ingenieur 4 september 05 - reeks 4 - p. IJkingstoets september 05: statistisch rapport In totaal namen 33 studenten deel aan deze toets. Hiervan waren er 06 geslaagd. Verdeling
Figuren door Formules
Figuren door Formules 206 NWD 22 Freudenthal Instituut Universiteit Utrecht - Dit pakketje - voor leerlingen van vwo/havo of hoger - is ontworpen in opdracht van de NWD. Het kan worden gebruikt als voorbereiding
ProefToelatingstoets Wiskunde B
Uitwerking ProefToelatingstoets Wiskunde B Hulpmiddelen :tentamenpapier,kladpapier, een eenvoudige rekenmachine (dus geen grafische of programmeerbare rekenmachine) De te bepalen punten per opgave staan
Paragraaf 11.0 : Voorkennis
Hoofdstuk 11 Verbanden en functies (H5 Wis B) Pagina 1 van 15 Paragraaf 11.0 : Voorkennis Les 1 : Stelsels, formules en afgeleide Los op. 3x + 5y = 7 a. { 2x + y = 0 2x + 5y = 38 b. { x = y + 5 a. 3x +
6.0 Voorkennis AD BC. Kruislings vermenigvuldigen: Voorbeeld: 50 10x. 50 10( x 1) Willem-Jan van der Zanden
6.0 Voorkennis Kruislings vermenigvuldigen: A C AD BC B D Voorbeeld: 50 0 x 50 0( x ) 50 0x 0 0x 60 x 6 6.0 Voorkennis Herhaling van rekenregels voor machten: p p q pq a pq a a a [] a [2] q a q p pq p
De kandidaten: jullie taak is het maken van de opdrachten, opzoeken van theorie en het zoeken naar de mol.
Dossieropdracht 4 Wie is de mol? Opdracht Je gaat het spel Wie is de mol? spelen. Dit doe je in een groep van circa acht personen, die wordt gemaakt door de docent. In je groep moet je acht vragen beantwoorden
Analytische Meetkunde
Analytische Meetkunde Meetkunde met Geogebra en vergelijkingen van lijnen 2 Inhoudsopgave Achtergrondinformatie... 4 Meetkunde met Geogebra... 6 Stelling van Thales...... 7 3 Achtergrondinformatie Auteurs
5.1 Lineaire formules [1]
5.1 Lineaire formules [1] Voorbeeld : Teken de grafiek van y = 1½x - 3 Stap 1: Maak een tabel met twee coördinaten van deze lijn: x 0 2 y -3 0 Stap 2: Teken de twee punten en de grafiek: 1 5.1 Lineaire
Samenvatting wiskunde havo 4 hoofdstuk 5,7,8 en vaardigheden 3 en 4 en havo 5 hoofdstuk 3 en 5 Hoofdstuk 5 afstanden en hoeken Voorkennis Stelling van
Samenvatting wiskunde havo 4 hoofdstuk 5,7,8 en vaardigheden 3 en 4 en havo 5 hoofdstuk 3 en 5 Hoofdstuk 5 afstanden en hoeken Stelling van Kan alleen bij rechthoekige driehoeken pythagoras a 2 + b 2 =
Hoofdstuk 4: Meetkunde
Hoofdstuk 4: Meetkunde Wiskunde VMBO 2011/2012 www.lyceo.nl Hoofdstuk 4: Meetkunde Wiskunde 1. Basisvaardigheden 2. Grafieken en formules 3. Algebraïsche verbanden 4. Meetkunde Getallen Assenstelsel Lineair
