( ) Hoofdstuk 4 Verloop van functies. 4.1 De grafiek van ( ) Spiegelen t.o.v. de x-as, y-as en de oorsprong

Maat: px
Weergave met pagina beginnen:

Download "( ) Hoofdstuk 4 Verloop van functies. 4.1 De grafiek van ( ) 4.1.1 Spiegelen t.o.v. de x-as, y-as en de oorsprong"

Transcriptie

1 Hoofdstuk 4 Verloop van functies Met DERIVE is het mogelijk om tal van eigenschappen van functies experimenteel te ontdekken. In een eerste paragraaf onderzoeken we het verband tussen de grafieken van de functies ( ) af b x+ c + d met abcd,,, reële constanten. Dit is vooral f x en ( ( )) nuttig om snel een grafiek te kunnen schetsen van een functie uitgaande van de grafiek van een elementaire functie f( x ) en om invloeden van de parameters abcd,,, te voorspellen. In een tweede paragraaf komen asymptoten, raaklijnen en Taylorveeltermen aan bod. ( ) af b x+ c + d 4.1 De grafiek van ( ) Spiegelen t.o.v. de x-as, y-as en de oorsprong Stel K de grafiek van de functie f( x ). Dan verkrijg je de grafiek van : a) f( x) door K te spiegelen t.o.v de y-as, b) f( x) door K te spiegelen t.o.v. de x-as, c) f( x) door K te spiegelen t.o.v. de oorsprong. We onderzoeken dit grafisch met de functie f( x): = x + x+ 4. 3

2 Hiervoor construeren we de vector met de uitdrukkingen : f( x), f( x) en f( x). Plot de functie f( x ) en nadien bv. de functie f( x) door deze functie eerst te selecteren in het algebra-venster door er herhaaldelijk op te klikken. Tekst op het D-Plot-venster kan je plaatsen via het de optie Annotation uit het Insert-menu. Nadien dubbelklikken op de tekst laat toe deze te editeren en / of te verplaatsen Verticale vervorming De grafiek van af() x verkrijgen we door de ordinaten van elk punt van de grafiek van f( x ) te vermenigvuldigen met a. Dit resulteert in een verticale uitrekking indien a > 1 en een verticale inkrimping indien 0< a < 1.

3 4.1.3 Verticale verschuiving Stel a > 0. De grafiek van f( x) + a verkrijgt men door een verticale verschuiving naar omhoog over een afstand a van de grafiek van f( x ). De grafiek van f( x) a verkrijgt men door een verticale verschuiving naar omlaag over een afstand a van de grafiek van f( x ) Horizontale vervorming De grafiek van f( ax ) verkrijgen we door de abscissen van elk punt van de grafiek van f( x ) te delen door a. Dit resulteert in een horizontale uitrekking indien 0< a < 1 en een horizontale inkrimping indien a > 1. ( ) f( x) = x 3 x

4 4.1.5 Horizontale verschuiving Stel a > 0. De grafiek van f( x+ a) verkrijgt men door een horizontale verschuiving naar links over een afstand a van de grafiek van f( x ). De grafiek van f( x a) verkrijgt men door een horizontale verschuiving naar rechts over een afstand a van de grafiek van f( x ). Uitgaande van de grafiek van f( x ) kunnen we de grafiek verkrijgen van af(( b x+ c)) + d door opeenvolgende toepassingen van bovenstaande eigenschappen. Dit illustreren we in een aantal voorbeelden De algemene kwadratische functie Het functievoorschrift f ( x) = ax + bx + c kan steeds geschreven worden als f( x) = a( x+ B) + C, waarbij abc,, zowel positief als negatief kunnen zijn. Voorbeeld : f x x x x x ( x ) ( ) = = ( ) + 5= + 3 Deze parabool verkrijgen we uitgaande van de parabool stappen : (1) () (3) ( ) f( x) x x ( x+ ) x+ 3. (1) verticale uitrekking : ordinaten maal, () horizontaal verschuiven over een afstand naar links, (3) verticaal verschuiven over een afstand 3 naar omlaag. = x in volgende

5 Enkel de stappen () en (3) wijzigen de positie van de top. De top van = + + heeft dus coördinaten (,3) f( x) x 8x De algemene homografische functie ax + b Herleid eerst de homografische functie f( x) = cx + d A tot f( x) = C x+ B +. Voorbeeld : De grafiek van deze functie is een hyperbool die we verkrijgen uitgaande van de 1 hyperbool f( x) = in de volgende stappen : x 1 (1) 1 () 3 (3) 3 (4) 3.5. x x x x+ x+ (1) spiegeling t.o.v. de x-as (of de y-as!), () verticale uitrekking : ordinaten maal 3, (3) horizontale verschuiving over een afstand naar links, (4) verticale verschuiving over een afstand.5 naar omlaag.

6 4.1.8 De algemene sinusfunctie We bekijken de invloed van de parameters f( x) = asin( b( x+ c) ) + d. abc,, en d op de grafiek van De grafiek van bv. f() x = sin(0.5x+ 1) + 3 verkrijgen we uitgaande van de grafiek van f() x = sin() x als volgt : (1) () (3) (4) sin( x) sin( x) sin(0.5 x) sin(0.5( x+ )) sin(0.5x+ 1) + 3. (1) verticaal uitrekken : ordinaten maal, () horizontaal uitrekken : abscissen gedeeld door 0.5 of maal, (3) horizontaal verschuiven over een afstand naar links, (4) verticaal verschuiven over een afstand 3 naar omhoog. Merk op dat de periode gelijk is aan 4π. Deze wordt immers enkel beïnvloed door stap (). Het lukraak genereren van een sinusfunctie kan als volgt. Het uitvoeren van a SIN(bx+c)+d= resulteert telkens in een ander functievoorschrift. Plaats bij iedere grafiek het passende voorschrift (#5, #6 of #7).

7 4.1.9 De algemene derdegraadsfunctie We bestuderen eerst de grafieken van 3 f( x) = x + k x met k IR0. vector( x^ 3 + kx, k,1,4) vector( x^ 3 + kx, k, 4, 1) We zien dat de oorsprong steeds het buigpunt is en dat de grafiek steeds symmetrisch is t.o.v. het buigpunt. k Er is enkel een maximum en een minimum voor x =± als k < 0. 3 Beschouw de functie 3 ( ) f( x) = 3x + 18x + 7x+ 1. We herleiden het functie- 3 voorschrift van f tot de vorm ( ) ( ) ( ) f x = a x+ p + k x+ p + q.

8 M.a.w. f x x 3 x x ( x x ) ( ) = = 3 ( + ) 3( + ) + 6. De grafiek is symmetrisch t.o.v. van het buigpunt (-,6) [ ( pq, )] maximum en een minimum voor respectievelijk : =. Er is een x = 3 x = 1 k = p en 3 k = p De Gausskromme We illustreren hoe de grafiek van de functie f( x) = e x aanleiding geeft tot de algemene dichtheidsfunctie van de normale verdeling met gemiddelde µ en standaardafwijking σ.

