Examen HAVO. wiskunde B1
|
|
|
- Tine Kuiper
- 10 jaren geleden
- Aantal bezoeken:
Transcriptie
1 wiskunde B1 Eamen HAVO Hoger Algemeen Voortgezet Onderwijs Tijdvak Woensdag 1 juni uur 0 06 Voor dit eamen zijn maimaal 83 punten te behalen; het eamen bestaat uit 0 vragen. Voor elk vraagnummer is aangegeven hoeveel punten met een goed antwoord behaald kunnen worden. Als bij een vraag een verklaring, uitleg of berekening vereist is, worden aan het antwoord meestal geen punten toegekend als deze verklaring, uitleg of berekening ontbreekt. Geef niet meer antwoorden (redenen, voorbeelden e.d.) dan er worden gevraagd. Als er bijvoorbeeld twee redenen worden gevraagd en je geeft meer dan twee redenen, dan worden alleen de eerste twee in de beoordeling meegeteld o Begin
2 Toename lichaamsgewicht zwangere vrouw Een vrouwenarts heeft van een zwangere vrouw gedurende de zwangerschap allerlei gegevens verzameld. In tabel 1 staan enkele resultaten. Daaruit is onder andere af te lezen dat deze vrouw als ze 5 weken zwanger is, sinds het begin van de zwangerschap 3030 gram zwaarder is geworden. tabel 1 Aantal weken zwanger Toename lichaamsgewicht in gram (afgerond op tientallen) Het verband tussen het aantal weken zwangerschap en de gewichtstoename van deze vrouw is vanaf de vijftiende week bij benadering eponentieel. 4p 1 Bereken de groeifactor per week van dit eponentiële verband. Rond je antwoord af op twee decimalen. De gewichtstoename van een zwangere vrouw wordt voor een deel veroorzaakt door het gewicht van de ongeboren bab. Onderzoek toont aan dat vanaf week 0 dit gewicht elke week ongeveer evenveel toeneemt. In tabel zijn gewichten weergegeven van het ongeboren kind van de vrouw van wie de gewichtstoename in tabel 1 staat. tabel Aantal weken zwanger Gewicht van het ongeboren kind in gram De formule F = at + bgeeft bij benadering het verband weer tussen het gewicht van het ongeboren kind en de duur van de zwangerschap. Hierin is t de tijd in weken dat de vrouw zwanger is en F het gewicht van het ongeboren kind in gram. 4p Bereken a en b met behulp van de gegevens in tabel. Tijdens de zwangerschap van een andere vrouw zijn ook de gewichtstoename van de moeder en het gewicht van het ongeboren kind door de vrouwenarts bijgehouden. De gegevens zijn in formules verwerkt. De bijbehorende grafieken zijn in figuur 1 afgebeeld. figuur 1 gewichtstoename in gram G 7000 G--F F aantal weken zwangerschap 0,1 1,5 De formules die bij deze zwangerschap horen zijn: G 1450 t = en F = 165t 875. Hierin is t de duur van de zwangerschap in weken, G de gewichtstoename van de vrouw in gram en F het gewicht van het ongeboren kind in gram. In figuur 1 is met een stippellijn de grafiek getekend van het verschil van G en F o Lees verder
3 5p 3 4p 4 Aan het eind van de zwangerschap wordt er veel vocht opgeslagen. Ook neemt het gewicht van de vrouw toe door weefselvorming rond het ongeboren kind. Aan het eind van de zwangerschap kunnen G en F wel 4000 tot 8000 gram verschillen. Bereken met behulp van de gegeven formules op welke dag na het begin van de zwangerschap bij deze vrouw dit verschil voor het eerst meer dan 4000 gram is. De grafiek van F en de verschilgrafiek snijden elkaar voor twee waarden van t. Op deze twee tijdstippen geldt dat G twee keer zo groot is als F. Beredeneer dit zonder deze snijpunten met behulp van de formules uit te rekenen o 3 Lees verder
4 Functies Gegeven is de functie f( ) = 16. De grafiek van f snijdt de -as in de punten (, 0) en (, 0). In figuur zijn de grafiek van f en de lijn = 0 getekend. 4 figuur 0 f 4p 5 Bereken eact voor welke waarden van de grafiek van f tussen de -as en de lijn = 0 ligt. - O Door de grafiek van f omlaag te schuiven veranderen de snijpunten met de -as in de punten ( 3, 0) en (3, 0). In figuur 3 zijn de grafiek van f en de verschoven grafiek getekend. figuur O f 3 3p 6 Bereken over welke afstand de grafiek van f in deze situatie omlaag verschoven is. De raaklijn aan de grafiek van f in het punt (, 0) is de lijn k. De lijn m gaat door het punt (, 0) en is evenwijdig aan de lijn k (zie figuur 4). figuur 4 m f k 4p 7 Stel met behulp van differentiëren een vergelijking op van de lijn m. - O Door f() met te vermenigvuldigen ontstaat 5 de productfunctie g( ) = 16. De grafiek van g heeft twee toppen, P en Q (zie figuur 5). In figuur 5 is ook lijnstuk PQ getekend. figuur 5 P g 5p 8 Bereken de lengte van het lijnstuk PQ. Rond je antwoord af op één decimaal. O Q o 4 Lees verder
