Stelsels lineaire differentiaalvergelijkingen (homogeen)

Maat: px
Weergave met pagina beginnen:

Download "Stelsels lineaire differentiaalvergelijkingen (homogeen)"

Transcriptie

1 Stelsels lineaire differentiaalvergelijkingen (homogeen)

2 Laat A een n n matrix zijn. We willen alle oplossingen bepalen van het stelsel differentiaalvergelijkingen: dx dt = Ax () We hebben gezien: Als x : R R n gegeven door x(t) = e rt ξ een oplossing is van () dan is r is een eigenwaarde van A en ξ is een eigenvector van A bij deze eigenwaarde. Stelling Als x en x 2 oplossingen zijn van () dan is x = c x + c 2 x 2 voor alle constanten c, c 2 (eventueel complex) ook een oplossing van dit stelsel. 6 september 206

3 Gevolg Als {ξ, ξ 2,..., ξ k } lineair onafhankelijke eigenvectoren zijn van A bij de eigenwaarden r, r 2,..., r k dan is: x = c e rt ξ + c 2 e r2t ξ c k e r k t ξ k voor alle waarden van c, c 2,..., c k (eventueel complex) ook een oplossing van (). 6 september 206 2

4 Voegen we aan () de beginvoorwaarden x(0) = x 0 toe dan heeft de vectorvergelijking x(0) = c ξ + c 2 ξ c k ξ k = x 0 altijd precies één oplossing wanneer k = n. Dat is de reden dat we in het vervolg aannemen dat er een verzameling {ξ, ξ 2,..., ξ n } lineair onafhankelijke, eventueel complexe, eigenvectoren van A bestaat (Bekijk 7.8 voor andere gevallen). Verder nemen we aan n = 2 omdat dan ook het fasevlak kan worden getekend. 6 september 206 3

5 Voegen we aan () de beginvoorwaarden x(0) = x 0 toe dan heeft de vectorvergelijking x(0) = c ξ + c 2 ξ c k ξ k = x 0 altijd precies één oplossing wanneer k = n. Dat is de reden dat we in het vervolg aannemen dat er een verzameling {ξ, ξ 2,..., ξ n } lineair onafhankelijke, eventueel complexe, eigenvectoren van A bestaat (Bekijk 7.8 voor andere gevallen). Verder nemen we aan n = 2 omdat dan ook het fasevlak kan worden getekend. 6 september 206 4

6 Voorbeeld Los op: dx dt = x, x(0) = 2 4 Bepaal de eigenwaarden van A. r = 2 en r 2 = 2 Bepaal bijbehorende eigenvectoren. 2 ξ = en ξ 2 = 3 3 Bepaal de algemene oplossing van het stelsel. x(t) = c e 2t c 2e t 4 Leg de beginvoorwaarden op en bepaal c en c 2. c = 6 en c 2 = 4 dus x(t) = 6e 2t e t 6 september 206 5

7 Voorbeeld (vervolg) Teken de oplossing in het fasevlak en de componenten x en x 2 als functie van t. x(t) = 6e 2t e t (a) Fasevlak (b) Oplossingen x en x 2 6 september 206 6

8 Voorbeeld Los op: dx dt = x, x(0) = 5 6 Bepaal de eigenwaarden van A. r = en r 2 = 2 Bepaal bijbehorende eigenvectoren. ξ = en ξ 2 = 3 3 Bepaal de algemene oplossing van het stelsel. x(t) = c e t 3 + c 2e t 4 Leg de beginvoorwaarden op en bepaal c en c 2. c = en 2 c2 = 9 dus 2 x(t) = 2 e t et 6 september 206 7

9 Voorbeeld (vervolg) Teken de oplossing in het fasevlak en de componenten x en x 2 als functie van t. x(t) = 2 e t et (a) Fasevlak (b) Oplossingen x en x 2 6 september 206 8

10 Voorbeeld Los op: dx dt = x, x(0) = 2 4 Bepaal de eigenwaarden van A. r = en r2 = Bepaal bijbehorende eigenvectoren. ξ = en ξ 2 = 3 Bepaal de algemene oplossing van het stelsel. x(t) = c e 2 t + c 2e 2t 4 Leg de beginvoorwaarden op en bepaal c en c 2. c = 0 en c 2 = 4 dus x(t) = 4e 2 t 6 september 206 9

11 Voorbeeld (vervolg) Teken de oplossing in het fasevlak en de componenten x en x 2 als functie van t. x(t) = 4e 2 t (a) Fasevlak (b) Oplossingen x en x 2 6 september 206 0

12 Type en stabiliteit evenwichtsoplossing Als r, r 2 R dan heet de evenwichtsoplossing 0 van het stelsel differentiaalvergelijkingen dx dt = Ax : een asymptotisch stabiele knoop (put) als 0 > r > r 2, een asymptotisch stabiele zuivere knoop (sterpunt) als 0 > r = r 2, een instabiel zadelpunt als r > 0 > r 2, een instabiele knoop als r > r 2 > 0 en een instabiele zuivere knoop (sterpunt) als r = r 2 > 0. 6 september 206

13 Opgave 7.5, opgave 30 Het probleem van de communicerende vaten leidt tot het beginwaardeprobleem: du dt = waarbij u = Q 42 en u 2 = Q (a) Los dit beginwaardeprobleem op., u(0) = 7 (b) Teken de grafieken van u en u 2 als functie van t. 2 (c) Bepaal Q en Q 2 en teken hun grafieken als functie van t. Zie: Maple document webpagina 6 september 206 2

14 Complexe eigenwaarden Hoe vinden we de algemene oplossing van () als A een complexe eigenwaarde r heeft? Dan heeft A een complexe eigenvector ξ bij r en is x = e rt ξ een complexwaardige oplossing van () Schrijf elke component van x = x(t) als a + ib met a, b R. Dan x(t) = u(t) + iv(t) waarbij u de reële delen van de componenten bevat en v de imaginaire delen. 6 september 206 3

15 Substitutie in () geeft: dx dt = Ax d(u + iv) dt du dt + i dv dt du dt = A(u + iv) = Au + iav = Au en dv dt = Av en dus zijn u = Re(x) en v = Im(x) twee reëelwaardige oplossingen van (). 6 september 206 4

