Lassen van koper en haar legeringen



Vergelijkbare documenten
Lasbaarheid van materialen - gietijzer

Lasbaarheid van materialen - Titaan en titaanlegeringen

Lasbaarheid van Materialen Staal

Geometrische afwijkingen - deel 2

Krimpvervorming - Verschijningsvormen en oorzaken

Gutsen met beklede elektroden

Toepassingsnormen, praktijkrichtlijnen en kwaliteitsniveaus

Fred Neessen. Het lassen van ongelijksoortige verbindingen Kan dat allemaal wel?

Defecten en onvolkomenheden in lasverbindingen: stolscheuren

Lasbaarheid van materialen - aluminium en aluminiumlegeringen

Snijprocessen - Plasma snijden (Het proces en de apparatuur)

Autogeen snijden. Het proces en de gassen

Defecten en onvolkomenheden in lasverbindingen: slakinsluitingen

Voorkomen van lasvervorming in het ontwerpstadium

Snijprocessen laser snijden proces varianten

Voorkomen van vervorming in het uitvoeringsstadium

Geometrische afwijkingen - deel 1

Onder poeder lassen. Laskennis opgefrist (nr. 15) Proces beschrijving. Lasparameters

Apparatuur voor het plasma lassen

BRONS BRONS

Koolboog Gutsen. Laskennis opgefrist (nr. 21)

Gezondheid, veiligheid en het voorkomen van ongevallen -

kwalificatie van lasprocedures, lassers en lasoperateurs

Lasbaarheid van nikkel en nikkellegeringen

Het lassen met beklede elektroden

MIG/MAG-lassen met massieve draad

Keuze van toevoegmateriaal voor het lassen van Aluminium en Al-legeringen

Non-ferrometalen. constructiematerialen. ferrometalen

Hoeklassen. overzicht en praktische tips

Apparatuur voor het Onderpoeder lassen

Autogeen snijden in de praktijk

Vermoeiingsbeproeving

Materialen. Introductie over Metaal:

Mechanische beproeving

Warmtebehandeling kan mechanische eigenschappen beïnvloeden

Mechanische beproeving

Wijzigingen en drukfouten voorbehouden.

NEDERLANDS INSTITUUT VOOR LASTECHNIEK

Materialenleer: Ferro en Non-ferrometalen

INFOFICHES RVS [DEEL 4-2]

Lasfouten / lasonvolkomenheden in lasverbindingen - "lamellar tearing"

AIR LIQUIDE Welding Plasma lassen

Apparatuur voor het TIG lassen

Apparatuur voor het MIG/MAG lassen

OEFENVRAGEN MIG/MAG STAAL niv. 1

a s s o r t i m e n t l o g i s t i e k

Vermoeiingsbeproeving

Normpakket: Lassen A-Z

en wolframelektroden optimale laseigenschappen. Des électrodes tungstène pour des propriétés de soudage optimales.

Mechanische beproeving CTOD beproeving

Compleet in Duplex TECHNISCHE INFORMATIE ASSORTIMENT LOGISTIEK

Lasprocessen voor metalen

Workshop MIG/MAG-gevorderden RVS en Aluminium

WOLFRAM elektroden. Abicor BINZEL. optimale laseigenschappen. Des électrodes tungstène pour des propriétés de soudage optimales.

BRONS ALUMINIUMBRONS FOSFORBRONS MESSING SONDERMESSING KOPER KOPER LAAGGELEGEERD KOPER BERYLLIUM KOPER CHROOM ZIRKOON KOPER COBALT BERYLLIUM

VRAGENLIJST DCMR Metaalbewerkingsbedrijven 2014

Basismechanica SOLDEREN GRIZLI Tim Fack

I T +31 (0) E info@gns-nederland.nl INHOUDSOPGAVE

Maximale productiviteit

De vroegere norm NBN F is tegenwoordig vervangen door de euronorm EN dewelke gebaseerd is op de ISO-norm ISO 2553.