5 Intelligentiequotiënt Meting van het intelligentiequotiënt (IQ) gebeurt door middel van tests. Op grond van deze tests worden IQ-scores vastgesteld. De IQ-scores zijn bij benadering normaal verdeeld en hebben een gemiddelde van 100 en een standaardafwijking van % gemiddeld figuur 6 minder begaafd vlug,5% zwakbegaafd,5% knap-begaafd IQ p 9 4p 10 4p 11 7p 1 De grafiek in figuur 6 is ontleend aan het boek De polen van het intellect van J. Luning Prak uit In de figuur wordt onder andere vermeld dat 45% van de mensen een IQ heeft tussen 90 en 110. Onderzoek of deze bewering in overeenstemming is met de gegeven waarden voor het gemiddelde en de standaardafwijking. In het boek De schaal van Richter en andere getallen uit 1990 stelt Hans van Maanen dat de IQ-scores normaal verdeeld zijn met een gemiddelde van 100 en dat 70% van de mensen een IQ heeft tussen 84 en 116. Uitgaande van deze gegevens kun je de standaardafwijking van de IQ-scores berekenen. Onderzoek of deze berekening een standaardafwijking van ongeveer 15 oplevert. De Amerikaanse pscholoog James Flnn heeft aangetoond dat het gemiddelde van de IQscores bij het gebruik van dezelfde tests iedere tien jaar met drie punten toeneemt. De standaardafwijking blijft wel gelijk, namelijk ongeveer 15. Als men de grenzen voor zwakbegaafd, minder begaafd, enz. gelijk houdt, lijkt het alsof het aantal zwakbegaafden afneemt en het aantal knap-begaafden toeneemt. Daarom worden IQ-tests zo nu en dan vernieuwd. Mensen die een IQ hebben van 130 of meer heten knap-begaafd. Neem aan dat ze nu,5% van de totale bevolking vormen. Stel dat je de tests waarmee nu de IQ-scores bepaald zijn over 30 jaar zou gaan gebruiken. Bereken hoeveel procent knap-begaafden je dan volgens Flnn zou krijgen. Mensen met een IQ-score van minder dan 70 heten zwakbegaafd. Bij vraag 1 gaan we uit van de volgende gegevens: 0 jaar geleden had Nederland inwoners en was,5% daarvan zwakbegaafd; in de laatste 0 jaar is het aantal inwoners van Nederland gemiddeld met 0,63% per jaar toegenomen; Voor het vaststellen van de IQ-scores gebruikt men de IQ-tests die 0 jaar geleden ook gebruikt werden. De gemiddelde IQ-score is dan volgens Flnn toegenomen tot 106. De standaardafwijking is 15. Bereken hoeveel het aantal zwakbegaafden is afgenomen ten opzichte van 0 jaar geleden als je rekening houdt met de bevolkingsgroei in die periode. Rond je antwoord af op duizendtallen o 5 Lees verder
6 Paraboolvormig kunstwerk In het kunstwerk op de foto komen twee buizen voor. Je kunt daarin delen van een bergparabool en een dalparabool herkennen. foto 1 De top T van de bergparabool is 13,0 meter boven de grondlijn, die door de uiteinden A en B van het kunstwerk gaat. De afstand AB is 38,5 meter. In figuur 7 is het gedeelte van de bergparabool in een assenstelsel getekend. De punten A en B liggen op de -as, T ligt op de -as. 4p 13 Het gedeelte van de bergparabool in figuur 7 kan beschreven worden met een functievoorschrift van de vorm: h ( ) = a + c. Hierin zijn en h() gegeven in meter en is h() 0. Berekend kan worden dat a 0,0351 en c = 13,0. Toon dit aan. 5p 14 Iemand beweert dat in alle punten van de grafiek van h de helling kleiner is dan 1. Onderzoek met behulp van differentiëren of hij gelijk heeft. figuur 7 h T In figuur 8 zijn beide parabolische delen van het kunstwerk weergegeven. Top S van de dalparabool en top T van de bergparabool liggen beide op de -as en A en B liggen op de -as. A O B 5p 15 De dalparabool snijdt de bergparabool in de punten C en D met -coördinaat 9,6. Door deze twee punten kun je een lijn trekken. Het stukje dalparabool CSD is het spiegelbeeld van het bovenste deel CTD van de bergparabool ten opzichte van deze lijn. Bij de grafiek van het stuk dalparabool hoort een functievoorschrift van de vorm: g( ) = a + c Bereken de waarden van a en c in deze formule. figuur 8 A h C T S O g D 9,6 B o 6 Lees verder