16 Voorbeeld Los op: dx dt = 5 3 x, x(0) = 2 0 Bepaal de eigenwaarden van A. r = + i en r 2 = i 2 Bepaal bijbehorende eigenvectoren. 2 + i 2 i ξ = en ξ 2 = Bepaal de algemene oplossing van het stelsel. 2 cos t sin t cos t + 2 sin t x(t) = c e t + c 2e t 5 cos t 5 sin t 4 Leg de beginvoorwaarden op en bepaal c en c 2. c = 0 en c 2 = 2 dus x(t) = 2e t cos t + 2 sin t 5 sin t 6 september 206 5

17 Voorbeeld (vervolg) Teken de oplossing in het fasevlak en de componenten x en x 2 als functie van t. x(t) = 2e t cos t + 2 sin t 5 sin t 6 september 206 6

18 Voorbeeld (vervolg) Teken de oplossing in het fasevlak en de componenten x en x 2 als functie van t. x(t) = 2e t cos t + 2 sin t 5 sin t (a) Fasevlak (b) Oplossingen x en x 2 6 september 206 6

19 Opgave 7.6, opgave Bepaal de algemene oplossing van: dx dt = x. Bepaal de eigenwaarden van A. r = + 2i en r 2 = 2i 2 Bepaal bijbehorende eigenvectoren. + i i ξ = en ξ 2 = 3 Bepaal de algemene oplossing van het stelsel. cos 2t sin 2t cos 2t + sin 2t x(t) = c e t + c 2e t cos 2t sin 2t 6 september 206 7

20 Type en stabiliteit evenwichtsoplossing Als r = λ + iµ, r 2 = λ iµ (λ, µ R) dan heet de evenwichtsoplossing 0 van het stelsel differentiaalvergelijkingen dx dt = Ax : een asymptotisch stabiel spiraalpunt als λ < 0, een instabiel spiraalpunt als λ > 0 en een stabiel centrumpunt als λ = 0. 6 september 206 8

21 Als A = a a 2 a 2 a 22 dan: p A (r) = det(a) ri 2 ) = (a r)(a 22 r) a 2 a 2 maar ook: = r 2 (a + a 22 ) r + (a a 22 a 2 a 2 ) }{{}}{{} trace(a) det(a) p A (r) = (r r )(r r 2 ) = r 2 (r + r 2 )r + r r 2 zodat: trace(a) = r + r 2, det(a) = r r 2 en discriminant = trace(a) 2 4 det(a). Hiermee valt het plaatje waarmee we begonnen te verklaren. 6 september 206 9

22

Stelsels lineaire differentiaalvergelijkingen (homogeen)

Stelsels lineaire differentiaalvergelijkingen (homogeen) Stelsels lineaire differentiaalvergelijkingen (homogeen) Voorbeeld Voorbeeld ( 7., Opgave 22) Op t = 0 bevatten de vaten respectievelijk 25 en 5 oz (ounces) zout. 3 september 206 Onderzoeken we hoeveel

Nadere informatie

Differentiaalvergelijkingen Technische Universiteit Delft

Differentiaalvergelijkingen Technische Universiteit Delft Differentiaalvergelijkingen Technische Universiteit Delft Roelof Koekoek wi2030wbmt Roelof Koekoek (TU Delft Differentiaalvergelijkingen wi2030wbmt 1 / 14 Niet-lineaire diff. vgl. en stabiliteit Niet-lineaire

Nadere informatie

x 1 (t) = ve rt = (a + ib) e (λ+iµ)t = (a + ib) e λt (cos µt + i sin µt) x 2 (t) = ve rt = e λt (a cos µt b sin µt) ie λt (a sin µt + b cos µt).

x 1 (t) = ve rt = (a + ib) e (λ+iµ)t = (a + ib) e λt (cos µt + i sin µt) x 2 (t) = ve rt = e λt (a cos µt b sin µt) ie λt (a sin µt + b cos µt). 76 Complexe eigenwaarden Ook dit hebben we reeds gezien bij Lineaire Algebra Zie: Lay, 57 Als xt ve rt een oplossing is van de homogene differentiaalvergelijking x t Axt, dan moet r een eigenwaarde van

Nadere informatie

Hoofdstuk 9: Niet-lineaire differentiaalvergelijkingen en stabiliteit

Hoofdstuk 9: Niet-lineaire differentiaalvergelijkingen en stabiliteit Hoofdstuk 9: Niet-lineaire differentiaalvergelijkingen en stabiliteit Hoewel we reeds vele methoden gezien hebben om allerlei typen differentiaalvergelijkingen op te lossen, zijn er toch nog veel differentiaalvergelijkingen

Nadere informatie

Hoofdstuk 7: Stelsels eerste orde lineaire differentiaalvergelijkingen

Hoofdstuk 7: Stelsels eerste orde lineaire differentiaalvergelijkingen Hoofdstuk 7: Stelsels eerste orde lineaire differentiaalvergelijkingen Bij het vak Lineaire Algebra hebben we reeds kennis gemaakt met stelsels eerste orde lineaire differentiaalvergelijkingen We hebben

Nadere informatie

1 Eigenwaarden en eigenvectoren

1 Eigenwaarden en eigenvectoren Eigenwaarden en eigenvectoren Invoeren van de begrippen eigenwaarde en eigenvector DEFINITIE Een complex (of reëel getal λ heet een eigenwaarde van de n n matrix A als er een vector x is met Ax = λx Dan

Nadere informatie

Niet lineaire stelsels differentiaalvergelijkingen en stabiliteit. Lorenz-attractor

Niet lineaire stelsels differentiaalvergelijkingen en stabiliteit. Lorenz-attractor Niet lineaire stelsels differentiaalvergelijkingen en stabiliteit Lorenz-attractor Vraag Gegeven zijn een stelsel differentiaalvergelijkingen: = F (x, y) (1) = G(x, y) met als kritiek punt (x 0, y 0) en

Nadere informatie

Complexe eigenwaarden

Complexe eigenwaarden Complexe eigenwaarden Tot nu toe hebben we alleen reële getallen toegelaten als eigenwaarden van een matrix Het is echter vrij eenvoudig om de definitie uit te breiden tot de complexe getallen Een consequentie

Nadere informatie

Lineaire Algebra voor ST

Lineaire Algebra voor ST Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.3 email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds6 Technische Universiteit Eindhoven college 2 J.Keijsper (TUE)