9 De functie bereikt een maximum voor x = 0 en de grafiek is symmetrisch t.o.v de 1 y-as. Er zijn buigpunten ter hoogte van x =±. De x-as is de horizontale asymptoot en de totale oppervlakte tussen de kromme en de x-as is π. We verkrijgen buigpunten voor x =± 1 door een horizontale uitrekking over een x x factor (d.w.z abscissen maal ) : f( x) = e = e. Hierdoor vermenigvuldigen we de totale oppervlakte ook met zodat we als totale oppervlakte 1 krijgen door een verticale inkrimping met een factor π (d.w.z. ordinaten gedeeld door π ) : Dit is de standaard normale dichtheidsfunctie. We verkrijgen buigpunten voor x abscissen maal σ : x 1 f( x) = e σ. π x 1 f( x) = e. π =± σ door een horizontale vervorming, Een verticale vervorming, ordinaten delen door σ, levert terug als totale oppervlakte 1 : x 1 f( x) = e σ. σ π Tenslotte levert een horizontale verschuiving over een afstand µ naar rechts (als µ > 0) of µ naar links (als µ < 0) de algemene Gausskromme met een maximum voor x = µ en buigpunten ter hoogte van x = µ ± σ : ( x µ ) 1 f( x) = e σ. σ π 4. Asymptoten, raaklijnen en Taylorveeltermen 4..1 Asymptoten Een programma in DERIVE is een bestand bestaande uit een opeenvolging van definities van functies, waarbij elke functie gebruik kan maken van een eerder gedefinieerde functie. Daartussen kunnen eventueel een aantal waarden toegekend worden aan variabelen.

10 Leerrijke voorbeelden zijn de talrijke Utility-files, die je kan opladen met het Loadcommando in het File-menu. DERIVE haalt al de uitdrukkingen van dat bestand binnen zonder ze te tonen. De functies zijn gedefinieerd en kunnen gebruikt worden vanaf dit ogenblik. Om de gedefinieerde functies te zien moet je de file inladen als Math-file. We illustreren het programmeren met een kort programma om het voorschrift van een schuine asymptoot te bepalen. In regel #1 bepalen we de richtingscoëfficiënt m van de schuine asymptoot voor een functie u_ met onafhankelijk veranderlijke x_. Hierbij kan je de tak van de kromme (op of ) kiezen. We gebruiken de veranderlijken u_ en x_ om interferentie met de eventueel vooraf gedefinieerde variabelen u en x te voorkomen. Met regel # wordt het snijpunt van de asymptoot met de y-as bepaald en regel #3 levert tenslotte de vergelijking van de asymptoot. Deze commando s kan je saven als een mth-file voor later gebruik. We geven enkele voorbeelden. Voorbeeld 1 Voorbeeld

11 Om in dit geval de schuine asymptoot te berekenen, moeten we eerst met de optie Simplification Settings van het Declare-menu Branch instellen als Real. Voorbeeld 3 De horizontale asymptoten verkrijg je als een bijzonder geval van schuine asymptoten, nl. met richtingscoëfficiënt nul. Voor de onderstaande rationale functie bekomen we de horizontale asymptoot y = 1 :. Voor het bepalen van de verticale asymptoot van een rationale functie zoeken we de nulpunten van de noemer die er geen zijn van de teller. Het plotten van deze oplossingen tekent de verticale asymptoten. Beschouw de rationale functie 5 4 3x 5x + 3x 5 f( x) = x + x 13x x + 13x 5. De volgende berekeningen leiden tot de onderstaande grafiek.

12 4.. Raaklijnen De raaklijn in een punt (, afa ()) aan de grafiek van een functie f (f afleidbaar in a) kan je beschouwen als de beste lineaire benadering van de functie f in de omgeving van dat punt. De vergelijking van de raaklijn in (, afa ()) aan de grafiek van de functie f( x ) is : y= f( a) + f '( a)( x a). Dit is ook de eerste orde Taylorpolynoom van f rond het punt a (zie 4..3). We definiëren :. We bepalen de raaklijn aan f( x) = 1+ x in het punt (0,1) met de hierboven vermelde definitie en stellen het resultaat gelijk aan de functie gx. () De volgende tabel toont dat de raaklijn een redelijke benadering is in de onmiddellijke omgeving van x = 0.

13 Beschouw de functie y x ( x ) = 3 die niet afleidbaar is in x = 0. Het berekenen van de afgeleide geeft echter het volgende resultaat. Het sign(x)-commando heeft als waarde 1 als x > 0 en 1 als x < 0. sign(0) resulteert in ± 1. Het bepalen van de raaklijn in dit geval geeft het volgende resultaat : Het plotten van de vector [ f( x), 3 x, 3 x] genereert de volgende figuur : 4..3 Taylorveeltermen De stelling van Taylor leert ons dat we het raaklijnbegrip kunnen uitbreiden tot het benaderen van functies in de omgeving van een punt d.m.v. veeltermen. f "( a) f ( a) n De veelterm Pn ( x) = f( a) + f '( a)( x a) + ( x a) ( x a)! n! noemt men de Taylorveelterm van orde n van een functie f rond een punt a. De functie f moet vanzelfsprekend een voldoende aantal keer afleidbaar zijn. ( n)

14 We bepalen voor de functie f() x = sin() x de Taylorveeltermen van orde 1, 3, 5 en 7 rond het punt a = 0. Het plotten van de vector [ f( x), P1( x), P3( x), P5( x), P6( x )] levert volgende plot : De onderstaande tabel geeft een idee van de kwaliteit van de benadering.

15 4.3 De methode van de kleinste kwadraten Een Taylorveelterm benadert een gegeven functie rond een gegeven punt. Het is echter vaak zo dat men een "beste kromme" wenst te bepalen die zo goed mogelijk "door" een aantal gegeven punten gaat, die men verkregen heeft als meetresultaten. We bepalen de beste rechte "door" de punten (0,1), (1,3), (,4) en (3,) volgens de methode van de kleinste kwadraten met het Fit-commando. Deze methode zorgt ervoor dat de som van de kwadraten van de verticale afwijkingen van de punten t.o.v. de rechte zo klein mogelijk is. Met het Fit-commando kan je ook de derdegraadsveelterm bepalen die door de 4 punten gaat.

16 4.4 Het accentueren van een punt op een grafiek De volgende commando s kan je gebruiken om stippellijnen te tekenen vanuit een punt (, afa ()) van de grafiek loodrecht op de x- en y-as. We kunnen de commando s stipx en stipy samenvoegen in de volgende vector : We berekenen stip(,10) voor f() x = x en plotten het resultaat. f(x)=x^

Zomercursus Wiskunde. Katholieke Universiteit Leuven Groep Wetenschap & Technologie. September 2008

Zomercursus Wiskunde. Katholieke Universiteit Leuven Groep Wetenschap & Technologie. September 2008 Katholieke Universiteit Leuven September 2008 Limieten en asymptoten van rationale functies (versie juli 2008) Rationale functies. Inleiding Functies als f : 5 5, f 2 : 2 3 + 2 f 3 : 32 + 7 4 en f 4 :

Nadere informatie

Zomercursus Wiskunde. Module 4 Limieten en asymptoten van rationale functies (versie 22 augustus 2011)

Zomercursus Wiskunde. Module 4 Limieten en asymptoten van rationale functies (versie 22 augustus 2011) Katholieke Universiteit Leuven September 20 Module 4 Limieten en asymptoten van rationale functies (versie 22 augustus 20) Inhoudsopgave Rationale functies. Inleiding....................................2

Nadere informatie

Verbanden en functies

Verbanden en functies Verbanden en functies 0. voorkennis Stelsels vergelijkingen Je kunt een stelsel van twee lineaire vergelijkingen met twee variabelen oplossen. De oplossing van het stelsel is het snijpunt van twee lijnen.