1.0 Voorkennis. Voorbeeld 1: Los op: 6x + 28 = 30 10x.
1.0 Voorkennis Voorbeeld 1: Los op: 6x + 28 = 30 10x. 6x + 28 = 30 10x +10x +10x 16x + 28 = 30-28 -28 16x = 2 :16 :16 x = 2 1 16 8 Stappenplan: 1) Zorg dat alles met x links van het = teken komt te staan;
6.1 Kwadraten [1] HERHALING: Volgorde bij berekeningen:
6.1 Kwadraten [1] HERHALING: Volgorde bij berekeningen: 1) Haakjes wegwerken 2) Vermenigvuldigen en delen van links naar rechts 3) Optellen en aftrekken van links naar rechts Schrijf ALLE stappen ONDER
Instructie voor Docenten. Hoofdstuk 13 OMTREK EN OPPERVLAKTE
Instructie voor Docenten Hoofdstuk 13 OMTREK EN OPPERVLAKTE Instructie voor docenten H13: OMTREK EN OPPERVLAKTE DOELEN VAN DIT HOOFDSTUK: Leerlingen weten wat de begrippen omtrek en oppervlakte betekenen.
Eindexamen wiskunde B vwo 2010 - I
Gelijke oppervlakten De parabool met vergelijking y = 4x x2 en de x-as sluiten een vlakdeel V in. De lijn y = ax (met 0 a < 4) snijdt de parabool in de oorsprong O en in punt. Zie. y 4 3 2 1-1 O 1 2 3
3 Bijzondere functies
3 Bijzondere functies Verkennen grafieken Bijzondere functies Inleiding Verkennen Probeer de drie vragen te beantwoorden. Uitleg grafieken Bijzondere functies Uitleg Opgave 1 Bekijk de eerste pagina van
Examen HAVO. wiskunde B. tijdvak 2 woensdag 18 juni uur. Bij dit examen hoort een uitwerkbijlage.
Examen HAVO 2014 tijdvak 2 woensdag 18 juni 13.30-16.30 uur wiskunde B Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 19 vragen. Voor dit examen zijn maximaal 77 punten te behalen. Voor
wiskunde B vwo 2016-I
wiskunde vwo 06-I Formules Vlakke meetkunde Verwijzingen naar definities en stellingen die bij een bewijs mogen worden gebruikt zonder nadere toelichting. Hoeken, lijnen en afstanden: gestrekte hoek, rechte
Zomercursus Wiskunde. Katholieke Universiteit Leuven Groep Wetenschap & Technologie. September 2008
Katholieke Universiteit Leuven September 2008 Minimum-Maimumproblemen (versie 11 augustus 2008) Inleiding In heel wat vraagstukken gaan we op zoek naar het maimum of het minimum van een zekere grootheid.
Examen HAVO. wiskunde B. tijdvak 1 donderdag 19 mei uur. Bij dit examen hoort een uitwerkbijlage.
Examen HAVO 011 tijdvak 1 donderdag 19 mei 13.30-16.30 uur wiskunde B Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 19 vragen. Voor dit examen zijn maximaal 80 punten te behalen. Voor
Stoomcursus. wiskunde A. Rekenregels voor vereenvoudigen. Voorbereidende opgaven VWO ( ) = = ( ) ( ) ( ) = ( ) ( ) = ( ) = = ( )
Voorbereidende opgaven VWO Stoomcursus wiskunde A Tips: Maak de voorbereidende opgaven voorin in een van de A4-schriften die je gaat gebruiken tijdens de cursus. Als een opdracht niet lukt, werk hem dan
d = 8 cm 2 6 A: = 26 m 2 B: = 20 m 2 C: = 18 m 2 D: 20 m 2 E: 26 m 2
H17 PYTHAGORAS 17.1 INTRO 1 b c d 1 4 4 = 8 cm 6 A: 6 1 5 1 4 = 6 m B: 6 1 4 4 = 0 m C: 6 1 3 3 4 = 18 m D: 0 m E: 6 m 7 a A:, cm B: 5,0 cm C: 3, cm D: 4,1 cm b Voor elke zijde geldt dat het de schuine
Het gewicht van een paard
Het gewicht van een paard Voor mensen die paarden verzorgen figuur 1, is het belangrijk om te weten hoe zwaar hun paard is. Het gewicht van een paard kan worden geschat met behulp van twee afmetingen:
5 keer beoordeeld 4 maart Wiskunde H6, H7, H8 Samenvatting
4,4 Samenvatting door Syb 954 woorden 5 keer beoordeeld 4 maart 2018 Vak Wiskunde Methode Getal en Ruimte Wiskunde H6, H7, H8 Samenvatting HOOFDSTUK 6 Procenten, Diagrammen en Kansrekening (10 en 100 zijn
5.7. Boekverslag door P woorden 11 januari keer beoordeeld. Wiskunde B
Boekverslag door P. 1778 woorden 11 januari 2012 5.7 103 keer beoordeeld Vak Methode Wiskunde B Getal en ruimte Wiskunde Hoofdstuk 1 Formules en Grafieken 1.1 Lineaire verbanden Van de lijn y=ax+b is de
Tentamen Wiskunde B CENTRALE COMMISSIE VOORTENTAMEN WISKUNDE. Datum: 16 januari uur Aantal opgaven: 5
CENTRALE COMMISSIE VOORTENTAMEN WISKUNDE Tentamen Wiskunde B Datum: 16 januari 2015 Tijd: 13.30 16.30 uur Aantal opgaven: 5 Lees onderstaande aanwijzingen s.v.p. goed door voordat u met het tentamen begint.
