Dit examen bestaat uit vier opgaven Bijlage: 1 antwoordpapier



Vergelijkbare documenten
EXAMEN HOGER ALGEMEEN VOORTGEZET ONDERWIJS IN 1977 NATUURKUNDE. Vrijdag 19 augustus, uur

Vrijdag 8 juni, uur

TENTAMEN NATUURKUNDE

Woensdag 24 mei, uur

1. Een karretje op een rail

EXAMEN HOGER ALGEMEEN VOORTGEZET ONDERWIJS IN 1975

Opgave 1. Voor de grootte van de magnetische veldsterkte in de spoel geldt: = l

EXAMEN VOORBEREIDEND WETENSCHAPPELUK ONDERWIJS IN 1979 , I. Dit examen bestaat uit 4 opgaven. " '"of) r.. I r. ',' t, J I i I.

Als de trapper in de stand van figuur 1 staat, oefent de voet de in figuur 2 aangegeven verticale kracht uit op het rechter pedaal.

Vrijdag 19 augustus, uur

HEREXAMEN EIND MULO tevens IIe ZITTING STAATSEXAMEN EIND MULO 2009

MINISTERIE VAN ONDERWIJS, WETENSCHAP EN CULTUUR UNIFORM EXAMEN HAVO 2015

MINISTERIE VAN ONDERWIJS, WETENSCHAP EN CULTUUR UNIFORM HEREXAMEN HAVO 2015

Maandag 15 juni, uur

Dit examen bestaat uit 4 opgaven Bijlagen: 2 antwoordpapieren

Woensdag 24 mei, uur

NATUURKUNDE. Donderdag 5 juni, uur. MAVO-C Il EXAMEN MIDDELBAAR ALGEMEEN VOORTGEZET ONDERWIJS IN C - niveau

Y rijdag 14 mei, uur

aluminium 2,7 0, ,024 ijzer 7,9 0, ,012

EXAMEN VOORBEREIDEND WETENSCHAPPELIJK ONDERWIJS IN 1974

2 V-14 EXAMEN VOORBEREIDEND WETENSCHAPPELIJK ONDERWIJS IN 1976 (GYMNASIUM EN ATHENEUM)

MAV04. NATUUR- EN SCHEIKUNDE I (Natuurkunde) EXAMEN MIDDELBAAR ALGEMEEN VOORTGEZET ONDERWIJS IN Woensdag 30 augustus,

EXAMEN VOORBEREIDEND WETENSCHAPPELIJK ONDERWIJS IN 1975

Woensdag 30 augustus, uur

Woensdag 11 mei, uur

EXAMEN MIDDELBAAR ALGEMEEN VOORTGEZET ONDERWIJS IN 1977 MAVO4

Hulpmiddelen: Niet grafische rekenmachine, binas 6 de druk. Let op dat je alle vragen beantwoordt.

Woensdag 24 mei, uur

EXAMEN MIDDELBAAR ALGEMEEN VOORTGEZET ONDERWIJS IN 1977 MAVO4 NATUUR- EN SCHEIKUNDE I. Zie ommezijde. Vrijdag 19 augustus,

Fysica. Indien dezelfde kracht werkt op een voorwerp met massa m 1 + m 2, is de versnelling van dat voorwerp gelijk aan: <A> 18,0 m/s 2.

TWEEDE RONDE NATUURKUNDE OLYMPIADE 2013 TOETS APRIL :00 12:45 uur

Deze opgaven zijn vastgesteld door de commissie bedoeld in artikel 24 van het Besluit eindexamens v.w.o.-h.a.v.o.-m.a.v.o.