Nadere informatie

Functieonderzoek. f(x) = x2 4 x 4 + 2. Igor Voulis. 9 december 2009. 1 De functie en haar definitiegebied 2. 2 Het tekenverloop van de functie 2

Functieonderzoek. f(x) = x2 4 x 4 + 2. Igor Voulis. 9 december 2009. 1 De functie en haar definitiegebied 2. 2 Het tekenverloop van de functie 2 Functieonderzoek f(x) = x2 4 x 4 + 2 Igor Voulis 9 december 2009 Inhoudsopgave 1 De functie en haar definitiegebied 2 2 Het tekenverloop van de functie 2 3 De asymptoten 3 4 De eerste afgeleide 3 5 De

Nadere informatie

HOOFDSTUK 4: GONIOMETRISCHE FUNCTIES

HOOFDSTUK 4: GONIOMETRISCHE FUNCTIES 1 HOOFDSTUK 4: GONIOMETRISCHE FUNCTIES 1 Periodieke functies 2 1.1 Op verkenning 2 1.2 Periodieke functie 2 1.3 Periode-interval, evenwichtslijn en amplitude 4 1.4 De perioderechthoek 4 1.5 Oefeningen

Nadere informatie

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: functieverloop. 22 juli 2015. dr. Brenda Casteleyn

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: functieverloop. 22 juli 2015. dr. Brenda Casteleyn Voorbereiding toelatingsexamen arts/tandarts Wiskunde: functieverloop 22 juli 2015 dr. Brenda Casteleyn Met dank aan: Atheneum van Veurne (http://www.natuurdigitaal.be/geneeskunde/fysica/wiskunde/wiskunde.htm),

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv V-a Hoofdstuk - Transformaties Voorkennis: Standaardfuncties bladzijde 70 f () = g () = sin h() = k () = log p () = m () = n () = b D f = [0, en B f = [0, ; D g = en B g =[, ] ; D h = en B h = 0, ; D k

Nadere informatie

Vergelijkingen van cirkels en lijnen

Vergelijkingen van cirkels en lijnen Vergelijkingen van cirkels en lijnen Rechthoekig coördinatenstelsel! Cartesisch coördinatenstelsel! René Descartes (1596-1650) Van hem is de uitspraak: Ik denk, dus ik besta! September 12, 2009 1 Vergelijkingen

Nadere informatie

Wiskundige Technieken 1 Uitwerkingen Hertentamen 2 januari 2014

Wiskundige Technieken 1 Uitwerkingen Hertentamen 2 januari 2014 Wiskundige Technieken Uitwerkingen Hertentamen januari 4 Normering voor 4 pt vragen (andere vragen naar rato): 4pt 3pt pt pt pt goed begrepen én goed uitgevoerd, eventueel met of onbelangrijke rekenfoutjes

Nadere informatie

De parabool en de cirkel raken elkaar in de oorsprong; bepaal ook de coördinaten van de overige snijpunten A 1 en A 2.

De parabool en de cirkel raken elkaar in de oorsprong; bepaal ook de coördinaten van de overige snijpunten A 1 en A 2. BURGERLIJK INGENIEUR-ARCHITECT - 5 SEPTEMBER 2002 BLZ 1/10 1. We beschouwen de cirkel met vergelijking x 2 + y 2 2ry = 0 en de parabool met vergelijking y = ax 2. Hierbij zijn r en a parameters waarvoor

Nadere informatie

Hoofdstuk 3 - Transformaties

Hoofdstuk 3 - Transformaties Hoofdstuk - Transformaties Voorkennis: Standaardfuncties bladzijde 70 V-a f () = g () = sin h () = k () = log m () = n () = p () = b D f = [0, en B f = [0, ; D g = en B g =[, ] ; D h = en B h = 0, ; D

Nadere informatie

1. Orthogonale Hyperbolen

1. Orthogonale Hyperbolen . Orthogonale Hyperbolen a + b In dit hoofdstuk wordt de grafiek van functies van de vorm y besproken. Functies c + d van deze vorm noemen we gebroken lineaire functies. De grafieken van dit soort functies

Nadere informatie

buigpunt (0,0) randpunt (0,0) domein [0, > asymptoot y=0 snijpunt y-as (0,1) bereik <0, >

buigpunt (0,0) randpunt (0,0) domein [0, > asymptoot y=0 snijpunt y-as (0,1) bereik <0, > De standaardfuncties: = = = Parabool top (0,0) buigpunt (0,0) randpunt (0,0) domein [0, > = f ( ) = = log( ) hyperbool vert. asymptoot =0 hor. asymptoot y=0 asymptoot y=0 snijpunt y-as (0,) bereik

Nadere informatie

Centrale Commissie Voortentamen Wiskunde Uitwerkingen Voortentamen Wiskunde B 11 juni 2012

Centrale Commissie Voortentamen Wiskunde Uitwerkingen Voortentamen Wiskunde B 11 juni 2012 Centrale Commissie Voortentamen Wiskunde Uitwerkingen Voortentamen Wiskunde B juni 22 Voorlopige versie 6 juni 22 Opgave a f (x) = x2 x 5, dus f (x) = 2 2 x 5x. Dit geeft f (x) = 2 2 2x3. f (x) = 2 2 2x3

Nadere informatie

Basiskennistoets wiskunde

Basiskennistoets wiskunde Lkr.: R. De Wever Geen rekendoos toegelaten Basiskennistoets wiskunde Klas: 6 WEWI 1 september 015 0 Vraag 1: Een lokaal extremum (minimum of maximum) wordt bereikt door een functie wanneer de eerste afgeleide

Nadere informatie

2.1 Lineaire functies [1]

2.1 Lineaire functies [1] 2.1 Lineaire functies [1] De lijn heeft een helling (richtingscoëfficiënt) van 1; De lijn gaat in het punt (0,2) door de y-as; In het plaatje is de lijn y = x + 2 getekend. Omdat de grafiek een rechte

Nadere informatie

d. Met de dy/dx knop vind je dat op tijdstip t =2π 6,28 het water daalt met snelheid van 0,55 m/uur. Dat is hetzelfde als 0,917 cm per minuut.

d. Met de dy/dx knop vind je dat op tijdstip t =2π 6,28 het water daalt met snelheid van 0,55 m/uur. Dat is hetzelfde als 0,917 cm per minuut. Hoofdstuk A: Goniometrische functies. I-. a. De grafiek staat hiernaast. De periode is ongeveer,6 uur. b. De grafiek snijden met y = levert bijvoorbeeld x,00 en x,8. Het verschil is ongeveer,7 uur en dat

Nadere informatie

(g 0 en n een heel getal) Voor het rekenen met machten geldt ook - (p q) a = p a q a

(g 0 en n een heel getal) Voor het rekenen met machten geldt ook - (p q) a = p a q a Samenvatting wiskunde h4 hoofdstuk 3 en 6, h5 hoofdstuk 4 en 6 Hoofdstuk 3 Voorkennis Bij het rekenen met machten gelden de volgende rekenregels: - Bij een vermenigvuldiging van twee machten met hetzelfde

Nadere informatie

Wiskundige Technieken 1 Uitwerkingen Hertentamen 23 december 2014

Wiskundige Technieken 1 Uitwerkingen Hertentamen 23 december 2014 Wiskundige Technieken Uitwerkingen Hertentamen 3 december 04 Normering voor 4 pt vragen andere vragen naar rato: 4pt 3pt pt pt 0pt goed begrepen én goed uitgevoerd, eventueel met enkele onbelangrijke rekenfoutjes

Nadere informatie

10 ALGEMENE SINUSFUNCTIE

10 ALGEMENE SINUSFUNCTIE Algemene sinusfunctie Afstandsleren - verbetersleutel 61 10 ALGEMENE SINUSFUNCTIE 10.1 Astronomische daglengte Onder astronomische daglengte verstaan we de tijd die verloopt tussen zonsopgang en zonsondergang.