7 Besmetting Er wordt veel onderzoek gedaan naar mogelijkheden ter bestrijding en voorkoming van plantenziektes. De volgende vragen gaan over risico s dat planten raken. De situaties die we bekijken zijn daarbij sterk vereenvoudigd. figuur 9 4p 16 3p 17 In de eerste situatie bekijken we een veldje waarop men s ochtends 10 gezonde planten plant, in twee rijen van vijf. Zie figuur 9. We nemen aan dat elke gezonde plant per dag een kans van 0,3 heeft om te raken. Bereken de kans dat op de eerste dag alle planten van de linkerrij wel raken en alle planten op de rechterrij niet raken. Rond je antwoord af op vier decimalen. De tweede situatie gaat over een eperiment waarbij op een zeker moment 40 gezonde planten aan ting blootgesteld worden. We nemen ook hier aan dat elke gezonde plant per dag een kans van 0,3 heeft op ting. Bereken de kans dat op de eerste dag van het eperiment meer dan 1 planten zullen raken. 3p 18 We bekijken nu de kans op ting van een willekeurig plantje van de 40 gezonde planten na twee dagen. In figuur 10 is de bijbehorende kansboom afgebeeld. De kans dat alle 40 planten na twee dagen niet zijn, is minder dan een miljardste. Toon dit met een berekening aan. figuur 10 0,3 0,7 niet 0,3 0,7 niet Bij ditzelfde eperiment bekijken we twee willekeurig gekozen gezonde planten. X is het aantal daarvan dat na twee dagen is. In tabel 3 is een deel van de bijbehorende kansverdeling ingevuld. tabel 3 4p 19 3p 0 Uitkomst X 0 1 Kans op uitkomst X Bereken de kansen op de verschillende uitkomsten, neem deze tabel over en vul de kansen op de verschillende uitkomsten in. Voor de kans p dat een plant bij dit eperiment in de eerste n dagen zal raken, geldt de formule: p = 1 0,7 n. Voor het eperiment worden weer 40 gezonde planten gebruikt. Bereken hoeveel planten naar verwachting na precies één week zullen zijn. Einde o 7 Lees verder
Eindexamen wiskunde B1 havo 2006-II
Toename lichaamsgewicht zwangere vrouw Een vrouwenarts heeft van een zwangere vrouw gedurende de zwangerschap allerlei gegevens verzameld. In tabel 1 staan enkele resultaten. Daaruit is onder andere af
Examen HAVO. wiskunde B 1,2
wiskunde 1, Examen HVO Hoger lgemeen Voortgezet Onderwijs Tijdvak Woensdag 1 juni 13.30 16.30 uur 0 06 Voor dit examen zijn maximaal 85 punten te behalen; het examen bestaat uit 18 vragen. Voor elk vraagnummer
Eindexamen wiskunde B1-2 havo 2006-II
Toename lichaamsgewicht zwangere vrouw Een vrouwenarts heeft van een zwangere vrouw gedurende de zwangerschap allerlei gegevens verzameld. In tabel 1 staan enkele resultaten. Daaruit is onder andere af
Voorbereidend Wetenschappelijk Onderwijs Tijdvak 2 Woensdag 22 juni 13.30 16.30 uur
wiskunde B Eamen VW Voorbereidend Wetenschappelijk nderwijs Tijdvak 2 Woensdag 22 juni 3.30 6.30 uur 20 05 Voor dit eamen zijn maimaal 86 punten te behalen; het eamen bestaat uit 9 vragen. Voor elk vraagnummer
Examen HAVO. wiskunde B (pilot) tijdvak 1 maandag 23 mei 13:30-16:30 uur. Bij dit examen hoort een uitwerkbijlage.
Eamen HAV 2016 tijdvak 1 maandag 23 mei 13:30-16:30 uur wiskunde B (pilot) Bij dit eamen hoort een uitwerkbijlage. Dit eamen bestaat uit 18 vragen. Voor dit eamen zijn maimaal 77 punten te behalen. Voor
Examen HAVO. wiskunde B (pilot) tijdvak 1 woensdag 20 mei 13.30-16.30 uur
Eamen HAV 2015 1 tijdvak 1 woensdag 20 mei 13.30-16.30 uur wiskunde B (pilot) Dit eamen bestaat uit 16 vragen. Voor dit eamen zijn maimaal 76 punten te behalen. Voor elk vraagnummer staat hoeveel punten
Examen HAVO. wiskunde B1
wiskunde B1 Eamen HAVO Hoger Algemeen Voortgezet Onderwijs Tijdvak 1 Woensdag 25 mei 13.3 16.3 uur 2 5 Voor dit eamen zijn maimaal 82 punten te behalen; het eamen bestaat uit 22 vragen. Voor elk vraagnummer
Examen HAVO. wiskunde B. tijdvak 2 woensdag 20 juni uur. Bij dit examen hoort een uitwerkbijlage.
Eamen HAV 018 tijdvak woensdag 0 juni 1.0-16.0 uur wiskunde B Bij dit eamen hoort een uitwerkbijlage. Dit eamen bestaat uit 18 vragen. Voor dit eamen zijn maimaal 7 punten te behalen. Voor elk vraagnummer
Examen VWO. wiskunde B1
wiskunde B Eamen VWO Voorbereidend Wetenschappelijk Onderwijs Tijdvak Dinsdag 3 mei 3.3 6.3 uur 5 Voor dit eamen zijn maimaal 87 punten te behalen; het eamen bestaat uit vragen. Voor elk vraagnummer is
Examen VWO. wiskunde B (pilot) tijdvak 2 woensdag 18 juni 13.30-16.30 uur. Achter dit examen is een erratum opgenomen.