Woensdag 21 mei, uur

Havo 4 - Practicumwedstrijd Versnelling van een karretje

aluminium 2,7 0, ,024 ijzer 7,9 0, ,012

EXAMEN HOGER ALGEMEEN VOORTGEZET ONDERWIJS IN 1973 NATUURKUNDE. Vrijdag 25 mei, uur

MINISTERIE VAN ONDERWIJS, WETENSCHAP EN CULTUUR UNIFORM EXAMEN VWO 2015

Examen HAVO - Compex. natuurkunde 1,2 Compex

TENTAMEN NATUURKUNDE

EXAMEN MIDDELBAAR ALGEMEEN VOORTGEZET ONDERWIJS IN 1976

VAK: natuurkunde KLAS: Havo 4 DATUM: 20 juni TIJD: uur TOETS: T1 STOF: Hfd 1 t/m 4. Opmerkingen voor surveillant XXXXXXXXXXXXXXXXXXX

Examen HAVO. Natuurkunde 1 (nieuwe stijl)

TENTAMEN NATUURKUNDE

Eindexamen natuurkunde 1 vwo II

Examen VWO. natuurkunde 1. tijdvak 2 woensdag 24 juni uur. Bij dit examen hoort een uitwerkbijlage.

Eindexamen natuurkunde 1-2 havo 2000-II

Examentraining (KeCo) SET-B HAVO5-Na

jaar: 1989 nummer: 25

EXAMEN MIDDELBAAR ALGEMEEN VOORTGEZET ONDERWIJS IN 1985 MAVO-C NATUURKUNDE. Donderdag 13 juni, uur. MAVO-C Il

Samenvatting Natuurkunde Syllabus domein C: beweging en energie

Vlaamse Fysica Olympiade Eerste ronde

TENTAMEN NATUURKUNDE

Dit examen bestaat uit 4 opgaven

Woensdag 30 augustus, uur

Voorbereidend Wetenschappelijk Onderwijs Tijdvak 1 Vrijdag 27 mei totale examentijd 3 uur

2 H-ll EXAMEN HOGER ALGEMEEN VOORTGEZET ONDERWIJS IN 1974 NATUURKUNDE. Woensdag 28 augustus, uur. Zie ommezijde

Toelatingstoets havoniveau natuurkunde max. 42 p, vold 24 p

NATUURKUNDE. Figuur 1

Practicum algemeen. 1 Diagrammen maken 2 Lineair verband en evenredig verband 3 Het schrijven van een verslag

Hulpmiddelen: Niet grafische rekenmachine, binas 6 de druk. Let op dat je alle vragen beantwoordt.

Eindronde Natuurkunde Olympiade 2018 theorietoets deel 1

ALGEMEEN 1. De luchtdruk op aarde is ongeveer gelijk aan. A 1mbar. B 1 N/m 2. C 13,6 cm kwikdruk. D 100 kpa.

natuurkunde Compex natuurkunde 1,2 Compex

Hoger Algemeen Voortgezet Onderwijs Tijdvak 2 Woensdag 22 juni uur

Opgave 5 Een verwarmingselement heeft een weerstand van 14,0 Ω en is opgenomen in de schakeling van figuur 3.

Lees dit voorblad goed! Trek op alle blaadjes kantlijnen

Theorie: Snelheid (Herhaling klas 2)

d. Bereken bij welke hoek α René stil op de helling blijft staan (hij heeft aanvankelijk geen snelheid). NB: René gebruikt zijn remmen niet.

Opgave 1 Waterstofkernen

TENTAMEN NATUURKUNDE

TWEEDE RONDE NATUURKUNDE OLYMPIADE 2014 TOETS APRIL uur

EXAMEN MIDDELBAAR ALGEMEEN VOORTGEZET ONDERWIJS IN 1984 MAVO-C NATUURKUNDE. Dinsdag 8 mei, uur

UITWERKINGEN Examentraining (KeCo) SET-B HAVO5-Na

Dit examen bestaat uit 4 opgaven Bijlage: 2 antwoordpapieren

J De centrale draait (met de gegevens) gedurende één jaar. Het gemiddelde vermogen van de centrale kan dan berekend worden:

EXAMEN VOORBEREIDEND WETENSCHAPPELIJK ONDERWIJS IN 1976

Eindexamen natuurkunde 1-2 havo 2006-I

natuurkunde 1,2 Compex

Dit examen bestaat uit twaalf opgaven Bijlage: 1 antwoordblad

Eindronde Natuurkunde Olympiade 2015 theorietoets deel 1

TWEEDE RONDE NATUURKUNDE OLYMPIADE 2019 TOETS APRIL 2019 Tijdsduur: 1h45

Dit examen bestaat uit vier opgaven Bijlage: 1 antwoordpapier

TWEEDE RONDE NATUURKUNDE OLYMPIADE 2012 TOETS APRIL uur

Examen VWO. tijdvak 1 vrijdag 20 mei uur. Bij dit examen hoort een uitwerkbijlage.

Examen HAVO. natuurkunde 1

Om een zo duidelijk mogelijk verslag te maken, hebben we de vragen onderverdeeld in 4 categorieën.

De snelheid van de auto neemt eerst toe en wordt na zekere tijd constant. Bereken de snelheid die de auto dan heeft.

Nationale Natuurkunde Olympiade. Eerste ronde januari Beschikbare tijd: 2 klokuren

Examen mechanica: oefeningen

Examen HAVO. natuurkunde 1,2

DEZE TAAK BESTAAT UIT 36 ITEMS.

1) Neem een blokje en meet met een krachtmeter hoeveel kracht er nodig is om een blokje op te tillen.

ATWOOD Blok A en blok B zijn verbonden door een koord dat over een katrol hangt. Er is geen wrijving in de katrol. Het stelsel gaat bewegen.

NATUURKUNDE KLAS 5. PROEFWERK H8 JUNI 2010 Gebruik eigen rekenmachine en BINAS toegestaan. Totaal 29 p

Eindexamen natuurkunde 1 havo 2005-I

natuurkunde Compex natuurkunde 1,2 Compex

Eindexamen natuurkunde 1 havo 2005-II

aluminium 2,7 0, ,024 ijzer 7,9 0, ,012

Voorbereidend Wetenschappelijk Onderwijs Tijdvak 1 Woensdag 31 mei totale examentijd 3,5 uur

Transcriptie:

HAVO 11 EXAMEN HOGER ALGEMEEN VOORTGEZET ONDERWIJS IN 1983 Vrijdag 17 juni, 9.00-12.00 uur NATUURKUNDE Dit examen bestaat uit vier opgaven Bijlage: 1 antwoordpapier

2 " Benodigde gegevens kunnen worden opgezocht in het tabellenboekje Binas. Het is de bedoeling dat van tabel 7 de tussen haakjes geplaatste, afgeronde waarden gebruikt worden., 1. BETA-DEELTJES Atoomkernen kunnen radioactief zijn. Ze vallen dan uiteen onder uitzending van "ioniserende straling" (ook wel radioactieve straling genoemd). In de natuur komen drie soorten ioniserende straling voor. Eén van deze soorten is de,b-straling. a. I. Noem de twee andere soorten ioniserende straling. 2. Noem drie eigenschappen die voor deze twee soorten straling verschillend zijn en geef bij elke genoemde eigenschap aan, waarin die eigenschap voor de ene soort straling verschilt van die bij de andere soort. Radioactieve ~Sr-kernen zenden,b-straling uit. b. Geef de vergelijking van het verval van een ~~Sr-kern. De,B-deeltj es die worden uitgezonden hebben een energie van 0,54 MeV. c. Bereken het massaverschil tussen een ~~Sr-kern en de kern van het ontstane atoom. Elke soort straling zal in verschillende materialen in verschillende mate dóórdringen. De opstelling van figuur 1 wordt gebruikt om te bepalen hoe groot het doordringend vermogen van,b-deeltjes is in aluminium. Onder in een door lood afgeschermde experimenteerruimte kan een bron worden geplaatst die,b-deeltjes aluminium plaatje uitzendt met een energie van 2,0 MeV. Boven in deze ruimte bevindt zich een GM-telbuis. Tussen de bron en de GM-telbuis kunnen één of meer aluminium plaatjes worden aangebracht. teller De straling die door deze plaatjes heen komt, wordt met de GM-telbuis figuur 1 gemeten. Telkens wordt het aantal deeltjes geregistreerd dat in een tijds- duur van 10 seconden de GM-telbuis bereikt. Aangenomen moet worden dat alle deeltjes die het venster van de GM-telbuis bereiken ook worden geregistreerd. Eerst wordt gemeten zonder dat de radioactieve bron in de experimenteerruimte aanwezig is. We meten zo de "achtergrondstraling". De meetresultaten staan in de tabel van figuur 2. aantal pulsen in 1 seconden 1 e meting 23 2e meting 18 3e meting 20 figuur 2