Nadere informatie

Stelsels differentiaalvergelijkingen

Stelsels differentiaalvergelijkingen Stelsels differentiaalvergelijkingen Stelsels homogene differentiaalvergelijkingen We bekijken in deze paragraaf stelsels homogene differentiaalvergelijkingen: x (t x (t x (t x (t x n(t A Voorbeeld x +

Nadere informatie

Technische Universiteit Delft. ANTWOORDEN van Tentamen Gewone differentiaalvergelijkingen, TW2030 Vrijdag 30 januari 2015,

Technische Universiteit Delft. ANTWOORDEN van Tentamen Gewone differentiaalvergelijkingen, TW2030 Vrijdag 30 januari 2015, Technische Universiteit Delft Faculteit EWI ANTWOORDEN van Tentamen Gewone differentiaalvergelijkingen, TW23 Vrijdag 3 januari 25, 4.-7. Dit tentamen bestaat uit 6 opgaven. Alle antwoorden dienen beargumenteerd

Nadere informatie

x(t + T ) = x(t) Voorbeeld 1. Beschouw het niet-lineaire autonome stelsel . (1) y x + y y(x 2 + y 2 )

x(t + T ) = x(t) Voorbeeld 1. Beschouw het niet-lineaire autonome stelsel . (1) y x + y y(x 2 + y 2 ) 97 Periodieke oplossingen en limit ccles We beschouwen weer autonome stelsels van de vorm x (t) = f(x(t)), waarbij het rechterlid dus niet expliciet van t afhangt We gaan onderzoeken wanneer er periodieke

Nadere informatie

Lineaire Algebra voor ST

Lineaire Algebra voor ST Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 93 email: JCMKeijsper@tuenl studiewijzer: http://wwwwintuenl/wsk/onderwijs/2ds06 Technische Universiteit Eindhoven college 3 JKeijsper (TUE) Lineaire

Nadere informatie

Hoofdstuk 3: Tweede orde lineaire differentiaalvergelijkingen

Hoofdstuk 3: Tweede orde lineaire differentiaalvergelijkingen Hoofdstuk 3: Tweede orde lineaire differentiaalvergelijkingen De inhoud van hoofdstuk 3 zou grotendeels bekende stof moeten zijn. Deze stof is terug te vinden in Stewart, hoofdstuk 17. Daar staat alles

Nadere informatie

Lineaire Algebra voor W 2Y650

Lineaire Algebra voor W 2Y650 Lineaire Algebra voor W 2Y65 Docent: L Habets HG 89, Tel: 4-247423, Email: lcgjmhabets@tuenl http://wwwwintuenl/wsk/onderwijs/2y65 1 Herhaling: bepaling van eigenwaarden en eigenvectoren (1) Bepaal het

Nadere informatie

Lineaire Algebra voor W 2Y650

Lineaire Algebra voor W 2Y650 Lineaire Algebra voor W 2Y650 Docent: L Habets HG 809, Tel: 040-2474230, Email: lcgjmhabets@tuenl http://wwwwintuenl/wsk/onderwijs/2y650 1 Herhaling: Oplossing homogene DV ẋ = Ax Aanname: A is diagonaliseerbaar

Nadere informatie

maplev 2010/9/8 17:01 page 349 #351

maplev 2010/9/8 17:01 page 349 #351 maplev 00/9/8 7:0 page 49 5 Module Stabiliteit van evenwichten Onderwerp Voorkennis Expressies Bibliotheken Zie ook Stabiliteit van evenwichten van gewone differentiaalvergelijkingen. Gewone differentiaalvergelijkingen

Nadere informatie

Bekijk nog een keer het stelsel van twee vergelijkingen met twee onbekenden x en y: { De tweede vergelijking van de eerste aftrekken geeft:

Bekijk nog een keer het stelsel van twee vergelijkingen met twee onbekenden x en y: { De tweede vergelijking van de eerste aftrekken geeft: Determinanten Invoeren van het begrip determinant Bekijk nog een keer het stelsel van twee vergelijkingen met twee onbekenden x en y: { a x + b y = c a 2 a 2 x + b 2 y = c 2 a Dit levert op: { a a 2 x

Nadere informatie

Inleiding Wiskundige Systeemtheorie

Inleiding Wiskundige Systeemtheorie Inleiding Wiskundige Systeemtheorie 156056 Docent : Anton Stoorvogel E-mail: A.A.Stoorvogel@utwente.nl 1/27 Elektrotechniek, Wiskunde en Informatica EWI Tx D Ax; x.t/ 2 R 2 x D 0 is een evenwichtspunt;

Nadere informatie

Tentamen Differentiaalvergelijkingen, (wi1 909TH) woensdag 12 april 2017, uur.

Tentamen Differentiaalvergelijkingen, (wi1 909TH) woensdag 12 april 2017, uur. Technische Universiteit Delft Faculteit Elektrotechniek, Wiskunde en Informatica Mekelweg 4, Delft Tentamen Differentiaalvergelijkingen, (wi 909TH) woensdag 2 april 207, 8.30-20.30 uur. Het gebruik van

Nadere informatie

Lineaire Afbeelding Stelsels differentiaalvergelijkingen. 6 juni 2006

Lineaire Afbeelding Stelsels differentiaalvergelijkingen. 6 juni 2006 Lineaire Afbeelding Stelsels differentiaalvergelijkingen 6 juni 6 i ii Inhoudsopgave Stelsels differentiaalvergelijkingen Opgaven Stelsels differentiaalvergelijkingen In deze paragraaf passen we onze kennis

Nadere informatie

Eerste orde partiële differentiaalvergelijkingen

Eerste orde partiële differentiaalvergelijkingen Eerste orde partiële differentiaalvergelijkingen Vakgroep Differentiaalvergelijkingen 1995, 2001, 2002 1 Eerste orde golf-vergelijking De vergelijking au x + u t = 0, u = u(x, t), a ɛ IR (1.1) beschrijft

Nadere informatie

Modellen en Simulatie Differentiaalvergelijkingen. Modellen en Simulatie. sleij101/ Program.