Nadere informatie

6.0 Voorkennis AD BC. Kruislings vermenigvuldigen: Voorbeeld: 50 10x. 50 10( x 1) Willem-Jan van der Zanden

6.0 Voorkennis AD BC. Kruislings vermenigvuldigen: Voorbeeld: 50 10x. 50 10( x 1) Willem-Jan van der Zanden 6.0 Voorkennis Kruislings vermenigvuldigen: A C AD BC B D Voorbeeld: 50 0 x 50 0( x ) 50 0x 0 0x 60 x 6 6.0 Voorkennis Herhaling van rekenregels voor machten: p p q pq a pq a a a [] a [2] q a q p pq p

Nadere informatie

Definitie: Een functie f heeft een absoluut maximum f(x 0 ) in het punt. x 1 Domein(f) als voor alle x Domein(f) geldt:

Definitie: Een functie f heeft een absoluut maximum f(x 0 ) in het punt. x 1 Domein(f) als voor alle x Domein(f) geldt: Definitie: Een functie f heeft een absoluut maximum f(x 0 ) in het punt x 0 Domein(f) als voor alle x Domein(f) geldt: f(x) f(x 0 ). Een functie f heeft een absoluut minimum f(x 1 ) in het punt x 1 Domein(f)

Nadere informatie

TENTAMEN ANALYSE 1. dinsdag 3 april 2007,

TENTAMEN ANALYSE 1. dinsdag 3 april 2007, TENTAMEN ANALYSE. dinsdag april 2007, 4.00-7.00. Het tentamen bestaat uit twee gedeelten: de eerste vijf opgaven gaan over de stof van het eerste gedeelte van het college. De laatste vijf opgaven gaan

Nadere informatie

Normale Verdeling Inleiding

Normale Verdeling Inleiding Normale Verdeling Inleiding Wisnet-hbo update maart 2010 1 De Normale verdeling De Normale Verdeling beschrijft het gedrag van een continue kansvariabele x. Om kansen te berekenen, moet de dichtheidsfunctie

Nadere informatie

Ijkingstoets industrieel ingenieur aangeboden door UGent en VUB op 30 juni 2014: algemene feedback

Ijkingstoets industrieel ingenieur aangeboden door UGent en VUB op 30 juni 2014: algemene feedback IJkingstoets juni 4 - reeks - p. / Ijkingstoets industrieel ingenieur aangeboden door UGent en VUB op juni 4: algemene feedback In totaal namen studenten deel aan deze ijkingstoets industrieel ingenieur

Nadere informatie

TWEEDE DEELTENTAMEN CONTINUE WISKUNDE. donderdag 13 december 2007, 14.00-16.00

TWEEDE DEELTENTAMEN CONTINUE WISKUNDE. donderdag 13 december 2007, 14.00-16.00 TWEEDE DEELTENTAMEN CONTINUE WISKUNDE donderdag 1 december 007, 14.00-16.00 Het gebruik van grafische of programmeerbare rekenmachines is niet toegestaan. Motiveer elk antwoord dat je geeft d.m.v. een

Nadere informatie

TOELATINGSEXAMEN ANALYSE BURGERLIJK INGENIEUR EN BURGERLIJK INGENIEUR ARCHTECT - 3 JULI 2003 BLZ 1/8

TOELATINGSEXAMEN ANALYSE BURGERLIJK INGENIEUR EN BURGERLIJK INGENIEUR ARCHTECT - 3 JULI 2003 BLZ 1/8 BURGERLIJK INGENIEUR ARCHTECT - 3 JULI 2003 BLZ 1/8 1. De functie f(x) = e kx + ax + b met a, b en k R en k < 0 heeft een schuine asymptoot y = x voor x + en voldoet aan de vergelijking Bepaal a, b en

Nadere informatie

Reële functies. Deel I. 1. Rationale functies. 1. Definitie: gezien. 2. Homografische functies: zie onder

Reële functies. Deel I. 1. Rationale functies. 1. Definitie: gezien. 2. Homografische functies: zie onder Deel I Reële functies. Rationale functies. Definitie: gezien. Homografische functies: zie onder 3. Domein, nulpunten en tekenonderzoek: gezien. De functie f :. Domein f. Snijpunten met de X-as en de Y

Nadere informatie

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: functieverloop. 13 september 2017 dr. Brenda Casteleyn

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: functieverloop. 13 september 2017 dr. Brenda Casteleyn Voorbereiding toelatingsexamen arts/tandarts Wiskunde: functieverloop 13 september 2017 dr. Brenda Casteleyn Met dank aan: Atheneum van Veurne, Leen Goyens (http://users.telenet.be/toelating) 1. Inleiding

Nadere informatie

7.1 Ongelijkheden [1]

7.1 Ongelijkheden [1] 7.1 Ongelijkheden [1] In het plaatje hierboven zijn vier intervallen getekend. Een open bolletje betekent dat dit getal niet bij het interval hoort. Een gesloten bolletje betekent dat dit getal wel bij

Nadere informatie

INLEIDING FUNCTIES 1. COÖRDINATEN

INLEIDING FUNCTIES 1. COÖRDINATEN INLEIDING FUNCTIES 1. COÖRDINATEN...1 2. FUNCTIES...2 3. ARGUMENT EN BEELD...3 4. HET FUNCTIEVOORSCHRIFT...4 5. DE FUNCTIEWAARDETABEL...5 6. DE GRAFIEK...6 7. FUNCTIES HERKENNEN...7 8. OPLOSSINGEN...9

Nadere informatie

De parabool en de cirkel raken elkaar in de oorsprong; bepaal ook de coördinaten van de overige snijpunten A 1 en A 2.

De parabool en de cirkel raken elkaar in de oorsprong; bepaal ook de coördinaten van de overige snijpunten A 1 en A 2. BURGERLIJK INGENIEUR-ARCHITECT - 5 SEPTEMBER 2002 BLZ 1/10 1. We beschouwen de cirkel met vergelijking x 2 + y 2 2ry = 0 en de parabool met vergelijking y = ax 2. Hierbij zijn r en a parameters waarvoor

Nadere informatie

Toegepaste Wiskunde deel 1

Toegepaste Wiskunde deel 1 Toegepaste Wiskunde deel Uitwerkingen etra opgaven hoofdstuk Functies. y f ( ) 4 ( )( ) is minimaal -4 voor 0 y g f ( ) ( ) 4 ( )( ) bestaat wanneer D en B 4, ( )( ) 0, voor het domein en het bereik geldt

Nadere informatie

Algemene sinusfunctie - Afstandsleren 61

Algemene sinusfunctie - Afstandsleren 61 61 10 ALGEMENE SINUSFUNCTIE 10.1 Astronomische daglengte Onder astronomische daglengte verstaan we de tijd die verloopt tussen zonsopgang en zonsondergang. Die tijd varieert van dag tot dag. Bij het begin

Nadere informatie

(Assistenten zijn Sofie Burggraeve, Bart Jacobs, Annelies Jaspers, Nele Lejon, Daan Michiels, Michael Moreels, Berdien Peeters en Pieter Segaert).