3 Nadat de bron in de experimenteerruimte is geplaatst, wordt gemeten met aluminiumplaatjes tussen bron en telbuis. Zie figuur 1. De totale dikte d van de aluminium plaat jes maken we steeds groter. De meetresultaten staan in de tabel van figuur 3. Uit de beschikbare gegevens willen we grafisch bepalen hoe ver de (j-deeltjes in aluminium dóórdringen. We maken daartoe gebruik van figuur A op het bijgevoegde antwoordpapier. totale dikte dinmm aantal pulsen in 10 seconden 0,25 932 0,50 494 1,00 252 1,50 132 2,00 75 2,50 40 figuur 3 d.i. Teken in deze figuur een grafiek die het verband aangeeft tussen de totale dikte d van de aluminiumplaatjes en het aantal door de bron uitgezonden (j-deeltjes dat telkens in 10 seconden de GM-telbuis bereikt. 2. Bepaal - met behulp van figuur A op het antwoordpapier - hoe ver de (j-deeltjes in aluminium kunnen dóórdringen. De afstand waarover een (j-deeltje in de materie kan dóórdringen noemen we "de dracht" van het (j-deeltje. e. Beredeneer of de in vraag d.2 gevonden dracht in aluminium ook gevonden wordt als we in plaats van de gebruikte bron een andere (j-straler als bron zouden gebruiken. We doen nog een reeks proeven, waarbij we telkens plaatjes van een ander materiaal tussen de bron en de GM-telbuis schuiven. Verder wordt er niets veranderd aan de opstelling. Uit de resultaten van deze reeks proeven blijkt dat in materialen met een kleinere dichtheid de dracht groter is. Het produkt van de dichtheid p en de dracht D van (j-straling in die stof is (vrijwel) onafhankelijk van de soort stof. Gemiddeld is de waarde van de dichtheid voor het menselijk lichaam 0,98 g' cm- 3. f Bereken hoe ver de (j-straling van de gebruikte bron gemiddeld in het menselijk lichaam kan dóórdringen.