Up-to-date kennis van beschermgassen voor al uw las- en snijprocessen met RVS

Lassen van ongelijksoortige metalen. vm 115

Samenvatting Scheikunde H3 Reacties

STAAL SERVICE VLAANDEREN STERK IN METAAL EN SERVICE NON-FERRO & SPECIAAL-STAAL

11. Lastoevoegmateriaal

Symbolen weergave op tekeningen Las- en soldeerverbindingen

Soorten rvs. Austenitisch roestvast staal. Ferritisch roestvast staal. Martensitisch roestvast staal. Duplex roestvast staal

MISON beschermgassen: met het oog op het werkgebied van uw lassers.

Solderen. Wat is solderen. Wat is de procedure van solderen

Metaal. 2e college metaal Utrecht. Materialen

Duplex staal; Kort verleden doch een grote toekomst

ALUMINIUM, HET MATERIAAL VAN DE TOEKOMST

Lastechnische theorie trainingen

Metaal 2e college metaal Utrecht

5 Formules en reactievergelijkingen

Niet-IJzermetalen of Non Ferro. A. Brok

BIL-KATERN LASPROCESSEN VOORLICHTINGSFICHE ALUMINIUM DEEL IV

Hygiënische lassen. Leo Vermeulen / Michel Voorhout. Hygiënische lassen 4 oktober

Wat is Hardmetaal?

Wat is Hardmetaal? Wij produceren ons hardmetaal dus milieuvriendelijk!

Het smelten van tin is géén reactie.

Lasmethodekwalificaties voor aluminium. Ir. Leen Dezillie, IWE

I T +31 (0) E INHOUDSOPGAVE

RP PARTS GIETSTUKKEN STAAL

Beklede elektroden Bekkering lastechniek

Chroom-Molybdeen staalsoorten

Gezondheid, veiligheid en voorkomen van ongelukken

Gezondheid, veiligheid en het voorkomen van ongevallen bij het lassen. Gevaren bij elektriciteit - Stroombronnen en installaties

Cor-Ten staalplaten Productoverzicht. ThyssenKrupp Christon

REGLEMENT ALGEMENE REGELS VOOR HET VERVAARDIGEN VAN EXAMENWERKSTUKKEN NIVEAUS 1 TOT EN MET 4.

Laslegeringen voor kwalitatieve onderhoudswerke

Verslag Materiaalgebruik Dieselmotoren

Solderen en lassen. Nummer 31

MIG lassen van Aluminium en Aluminiumlegeringen. Ir. Roger Creten, EWE Gastdocent KUL Campus Denayer en Thomas More Lastek Belgium Herentals

Plasma. Van Spijk De Scheper HP Oirschot. Tel. +31(0) Fax +31(0)

Oktober. Werkvoorbereider in de metaalbewerking 1/10 Eindhoven Inl.: Mikrocentrum, tel.:

TIG ROESTVASTSTAAL CBL - AVESTA TIG 308 LSI. Diameter Mm Type Verpakkingseenheid

INOX ELEKTRODEN CBL - 308L/MVR BASIC. Diameter Mm Amp. Aantal Elek./pak Aantal Kg/pak Aantal Kg/karton

Laskwaliteit in de koudetechniek

REGLEMENT ALGEMENE REGELS VOOR HET BEOORDELEN VAN EXAMENWERKSTUKKEN NIVEAUS 1 TOT EN MET 4.

Transcriptie:

Laskennis opgefrist (nr. 12) Lassen van koper en haar legeringen De geschiedenis van koper gaat terug tot vóór 4500 jaar voor Christus. In oude Egyptische documenten werd dit metaal aangeduid met een symbool dat een afgeleide vorm is van het hiëroglief voor een langdurig leven. Zo zijn archeologische vondsten van koperen waterleidingsystemen gevonden in Abusir (Egypte) daterend uit plusminus 2750 voor Christus! De grote opkomst van koper in productie en gebruik vond vooral plaats in deze eeuw, waarin de jaarproductie groeide van 600.000 ton naar ongeveer 5.500.000 ton. Veel van dit koper wordt verwerkt als legeringselement in diverse koper giet- en kneedlegeringen, maar ook in allerlei additieven b.v. aan verf. De verbindingstechniek van koper en haar legeringen heeft eveneens een zeer lange geschiedenis van aanvankelijk wellen (smeedlassen) en zachtsolderen tot autogeen en koolbooglasen en lassen met beklede elektroden en na de Tweede Wereldoorlog het TIG-, MIG- en Elektronenbundellassen en hard-solderen. Ondanks deze lange geschiedenis is het verbinden van koper of haar legeringen nog heden ten dage een specialisme waar nog regelmatig problemen bij worden ondervonden. Deze aflevering van Laskennis Opgefrist gaat dan ook speciaal over het lassen van het interessante materiaal koper en haar legeringen. Koper en koperlegeringen worden over het algemeen toegepast vanwege hun elektrische- en warmtegeleidingsvermogen en/of corrosieweerstand. Deze gunstige eigenschappen moeten ook na het lassen vanzelfsprekend behouden blijven. Materiaal typen Naast zuiver koper zijn inmiddels een groot aantal legeringen ontwikkeld met koper als basis. Deze koperlegeringen worden meestal ingedeeld in relatie tot hun typerende legeringselementen. Voor de aanduiding van koper en haar legeringen op tekeningen en in bestellingen bestaan gedetailleerde Britse, Franse, Duitse en Amerikaanse normbladen en ook van de Europese normen afgeleide Nederlandse t.w. NEN-EN 1412:1995, NEN- EN 1172:1996 en NEN-EN 1173:2008. In het spraakgebruik worden de koperlegeringen echter meestal aangeduid met hun populaire benaming, zoals: Zuiver koper of OHFC-koper (zuurstofvrij-hoogst geleidend) Handelskoper of HC-koper (kleine toevoegingen/verontreiniging) Messing of koper-zink legering Nikkelzilver of koper-zink-nikkel legering NIL 1999-2009 1

Brons of koper-tin legeringen (soms met fosfor-toevoeging voor fosforbrons) Gun-metaal of koper-tin-zink legering (soms met toevoeging van lood) Aluminiumbrons of Cupro-aluminium Siliciumbrons of koper-silicium legering Cupronikkel of koper-nikkel legering (Cunifer) Een aantal van deze populaire legeringen zijn samengevat in tabel 1 samen met het aanbevolen lastoevoegmateriaal volgens NEN-EN 14640:2005 voor het TIGen het MIG-lassen. Soortgelijke samenstellingen van lastoevoegmaterialen worden gegeven in AWS A5.7/A5.7M:2008 en beklede elektrode zijn gespecificeerd in A5.6/A5.6M:2007. Opgemerkt moet worden dat het lassen van nikkel-zilver (45%Zn, 10%Ni), loodhoudend gun-metaal en hoog zinkhoudend messing (bv. 40%Zn) niet aanbevolen wordt. De koperlegeringen vertonen een aantal karakteristieke verschillen op gebied van lasbaarheid. Zuiver koper heeft een zodanig hoog warmtegeleidingsvermogen dat voorwarmen tot op hoge temperatuur (tot 500 C) vaak nodig is om de snelle warmte-afvoer te compenseren en zodoende bindingsfouten en poreusheid te voorkomen. Daar waar bereikbaarheid van twee kanten mogelijk is, wordt om die reden ook wel door twee lassers gelijktijdig gelast. Alleen met het elektronenbundellasproces (EB) kan tot grote dikten zonder voorwarmen worden gelast door de hoge energiedichtheid van de bundel (1.106 W/mm 2 ) (zie figuur.) Macrodoorsneden (V=5x) van lasrupsen op fosfor gedesoxideerd roodkoper. Van links naar rechts: MIG-gelast onder respectievelijk argon, helium en stikstof. Elektronenbundel las van fosfor gedesoxideerd roodkoper. Aan de andere kant hoeven een aantal koperlegeringen zoals de Cupro-nikkel legeringen, door hun met ongelegeerd staal overeenkomende warmtegeleidingsvermogen, helemaal niet voorgewarmd te worden. NIL 1999-2009 2