(Assistenten zijn Sofie Burggraeve, Bart Jacobs, Annelies Jaspers, Nele Lejon, Daan Michiels, Michael Moreels, Berdien Peeters en Pieter Segaert). Tussentijdse Toets Wiskunde I 1ste bachelor Biochemie & Biotechnologie, Chemie, Geografie, Geologie, Informatica, Schakelprogramma Master Toegepaste Informatica, donderdag 17 november 011, 8:30 10:00 uur

Nadere informatie

Didactische wenken bij het onderdeel analyse

Didactische wenken bij het onderdeel analyse Didactische wenken bij het onderdeel analyse Didactische wenken bij het onderdeel analyse 1/21 1. Eindtermen analyse Eindtermen ASO tweede graad ET 22 3 (4) aspecten van een functie ET 23 Standaardfuncties

Nadere informatie

11 ) Oefeningen. a) y = 2x 1 f) y = x 2 + 3x 4. b) y = 1 3 x2 x + 1 8. g) y = 1 x 2. c) y = x 3 x 2 +1 h) y = 6. d) y = x 2 4 i) y = x 2 5.

11 ) Oefeningen. a) y = 2x 1 f) y = x 2 + 3x 4. b) y = 1 3 x2 x + 1 8. g) y = 1 x 2. c) y = x 3 x 2 +1 h) y = 6. d) y = x 2 4 i) y = x 2 5. 11 ) Oefeningen 1) Vergelijkingen van functies Welke vergelijkingen stellen een rechte voor? Welke vergelijkingen stellen een parabool voor? Welke vergelijkingen stellen noch een rechte noch een parabool

Nadere informatie

Functies. Verdieping. 6N-3p 2013-2014 gghm

Functies. Verdieping. 6N-3p 2013-2014 gghm Functies Verdieping 6N-p 01-014 gghm Standaardfuncties Hieronder is telkens een standaard functie gegeven. Maak steeds een schets van de bijbehorende grafiek. Je mag de GRM hierbij gebruiken. Y f ( x)

Nadere informatie

1.0 Voorkennis. Voorbeeld 1: Los op: 6x + 28 = 30 10x.

1.0 Voorkennis. Voorbeeld 1: Los op: 6x + 28 = 30 10x. 1.0 Voorkennis Voorbeeld 1: Los op: 6x + 28 = 30 10x. 6x + 28 = 30 10x +10x +10x 16x + 28 = 30-28 -28 16x = 2 :16 :16 x = 2 1 16 8 Stappenplan: 1) Zorg dat alles met x links van het = teken komt te staan;

Nadere informatie

De studie van vlakke krommen gegeven in parametervorm. Lieve Lemmens en Andy Snoecx

De studie van vlakke krommen gegeven in parametervorm. Lieve Lemmens en Andy Snoecx De studie van vlakke krommen gegeven in parametervorm Doelstellingen Lieve Lemmens en An Snoecx Deze tekst stelt een voorbeeld van de analyse van een kromme met de Texas TI-NSpire (en/of computersoftware)

Nadere informatie

Machten, exponenten en logaritmen

Machten, exponenten en logaritmen Machten, eponenten en logaritmen Machten, eponenten en logaritmen Macht, eponent en grondtal Eponenten en logaritmen hebben alles met machtsverheffen te maken. Een macht als 4 is niets anders dan de herhaalde

Nadere informatie

IJkingstoets Wiskunde-Informatica-Fysica 29 juni Nummer vragenreeks: 1

IJkingstoets Wiskunde-Informatica-Fysica 29 juni Nummer vragenreeks: 1 IJkingstoets Wiskunde-Informatica-Fysica 29 juni 206 Nummer vragenreeks: IJkingstoets wiskunde-informatica-fysica 29 juni 206 - reeks - p. /0 Oefening Welke studierichting wil je graag volgen? (vraag

Nadere informatie

Hoofdstuk 1: Formules en grafieken. 1.1 Lineaire verbanden

Hoofdstuk 1: Formules en grafieken. 1.1 Lineaire verbanden Hoofdstuk : Formules en grafieken.. Lineaire verbanden Opgave : in 0 minuten daalt het water 40 cm, dus 4 cm per minuut dus na minuut geldt: h 40 4 6 cm en na minuten geldt: h 40 4 cm b. formule II Opgave

Nadere informatie

Transformaties van grafieken HAVO wiskunde B deel 1

Transformaties van grafieken HAVO wiskunde B deel 1 Transformaties van grafieken HAVO wiskunde B deel Willem van Ravenstein 500765005 Haags Montessori Lyceum (c) 06 Inleiding In de leerroute transformaties van grafieken gaat het om de karakteristieke eigenschappen

Nadere informatie

dx; (ii) * Bewijs dat voor elke f, continu ondersteld in [0, a]: dx te berekenen.(oef cursus) Gegeven is de bepaalde integraal I n = π

dx; (ii) * Bewijs dat voor elke f, continu ondersteld in [0, a]: dx te berekenen.(oef cursus) Gegeven is de bepaalde integraal I n = π Analyse. (i) Bereken A = π sin d; +cos 2 (ii) * Bewijs dat voor elke f, continu ondersteld in [, a]: a f()d = a f(a )d (iii) Gebruik (i) en (ii) om de integraal J = π sin d te berekenen.(oef +cos 2 cursus)

Nadere informatie

Een checklist is een opsomming van de dingen die je moet weten en kunnen. HAVO 4 wiskunde B...

Een checklist is een opsomming van de dingen die je moet weten en kunnen. HAVO 4 wiskunde B... Een checklist is een opsomming van de dingen die je moet weten en kunnen. HAVO 4 wiskunde B 0. voorkennis In klas 3 heb je hoofdstuk 10 over algebraische vaardigheden gedaan. Hieronder zie je daarvan een

Nadere informatie

Uitwerkingen Mei 2012. Eindexamen VWO Wiskunde B. Nederlands Mathematisch Instituut Voor Onderwijs en Onderzoek

Uitwerkingen Mei 2012. Eindexamen VWO Wiskunde B. Nederlands Mathematisch Instituut Voor Onderwijs en Onderzoek Uitwerkingen Mei 01 Eindexamen VWO Wiskunde B A B C Nederlands Mathematisch Instituut Voor Onderwijs en Onderzoek Onafhankelijkheid van a Opgave 1. We moeten aantonen dat F a een primitieve is van de

Nadere informatie

2004 Gemeenschappelijke proef Algebra - Analyse - Meetkunde - Driehoeksmeting 14 vragen - 2:30 uur Reeks 1 Notatie: tan x is de tangens van de hoek x, cot x is de cotangens van de hoek x Vraag 1 In een

Nadere informatie

Vectoranalyse voor TG

Vectoranalyse voor TG college 4 en raakvlakken collegejaar : 16-17 college : 4 build : 19 september 2016 slides : 30 Vandaag Snowdon Mountain Railway (Wales) 1 De richtingsafgeleide 2 aan een grafiek 3 Differentieerbaarheid

Nadere informatie

Hierbij geven we de antwoorden en bewijzen we meteen ook hoe de constanten kunnen bepaald worden.