A '. 2. INJECTIESPUIT Van een injectiespuit is de naald verwijderd. De ontstane opening aan de onderkant is met een dopje dichtgemaakt. Zie figuur 4. Het zuigertje - met een oppervlakte van 2,0 cm 2 - kan zonder wrijving bewegen. De massa van het zuigertje moet worden verwaarloosd. De afgesloten lucht heeft een volume van 4,5 cm 3, de barometer geeft aan: 1,0 los Pa. We verhogen de temperatuur tot 20 c, waardoor het volume van de afgesloten lucht 5,0 cm 3 wordt. Zie figuur 5. a. Bereken welke temperatuur de afgesloten lucht oorspronkelijk had. Voor de arbeid W, die de afgesloten lucht tijdens het verwarmen heeft verricht, geldt: W = p./::" V, waarin p de druk van de afgesloten lucht en /::,. V de toename van het volume voorstelt. b. Bereken de arbeid die door de afgesloten lucht tijdens het verwarmen is verricht. We houden de spuit vast en trekken het zuigertje omhoog totdat het volume van de afgesloten lucht 8,0 cm 3 is geworden. Zie figuur 6. De temperatuur blijft hierbij 20 c. 4,5 cm 3 5,0 cm 3 8,0 cm 3 c. I. Bereken de druk van de afgesloten lucht in deze stand. 2. Bereken de kracht die we op de zuiger moeten uitoefenen om de zuiger in deze nieuwe stand te houden. figuur 4 figuur 5 figuur 6 cl. Teken in één p, V-diagram zowel de verandering bij vraag a als die bij vraag c.l. Zet p verticaal uit en V horizontaal. We verwijderen het dopje, zetten op de spuit een naald met een inwendige doorsnede van 0,20 mm 2 en vullen de spuit met water. AIs we verticaal omhoog spuiten, bereikt het water een hoogte van 6,0 m. Bij de beantwoording van de volgende vragen moet de wrijving worden verwaarloosd. e.i. Bereken de snelheid waarmee het water de spuit verlaat. 2. Bereken de snelheid waarmee de zuiger werd bewogen. Vervolgens vult men de spuit met olie. f Beredeneer of olie - als de zuiger met dezelfde snelheid omhoog wordt bewogen - een kleinere, gelijke of grotere hoogte zal bereiken dan water. 21923BF-ll

5 " 3. LDR We plaatsen in een verduisterde ruimte een lampje L (dat als puntvormige.lichtbron moet worden opgevat), een lens en een cirkelvormig stuk wit karton op een optische bank. Zie figuur 7. L en het middelpunt van het karton liggen op de hoofdas van de lens. Wanneer we nu het karton langs de hoofdas van de lens heen en weer schuiven, blijken er twee verschillende plaatsen te zijn, waarbij het licht dat uit de lens komt juist het gehele stuk karton beschijnt: één plaats, waarbij het karton betrekkelijk dicht bij de lens staat (situatie 1), en één, waarbij het karton verder weg staat (situatie 11). De plaatsen van lampje, lens en karton zijn voor deze laatste situatie (11) in figuur B op het bijgevoegde antwoordpapier op ware grootte weergegeven. De middellijn van de lens is 24 mm, die van het stuk figuur 7 karton is 8,0 mmo a. Teken in figuur B de stralengang voor die lichtstralen uit L, die via de rand van de lens het karton bereiken. b. Bepaal met behulp van de tekening van figuur B de brandpuntsafstand van de lens. We verschuiven (terwijl het lampje en de lens op hun plaats blijven staan) het karton in de richting van de lens tot het opnieuw juist geheel door het licht uit de lens wordt beschenen (situatie 1). C. Bepaal over welke afstand het karton is verschoven. d. Beredeneer of er, vergeleken met situatie 11, nu meer licht, evenveel licht of minder licht op het karton valt. We vervangen het stuk karton door een LDR (Light Dependent Resistor = lichtafhankelijke weerstand). Een LDR bestaat uit halfgeleider-materiaal, zoals loodsulfide. In loodsulfide is de "energie-afstand" tussen de valentieband en de geleidingsband 0,37 ev (dit is de energie die ten minste nodig is om een elektron-gat paar te creëren). e. Toon door berekening aan, dat elk foton dat voorkomt in het zichtbare licht (400 nm ~ À ~ 750 nm) genoeg energie heeft om een elektron-gat paar te creëren in loodsulfide. Het lampje L en de LDR zijn opgenomen in de schakeling van figuur 8. Het lampje brandt op zijn normale spanning van 6,0 V. Door het lampje gaat een stroom met een sterkte van 0,050 A. De weerstand van de LDR bedraagt in het duister ongeveer 1 Mn. Doordat het licht van L via de lens op de LDR valt wordt de weerstand van de LDR verminderd tot 180 n. De spanningsbron levert een spanning van 9,0 V. f Bereken de waarde waarop de schuifweerstand R is ingesteld. L (lens) r, '\ I \ I I ~ 1, I V 9,OV We schuiven een scherm dat geen licht doorlaat, tussen L en de LDR. g. Beredeneer wat er met de lichtsterkte van L gebeurt. figuur 8