Modellen en Simulatie Differentiaalvergelijkingen. Modellen en Simulatie.   sleij101/ Program. Utrecht, 29 mei 2013 Utrecht, 29 mei 2013 Modellen en Simulatie Modellen en Simulatie Differentiaalvergelijkingen Gerard Sleijpen Department of Mathematics http://www.staff.science.uu.nl/ sleij101/ Gerard

Nadere informatie

Tentamen Gewone Differentiaal Vergelijkingen II

Tentamen Gewone Differentiaal Vergelijkingen II Tentamen Gewone Differentiaal Vergelijkingen II.0.007 Jullie mogen een willekeurige van de vier opgaven als bonusopgave bekijken. (Dus drie opgaven volledig en goed gedaan is al een 10.) Opgave 1 Bekijk

Nadere informatie

Hoofdstuk 1: Inleiding

Hoofdstuk 1: Inleiding Hoofdstuk 1: Inleiding 1.1. Richtingsvelden. Zie Stewart, 9.2. 1.2. Oplossingen van enkele differentiaalvergelijkingen. Zelf doorlezen. 1.3. Classificatie van differentiaalvergelijkingen. Differentiaalvergelijkingen

Nadere informatie

Uitwerkingen Tentamen Gewone Differentiaalvergelijkingen

Uitwerkingen Tentamen Gewone Differentiaalvergelijkingen Uitwerkingen Tentamen Gewone Differentiaalvergelijkingen Maandag 4 januari 216, 1: - 13: uur 1. Beschouw voor t > de inhomogene singuliere tweede orde vergelijking, t 2 ẍ + 4tẋ + 2x = f(t, (1 waarin f

Nadere informatie

Modelleren 1A, TW1050-A

Modelleren 1A, TW1050-A Modelleren 1A, TW1050-A Probleemstelling Conclusies Valideren Modelvorming Rekenmethode Vandaag: Wat is modelleren? Organisatie practicum College stelsels differentiaalvergelijkingen Eerste college Modelleren

Nadere informatie

Modelling 1A, TW1050-A

Modelling 1A, TW1050-A Modelling 1A, TW1050-A Vandaag: Wat is modelleren? Organisatie practicum College stelsels differentiaalvergelijkingen Eerste college Modelleren 1A, februari 2018 1/32 Begeleiders Dr. Neil Budko Dr. Kristof

Nadere informatie

Tentamen Lineaire Algebra voor BMT en TIW (2DM20) op vrijdag 11 mei 2007, 9:00 12:00 uur.

Tentamen Lineaire Algebra voor BMT en TIW (2DM20) op vrijdag 11 mei 2007, 9:00 12:00 uur. TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Lineaire Algebra voor BMT en TIW (DM) op vrijdag mei 7, 9: : uur. U mag bij het tentamen geen computer (notebook, laptop), boeken

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Lineaire Algebra voor BMT (2DM20) op vrijdag 12 juni 2009, 9.00 Dit tentamen bestaat uit 5 open vragen, en 4 kort-antwoord vragen.

Nadere informatie

Technische Universiteit Delft Uitwerking Tentamen Analyse 3, WI 2601 Maandag 11 januari 2010, 9.00-12.00

Technische Universiteit Delft Uitwerking Tentamen Analyse 3, WI 2601 Maandag 11 januari 2010, 9.00-12.00 Technische Universiteit Delft Uitwerking Tentamen Analyse 3, WI 6 Maandag januari, 9- Faculteit EWI Dit tentamen bestaat uit 6 opgaven Alle antwoorden dienen beargumenteerd te worden Normering: punten

Nadere informatie

Tentamenopgaven over hfdst. 1 t/m 4

Tentamenopgaven over hfdst. 1 t/m 4 Ttamopgav over hfdst. 1 t/m 4 1. donderdag 31 oktober 1996 Bepaal de oplossing van het beginwaardeprobleem y + 4y = 4 cos 2x, y(0) = 1, y (0) = 0. 2. donderdag 31 oktober 1996 Bepaal de algeme oplossing

Nadere informatie

WI1708TH Analyse 2. College 5 24 november Challenge the future

WI1708TH Analyse 2. College 5 24 november Challenge the future WI1708TH Analyse 2 College 5 24 november 2014 1 Programma Vandaag 2 e orde lineaire differentiaal vergelijking (17.1) 2 1 e orde differentiaal vergelijking Definitie Een 1 e orde differentiaal vergelijking

Nadere informatie

WISB134 Modellen & Simulatie. Lecture 8 - Niet-lineaire recursies in meerdere dimensies

WISB134 Modellen & Simulatie. Lecture 8 - Niet-lineaire recursies in meerdere dimensies WISB134 Modellen & Simulatie Lecture 8 - Niet-lineaire recursies in meerdere dimensies Overzicht van ModSim Meeste aandacht (t/m 1 apr.) Basisbegrippen dynamische modellen Definities recursies, DVs, numerieke

Nadere informatie

TENTAMEN WISKUNDIGE BEELDVERWERKINGSTECHNIEKEN

TENTAMEN WISKUNDIGE BEELDVERWERKINGSTECHNIEKEN TENTAMEN WISKUNDIGE BEELDVERWERKINGSTECHNIEKEN Vakcode: 8D020. Datum: Vrijdag 26 maart 2004. Tijd: 14.00 17.00 uur. Plaats: MA 1.41 Lees dit vóórdat je begint! Maak iedere opgave op een apart vel. Schrijf

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Lineaire Algebra en Lineaire Analyse (Y550/Y530), op donderdag 5 november 00, 9:00 :00 uur. De uitwerkingen van de opgaven dienen

Nadere informatie

Student number: Zet je naam op alle bladzijdes (liefst nu!) voor het geval ze loslaten.

Student number: Zet je naam op alle bladzijdes (liefst nu!) voor het geval ze loslaten. Naam (voornaam, achternaam): Student number: Zet je naam op alle bladzijdes (liefst nu!) voor het geval ze loslaten. Zet je antwoorden op dit examenpapier, direct na de vraag is ruimte daaarvoor. Gebruik

Nadere informatie

Hertentamen Calculus 1 voor MST, 4051CALC1Y vrijdag 7 november 2014; uur

Hertentamen Calculus 1 voor MST, 4051CALC1Y vrijdag 7 november 2014; uur Hertentamen Calculus 1 voor MST, 4051CALC1Y vrijdag 7 november 2014; 9.00-12.00 uur Naam: (Leids) studentnummer: Een rekenmachine en het formuleblad bij deze cursus mogen gebruikt worden. Laat duidelijk

Nadere informatie

Tentamen Modellen en Simulatie (WISB134)