Examencursus. wiskunde A. Rekenregels voor vereenvoudigen. Voorbereidende opgaven VWO kan niet korter
Voorbereidende opgaven VWO Examencursus wiskunde A Tips: Maak de voorbereidende opgaven voorin in een van de A4-schriften die je gaat gebruiken tijdens de cursus. Als een opdracht niet lukt, werk hem dan
De twee schepen komen niet precies op hetzelfde moment in S aan.
Gevaar op zee Schepen die elkaar te dicht naderen worden gewaarschuwd door de kustwacht. Wanneer schepen niet op zo n waarschuwing hebben gereageerd, stelt de Inspectie Verkeer en Waterstaat een onderzoek
pythagoras handleiding inhoudsopgave 1 de grote lijn 2 applets 3 bespreking per paragraaf 4 tijdsplan 5 materialen voor een klassengesprek pythagoras
inhoudsopgave 1 de grote lijn applets 3 bespreking per paragraaf 4 tijdsplan 5 materialen voor een klassengesprek 1 de grote lijn hoofdlijn de zijlijn De oppervlakte van rechthoekige driehoeken. Van een
2.1 Lineaire formules [1]
2.1 Lineaire formules [1] De lijn heeft een helling (richtingscoëfficiënt) van 1; De lijn gaat in het punt (0,2) door de y-as; In het plaatje is de lijn y = x + 2 getekend. Omdat de grafiek een rechte
Examen VWO. Wiskunde B Profi
Wiskunde B Profi Eamen VWO Voorbereidend Wetenschappelijk Onderwijs Tijdvak Donderdag 25 mei 3.30 6.30 uur 20 00 Dit eamen bestaat uit 7 vragen. Voor elk vraagnummer is aangegeven hoeveel punten met een
3.0 Voorkennis. Voorbeeld 1: Los op: 6x + 28 = 30 10x.
3.0 Voorkennis Voorbeeld 1: Los op: 6x + 28 = 30 10x. 6x + 28 = 30 10x +10x +10x 16x + 28 = 30-28 -28 16x = 2 :16 :16 x = 2 1 16 8 Stappenplan: 1) Zorg dat alles met x links van het = teken komt te staan;
Basisvaardigheden algebra. Willem van Ravenstein. 2012 Den Haag
Basisvaardigheden algebra Willem van Ravenstein 2012 Den Haag 1. Variabelen Rekenenis het werken met getallen. Er zijn vier hoofdbewerkingen: optellen, aftrekken, vermenigvuldigen en delen. Verder ken
Werken met parameters
Duur 45 minuten Overzicht Tijdens deze lesactiviteit leer je hoe de waarde van een parameter in een functievoorschrift de vorm of ligging van de functie kan beïnvloeden. Je gaat dit onderzoeken voor tweedegraadsfuncties.
Je moet nu voor jezelf een overzicht zien te krijgen over het onderwerp Functies en grafieken. Een eigen samenvatting maken is nuttig.