6 Of 4. EEN BOTSING OP EEN HELLEND VLAK Een karretje K en een blok B zijn op een schuin opgestelde plank geplaatst. In figuur 9 is de opstelling, niet op schaal, weergegeven. De plank maakt een hoek van 6,0 0 met het horizontale vlak. Het karretje moet worden vastgehouden om niet naar beneden te rijden, maar het blok blijft zo liggen. De massa van het blok is 213 g. a. Bereken de grootte van de wrijvingskracht die er voor zorgt dat het blok niet naar beneden glijdt. ~K ~~t:;~---. 15,Ocm...; figuur 9 Aan het karretje is een smalle papierstrook bevestigd. Deze strook loopt door een tijdtikker, een apparaatje dat met een frequentie van 50 Hz een stip op de strook zet. Op het tijdstip t = 0 wordt het karretje losgelaten. Op hetzelfde moment zet de tikker een stip op de strook. Het karretje rijdt naar beneden en trekt de strook door de tikker. Wanneer het karretje 15,0 cm heeft afgelegd, botst het tegen het blok, waarna karretje en blok als één geheel verder de helling af gaan. In figuur 10 is aan de rechterkant de eerste 23 cm van de bijbehorende papierstrook met stippen afgebeeld. Het plaats-tijd diagram, dat eveneens in figuur 10 is weergegeven, is getekend met behulp van deze strook. Vóór de botsing is de beweging van het karretje versneld. Neem aan dat deze beweging eenparig versneld is. b.l. Bepaal de versnelling van het karretje vóór de botsing. 2. Bepaal de snelheid waarmee het karretje tegen het blok botst. Het blijkt dat de beweging ná de botsing eenparig is. c. Bepaal de snelheid waarmee karretje en blok ná de botsing samen naar beneden gaan. De massa van het karretje is 251 g (gemeten met een balans). Als we proberen om deze massa te berekenen met behulp van de wet van behoud van impuls, blijkt dat er een niet te verwaarlozen verschil is tussen de gemeten waarde en de berekende waarde. De wet mag hier kennelijk niet worden gebruikt! d.i. Bereken de massa van het karretje, er van uitgaande dat de wet van behoud van impuls wél gebruikt zou mogen worden. 2. Noem een reden waarom deze wet in de hier beschreven situatie niet mag worden gebruikt. Als het karretje naar beneden rijdt, ondervindt het onder andere door wrijving een tegenwerkende kracht. e. Bereken de grootte van de tegenwerkende kracht die het karretje (massa 251 g) ondervindt vóór de botsing. Tijdens de beweging vinden vanaf de start energieomzettingen plaats. f Bereken hoeveel energie er is omgezet in inwendige energie ("warmte") in de periode 0,0 s «t «1,0 s.

'I 7 figuur 10 I!.!,. l _ ~ i I - ~ ~. i _ 1 ' -I,, ' I I, I " :.;. " I,:: 15 ] t, ]1,'1 : 'i l ' " +j j i i I,! 11':[ "il 'jl,! Irl 'I i! "!'! 1 ].1 'i!: ',I': ", " 'r - ~~-.,.... "1 - I ", ', I" --,-.L_ f-, 14+-r-r-~~~~-+-+-+,r~~~~~+-+-~~~ ' t _ ",1 : rj " 1 " ' I, ', -+-+-C+-rl--+--,,I i ' ',;.j I, 13~~~~~~-+-+-+-+~~~~4-+-+-+-+-~~ 11, ~+I 1::...; '14+'_,-'+111=,.':I+,-,T::...; 11' ~i ',- ' f-..1...j..j_~ i'-t--+ :f-.. I,, ++- :,+:, 'Lj.,- I '..'-..f- " -",--+_I--+-+-+-~I! --+I---j--,,,,'J } ".l. _..- r-- li, ' ]' I i I : ' 11 3 2 o o 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0 ~tins 219238 F-ll