Tentamen Modellen en Simulatie (WISB134) Tentamen Modellen en Simulatie (WISB4) Vrijdag, 7 april 5, :-6:, Educatorium Gamma Zaal Schrijf op elk vel dat je inlevert je naam en op het eerste vel je studentnummer en het totaal aantal ingeleverde

Nadere informatie

Examen G0O17E Wiskunde II (3sp) maandag 10 juni 2013, 8:30-11:30 uur. Bachelor Geografie en Bachelor Informatica

Examen G0O17E Wiskunde II (3sp) maandag 10 juni 2013, 8:30-11:30 uur. Bachelor Geografie en Bachelor Informatica Examen GO7E Wiskunde II (3sp maandag juni 3, 8:3-:3 uur Bachelor Geografie en Bachelor Informatica Auditorium De Molen: A D Auditorium MTM3: E-Se Auditorium MTM39: Sh-Z Naam: Studierichting: Naam assistent:

Nadere informatie

168 HOOFDSTUK 5. REEKSONTWIKKELINGEN

168 HOOFDSTUK 5. REEKSONTWIKKELINGEN 168 HOOFDSTUK 5. REEKSONTWIKKELINGEN 5.7 Vraagstukken Vraagstuk 5.7.1 Beschouw de differentiaalvergelijking d2 y d 2 = 2 y. (i) Schrijf y = a k k. Geef een recurrente betrekking voor de coëfficienten a

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Lineaire Algebra voor BMT en TIW (DM) op dinsdag 9 april 8, 9.. uur. Dit tentamen bestaat uit 6 open vragen, en 4 kort-antwoord

Nadere informatie

Oefeningentoets Differentiaalvergelijkingen, deel 1 dinsdag 6 november 2018 in lokaal 200M van 16:00 tot 18:00u

Oefeningentoets Differentiaalvergelijkingen, deel 1 dinsdag 6 november 2018 in lokaal 200M van 16:00 tot 18:00u Oefeningentoets Differentiaalvergelijkingen, deel 1 dinsdag 6 november 2018 in lokaal 200M 00.07 van 16:00 tot 18:00u Beste student, Deze oefeningentoets bevat twee oefeningen betreffende het tweede deel

Nadere informatie

Hoofdstuk 11: Randwaardeproblemen en Sturm-Liouville theorie

Hoofdstuk 11: Randwaardeproblemen en Sturm-Liouville theorie Hoofdstuk : Randwaardeproblemen en Sturm-Liouville theorie.. Tweepunts randwaardeproblemen. Bij het oplossen van partiële differentiaalvergelijkingen met behulp van de methode van scheiden van variabelen

Nadere informatie

Examen G0O17D Wiskunde II (6sp) maandag 10 juni 2013, 8:30-12:30 uur

Examen G0O17D Wiskunde II (6sp) maandag 10 juni 2013, 8:30-12:30 uur Examen GO7D Wiskunde II (6sp maandag juni 3, 8:3-:3 uur Bachelor Biochemie & Biotechnologie Bachelor hemie, Bachelor Geologie Schakelprogramma Master Biochemie & Biotechnologie en Schakelprogramma Master

Nadere informatie

Notatie Voor een functie y = y(t) schrijven we. Definitie Een differentiaalvergelijking is een vergelijking van de vorm

Notatie Voor een functie y = y(t) schrijven we. Definitie Een differentiaalvergelijking is een vergelijking van de vorm college 3: differentiaalvergelijkingen Notatie Voor een functie y = y(t) schrijven we y = y (t) of y (1) = y (1) (t) voor de afgeleide dy dt, en y = y (t) of y (2) = y (2) (t) voor de tweede afgeleide

Nadere informatie

Tentamen Numerieke Wiskunde (WISB251)

Tentamen Numerieke Wiskunde (WISB251) 1 Tentamen Numerieke Wiskunde (WISB51) Maak één opgave per vel en schrijf op ieder vel duidelijk je naam en studentnummer. Laat duidelijk zien hoe je aan de antwoorden komt. Onderstaande formules mag je

Nadere informatie

HERTENTAMEN WISKUNDIGE BEELDVERWERKINGSTECHNIEKEN

HERTENTAMEN WISKUNDIGE BEELDVERWERKINGSTECHNIEKEN HERTENTAMEN WISKUNDIGE BEELDVERWERKINGSTECHNIEKEN Vakcode: 8D00. Datum: vrijdag 3 juni 008. Tijd: 09:00-:00. Lees dit vóórdat je begint! Maak iedere opgave op een apart vel. Schrijf je naam en studentnummer

Nadere informatie

Inleiding Wiskundige Systeemtheorie 156056

Inleiding Wiskundige Systeemtheorie 156056 Inleiding Wiskundige Systeemtheorie 156056 Docent : Anton Stoorvogel E-mail: A.A.Stoorvogel@utwente.nl 1/28 Elektrotechniek, Wiskunde en Informatica EWI Evenwichtspunt.x 0 ; y 0 ; u 0 / heet een evenwichtspunt

Nadere informatie

TRILLINGEN EN GOLVEN HANDOUT FOURIER

TRILLINGEN EN GOLVEN HANDOUT FOURIER TRILLINGEN EN GOLVEN HANDOUT FOURIER Cursusjaar 2009 / 2010 2 Inhoudsopgave 1 FOURIERANALYSE 5 1.1 INLEIDING............................... 5 1.2 FOURIERREEKSEN.......................... 5 1.3 CONSEQUENTIES

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Lineaire Algebra voor BMT en TIW (DM) op maandag juni Dit tentamen bestaat uit 6 open vragen, en 4 kort-antwoord vragen. De

Nadere informatie

A = b c. (b) Bereken de oppervlakte van het parallellogram dat opgespannen wordt door b en c. Voor welke p is deze oppervlakte minimaal?

A = b c. (b) Bereken de oppervlakte van het parallellogram dat opgespannen wordt door b en c. Voor welke p is deze oppervlakte minimaal? Oplossing Tussentijdse toets Wiskunde II Vraag Zij A de matrix met kolomvectoren met p een vast reëel getal A = a b c a =, b =, c = p a Voor welke p R zijn de vectoren lineair afhankelijk? b Bereken de

Nadere informatie

Lineaire Algebra voor W 2Y650

Lineaire Algebra voor W 2Y650 Lineaire Algebra voor W 2Y650 Docent: L. Habets HG 8.09, Tel: 040-2474230, Email: l.c.g.j.m.habets@tue.nl http://www.win.tue.nl/wsk/onderwijs/2y650 1 Eigenwaarden en eigenvectoren Zij A een n n matrix.