7 Totaalbeeld Samenvatten Je moet nu voor jezelf een overzicht zien te krijgen over het onderwerp Functies en grafieken. Een eigen samenvatting maken is nuttig. Begrippenlijst: 21: functie invoerwaarde
Homogene groepen, de balk
Volgende week mag je zelf een les van ongeveer 20 minuten geven aan je medeleerlingen over de balk, cilinder of kegel. Een goede les bevat veel leerlingactiviteit. Zorg er dus voor dat je je leerlingen
Wiskunde D Online uitwerking 4 VWO blok 6 les 4
Wiskunde Online uitwerking 4 VWO blok 6 les 4 Paragraaf 4 Het inproduct om hoeken te berekenen Opgave a e hoek is kleiner dan 4, want het dak zelf staat onder een hoek van 45, en de kilgoot loopt schuin
15.0 Voorkennis. Herhaling rekenregels voor differentiëren: (somregel) (productregel) (quotiëntregel) n( x) ( n( x))
5.0 Voorkennis Herhaling rekenregels voor differentiëren: f ( x) a f '( x) 0 n f ( x) ax f '( x) nax n f ( x) c g( x) f '( x) c g'( x) f ( x) g( x) h( x) f '( x) g'( x) h'( x) p( x) f ( x) g( x) p'( x)
3 Formules en de grafische rekenmachine
3 Formules en de grafische rekenmachine Verkennen www.math4all.nl MAThADORE-basic HAVO/VWO 4/5/6 VWO wi-b Werken met formules Formules en de GR Inleiding Verkennen Werk het Practicum Basistechnieken met
7.1 Ongelijkheden [1]
7.1 Ongelijkheden [1] In het plaatje hierboven zijn vier intervallen getekend. Een open bolletje betekent dat dit getal niet bij het interval hoort. Een gesloten bolletje betekent dat dit getal wel bij
Examen HAVO. wiskunde B. tijdvak 2 woensdag 19 juni 13.30-16.30 uur
Examen HVO 2013 tijdvak 2 woensdag 19 juni 13.30-16.30 uur wiskunde B Dit examen bestaat uit 19 vragen. Voor dit examen zijn maximaal 77 punten te behalen. Voor elk vraagnummer staat hoeveel punten met
11.0 Voorkennis. Optellen alleen bij gelijknamige termen: 3a 3 + 4a 3 = 7a 3. Bij macht van een macht exponenten vermenigvuldigen: (a 5 ) 4 = a 20
.0 Voorkennis Herhaling rekenregels voor machten: Vermenigvuldigen is exponenten optellen: a 3 a 5 = a 8 Optellen alleen bij gelijknamige termen: 3a 3 + a 3 = 7a 3 Bij macht van een macht exponenten vermenigvuldigen:
Examen HAVO. wiskunde B1,2
wiskunde 1, Examen HVO Hoger lgemeen Voortgezet Onderwijs ijdvak 1 Vrijdag 19 mei 1.0 16.0 uur 0 06 Voor dit examen zijn maximaal 87 punten te behalen; het examen bestaat uit vragen. Voor elk vraagnummer
Examen HAVO. wiskunde B (pilot) tijdvak 2 woensdag 22 juni uur
Examen HAVO 011 tijdvak woensdag juni 13.30-16.30 uur wiskunde B (pilot) Dit examen bestaat uit 19 vragen. Voor dit examen zijn maximaal 78 punten te behalen. Voor elk vraagnummer staat hoeveel punten
Examen VWO. wiskunde B. tijdvak 1 woensdag 18 mei 13:30-16:30 uur. Bij dit examen hoort een uitwerkbijlage.
Eamen VW 06 tijdvak woensdag 8 mei 3:30-6:30 uur wiskunde ij dit eamen hoort een uitwerkbijlage. it eamen bestaat uit 7 vragen. Voor dit eamen zijn maimaal 77 punten te behalen. Voor elk vraagnummer staat
E = mc². E = mc² E = mc² E = mc². E = mc² E = mc² E = mc²
E = mc² E = mc² E = mc² E = mc² E = mc² E = mc² E = mc² E = mc² E = mc² De boom en het stokje staan loodrecht op de grond in het park. De boom is 3 en het stokje 1. Hoe lang is de schaduw van het stokje