Hierbij geven we de antwoorden en bewijzen we meteen ook hoe de constanten kunnen bepaald worden. WISKUNDE IS (EEN BEETJE) OORLOG Onder dit motto nodigde de VVWL alle wiskundeleraren uit Vlaanderen en Nederland uit om deel te nemen aan een wiskundewedstrijd. De tien vragen van de eerste editie, waarbij

Nadere informatie

3.1 Kwadratische functies[1]

3.1 Kwadratische functies[1] 3.1 Kwadratische functies[1] Voorbeeld 1: y = x 2-6 Invullen van x = 2 geeft y = 2 2-6 = -2 In dit voorbeeld is: 2 het origineel; -2 het beeld (of de functiewaarde) y = x 2-6 de formule. Een functie voegt

Nadere informatie

Machtsfuncties al dan niet samengesteld in de vorm van een polynoom- of veeltermfunctie

Machtsfuncties al dan niet samengesteld in de vorm van een polynoom- of veeltermfunctie Het volgende onderwerp is functie-onderzoek Dit is herhaling VWO-stof + nieuwe begrippen uit Kaper hfst 3 We bekijken de functies wiskundig en soms vanuit economisch oogpunt ( begrenzingen variabelen 0

Nadere informatie

REËLE FUNCTIES BESPREKEN

REËLE FUNCTIES BESPREKEN INLEIDING FUNCTIES 1. DEFINITIE...3 2. ARGUMENT EN BEELD...4 3. HET FUNCTIEVOORSCHRIFT...5 4. DE FUNCTIEWAARDETABEL...7 5. DE GRAFIEK...9 6. FUNCTIES HERKENNEN...12 7. OEFENINGEN...14 8. OPLOSSINGEN...18

Nadere informatie

VIDEO 4 4. MODULUSVERGELIJKINGEN

VIDEO 4 4. MODULUSVERGELIJKINGEN VIDEO 1 VIDEO 2 VIDEO 3 VIDEO 4 4. MODULUSVERGELIJKINGEN De modulus (ook wel absolute waarde) is de afstand van een punt op de getallenlijn tot nul. De modulus van zowel -5 als 5 is dus 5, omdat -5 ook

Nadere informatie

1.1.2. Wiskundige taal. Symbolen om mee te rekenen + optelling - aftrekking. vermenigvuldiging : deling

1.1.2. Wiskundige taal. Symbolen om mee te rekenen + optelling - aftrekking. vermenigvuldiging : deling Examen Wiskunde: Hoofdstuk 1: Reële getallen: 1.1 Rationale getallen: 1.1.1 Soorten getallen. Een natuurlijk getal is het resultaat van een tellg van een edig aantal dgen. Een geheel getal is het verschil

Nadere informatie

Dossier 4 VECTOREN. Dr. Luc Gheysens. bouwstenen van de lineaire algebra

Dossier 4 VECTOREN. Dr. Luc Gheysens. bouwstenen van de lineaire algebra Dossier 4 VECTOREN bouwstenen van de lineaire algebra Dr. Luc Gheysens 1 Coördinaat van een vector In het vlak π 0 is het punt O de oorsprong en de punten E 1 en E 2 zijn zodanig gekozen dat OE 1 OE 2

Nadere informatie

Oef 1. Oef 2 Geef het functievoorschrift van g, h en k als a = 1

Oef 1. Oef 2 Geef het functievoorschrift van g, h en k als a = 1 Herhalingsoefeningen Tweedegraadsfuncties Van de opgaven die geel gemarkeerd zijn, vind je achteraan de oplossingen. De oplossingen van de andere mag je steeds afgeven of er vragen over stellen. Oef 1

Nadere informatie

Centrale Commissie Voortentamen Wiskunde Uitwerkingen Voortentamen Wiskunde B 28 januari 2013

Centrale Commissie Voortentamen Wiskunde Uitwerkingen Voortentamen Wiskunde B 28 januari 2013 Centrale Commissie Voortentamen Wiskunde Uitwerkingen Voortentamen Wiskunde B 28 januari 23 Voorlopige versie 29 januari 23 Opgave a Schrijf f ) g) met g) 9 2. g) 9 2 ) /2, dus g ) 2 9 2 ) /2 2 Dit geeft

Nadere informatie

Machtsfuncties al dan niet samengesteld in de vorm van een polynoom- of veeltermfunctie. 1) Met een positief exponent in de term(en) ( )

Machtsfuncties al dan niet samengesteld in de vorm van een polynoom- of veeltermfunctie. 1) Met een positief exponent in de term(en) ( ) Het volgende onderwerp is functie-onderzoek Dit is herhaling VWO-stof + nieuwe begrippen uit Kaper hfst 3 We bekijken de functies wiskundig en soms vanuit economisch oogpunt ( begrenzingen variabelen ).

Nadere informatie

1.0 Voorkennis. Voorbeeld 1: Los op: 6x + 28 = 30 10x.

1.0 Voorkennis. Voorbeeld 1: Los op: 6x + 28 = 30 10x. 1.0 Voorkennis Voorbeeld 1: Los op: 6x + 28 = 30 10x. 6x + 28 = 30 10x +10x +10x 16x + 28 = 30-28 -28 16x = 2 :16 :16 x = 2 1 16 8 Stappenplan: 1) Zorg dat alles met x links van het = teken komt te staan;

Nadere informatie

De grafiek van een lineair verband is altijd een rechte lijn.

De grafiek van een lineair verband is altijd een rechte lijn. Verbanden Als er tussen twee variabelen x en y een verband bestaat kunnen we dat op meerdere manieren vastleggen: door een vergelijking, door een grafiek of door een tabel. Stel dat het verband tussen

Nadere informatie

MATCH: matching oefening waarbij evenveel antwoordmogelijkheden als opgaven zijn

MATCH: matching oefening waarbij evenveel antwoordmogelijkheden als opgaven zijn Codelijst: : de dynamisch gegenereerde waarde van INVUL: invuloefening ( Short answer ) KLEUR: gebruik kleur! MATCH: matching oefening waarbij evenveel antwoordmogelijkheden als opgaven zijn MC: multiple

Nadere informatie

Inhoud college 5 Basiswiskunde Taylorpolynomen

Inhoud college 5 Basiswiskunde Taylorpolynomen Inhoud college 5 Basiswiskunde 4.10 Taylorpolynomen 2 Basiswiskunde_College_5.nb 4.10 Inleiding Gegeven is een functie f met punt a in domein D f. Gezocht een eenvoudige functie, die rond punt a op f lijkt

Nadere informatie

Uitwerkingen voorbeeldtentamen 1 Wiskunde B 2018

Uitwerkingen voorbeeldtentamen 1 Wiskunde B 2018 Uitwerkingen voorbeeldtentamen 1 Wiskunde B 2018 Vraag 1a 4 punten geeft ; geeft dus in punt A geldt ;, dus en Dit geeft Vraag 1b 4 punten ( ) ( ) ( ) Vraag 1c 4 punten ( ). Dit is de normaalvector van

Nadere informatie

Wisnet-HBO. update maart. 2010

Wisnet-HBO. update maart. 2010 Wat is Differentiëren? 1 Wat is differentiëren? Wisnet-HBO update maart. 2010 Differentiëren is eigenlijk het differentiaalquotient bepalen. Je begint met het delen van uiterst kleine verschillen op elkaar.

Nadere informatie

De onderstaande waarden in de tabel zet je dan netjes uit in een xy-assenstelsel: naar boven, een negatief getal schuift de parabool naar beneden.