Nadere informatie

Lineaire dv van orde 2 met constante coefficienten

Lineaire dv van orde 2 met constante coefficienten Lineaire dv van orde 2 met constante coefficienten Homogene vergelijkingen We bekijken eerst homogene vergelijkingen van orde twee met constante coefficienten, d.w.z. dv s van de vorm a 0 y + a 1 y + a

Nadere informatie

Functies van één veranderlijke

Functies van één veranderlijke Functies van één veranderlijke 952600 Docent : Anton Stoorvogel E-mail: A.A.Stoorvogel@utwente.nl /29 Elektrotechniek, Wiskunde en Informatica EWI UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde

Nadere informatie

d τ (t) dt = 1 voor alle τ 0.

d τ (t) dt = 1 voor alle τ 0. 65 Impulfunctie In deze paragraaf kijken we naar verchijnelen waarbij in zeer korte tijd een (grote kracht op een yteem wordt uitgeoefend Zo n plotelinge kracht kunnen we bechrijven met behulp van een

Nadere informatie

Lineaire gewone & partiele 1ste en 2de orde differentiaalvergelijkingen

Lineaire gewone & partiele 1ste en 2de orde differentiaalvergelijkingen Lineaire gewone & partiele 1ste en de orde differentiaalvergelijkingen Basisbegrippen Een differentiaalvergelijking is een vergelijking waarin minstens een afgeleide van een onbekende reeelwaardige functie

Nadere informatie

UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica

UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica Uitwerking tentamen Functies van één veranderlijke (5260) op donderdag 25 oktober 2007, 9.00 2.00 uur. De uitwerkingen van de opgaven

Nadere informatie

Stelsels van lineaire DVen met constante coëfficiënten

Stelsels van lineaire DVen met constante coëfficiënten Zij K = R of C, n N, A R n n. Zoek differentieerbare functies y : R K n zodanig dat ẏ(t) = Ay(t), t R. Opmerking: De oplossingen vormen een lineaire deelruimte (ga na!). Deze heeft dimensie n. De algemene

Nadere informatie

Vectorruimten en deelruimten

Vectorruimten en deelruimten Vectorruimten en deelruimten We hebben al uitgebreid kennis gemaakt met de vectorruimte R n We zullen nu zien dat R n slechts een speciaal geval vormt van het (veel algemenere begrip vectorruimte : Definitie

Nadere informatie

Vector-en matrixvergelijkingen. Figuur: Vectoren, optellen

Vector-en matrixvergelijkingen. Figuur: Vectoren, optellen Vector-en matrixvergelijkingen (a) Parallellogramconstructie (b) Kop aan staartmethode Figuur: Vectoren, optellen (a) Kop aan staartmethode, optellen (b) Kop aan staart methode, aftrekken Figuur: Het optellen

Nadere informatie

Examen Wiskunde II Bachelor Biochemie & Biotechnologie en Chemie maandag 11 juni 2012, 8:30 13:00 Auditorium 200C. Aud A en 200 C.

Examen Wiskunde II Bachelor Biochemie & Biotechnologie en Chemie maandag 11 juni 2012, 8:30 13:00 Auditorium 200C. Aud A en 200 C. Examen Wiskunde II Bachelor Biochemie & Biotechnologie en Chemie maandag 11 juni 2012, 8:30 13:00 Auditorium 200C. Aud A en 200 C. Aud B Studierichting: Naam assistent(en): Het examen bestaat uit 6 vragen.

Nadere informatie

Toepassingen op differentievergelijkingen

Toepassingen op differentievergelijkingen Toepassingen op differentievergelijkingen We beschouwen lineaire differentievergelijkingen of lineaire recurrente betrekkingen van de vorm a 0 y k+n + a y k+n + + a n y k+ + a n y k = z k, k = 0,,, Hierbij

Nadere informatie

6. Lineaire operatoren

6. Lineaire operatoren 6. Lineaire operatoren Dit hoofdstukje is een generalisatie van hoofdstuk 2. De meeste dingen die we in hoofdstuk 2 met de R n deden, gaan we nu uitbreiden tot andere lineaire ruimten Definitie. Een lineaire

Nadere informatie

UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica

UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica Uitwerking Proeftentamen 3 Functies van één veranderlijke (15126 De uitwerkingen van de opgaven dienen duidelijk geformuleerd en overzichtelijk

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Uitwerking Tentamen Calculus, 2DM10, maandag 22 januari 2007

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Uitwerking Tentamen Calculus, 2DM10, maandag 22 januari 2007 TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Uitwerking Tentamen Calculus, DM, maandag januari 7. (a) Gevraagd is het polynoom f() + f () (x ) + f (x ). Een eenvoudige rekenpartij

Nadere informatie

Eigenwaarden en eigenvectoren in R n

Eigenwaarden en eigenvectoren in R n Eigenwaarden en eigenvectoren in R n Als Ax λx voor zekere x in R n met x 0, dan is λ een eigenwaarde van A en x een eigenvector van A behorende bij λ. Een eigenvector is op een multiplicatieve constante

Nadere informatie

Tentamen Lineaire Algebra B

Tentamen Lineaire Algebra B Tentamen Lineaire Algebra B 29 juni 2012, 9-12 uur OPGAVEN Uitwerkingen volgen na de opgaven 1. Gegeven is de vectorruimte V = R[x] 2 van polynomen met reële coefficienten en graad 2. Op V hebben we een

Nadere informatie

Antwoorden op de theoretische vragen in de examen voorbereiding

Antwoorden op de theoretische vragen in de examen voorbereiding Antwoorden op de theoretische vragen in de examen voorbereiding Theorie vraag Zij A een m n-matrix. Geef het verband tussen de formule voor de dimensie d van een niet-strijdig stelsel, d = n rang (A) (zie

Nadere informatie

Lineaire Algebra voor ST

Lineaire Algebra voor ST Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.31 email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds06 Technische Universiteit Eindhoven college 11 J.Keijsper

Nadere informatie

Tentamen Differentiaalvergelijkingen, (wi1 909TH) woensdag 1 februari 2017, uur.