1 Vlaamse Wiskunde Olympiade : Eerste Ronde.
Vlaamse Wiskunde Olympiade 986 987: Eerste Ronde De eerste ronde bestaat uit 0 meerkeuzevragen Het quoteringssysteem werkt als volgt : een deelnemer start met 0 punten Per goed antwoord krijgt hij of zij
Tentamen Wiskunde B. Het gebruik van een mobiele telefoon of andere telecommunicatieapparatuur tijdens het tentamen
CENTRALE COMMISSIE VOORTENTAMEN WISKUNDE Tentamen Wiskunde B Datum: 3 januari Tijd: 9. -. uur Aantal opgaven: 5 Zet uw naam op alle in te leveren blaadjes. Laat bij elke opgave door middel van een berekening
Examen VWO. wiskunde B. tijdvak 1 woensdag 18 mei 13:30-16:30 uur. Bij dit examen hoort een uitwerkbijlage.
Eamen VW 06 tijdvak woensdag 8 mei 3:30-6:30 uur wiskunde ij dit eamen hoort een uitwerkbijlage. it eamen bestaat uit 7 vragen. Voor dit eamen zijn maimaal 77 punten te behalen. Voor elk vraagnummer staat
Willem van Ravenstein
Willem van Ravenstein 1. Variabelen Rekenen is het werken met getallen. Er zijn vier hoofdbewerkingen: optellen, aftrekken, vermenigvuldigen en delen. Verder ken je de bewerkingen machtsverheffen en worteltrekken.
klas 3 havo Checklist HAVO klas 3.pdf
Checklist 3 HAVO wiskunde klas 3 havo Checklist HAVO klas 3.pdf 1. Hoofdstuk 1 - lineaire problemen Ik weet dat de formule y = a x + b hoort bij de grafiek hiernaast. Ik kan bij een lineaire formule de
Examen HAVO. Wiskunde B1,2 (nieuwe stijl)
Wiskunde B1,2 (nieuwe stijl) Examen HAVO Hoger Algemeen Voortgezet Onderwijs Tijdvak 1 Maandag 27 mei 1.0 16.0 uur 20 02 Voor dit examen zijn maximaal 88 punten te behalen; het examen bestaat uit 19 vragen.
Eindexamen vwo wiskunde B pilot 2014-I
Eindeamen vwo wiskunde B pilot 04-I Formules Goniometrie sin( tu) sintcosu costsinu sin( tu) sintcosu costsinu cos( tu) costcosusintsinu cos( tu) costcosusintsinu sin( t) sintcost cos( t) cos tsin t cos
2004 Gemeenschappelijke proef Algebra - Analyse - Meetkunde - Driehoeksmeting 14 vragen - 2:30 uur Reeks 1 Notatie: tan x is de tangens van de hoek x, cot x is de cotangens van de hoek x Vraag 1 In een
Kaas. foto 1 figuur 1. geheel aantal cm 2.
Kaas Op foto 1 zie je drie stukken kaas. Het zijn delen van een hele, ronde kaas. Het grootste stuk is precies de helft van een hele kaas. Deze halve kaas heeft een vlakke zijkant. De vorm van de vlakke
Definitie van raaklijn aan cirkel: Stelling van raaklijn aan cirkel:
13.0 Voorkennis Op de cirkel liggen alle punten met een Gelijke afstand tot het middelpunt van de cirkel. Voor een punt p op de cirkel geldt d(p, M) = r Definitie van raaklijn aan cirkel: Een raaklijn
H. 8 Kwadratische vergelijking / kwadratische functie
H. 8 Kwadratische vergelijking / kwadratische functie 8. Kwadratische vergelijking Een kwadratische vergelijking (of e graadsvergelijking) is een vergelijking van de vorm: a b c + + = Ook wordt een kwadratische
P is nu het punt waarvan de x-coördinaat gelijk is aan die van het punt X en waarvan de y-coördinaat gelijk is aan AB (inclusief het teken).