De onderstaande waarden in de tabel zet je dan netjes uit in een xy-assenstelsel: naar boven, een negatief getal schuift de parabool naar beneden. Samenvatting H29: Parabolen en Hyperbolen De standaard parabool heeft als formule y = x 2 Deze vorm moet je vlot en netjes kunnen tekenen. De onderstaande waarden in de tabel zet je dan netjes uit in een

Nadere informatie

Paragraaf 1.1 : Lineaire verbanden

Paragraaf 1.1 : Lineaire verbanden Hoofdstuk 1 Formules, grafieken en vergelijkingen (H4 Wis B) Pagina 1 van 11 Paragraaf 1.1 : Lineaire verbanden Les 1 Lineaire verbanden Definitie lijn Algemene formule van een lijn : y = ax + b a = richtingscoëfficiënt

Nadere informatie

H. 8 Kwadratische vergelijking / kwadratische functie

H. 8 Kwadratische vergelijking / kwadratische functie H. 8 Kwadratische vergelijking / kwadratische functie 8. Kwadratische vergelijking Een kwadratische vergelijking (of e graadsvergelijking) is een vergelijking van de vorm: a b c + + = Ook wordt een kwadratische

Nadere informatie

8. Differentiaal- en integraalrekening

8. Differentiaal- en integraalrekening Computeralgebra met Maxima 8. Differentiaal- en integraalrekening 8.1. Sommeren Voor de berekening van sommen kent Maxima de opdracht: sum (expr, index, laag, hoog) Hierbij is expr een Maxima-expressie,

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv 8 Voorkennis: Sinusfuncties ladzijde 9 V- Uit 8 radialen volgt 8 radialen Je krijgt dan de volgende tael: V-a V-a 8 graden 6 9 8 radialen O 6 6 7 8 9 Aflezen:,,,, c Aflezen:, d Aflezen:, e Aflezen: O Aflezen:,,,

Nadere informatie

2 Vergelijkingen van lijnen

2 Vergelijkingen van lijnen 2 Vergelijkingen van lijnen Verkennen Meetkunde Lijnen Inleiding Verkennen Beantwoord de vragen bij Verkennen. Gebruik de applet! Uitleg Meetkunde Lijnen Uitleg Opgave 1 Bestudeer de Uitleg. Laat zien

Nadere informatie

Wiskundige Technieken 1 Uitwerkingen Tentamen 3 november 2014

Wiskundige Technieken 1 Uitwerkingen Tentamen 3 november 2014 Wiskundige Technieken Uitwerkingen Tentamen 3 november 0 Normering voor pt vragen andere vragen naar rato): pt 3pt pt pt 0pt goed begrepen én goed uitgevoerd, eventueel met enkele onbelangrijke rekenfoutjes

Nadere informatie

Dag van GeoGebra Probleemoplossende vaardigheden en onderzoekscompetentie wiskunde 28 mei 2011 Gent

Dag van GeoGebra Probleemoplossende vaardigheden en onderzoekscompetentie wiskunde 28 mei 2011 Gent 1 VERBORGEN FIGUREN 1.1 OPGAVE In heel wat klassieke opdrachten uit de meetkunde is het de bedoeling om een bepaalde figuur te tekenen indien een aantal punten gegeven zijn. De eigenschappen van deze figuur

Nadere informatie

Algemene informatie. Inhoudelijke informatie

Algemene informatie. Inhoudelijke informatie Informatie over Colloquium doctum Wiskunde niveau 2 voor Bedrijfskunde, Economie, Fiscale Economie en Mr.-Drs. Programma Economie en Recht ERASMUS UNIVERSITEIT ROTTERDAM Algemene informatie Tijdsduur:

Nadere informatie

Voorbereiding toelatingsexamen arts/tandarts

Voorbereiding toelatingsexamen arts/tandarts Voorbereiding toelatingsexamen artstandarts Wiskunde: oppervlakteberekening juli 05 dr. Brenda Castelen Met dank aan: Atheneum van Veurne (http:www.natuurdigitaal.begeneeskundefsicawiskundewiskunde.htm),

Nadere informatie

13.0 Voorkennis. Deze functie bestaat niet bij een x van 2. Invullen van x = 2 geeft een deling door 0.

13.0 Voorkennis. Deze functie bestaat niet bij een x van 2. Invullen van x = 2 geeft een deling door 0. Gegeven is de functie.0 Voorkennis Deze functie bestaat niet bij een van. Invullen van = geeft een deling door 0. De functie g() = heeft als domein R en is een ononderbroken kromme. Deze functie is continu

Nadere informatie

7.0 Voorkennis. tangens 1 3. Willem-Jan van der Zanden

7.0 Voorkennis. tangens 1 3. Willem-Jan van der Zanden 7.0 Voorkennis Bij bepaalde aantallen graden hebben de sinus, cosinus en tangens een exacte oplossing. In deze gevallen moet je de exacte oplossing geven: hoek 30 45 60 sinus cosinus 2 tangens 3 3 3 2

Nadere informatie

Samenvatting wiskunde B

Samenvatting wiskunde B Samenvatting wiskunde B Dit is een samenvatting van het tweede deel van Getal en Ruimte VWO wiskunde B. In deze samenvatting worden hoofdstuk 5, 6 en 7 behandeld. Ik hoop dat deze samenvatting je zal helpen!

Nadere informatie

Voorbereidende sessie toelatingsexamen

Voorbereidende sessie toelatingsexamen 1/34 Voorbereidende sessie toelatingsexamen Wiskunde 2 - Veeltermen en analytische meetkunde Dr. Koen De Naeghel 1 KU Leuven Kulak, woensdag 29 april 2015 1 Presentatie en opgeloste oefeningen zijn digitaal

Nadere informatie

Hoofdstuk 3. Matrices en stelsels. 3.1 Matrices. [[1,7]],[[12,8] ] of [ 1, 7; 12,8 ] bepaalt de matrix

Hoofdstuk 3. Matrices en stelsels. 3.1 Matrices. [[1,7]],[[12,8] ] of [ 1, 7; 12,8 ] bepaalt de matrix Hoofdstuk 3 Matrices en stelsels 3.1 Matrices Een matrix is in DERIVE gedefinieerd als een vector van vectoren. De rijen van de matrix zijn de elementen van de vector. Op de volgende manier kan je een

Nadere informatie

Voorkennis wiskunde voor Biologie, Chemie, Geografie

Voorkennis wiskunde voor Biologie, Chemie, Geografie Onderstaand overzicht volgt de structuur van het boek Wiskundige basisvaardigheden met bijhorende website. Per hoofdstuk wordt de strikt noodzakelijke voorkennis opgelijst: dit is leerstof die gekend wordt

Nadere informatie

Tentamen Wiskunde B. Het gebruik van een mobiele telefoon of andere telecommunicatieapparatuur tijdens het tentamen

Tentamen Wiskunde B. Het gebruik van een mobiele telefoon of andere telecommunicatieapparatuur tijdens het tentamen CENTRALE COMMISSIE VOORTENTAMEN WISKUNDE Tentamen Wiskunde B Datum: 3 juni 4 Tijd: 4. - 7. uur Aantal opgaven: 5 Zet uw naam op alle in te leveren blaadjes. Laat bij elke opgave door middel van een redenering,

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN

TECHNISCHE UNIVERSITEIT EINDHOVEN TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit der Wiskunde en Informatica Tentamen van Calculus voor het schakelprogramma van B (XB03) op woensdag 0 april 03, 9:00-:00 uur De uitwerkingen van de opgaven

Nadere informatie

Checklist Wiskunde B HAVO HML

Checklist Wiskunde B HAVO HML Checklist Wiskunde B HAVO 4 2014-2015 HML 1 Hoofdstuk 1 Lineaire vergelijkingen en lineaire ongelijkheden oplossen. Wanneer klapt het teken om? Haakjes en breuken wegwerken. Ontbinden in factoren: x buiten

Nadere informatie

IJkingstoets burgerlijk ingenieur juni 2014: algemene feedback

IJkingstoets burgerlijk ingenieur juni 2014: algemene feedback IJkingstoets burgerlijk ingenieur 30 juni 2014 - reeks 1 - p. 1 IJkingstoets burgerlijk ingenieur juni 2014: algemene feedback In totaal namen 716 studenten deel aan de ijkingstoets burgerlijk ingenieur