Tentamen Differentiaalvergelijkingen, (wi1 909TH) woensdag 1 februari 2017, uur. Technische Universiteit Delft Faculteit Elektrotechniek, Wiskunde en Informatica Mekelweg 4, Delft Tentamen Differentiaalvergelijkingen, (wi1 909TH) woensdag 1 februari 2017, 18.30-20.30 uur. Het gebruik

Nadere informatie

Hertentamen WISN102 Wiskundige Technieken 2 Di 17 april 13:30 16:30

Hertentamen WISN102 Wiskundige Technieken 2 Di 17 april 13:30 16:30 Hertentamen WIN12 Wiskundige Technieken 2 Di 17 april 13:3 16:3 Normering voor 4 pt vragen (andere vragen naar rato): 4pt Goed begrepen en goed uitgevoerd met voldoende toelichting, eventueel enkele onbelangrijke

Nadere informatie

TW2040: Complexe Functietheorie

TW2040: Complexe Functietheorie TW2040: Complexe Functietheorie week 4.3, maandag K. P. Hart Faculteit EWI TU Delft Delft, 2 mei, 2016 K. P. Hart TW2040: Complexe Functietheorie 1 / 34 Outline 1 Conforme afbeeldingen 2 K. P. Hart TW2040:

Nadere informatie

Modellen en Simulatie Stelsels Dvg

Modellen en Simulatie Stelsels Dvg Utrecht, 10 juni 2013 Modellen en Simulatie Stelsels Dvg Gerard Sleijpen Department of Mathematics http://www.staff.science.uu.nl/ sleij101/ Continu versus discreet: Lineaire modellen Continu model. x

Nadere informatie

Tentamen wi2140tnw Differentiaalvergelijkingen september 2004 (1)

Tentamen wi2140tnw Differentiaalvergelijkingen september 2004 (1) T.U. Delft Faculteit E.W.I. Tentamen wi4tnw Diffeentiaalvegelijkingen 4. - 6. cijfe (..+ + (..+ + (..+ + (..+ + (..+ 6 septembe 4 Het gebuik van een voo het VWO-eindexamen goedgekeude ekenmachine is toegestaan..

Nadere informatie

Modellen en Simulatie Stelsels Dvg

Modellen en Simulatie Stelsels Dvg Utrecht, juni 3 Modellen en Simulatie Stelsels Dvg Continu versus discreet: Lineaire modellen Continu model. x (t) = Ax(t). Als geen eigenwaarde van A: opl. x(t) in evenwicht x(t) = alle t stabiel evenwicht

Nadere informatie

Lineaire algebra I (wiskundigen)

Lineaire algebra I (wiskundigen) Lineaire algebra I (wiskundigen) Toets, donderdag 22 oktober, 2009 Oplossingen (1) Zij V het vlak in R 3 door de punten P 1 = (1, 2, 1), P 2 = (0, 1, 1) en P 3 = ( 1, 1, 3). (a) Geef een parametrisatie

Nadere informatie

WISB134 Modellen & Simulatie. Lecture 11 - Dynamica van lineaire differentiaalvergelijkingen in twee dimensies

WISB134 Modellen & Simulatie. Lecture 11 - Dynamica van lineaire differentiaalvergelijkingen in twee dimensies WISB134 Modellen & Simulatie Lecture 11 - Dynamica van lineaire differentiaalvergelijkingen in twee dimensies Overzicht van ModSim Meeste aandacht (t/m 1 apr.) Basisbegrippen dynamische modellen Definities

Nadere informatie

Aanvullingen bij Hoofdstuk 8

Aanvullingen bij Hoofdstuk 8 Aanvullingen bij Hoofdstuk 8 8.5 Definities voor matrices De begrippen eigenwaarde eigenvector eigenruimte karakteristieke veelterm en diagonaliseerbaar worden ook gebruikt voor vierkante matrices los

Nadere informatie

11.0 Voorkennis V

11.0 Voorkennis V 11.0 Voorkennis V 8 6 4 3 6 3 0 5 W 8 1 1 12 2 1 16 4 3 20 5 4 V is een 2 x 4 matrix. W is een 4 x 3 matrix. Deze twee matrices kunnen met elkaar vermenigvuldigd worden. Want het aantal kolommen van matrix

Nadere informatie

HERTENTAMEN WISKUNDIGE BEELDVERWERKINGSTECHNIEKEN

HERTENTAMEN WISKUNDIGE BEELDVERWERKINGSTECHNIEKEN HERTENTAMEN WISKUNDIGE BEELDVERWERKINGSTECHNIEKEN Vakcode: 8D. Datum: Vrijdag juli 3. Tijd: 9.. uur. Plaats: AUD 5. Lees dit vóórdat je begint! Maak iedere opgave op een apart vel. Schrijf je naam en studentnummer

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamen Lineaire Algebra voor ST (2DS06) op 16-4-2012, 14.30-17.00 uur.

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamen Lineaire Algebra voor ST (2DS06) op 16-4-2012, 14.30-17.00 uur. TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Lineaire Algebra voor ST (DS6) op 6--,.-7. uur. Aan dit tentamen gaat een MATLAB-toets van een half uur vooraf. Pas als de laptops

Nadere informatie

Differentiaalvergelijkingen Technische Universiteit Delft

Differentiaalvergelijkingen Technische Universiteit Delft Differentiaalvergelijkingen Technische Universiteit Delft Roelof Koekoek wi23wbmt Roelof Koekoek (TU Delft Differentiaalvergelijkingen wi23wbmt 1 / 12 Fourierreeksen van even en oneven functies a 2 + (

Nadere informatie

1. Gegeven een Lineair Stationair Systeem in continue-tijd. Als aan het systeem het ingangssignaal

1. Gegeven een Lineair Stationair Systeem in continue-tijd. Als aan het systeem het ingangssignaal . Gegeven een Lineair Stationair Systeem in continue-tijd. Als aan het systeem het ingangssignaal { 0 t u(t) = 0 elders aangelegd wordt, dan is het corresponderende uitgangssignaal t 0 t y(t) = 2 t t 2

Nadere informatie

PROEFEXAMEN LINEAIRE ALGEBRA donderdag 17 november 2011

PROEFEXAMEN LINEAIRE ALGEBRA donderdag 17 november 2011 PROEFEXAMEN LINEAIRE ALGEBRA donderdag 17 november 2011 Familienaam:....................................................................... Voornaam:.........................................................................