Tabel 1. Een aantal specifieke koperlegeringen met hun aanbevolen lastoevoegmateriaal voor het MIG-, TIG- en plasmalassen. Legeringsgroep Specifieke legering Zuiver koper Zuurstofvrij OFHC, fosfor gedesoxideerd Aanbevolen lastoevoegmateriaal NEN-EN 14640:2005 Cu 1897, Cu 1898 Messing Laag zink < 30% Cu 6328, Cu 6560 Hoog zink (40%) niet aanbevolen Nikkelzilver 20% Zn / 15% Ni Cu 6328, Cu 6560 45% Zn / 10% Ni niet aanbevolen Fosforbrons 4,5-6% Sn / 0,4 P Cu 5180 Siliciumbrons 3% Si Cu 6560 Aluminiumbrons < 7,8 % Al Cu 6240, Cu 6100 > 7,8 % Al Cu 6180, Cu 6328 6Al / 2% Si Cu 6100 Gunmetaal Zonder lood Cu 5180, Cu 6560, Cu6180 Loodhoudend niet aanbevolen Cupronikkel 10% Ni Cu 7061, Cu 7158 Ongelegeerd koper 30% Ni Cu 7158 Deze categorie koper wordt geleverd in drie versies: Zuurstofhoudend roodkoper Fosfor gedesoxydeerd koper Zuurstofvrij (hooggeleidend) koper Zuurstofhoudend koper bevat ketens van koper-oxide insluitsels (<0,1% zuurstof als Cu 2 O) die op zich de mechanische eigenschappen en de geleidbaarheidseigenschappen slechts in beperkte mate nadelig beïnvloeden. Fosfof gedesoxydeerd- en zuurstofvrij koper zijn beduidend beter lasbaar. Bij voorkeur wordt dit type koper met het TIG of het MIG-proces gelast (in de reparatiesfeer worden ook wel autogeen lassen en lassen met bekleden elektroden gebruikt). Om de sterke warmte-afvoer te compenseren kunnen schermgassen op helium- of stikstofbasis worden aanbevolen in verband met de hetere lasboog (hogere boogspanning) in vergelijking met argon (zie figuur 3). Vermijden van lasonvolkomenheden Bij het smeltlassen van zuurstofhoudend roodkoper kan ten gevolge van dit zuurstofgehalte verbrossing van de warmtebeinvloede zone (WBZ) optreden en de vorming van porositeit in het lasmetaal. Fosfor gedesoxydeerd koper is beter lasbaar maar ook daar kan bij het lassen zonder of met onvoldoende lastoevoegmateriaal door residuele zuurstof poreusheid in het lasmetaal ontstaan vooral bij aanwezigheid van waterstofatomen NIL 1999-2009 3