Eamen VW 04 tijdvak woensdag 8 juni.0-6.0 uur wiskunde B (pilot) Achter dit eamen is een erratum opgenomen. Dit eamen bestaat uit 6 vragen. Voor dit eamen zijn maimaal 76 punten te behalen. Voor elk vraagnummer
Examen VWO. wiskunde B (pilot) tijdvak 2 woensdag 18 juni uur
Eamen VW 04 tijdvak woensdag 8 juni.0-6.0 uur wiskunde B (pilot) Dit eamen bestaat uit 6 vragen. Voor dit eamen zijn maimaal 76 punten te behalen. Voor elk vraagnummer staat hoeveel punten met een goed
Examen HAVO. wiskunde B (pilot) tijdvak 1 vrijdag 17 mei uur
Eamen HAVO 013 tijdvak 1 vrijdag 17 mei 13.30-16.30 uur wiskunde B (pilot) Dit eamen bestaat uit 17 vragen. Voor dit eamen zijn maimaal 80 punten te behalen. Voor elk vraagnummer staat hoeveel punten met
Examen HAVO. wiskunde B (pilot) tijdvak 2 woensdag 20 juni 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.
Eamen HAV 0 tijdvak woensdag 0 juni 3.30-6.30 uur wiskunde B (pilot) Bij dit eamen hoort een uitwerkbijlage.. Dit eamen bestaat uit 0 vragen. Voor dit eamen zijn maimaal 8 punten te behalen. Voor elk vraagnummer
Examen HAVO. Wiskunde B1 (nieuwe stijl)
Wiskunde B1 (nieuwe stijl) Examen HAVO Hoger Algemeen Voortgezet Onderwijs Tijdvak 2 Woensdag 18 juni 13.30 16.30 uur 20 03 Voor dit examen zijn maximaal 81 punten te behalen; het examen bestaat uit 19
Examen VWO. wiskunde B1,2. tijdvak 2 woensdag 20 juni uur. Bij dit examen hoort een uitwerkbijlage.
Eamen VW 007 tijdvak woensdag 0 juni 13.30-16.30 uur wiskunde 1, ij dit eamen hoort een uitwerkbijlage. Dit eamen bestaat uit 17 vragen. Voor dit eamen zijn maimaal 81 punten te behalen. Voor elk vraagnummer
Examen VWO. wiskunde B. tijdvak 2 woensdag 19 juni uur. Bij dit examen hoort een uitwerkbijlage.
Eamen VW 2019 tijdvak 2 woensdag 19 juni 13.30-16.30 uur wiskunde B Bij dit eamen hoort een uitwerkbijlage. Dit eamen bestaat uit 17 vragen. Voor dit eamen zijn maimaal 76 punten te behalen. Voor elk vraagnummer
Examen HAVO. wiskunde B. tijdvak 1 vrijdag 19 mei uur. Bij dit examen hoort een uitwerkbijlage.
Eamen HAV 207 tijdvak vrijdag 9 mei 3.30-6.30 uur wiskunde B Bij dit eamen hoort een uitwerkbijlage. Dit eamen bestaat uit 8 vragen. Voor dit eamen zijn maimaal 79 punten te behalen. Voor elk vraagnummer
Examen HAVO. wiskunde B (pilot) tijdvak 1 donderdag 19 mei uur
Eamen HAVO 011 tijdvak 1 donderdag 19 mei 13.30-16.30 uur wiskunde B (pilot) Dit eamen bestaat uit 19 vragen. Voor dit eamen zijn maimaal 81 punten te behalen. Voor elk vraagnummer staat hoeveel punten
-Examen HAVO. Wiskunde B1 (nieuwe stijl)
Wiskunde B1 (nieuwe stijl) -Examen HAV Hoger Algemeen Voortgezet nderwijs Tijdvak 1 Dinsdag 0 mei 13.30 16.30 uur 0 03 Voor dit examen zijn maximaal 84 punten te behalen; het examen bestaat uit 1 vragen.
Examen HAVO. Wiskunde B1,2 (nieuwe stijl)
Wiskunde B1,2 (nieuwe stijl) Examen HAVO Hoger Algemeen Voortgezet Onderwijs Tijdvak 1 Maandag 27 mei 1.0 16.0 uur 20 02 Voor dit examen zijn maximaal 88 punten te behalen; het examen bestaat uit 19 vragen.
Examen VWO. wiskunde B (pilot) tijdvak 1 woensdag 13 mei uur. Bij dit examen hoort een uitwerkbijlage.