Nadere informatie

Machtsfuncties, Exponentiële, en Logaritmische Krommen

Machtsfuncties, Exponentiële, en Logaritmische Krommen (HOOFDSTUK 1, uit College Mathematics, door Frank Ayres, Jr. and Philip A. Schmidt, Schaum s Series, McGraw-Hill, New York; dit is de voorbereiding voor een uit te geven Nederlandse vertaling; het deel

Nadere informatie

8.0 Voorkennis. Voorbeeld 1: Bereken het snijpunt van 3x + 2y = 6 en -2x + y = 3

8.0 Voorkennis. Voorbeeld 1: Bereken het snijpunt van 3x + 2y = 6 en -2x + y = 3 8.0 Voorkennis Voorbeeld 1: Bereken het snijpunt van 3x + 2y = 6 en -2x + y = 3 2x y 3 3 3x 2 y 6 2 Het vermenigvuldigen van de vergelijkingen zorgt ervoor dat in de volgende stap de x-en tegen elkaar

Nadere informatie

Asymptoten. Hoofdstuk Basis. 1.2 Verdieping. 1. Bepaal alle asymptoten van de volgende functies:

Asymptoten. Hoofdstuk Basis. 1.2 Verdieping. 1. Bepaal alle asymptoten van de volgende functies: Hoofdstuk 1 Asymptoten 1.1 Basis 1. Bepaal alle asymptoten van de volgende functies: a) f) 5 + 6 5 + 1 b) f) + 5 c) f) 5 + d) f) + + e) f) + + f) f) + 1 + + 4 g) f) 5 + h) f) + 1 i) f) cos 1 1. Verdieping

Nadere informatie

GEOGEBRA 4. R. Van Nieuwenhuyze. Hoofdlector wiskunde, lerarenopleiding HUB, Brussel. Auteur Van Basis tot Limiet. roger.van.nieuwenhuyze@skynet.

GEOGEBRA 4. R. Van Nieuwenhuyze. Hoofdlector wiskunde, lerarenopleiding HUB, Brussel. Auteur Van Basis tot Limiet. roger.van.nieuwenhuyze@skynet. ? GEOGEBRA 4 R. Van Nieuwenhuyze Hoofdlector wiskunde, lerarenopleiding HUB, Brussel. Auteur Van Basis tot Limiet. roger.van.nieuwenhuyze@skynet.be Roger Van Nieuwenhuyze GeoGebra 4 Pagina 1 1. Schermen

Nadere informatie

IJkingstoets september 2015: statistisch rapport

IJkingstoets september 2015: statistisch rapport IJkingstoets burgerlijk ingenieur 4 september 05 - reeks - p. IJkingstoets september 05: statistisch rapport In totaal namen studenten deel aan deze toets. Hiervan waren er 06 geslaagd. Verdeling van de

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv 5 bladzijde 9 ab f g h i j functie nr 5 Domein [ 0, 0, Bereik [ 0, [ 0, 0, c D k B k, 0 0, d Spiegelen in de -as geeft het tegengestelde bereik, dus, 0]. e u ( ) en yu ( ) u f D q, 0 0, ; B q 0, a [, b

Nadere informatie

Dan mag de afgeleide functie geen (enkelvoudige) nulpunten hebben. Hier is ( ) ( ) = 8+ a. De rico van r is m x

Dan mag de afgeleide functie geen (enkelvoudige) nulpunten hebben. Hier is ( ) ( ) = 8+ a. De rico van r is m x Gegeven is de functie f a a) Voor welke a R heeft f geen etrema? + +, met parameter a R Dan mag de afgeleide functie geen (enkelvoudige) nulpunten hebben Hier is Er zijn dus geen etrema als en slechts

Nadere informatie

Leerplandoelstelling Delta Nova 4 hoofdstukken en paragrafen. I Meetkunde. M1 B Bewijzen dat door drie niet-collineaire punten juist één cirkel gaat.

Leerplandoelstelling Delta Nova 4 hoofdstukken en paragrafen. I Meetkunde. M1 B Bewijzen dat door drie niet-collineaire punten juist één cirkel gaat. Het gevolgde leerplan is D/2002/0279/047. In de onderstaande tabel vind je een overzicht van de doelstellingen en waar ze in Delta Nova 4a en 4b (leerweg 5) terug te vinden zijn. B = basisdoelstelling

Nadere informatie

V Kegelsneden en Kwadratische Vormen in R. IV.0 Inleiding

V Kegelsneden en Kwadratische Vormen in R. IV.0 Inleiding V Kegelsneden en Kwadratische Vormen in R IV.0 Inleiding V. Homogene kwadratische vormen Een vorm als H (, ) = 5 4 + 8 heet een homogene kwadratische vorm naar de twee variabelen en. Een vorm als K (,

Nadere informatie

Werken met parameters

Werken met parameters Duur 45 minuten Overzicht Tijdens deze lesactiviteit leer je hoe de waarde van een parameter in een functievoorschrift de vorm of ligging van de functie kan beïnvloeden. Je gaat dit onderzoeken voor tweedegraadsfuncties.

Nadere informatie

5.7. Boekverslag door P woorden 11 januari keer beoordeeld. Wiskunde B

5.7. Boekverslag door P woorden 11 januari keer beoordeeld. Wiskunde B Boekverslag door P. 1778 woorden 11 januari 2012 5.7 103 keer beoordeeld Vak Methode Wiskunde B Getal en ruimte Wiskunde Hoofdstuk 1 Formules en Grafieken 1.1 Lineaire verbanden Van de lijn y=ax+b is de

Nadere informatie

IJkingstoets burgerlijk ingenieur september 2014: algemene feedback

IJkingstoets burgerlijk ingenieur september 2014: algemene feedback IJkingstoets burgerlijk ingenieur 5 september 204 - reeks 4 - p. IJkingstoets burgerlijk ingenieur september 204: algemene feedback In totaal namen 286 studenten deel aan de ijkingstoets burgerlijk ingenieur

Nadere informatie

P is nu het punt waarvan de x-coördinaat gelijk is aan die van het punt X en waarvan de y-coördinaat gelijk is aan AB (inclusief het teken).

P is nu het punt waarvan de x-coördinaat gelijk is aan die van het punt X en waarvan de y-coördinaat gelijk is aan AB (inclusief het teken). Inhoud 1. Sinus-functie 1 2. Cosinus-functie 3 3. Tangens-functie 5 4. Eigenschappen 4.1. Verband tussen goniometrische verhoudingen en goniometrische functies 8 4.2. Enkele eigenschappen van de sinus-functie

Nadere informatie

1 Vlaamse Wiskunde Olympiade 1996 1997: Eerste Ronde.

1 Vlaamse Wiskunde Olympiade 1996 1997: Eerste Ronde. 1 Vlaamse Wiskunde Olympiade 1996 1997: Eerste Ronde De eerste ronde bestaat uit 0 meerkeuzevragen Het quoteringssysteem werkt als volgt : een deelnemer start met 0 punten Per goed antwoord krijgt hij

Nadere informatie

5 Eenvoudige complexe functies

5 Eenvoudige complexe functies 5 Eenvoudige complexe functies Bij complexe functies is zowel het domein als het beeld een deelverzameling van. Toch kan men in eenvoudige gevallen het domein en het beeld in één vlak weergeven. 5.1 Functies

Nadere informatie