in het schermgas. Poreusheid bij het gasbooglassen is het best te voorkomen door gebruik van voldoende en geschikt lastoevoegmateriaal dat desoxidanten bevat als aluminium, mangaan, silicium, fosfor en/of titaan. Dun materiaal kan gelaste worden zonder voorwarmen. Echter bij materiaaldikten boven de 5mm dienen alle koperlegeringen voorgewarmd te worden om een vloeibaar lasbad te creëren. Dik materiaal moeten mogelijk voorgewarmd worden tot wel 600 C. Laaggelegeerd koper Aan koper worden vaak kleine hoeveelheden van de legeringselementen zwavel of tellurium toegevoegd om de verspaanbaarheid te vergroten. Deze legeringstypen zijn hierdoor echter niet of slecht lasbaar. Precipitatie hardende legeringen bevatten kleine hoeveelheden chroom, zirkoon of beryllium. Deze legeringen hebben goede mechanische eigenschappen. Chroom en beryllium-houdende legeringen moeten altijd voorgewarmd worden om scheuren in de WBZ te voorkomen. Door het lassen van beryllium-koper kan bovendien bij onvoldoende lasdampafzuiging gezondheidsschade ontstaan! Er is zelfs regelgeving in de maak waarbij het bewerken van beryliumhoudend koper geheel wordt verboden. Messing en Nikkelzilver Messing kan worden onderscheiden in twee lasbare groepen: laag zinkgehalte < 20% Zn en hoog zinkgehalte 30-40% Zn. Nikkelzilver bevat 20-45% Zn en nikkel ter verbetering van de sterkte. Het belangrijkste probleem bij het lassen van deze legeringen is de uitdamping van het zink dat resulteert in witte dampen en neerslag van zinkoxide en poreusheid in het lasmetaal. Uitsluitend de messingsoorten met een laag zinkgehalte worden als lasbaar beschouwd met het TIG- en het MIG-proces. Goede persoonlijke bescherming tegen inademen van zinkdampen moet beslist worden aangeraden. Vermijding van lasdefecten Om poreusheid in te perken dienen zink-vrije lastoevoegdraden te worden toegepast, of siliciumbrons (Cu 6328) danwel aluminiumbrons (Cu 6560). Hoge lassnelheden zijn daarbij aan te bevelen om de mate en afmetingen van de poreusheid te beperken. TIG- en MIG-lassen worden uitgevoerd met argon of een argon-helium mengsel als beschermgas, dus geen stikstof. Voorwarmen is gewenst om bindingsfouten te voorkomen in relatie tot het hoge warmtegeleidingsvermogen van messing. Bij de hoger zinkhoudende legeringen bevordert voorwarmen een langzame afkoeling van de lasomgeving waardoor het risico van scheurvorming verkleind wordt. Gloeien na het lassen helpt om het risico van scheurvorming door spanningscorrosie in gebieden met de hoogste spanningen te verkleinen. Fosforbrons, siliciumbrons en gun-metaal Tin-brons kan 1-10% tin bevatten. Fosforbrons bevat daarnaast nog 0,4% fosfor. Gun-metaal is in wezen een tin-brons, waaraan tot ca. 5% zink is toegevoegd soms in combinatie met maximaal 5% lood. Siliciumbrons bevat in het algemeen NIL 1999-2009 4

3% silicium en 1% mangaan en is daarmede van de genoemde bronstypen het makkelijkst te lassen. Om fouten in de lasverbinding te voorkomen: De genoemde bronssoorten zijn over het algemeen probleemloos lasbaar met lastoevoegmaterialen met eenzelfde samenstelling als het basismateriaal met uitzondering van het loodhoudende gunmetaal en van fosforbrons. Het loodhoudende gunmetaal is vrijwel niet te lassen door de vorming van warmscheuren in het lasmetaal en de W.B.Z. Fosforbrons moet ter vermijding van poreusheid altijd worden gelast met toevoegmateriaal met een hoog gehalte aan desoxidanten als silicium, aluminium, mangaan en/of titaan. Aluminium brons Er zijn twee typen aluminiumbrons. 1. De enkel-fasige legeringen die tussen 5 en 10% aluminium bevatten met toevoeging van kleine hoeveelheden ijzer of nikkel. 2. De twee-fasen legeringen die max. 12% aluminium bevatten met daarnaast nog ca. 5% ijzer en in sommige legeringen nog toevoegingen van nikkel, mangaan en/of silicium. Voor deze legeringen hebben de gasbooglasprocessen de voorkeur (MIG- en TIG of Plasma). Bij het TIG-lassen wordt bij voorkeur gebruik gemaakt van wisselstroom in verband met de aanwezigheid van een hardnekkige aluminiumoxide-film op het metaaloppervlak. Ook wordt wel TIG gelast op de pluspool van een gelijkstroombron onder He- of He-rijk schermgas. Door hun lage warmtegeleidingsvermogen behoeven de aluminium-brons-legeringen in dikten onder 10 mm niet voorgewarmd te worden. Om lasfouten te voorkomen: Grondig schoonmaken van het lasoppervlak liefst door schuren of slijpen (frezen) voor aanvang van het lassen en na elke lasrups is essentieel om poreusheid te vermijden. De enkelfase-legeringen zijn gevoelig voor scheurvorming in las en W.B.Z. onder invloed van lasspanningen. Dikwijls is het noodzakelijk uit corrosieoverwegingen om overeenkomstig lastoevoegmateriaal te gebruiken qua samenstelling, maar een afwijkend legeringstype als toevoegmateriaal uit het 2- fase assortiment verkleind de kans op scheurvorming in het lasmetaal aanmerkelijk. De 2-fase legeringen zijn mede daardoor sowieso beter te lassen. Cupronikkel-legeringen (Cunifer 5/10 of 30) De cupronikkel-legeringen bevatten tussen 5 en 30% nikkel met in sommige daarvan bewuste toevoegingen van kleine hoeveelheden ijzer en/of mangaan. De legeringen met 10% (90/10) of 30% (70/30) nikkel komen het meest voor in gelaste constructies. Het zijn enkel fase-legeringen en worden als goed lasbaar beschouwd bij toepassing van gasboog-lasprocessen. Lassen met beklede elektroden kan maar wordt niet aanbevolen. Normaliter wordt een gelijksoortig lastoevoegmateriaal aanbevolen, doch het 70/30 type met 30% nikkel wordt ook wel gezien als universeel lastoevoegmateriaal voor de gehele cupro-nikkel groep. Voorwarmen is vrijwel nooit nodig in verband met het ongelegeerd C-staal overeenkomend warmte-geleidingsvermogen. NIL 1999-2009 5