Eamen VW 015 tijdvak 1 woensdag 13 mei 13.30-16.30 uur wiskunde B (pilot) Bij dit eamen hoort een uitwerkbijlage. Dit eamen bestaat uit 16 vragen. Voor dit eamen zijn maimaal 80 punten te behalen. Voor
Examen HAVO. wiskunde B. tijdvak 1 woensdag 14 mei uur
Examen HAVO 014 tijdvak 1 woensdag 14 mei 1.0-1.0 uur wiskunde B Dit examen bestaat uit 19 vragen. Voor dit examen zijn maximaal 78 punten te behalen. Voor elk vraagnummer staat hoeveel punten met een
Examen HAVO. Wiskunde B1,2 (nieuwe stijl)
Wiskunde B1,2 (nieuwe stijl) Examen HAVO Hoger Algemeen Voortgezet Onderwijs Tijdvak 2 Woensdag 19 juni 13.30 16.30 uur 20 02 Voor dit examen zijn maximaal 85 punten te behalen; het examen bestaat uit
Examen HAVO. wiskunde B. tijdvak 2 woensdag 19 juni uur
Eamen HAV 019 tijdvak woensdag 19 juni 13.30-16.30 uur wiskunde B Dit eamen bestaat uit 16 vragen. Voor dit eamen zijn maimaal 77 punten te behalen. Voor elk vraagnummer staat hoeveel punten met een goed
Examen HAVO. Wiskunde B1,2 (nieuwe stijl)
Wiskunde B1, (nieuwe stijl) Examen HV Hoger lgemeen Voortgezet nderwijs Tijdvak 1 Dinsdag 0 mei 13.30 1.30 uur 0 03 Voor dit examen zijn maximaal 8 punten te behalen; het examen bestaat uit 19 vragen.
Examen VWO. wiskunde B. tijdvak 1 woensdag 18 mei 13:30-16:30 uur. Bij dit examen hoort een uitwerkbijlage.
Eamen VW 06 tijdvak woensdag 8 mei 3:30-6:30 uur wiskunde ij dit eamen hoort een uitwerkbijlage. it eamen bestaat uit 7 vragen. Voor dit eamen zijn maimaal 77 punten te behalen. Voor elk vraagnummer staat
Examen VWO. wiskunde B. tijdvak 1 woensdag 18 mei 13:30-16:30 uur. Bij dit examen hoort een uitwerkbijlage.
Eamen VW 06 tijdvak woensdag 8 mei 3:30-6:30 uur wiskunde ij dit eamen hoort een uitwerkbijlage. it eamen bestaat uit 7 vragen. Voor dit eamen zijn maimaal 77 punten te behalen. Voor elk vraagnummer staat
Examen VWO. wiskunde B1,2. tijdvak 1 dinsdag 2 juni uur. Bij dit examen hoort een uitwerkbijlage.
amen VWO 2009 tijdvak dinsdag 2 juni 3.30-6.30 uur wiskunde B,2 Bij dit eamen hoort een uitwerkbijlage. Dit eamen bestaat uit 9 vragen. Voor dit eamen zijn maimaal 80 punten te behalen. Voor elk vraagnummer
Examen HAVO. wiskunde B1. tijdvak 1 dinsdag 20 mei 13.30-16.30 uur
Examen HAVO 2008 tijdvak 1 dinsdag 20 mei 13.30-16.30 uur wiskunde B1 Dit examen bestaat uit 20 vragen. Voor dit examen zijn maximaal 84 punten te behalen. Voor elk vraagnummer staat hoeveel punten met
Examen HAVO. Wiskunde A1,2 (nieuwe stijl)
Wiskunde A1,2 (nieuwe stijl) Eamen HAVO Hoger Algemeen Voortgezet Onderwijs Tijdvak 2 Woensdag 2 juni 13.3 16.3 uur 2 1 Voor dit eamen zijn maimaal 9 punten te behalen; het eamen bestaat uit 19 vragen.
Examen VWO. Wiskunde B1,2 (nieuwe stijl)
Wiskunde B,2 (nieuwe stijl) Eamen VW Voorbereidend Wetenschappelijk nderwijs Tijdvak 2 Woensdag 8 juni 3.30 6.30 uur 20 03 Voor dit eamen zijn maimaal 84 punten te behalen; het eamen bestaat uit 7 vragen.
Examen VWO. Wiskunde B Profi
Wiskunde B Profi Eamen VW Voorbereidend Wetenschappelijk nderwijs Tijdvak Woensdag 1 juni 13.30 16.30 uur 0 00 Dit eamen bestaat uit 16 vragen. Voor elk vraagnummer is aangegeven hoeveel punten met een
Examen HAVO. wiskunde A. tijdvak 2 woensdag 23 juni 13.30-16.30 uur
Examen HAVO 2010 tijdvak 2 woensdag 23 juni 13.30-16.30 uur wiskunde A Dit examen bestaat uit 21 vragen. Voor dit examen zijn maximaal 83 punten te behalen. Voor elk vraagnummer staat hoeveel punten met
Examen HAVO. wiskunde B. tijdvak 1 dinsdag 18 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.