Nadere informatie

UITWERKINGEN 1 2 C : 2 =

UITWERKINGEN 1 2 C : 2 = UITWERKINGEN. De punten A, B, C, D in R zijn gegeven door: A : 0, B : Zij V het vlak door de punten A, B, C. C : D : (a) ( pt) Bepaal het oppervlak van de driehoek met hoekpunten A, B, C. Oplossing: De

Nadere informatie

Analyse van eenvoudige tumor-groei modellen

Analyse van eenvoudige tumor-groei modellen 1 Inleiding Analyse van eenvoudige tumor-groei modellen B.W. Kooi Afdeling Theoretische Biologie, Faculteit Biologie, Vrije Universiteit, De Boelelaan 187, 181 HV Amsterdam 1 december 23 Processen, zoals

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamen Lineaire Algebra voor ST (2DS06) op , uur.

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamen Lineaire Algebra voor ST (2DS06) op , uur. TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Lineaire Algebra voor ST (DS) op --9,.-7. uur. Aan dit tentamen gaat een MATLAB-toets van een half uur vooraf. Pas als de laptops

Nadere informatie

OF (vermits y = dy. dx ) P (x, y) dy + Q(x, y) dx = 0

OF (vermits y = dy. dx ) P (x, y) dy + Q(x, y) dx = 0 Algemeen kunnen we een eerste orde differentiaalvergelijking schrijven als: y = Φ(x, y) OF (vermits y = dy dx ) P (x, y) dy + Q(x, y) dx = 0 Indien we dan P (x, y) en Q(x, y) kunnen schrijven als P (x,

Nadere informatie

Tentamen lineaire algebra voor BWI maandag 15 december 2008, uur.

Tentamen lineaire algebra voor BWI maandag 15 december 2008, uur. Vrije Universiteit Amsterdam Faculteit der Exacte Wetenschappen Afdeling Wiskunde Tentamen lineaire algebra voor BWI maandag 5 december 8, 5.5-8. uur. ELK ANTWOORD DIENT TE WORDEN BEARGUMENTEERD. Er mogen

Nadere informatie

1 WAAM - Differentiaalvergelijkingen

1 WAAM - Differentiaalvergelijkingen 1 WAAM - Differentiaalvergelijkingen 1.1 Algemene begrippen Een (gewone) differentiaalvergelijking heeft naast de onafhankelijke veranderlijke (bijvoorbeeld genoteerd als x), eveneens een onbekende functie

Nadere informatie

1 Stelsels lineaire vergelijkingen.

1 Stelsels lineaire vergelijkingen. Stelsels lineaire vergelijkingen Ter herinnering: in de tweede klas Havo/Atheneum leer je twee vergelijkingen met twee onbekenden oplossen Voorbeeld: { x + y = 5 x + y = 0 Twee keer de eerste vergelijking

Nadere informatie

Hertentamen Wiskundige Technieken 1 Donderdag 4 jan 2018, 9-12 uur

Hertentamen Wiskundige Technieken 1 Donderdag 4 jan 2018, 9-12 uur Hertentamen Wiskundige Technieken 1 Donderdag 4 jan 2018, 9-12 uur Normering voor 4 pt vragen (andere vragen naar rato): 4pt Goed begrepen en goed uitgevoerd met voldoende toelichting, eventueel enkele

Nadere informatie

Je moet nu voor jezelf een overzicht zien te krijgen over het onderwerp Complexe getallen. Een eigen samenvatting maken is nuttig.

Je moet nu voor jezelf een overzicht zien te krijgen over het onderwerp Complexe getallen. Een eigen samenvatting maken is nuttig. 6 Totaalbeeld Samenvatten Je moet nu voor jezelf een overzicht zien te krijgen over het onderwerp Complexe getallen. Een eigen samenvatting maken is nuttig. Begrippenlijst: 21: complex getal reëel deel

Nadere informatie

Wiskunde y en Theoretische Biologie, 12 april Naam: Collegekaartnummer: Vraag 1

Wiskunde y en Theoretische Biologie, 12 april Naam: Collegekaartnummer: Vraag 1 Wiskunde y en Theoretische Biologie, 12 april 2013 Vraag 1 x Dit zijn multiple-choice vragen. Omcirkel het meest correcte antwoord. 1.1 Beschouw het volgende fase-portret: Welk van de onderstaande systemen

Nadere informatie

5.8. De Bessel differentiaalvergelijking. Een differentiaalvergelijking van de vorm

5.8. De Bessel differentiaalvergelijking. Een differentiaalvergelijking van de vorm 5.8. De Bessel differentiaalvergelijking. Een differentiaalvergelijking van de vorm x y + xy + (x ν )y = met ν R (1) heet een Bessel (differentiaal)vergelijking. De waarde van ν noemt men ook wel de orde

Nadere informatie

Tentamen Numerieke Wiskunde (WISB251)

Tentamen Numerieke Wiskunde (WISB251) 1 Tentamen Numeriee Wisunde WISB51 Maa één opgave per vel en schrijf op ieder vel duidelij je naam en studentnummer. Laat duidelij zien hoe je aan de antwoorden omt. Onderstaande formules mag je zonder

Nadere informatie

Kies voor i een willekeurige index tussen 1 en r. Neem het inproduct van v i met de relatie. We krijgen

Kies voor i een willekeurige index tussen 1 en r. Neem het inproduct van v i met de relatie. We krijgen Hoofdstuk 95 Orthogonaliteit 95. Orthonormale basis Definitie 95.. Een r-tal niet-triviale vectoren v,..., v r R n heet een orthogonaal stelsel als v i v j = 0 voor elk paar i, j met i j. Het stelsel heet

Nadere informatie

Symmetrische matrices

Symmetrische matrices Symmetrische matrices We beginnen met een eenvoudige definitie : Definitie Een matrix A heet symmetrisch als A T = A NB Een symmetrische matrix is dus altijd vierkant Symmetrische matrices hebben fraaie

Nadere informatie

Tentamen Lineaire Algebra UITWERKINGEN

Tentamen Lineaire Algebra UITWERKINGEN Tentamen Lineaire Algebra 29 januari 29, 3:3-6:3 uur UITWERKINGEN Gegeven een drietal lijnen in R 3 in parametervoorstelling, l : 2, m : n : ν (a (/2 pt Laat zien dat l en m elkaar kruisen (dat wil zeggen

Nadere informatie