Om lasfouten te vermijden: Omdat deze legeringen zelf geen of onvoldoende desoxidanten bevatten is het lassen ervan zonder toevoegmateriaal niet aan te bevelen in verband met het risico van ernstige poreusheid. Lastoevoegmaterialen hiervoor bevatten over het algemeen 0,2 à 0,5% titaan om deze poreusheid te voorkomen. Normaliter wordt argon als beschermgas gebruikt bij het MIG, TIG en plasmalassen, echter toevoeging van een kleine hoeveelheid waterstof (5 à 10% H2) verbeterd sterk de vloeibaarheid van het lasmetaal wat resulteert in een strakker en schoner lasuiterlijk. Backing-gas, meestal argon of argon + 10% H2 wordt aanbevolen, speciaal bij het pijp-lassen, om een gladde en niet verbrande doorlassing te krijgen. Tabel. Groepsindeling van de koperlegeringen volgens ISO/TR 15608:2000 Groep Sub groep Type koper legering 31 Puur koper 32 Koper Zink legeringen 32.1 Koper Zink legeringen, binair 32.2 Koper Zink legeringen, complex 33 Koper Tin legeringen 34 Koper Nikkel legeringen 35 Koper Aluminium legeringen 36 Koper Nikkel - Zink legeringen 37 Laag gelegeerde koper legeringen (minder dan 5% ander elementen) die niet binnen de groepen 31 t/m 36 vallen 38 Andere koper legeringen (>5% legeringselementen) die niet binnen de groepen 31 t/m 36 vallen Deze aflevering in de rubriek 'Laskennis opgefrist' is een bewerking van 'Job Knowledge for welders Part 23' uit TWI Connect door Co van der Goes, geactualiseerd eind 2008. Inlichtingen Nederlands Instituut voor Lastechniek Boerhaavelaan 40 2713 HX Zoetermeer Website: www.nil.nl e-mail: info@nil.nl Informatie en advies van het NIL wordt verstrekt in goed vertrouwen en is gebaseerd op de huidige stand der technische kennis. Er kan geen garantie verleend worden aan de resultaten of effecten door toepassing van de informatie van deze website. Ook kan er geen verantwoordelijkheid of aansprakelijkheid geaccepteerd worden voor iedere vorm van verlies of schade. NIL 1999-2009 6