Examen HAVO 2010 tijdvak 1 dinsdag 18 mei 13.30-16.30 uur wiskunde B Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 17 vragen. Voor dit examen zijn maximaal 77 punten te behalen. Voor
wiskunde B pilot havo 2016-I
De rechte van Euler Gegeven is cirkel c met middelpunt ( 1, 1 ) 3p 1 Stel een vergelijking op van c. De punten B( 3, 0) en ( 4, 0) M die door het punt A( 0, 4) 2 2 C liggen op c. Punt Q is het midden van
Examen VWO. wiskunde B1,2. tijdvak 2 woensdag 18 juni 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.
Eamen VWO 8 tijdvak woensdag 8 juni 3.3-6.3 uur wiskunde B, Bij dit eamen hoort een uitwerkbijlage. Dit eamen bestaat uit 8 vragen. Voor dit eamen zijn maimaal 8 punten te behalen. Voor elk vraagnummer
Examen VWO. wiskunde A (pilot) tijdvak 2 woensdag 22 juni 13:30-16:30 uur
Examen VWO 2016 tijdvak 2 woensdag 22 juni 13:30-16:30 uur wiskunde A (pilot) Dit examen bestaat uit 21 vragen. Voor dit examen zijn maximaal 82 punten te behalen. Voor elk vraagnummer staat hoeveel punten
Examen HAVO. wiskunde B. tijdvak 1 maandag 23 mei 13:30-16:00 uur. Bij dit examen hoort een uitwerkbijlage.
Eamen HAV 2016 tijdvak 1 maandag 23 mei 13:30-16:00 uur wiskunde B Bij dit eamen hoort een uitwerkbijlage. Dit eamen bestaat uit 20 vragen. Voor dit eamen zijn maimaal 77 punten te behalen. Voor elk vraagnummer
Examen HAVO. wiskunde B. tijdvak 2 woensdag 20 juni 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.
Examen HAVO 2012 tijdvak 2 woensdag 20 juni 13.30-16.30 uur wiskunde B Bij dit examen hoort een uitwerkbijlage.. Dit examen bestaat uit 21 vragen. Voor dit examen zijn maximaal 79 punten te behalen. Voor
Examen HAVO. Wiskunde B (oude stijl)
Wiskunde B (oude stijl) xamen HAVO Hoger Algemeen Voortgezet Onderwijs Tijdvak 2 Woensdag 20 juni 1.0.0 uur 20 01 Voor dit examen zijn maximaal 79 punten te behalen; het examen bestaat uit 17 vragen. Voor
Examen HAVO. wiskunde B1,2. tijdvak 2 woensdag 20 juni uur. Bij dit examen hoort een uitwerkbijlage.
Eamen HVO 2007 tijdvak 2 woensdag 20 juni 13.30-16.30 uur wiskunde 1,2 ij dit eamen hoort een uitwerkbijlage. Dit eamen bestaat uit 22 vragen. Voor dit eamen zijn maimaal 86 punten te behalen. Voor elk
Examen VWO. wiskunde A. tijdvak 1 maandag 20 mei uur. Bij dit examen hoort een uitwerkbijlage.
Examen VWO 2019 tijdvak 1 maandag 20 mei 13.30-16.30 uur wiskunde A Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 20 vragen. Voor dit examen zijn maximaal 79 punten te behalen. Voor elk
Examen VWO. wiskunde B1. tijdvak 2 woensdag 18 juni uur
Eamen VWO 008 tijdvak woensdag 18 juni 13.30-16.30 uur wiskunde B1 Dit eamen bestaat uit 18 vragen. Voor dit eamen zijn maimaal 84 punten te behalen. Voor elk vraagnummer staat hoeveel punten met een goed
Examen HAVO. Wiskunde B1,2 (nieuwe stijl)
Wiskunde B1,2 (nieuwe stijl) Examen HAVO Hoger Algemeen Voortgezet Onderwijs Tijdvak 1 Woensdag 30 mei 13.30 16.30 uur 20 01 Voor dit examen zijn maximaal 80 punten te behalen; het examen bestaat uit 18
Examen HAVO. Wiskunde B1,2 (nieuwe stijl)
Wiskunde 1, (nieuwe stijl) Eamen HV Hoger lgemeen Voortgezet nderwijs Tijdvak Woensdag 18 juni 1.0 16.0 uur 0 0 Voor dit eamen zijn maimaal 8 punten te behalen; het eamen bestaat uit 18 vragen. Voor elk
Examen HAVO. wiskunde B (pilot) tijdvak 2 woensdag 22 juni uur
Examen HAVO 011 tijdvak woensdag juni 13.30-16.30 uur wiskunde B (pilot) Dit examen bestaat uit 19 vragen. Voor dit examen zijn maximaal 78 punten te behalen. Voor elk vraagnummer staat hoeveel punten
Examen HAVO. wiskunde B1
wiskunde B1 Examen HAVO Hoger Algemeen Voortgezet Onderwijs Tijdvak 1 Vrijdag 19 mei 13.30 16.30 uur 0 06 Voor dit examen zijn maximaal 83 unten te behalen; het examen bestaat uit 3 vragen. Voor elk vraagnummer
Examen HAVO. wiskunde B (pilot) tijdvak 2 donderdag 23 juni 13:30-16:30 uur. Bij dit examen hoort een uitwerkbijlage.