Inhoud 1. Sinus-functie 1 2. Cosinus-functie 3 3. Tangens-functie 5 4. Eigenschappen 4.1. Verband tussen goniometrische verhoudingen en goniometrische functies 8 4.2. Enkele eigenschappen van de sinus-functie
Noordhoff Uitgevers bv
Voorkennis V-a Hester houdt e 5,00 3 e,85 3 e 3,9 5 e 5,00 e 3,70 e 6,58 5 e,7 over. b e 5,00 3 (e,85 e 3,9) 5 e 5,00 3 e 5, 5 e 5,00 e 0,8 5 e,7 V-a 6 3 5 36 9 5 7 b 9 (5 ) 5 9 (5 ) 5 9 5 c 0 3 6 5 000
Voorbeeldtentamen Wiskunde B
CENTRALE COMMISSIE VOORTENTAMEN WISKUNDE Datum: Najaar 2018 Tijd: 3 uur Aantal opgaven: 6 Voorbeeldtentamen Wiskunde B Lees onderstaande aanwijzingen s.v.p. goed door voordat u met het tentamen begint.
Examen HAVO. wiskunde B1,2. tijdvak 1 dinsdag 20 mei uur
Examen HAVO 2008 tijdvak 1 dinsdag 20 mei 13.30-16.30 uur wiskunde B1,2 Dit examen bestaat uit 18 vragen. Voor dit examen zijn maximaal 83 punten te behalen. Voor elk vraagnummer staat hoeveel punten met
Hoezo denkactiviteiten?
Hoezo denkactiviteiten? Paul Drijvers, Freudenthal Instituut Peter van Wijk, ctwo/aps 2011-11-05 350 450 100 N F P H Afstand tot F Afstand tot P 350 450 100 N F P H 350 450 100 N F P H Is dit een wiskundige
Extra oefeningen: vergelijkingen en ongelijkheden
Extra oefeningen: vergelijkingen en ongelijkheden 1 3 Controleer of de gegeven reële getallen oplossingen zijn van de bijhorende vergelijking. Vergelijking Gegeven reële getallen a) x 7 = 3 5 en b). x
Tentamen Wiskunde B CENTRALE COMMISSIE VOORTENTAMEN WISKUNDE. Datum: 19 december Aantal opgaven: 5
CENTRALE COMMISSIE VOORTENTAMEN WISKUNDE Datum: 19 december 2018 Tijd: 13.30 16.30 uur Aantal opgaven: 5 Tentamen Wiskunde B Lees onderstaande aanwijzingen s.v.p. goed door voordat u met het tentamen begint.
Deel 3 havo. Docentenhandleiding havo deel 3 CB
Deel 3 havo De hoeveelheid leerstof is gebaseerd op drie lesuren per week. Met drie lesuren is het in ieder geval mogelijk om de basisstof van tien hoofdstukken door te werken, eventueel met de verkorte
Voorbeeldtentamen Wiskunde B
CENTRALE COMMISSIE VOORTENTAMEN WISKUNDE Datum: Najaar 2018 Tijd: 3 uur Aantal opgaven: 6 Voorbeeldtentamen Wiskunde B Lees onderstaande aanwijzingen s.v.p. goed door voordat u met het tentamen begint.
3.1 Kwadratische functies[1]
3.1 Kwadratische functies[1] Voorbeeld 1: y = x 2-6 Invullen van x = 2 geeft y = 2 2-6 = -2 In dit voorbeeld is: 2 het origineel; -2 het beeld (of de functiewaarde) y = x 2-6 de formule. Een functie voegt
Meetkunde. MBO Wiskunde Niveau 4 - Leerjaar 1, periode 3
Meetkunde MBO Wiskunde Niveau 4 - Leerjaar 1, periode 3 LOCATIE: Noorderpoort Beroepsonderwijs Stadskanaal DOMEINEN: Bouwkunde, Werktuigbouw, Research Instrumentmaker LEERWEG: BOL - MBO Niveau 4 DATUM:
a) Bereken het middelpunt van van cirkel C, door omzetting van de gegeven formule.