Eamen HAVO 06 tijdvak donderdag 3 juni 3:30-6:30 uur wiskunde B (pilot) Bij dit eamen hoort een uitwerkbijlage. Dit eamen bestaat uit 8 vragen. Voor dit eamen zijn maimaal 75 punten te behalen. Voor elk
Examen VWO. wiskunde B1,2
wiskunde B1,2 Examen VWO Voorbereidend Wetenschappelijk Onderwijs Tijdvak 2 Woensdag 22 juni 13.30 16.30 uur 20 05 Voor dit examen zijn maximaal 88 punten te behalen; het examen bestaat uit 19 vragen.
Examen VWO. wiskunde B1. tijdvak 1 dinsdag 25 mei uur
Eamen VWO 00 tijdvak dinsdag mei 3.30-6.30 uur oud programma wiskunde B Dit eamen bestaat uit 9 vragen. Voor dit eamen zijn maimaal 83 punten te behalen. Voor elk vraagnummer staat hoeveel punten met een
Examen HAVO. Wiskunde B1 (nieuwe stijl)
Wiskunde B1 (nieuwe stijl) Examen HAVO Hoger Algemeen Voortgezet Onderwijs Tijdvak 1 Maandag 27 mei 13.30 16.30 uur 20 02 Voor dit examen zijn maximaal 83 punten te behalen; het examen bestaat uit 21 vragen.
Examen VWO. wiskunde B1,2 (nieuwe stijl)
wiskunde B, (nieuwe stijl) Examen VWO Voorbereidend Wetenschappelijk Onderwijs Tijdvak Woensdag 3 juni 3.30 6.30 uur 0 04 Voor dit examen zijn maximaal 87 punten te behalen; het examen bestaat uit 9 vragen.
Examen VWO. wiskunde B (pilot) tijdvak 2 woensdag 21 juni uur
Eamen VW 017 tijdvak woensdag 1 juni 13.30-16.30 uur wiskunde B (pilot) Dit eamen bestaat uit 17 vragen. Voor dit eamen zijn maimaal 74 punten te behalen. Voor elk vraagnummer staat hoeveel punten met
Examen VWO. wiskunde B (pilot) tijdvak 2 woensdag 20 juni uur. Bij dit examen hoort een uitwerkbijlage.
Eamen VW 2012 tijdvak 2 woensdag 20 juni 1330-1630 uur wiskunde B (pilot) Bij dit eamen hoort een uitwerkbijlage Dit eamen bestaat uit 16 vragen Voor dit eamen zijn maimaal 79 punten te behalen Voor elk
Examen VWO - Compex. wiskunde A1 Compex
wiskunde A1 Compex Examen VWO - Compex Voorbereidend Wetenschappelijk Onderwijs Tijdvak 1 Donderdag 1 juni totale examentijd 3,5 uur 2 6 In dit deel van het examen staan de vragen waarbij de computer niet
Examen HAVO. Wiskunde B (oude stijl)
Wiskunde B (oude stijl) Examen HAVO Hoger Algemeen Voortgezet Onderwijs Tijdvak 1 Maandag 27 mei 1330 1630 uur 20 02 Voor dit examen zijn maximaal 90 punten te behalen; het examen bestaat uit 18 vragen
Examen HAVO 2013. wiskunde B. tijdvak 1 vrijdag 17 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.
Examen HAVO 201 tijdvak 1 vrijdag 17 mei 1.0-16.0 uur wiskunde B Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 19 vragen. Voor dit examen zijn maximaal 80 punten te behalen. Voor elk
Examen VWO. wiskunde B (pilot) tijdvak 2 woensdag 19 juni uur
Eamen VWO 0 tijdvak woensdag 9 juni.0-6.0 uur wiskunde B (pilot) Dit eamen bestaat uit 7 vragen. Voor dit eamen zijn maimaal 76 punten te behalen. Voor elk vraagnummer staat hoeveel punten met een goed
Examen HAVO. wiskunde B1,2. tijdvak 1 dinsdag 20 mei uur
Examen HAVO 2008 tijdvak 1 dinsdag 20 mei 13.30-16.30 uur wiskunde B1,2 Dit examen bestaat uit 18 vragen. Voor dit examen zijn maximaal 83 punten te behalen. Voor elk vraagnummer staat hoeveel punten met
Examen HAVO. wiskunde B (pilot) tijdvak 1 woensdag 14 mei uur
Examen HAVO 204 tijdvak woensdag 4 mei.0-6.0 uur wiskunde B (pilot) Dit examen bestaat uit 9 vragen. Voor dit examen zijn maximaal 80 punten te behalen. Voor elk vraagnummer staat hoeveel punten met een
Examen HAVO. wiskunde A1,2
wiskunde A1,2 Examen HAVO Hoger Algemeen Voortgezet Onderwijs Tijdvak 1 Donderdag 2 juni 13.30 16.30 uur 20 05 Voor dit examen zijn maximaal 83 punten te behalen; het examen bestaat uit 21 vragen. Voor
Achter het correctievoorschrift is een aanvulling op het correctievoorschrift opgenomen.
Eamen VWO 018 tijdvak 1ti maandag 14 mei 13.30-16.30 uur oud programma wiskunde B Bij dit eamen hoort een uitwerkbijlage. Achter het correctievoorschrift is een aanvulling op het correctievoorschrift opgenomen.
Examen VWO. wiskunde B (pilot) tijdvak 2 donderdag 23 juni 13:30-16:30 uur. Bij dit examen hoort een uitwerkbijlage.
Eamen VW 016 tijdvak donderdag 3 juni 13:30-16:30 uur wiskunde B (pilot) Bij dit eamen hoort een uitwerkbijlage. Dit eamen bestaat uit 16 vragen. Voor dit eamen zijn maimaal 81 punten te behalen. Voor
Examen VWO 2015. wiskunde C. tijdvak 2 woensdag 17 juni 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.
Examen VWO 2015 tijdvak 2 woensdag 17 juni 13.30-16.30 uur wiskunde C Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 22 vragen. Voor dit examen zijn maximaal 79 punten te behalen. Voor
Achter het correctievoorschrift is een aanvulling op het correctievoorschrift opgenomen.
Examen HAV 2018 tijdvak 1 donderdag 24 mei 13.30-16.30 uur wiskunde B Bij dit examen hoort een uitwerkbijlage. Achter het correctievoorschrift is een aanvulling op het correctievoorschrift opgenomen. Dit
Examen HAVO. wiskunde B. tijdvak 1 donderdag 19 mei uur. Bij dit examen hoort een uitwerkbijlage.
Examen HAVO 011 tijdvak 1 donderdag 19 mei 13.30-16.30 uur wiskunde B Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 19 vragen. Voor dit examen zijn maximaal 80 punten te behalen. Voor
Examen VWO. wiskunde B (pilot) tijdvak 1 woensdag 18 mei uur
Eamen VW 016 tijdvak 1 woensdag 18 mei 13.30-16.30 uur wiskunde (pilot) it eamen bestaat uit 16 vragen. Voor dit eamen zijn maimaal 79 punten te behalen. Voor elk vraagnummer staat hoeveel punten met een
Eindexamen wiskunde B1-2 havo 2002-I
Functies In figuur 1 zijn de grafieken getekend van de functies f ( x) = 2x + 12 en g(x) = x 1. figuur 1 P f g O x 4p 1 Los op: f(x) g(x). Rond de getallen in je antwoord die niet geheel zijn af op twee
Toetsopgaven vwo A/B deel 2 hoofdstuk 7
Toetsopgaven vwo A/B deel hoofdstuk 7 Opgave In 98 werd de cd-speler in Nederland geïntroduceerd. Daarvoor werd muziek afgespeeld op platenspelers. Op januari 983 waren er 35000 cd-spelers in de Nederlandse
Examen HAVO. wiskunde B. tijdvak 2 woensdag 22 juni 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.
Examen HAVO 20 tijdvak 2 woensdag 22 juni 3.30-6.30 uur wiskunde B Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 9 vragen. Voor dit examen zijn maximaal 78 punten te behalen. Voor elk
wiskunde B pilot havo 2015-I
Hangar Door constructies in de vorm van een bergparabool te gebruiken, kunnen grote gebouwen zonder inwendige steunpilaren gebouwd worden. Deze manier van bouwen werd begin vorige eeuw veel gebruikt voor
Examen HAVO. Wiskunde B1
Wiskunde B1 Examen HAVO Hoger Algemeen Voortgezet Onderwijs Tijdvak 2 Woensdag 21 juni 13.30 16.30 uur 20 00 Dit examen bestaat uit 21 vragen. Voor elk vraagnummer is aangegeven hoeveel punten met een
wiskunde B Achter het correctievoorschrift is een aanvulling op het correctievoorschrift opgenomen.
Eamen VWO 04 tijdvak dinsdag 0 mei 3.30 uur - 6.30 uur wiskunde B Bij dit eamen hoort een uitwerkbijlage. Achter het correctievoorschrift is een aanvulling op het correctievoorschrift opgenomen. Dit eamen
Examen VWO. wiskunde B1
wiskunde Eamen VW Voorbereidend Wetenschappelijk nderwijs Tijdvak Dinsdag 3 mei 3.3 6.3 uur 6 Voor dit eamen zijn maimaal 7 punten te behalen; het eamen bestaat uit vragen. Voor elk vraagnummer is aangegeven
Achter het correctievoorschrift is een aanvulling op het correctievoorschrift opgenomen.
Examen HAVO 05 tijdvak donderdag 8 juni 3.30-6.30 uur wiskunde B Bij dit examen hoort een uitwerkbijlage. Achter het correctievoorschrift is een aanvulling op het correctievoorschrift opgenomen. Dit examen
Eindexamen wiskunde B1 vwo 2005-II
Eindeamen wiskunde B vwo 2005-II Twee benaderingen van sin Met domein [0, ] is gegeven de functie f() = sin. De grafiek van f snijdt de -as in en en heeft als top T. Zie figuur. figuur T Gegeven is verder