RUDOLF STEINERCOLLEGE HAARLEM WISKUNDE HAVO NG/NT KLAS 12 T212-HNGNT-H7911 Voor elk onderdeel is aangegeven hoeveel punten kunnen worden behaald. Antwoorden moeten altijd zijn voorzien van een berekening,
Eindexamen wiskunde B1-2 havo 2008-I
Steeds meer vlees In wordt voor de periode 1960-1996 zowel de graanproductie als de vleesproductie per hoofd van de wereldbevolking weergegeven. Hiervoor worden twee verticale assen gebruikt. De ronde
Examen HAVO. Wiskunde B1,2
Wiskunde B1,2 Examen HAVO Hoger Algemeen Voortgezet Onderwijs Tijdvak 1 Dinsdag 23 mei 13.30 16.30 uur 00 Dit examen bestaat uit 18 vragen. Voor elk vraagnummer is aangegeven hoeveel punten met een goed
Parameterkrommen met Cabri Geometry
Parameterkrommen met Cabri Geometry 1. Inleiding Indien twee functies f en g gegeven zijn die afhangen van eenzelfde variabele (noem deze t), dan kunnen de functiewaarden daarvan gebruikt worden als x-
16.0 Voorkennis. Voorbeeld 1: Los op in 2x + 3i = 5x + 6i -3x = 3i x = -i
16.0 Voorkennis Voorbeeld 1: Los op in 2x + 3i = 5x + 6i -3x = 3i x = -i Voorbeeld 2: Los op in 4x 2 + 12x + 15 = 0 4x 2 + 12x + 9 + 6 = 0 (2x + 3) 2 + 6 = 0 (2x + 3) 2 = -6 (2x + 3) 2 = 6i 2 2x + 3 =
T o e t s p r o g r a m m a w i s k u n d e e e r s t e f a s e s c h o o l j a a r
T o e t s p r o g r a m m a w i s k u n d e e e r s t e f a s e s c h o o l j a a r 0 7-0 8 AFDELING EN LEERJAAR: B T/H 07 08 Aantal proefwerken: 8 (+ 3 in toetsweken) Aantal werkstukken: 0 of I Proefwerk
Eindexamen wiskunde B havo 2011 - I
Overlevingstijd Als iemand in koud water terecht komt, daalt zijn lichaamstemperatuur. Als de lichaamstemperatuur is gedaald tot 30 ºC ontstaat een levensbedreigende situatie. De tijd die verstrijkt tussen
Extra oefeningen hoofdstuk 12: Omtrek - Oppervlakte - Inhoud
Extra oefeningen hoofdstuk 12: Omtrek - Oppervlakte - Inhoud 1 Een optische illusie? Welk gebied heeft de grootste oppervlakte: het gele of het donkergroene? Doe eerst een schatting en maak daarna de nodige
Errata Moderne wiskunde 9e editie VWO B deel 2 hoofdboek
Onderstaande verbeteringen zijn gebaseerd op de eerste druk van deze titel. In bijdrukken worden fouten hersteld. Het is dus goed mogelijk, dat hier verbeteringen staan, die bij een nieuwe druk al zijn
TI83-werkblad. Vergelijkingen bij de normale verdeling
TI83-werkblad Vergelijkingen bij de normale verdeling 1. Inleiding Een normale verdeling wordt bepaald door de constanten µ en σ. Dit blijkt uit het voorschrift van de verdelingsfunctie van de normale
Dag van GeoGebra Probleemoplossende vaardigheden en onderzoekscompetentie wiskunde 28 mei 2011 Gent
1 VERBORGEN FIGUREN 1.1 OPGAVE In heel wat klassieke opdrachten uit de meetkunde is het de bedoeling om een bepaalde figuur te tekenen indien een aantal punten gegeven zijn. De eigenschappen van deze figuur
Novum, wiskunde LTP leerjaar 1. Wiskunde, LTP leerjaar 1. Vak: Wiskunde Leerjaar: 1 Onderwerp: In de Ruimte H1 Kerndoel(en):
Wiskunde, LTP leerjaar 1 Onderwerp: In de Ruimte H1 26 De leerling leert te werken met platte en ruimtelijke vormen en structuren, leert daarvan afbeeldingen te maken en deze te interpreteren, en leert
