TENTAMEN THERMODYNAMICA voor BMT (8W180) Maandag 20 November van uur. Dit tentamen omvat 4 opgaven, die alle even zwaar meetellen.

Maat: px
Weergave met pagina beginnen:

Download "TENTAMEN THERMODYNAMICA voor BMT (8W180) Maandag 20 November van uur. Dit tentamen omvat 4 opgaven, die alle even zwaar meetellen."

Transcriptie

1 TENTAMEN THERMODYNAMICA voor BMT (8W180) Maandag 20 November van uur. Dit tentamen omvat 4 opgaven, die alle even zwaar meetellen. Als u vastloopt in een sub-vraag, kunt u voor het vervolg van die opgave een realistische schatting maken van de te verwachten uitkomst. Geef die aanname wel duidelijk aan! SUCCES! Opgave 1 (a-e: ieder 5 punten) Geef aan of de volgende stellingen goed of fout zijn. De motivering bepaalt het aantal toe te kennen punten (vier van de vijf)! a) Als voor een ideaal gas gegeven is dat c p = kj/kmol K, dan is k=1.7 b) Als in een nozzle voor een ideaal gas de snelheid met een factor 2 toeneemt, dan daalt de temperatuur van dat gas met een factor 4. c) In een irreversibel kringproces neemt de entropie toe. d) Voor een omkeerbare koelmachine geldt geldt dat de COP in het thermisch rendement is uit te drukken volgens COP= (1/η) 1 e) De entropie produktie tijdens een proces van vochtige lucht kan groter zijn dan de entropieverandering.

2 Opgave 2 (a-e :ieder 5 punten) Lucht (M=29, k=1.4) bevindt zich in een cylinder. Het beginvolume bedraagt 0.015m 3, de begintemperatuur bedraagt 22 C en de begindruk is 100kPa. Vervolgens wordt de lucht (= ideaal gas) reversibel en adiabatisch door de zuiger samengeperst tot een druk van 700kPa. a) Bepaal de eindtemperatuur van de lucht b) Bepaal de arbeid verricht op de luchthoeveelheid in de cylinder Daarna wordt de lucht in de cylinder vervangen door 10 gram ammoniak (zie tabellen) en op een begindruk van 400kPa en een temperatuur van 20 C gebracht. Vervolgens wordt de ammoniak reversibel en isobaar afgekoeld tot een specifiek volume van 0.25 m 3 /kg. c) Bepaal de dampfractie van de ammoniak in de eindtoestand. d) Bepaal de hoeveelheid warmte die aan de ammoniak wordt onttrokken. Tot slot: e) Bepaal de entropieverandering voor zowel de lucht als de ammoniak tijdens de bovenbeschreven processtappen

3 Opgave 3 (a-e :ieder 5 punten) Beschouw een doorlaatklep voor lucht (M=29, k=1.4) in een hart-long machine die, afhankelijk van de zuigerstand (massa m), instroom A (stand A; zuiger boven) of instroom B (stand B; zuiger beneden) met de uitstroom verbindt. De drukval tussen instroom en uitstroom is evenredig met de massastroom Φ volgens: p in - p uit =C Φ, met C = 50 MPa s/kg. De drukval binnen het bewegingsgebied van de zuiger is echter verwaarloosbaar. Neem aan dat de doorlaatklep goed geisoleerd is. Verder is gegeven: A i = 1 cm 2, A u = A i /2, zuigeruitslag: H=1 cm, zuigermassa: m=5 g, druk bij instroom B: p B = 1.1 bar, instroomsnelheid in beide standen: V i = 2 m/s, ingangstemperaturen: T A =20 C, T B =30 C, zwaartekrachtsversnelling: g = 10 m/s 2. Vragen: a) Bepaal de uitstroomtemperatuur van de lucht voor zowel stand A als B. b) Voor p A > p min bevindt de klep zich in stand A; voor p A < p min in stand B. Bij p A = p min wisselt de klep quasi-statisch van stand A naar B. Bepaal p min c) Bepaal de arbeid verricht op de zuiger bij het wisselen van stand A naar B. d) Bepaal uitstroomdruk en uitstroomsnelheid bij p A = 1.1 p min e) Bepaal uitstroomdruk en uitstroomsnelheid bij p A = 0.9 p min

4 Opgave 4 (a-e :ieder 5 punten) Een koelmachine in het laboratorium werkt met Freon-12 als koelend medium. De druk in de verdamper bedraagt 100 kpa. De massastroom bedraagt 0.1 kg/s. In eerste instantie beschouwen we een Carnot-cyclus, die daarna stapsgewijs met een smoorklep en droge compressie wordt uitgebreid. a) Schets de drie kringprocessen in een T-s diagram Stap 1: De Carnot cyclus b) Bepaal de onttrokken warmtestroom aan het vriesvak als nog gegeven is dat er een volledige faseovergang in de condensor plaatsvindt en dat de COP-waarde van de Carnot-cyclus gelijk is aan 4.05 Stap 2: Toevoeging van een (adiabatische) smoorklep c) Bepaal de entropieproduktiesnelheid over de smoorklep. d) Bepaal de COP-waarde van de koelmachine Stap 3: Tenslotte wordt de cyclus nog zo gewijzigd dat er droge verzadigde damp aan de compressor wordt aangeboden, die vervolgens isentroop wordt samengedrukt. De druk in de condensor blijft gelijk aan die bij de Carnot-cyclus. e) Bepaal het vermogen dat aan de compressor moet worden toegevoerd

5 Opgave 1 UITWERKINGEN TENTAMEN THERMODYNAMICA voor BMT (8W180) Maandag 20 November van uur. a) k = c p /( c p R) = 3.33: Fout b) Nozzle: c p T 1 + V 2 1 /2 = c pt 2 + V 2 2 /2 T 2/T 1 = 1 3V 2 1 /(2c pt 1 ) voor V 2 /V 1 = 2: Fout c) S = ds = 0 voor elk willekeurig (ir)reversibel kringproces: Fout d) η = 1 Q c /Q h, COP= (Q h /Q c 1) 1 = 1/η 1: Goed e) Voor elk willekeurig proces geldt: S = δq/t + S pr., S pr. = S δq/t 0 S pr. > S als δq/t < 0 en S pr. < S als δq/t > 0; de entropieproductie S pr. kan dus - maar moet niet persé - groter zijn dan de entropieverandering S. Dit geldt voor elk willekeurig proces en is niet beperkt tot vochtige lucht: Goed Opgave 2 a) Reversibel + adiabatisch = isentroop: s 2 = s 1 ; ideal gas: s 2 s 1 = c p ln(t 2 /T 1 ) R ln(p 2 /p 1 ) = 0, c p = kr/(k 1) T 2 = T 1 (p 2 /p 1 ) (k 1)/k = 295(7) (1.4 1)/1.4 = 514 K b) W = 2 1 adiabatisch 2 pdv = [V 1 k 1 V 1 k 2 ]/(k 1); via 1 p 1(V/V 1 ) k dv = p 1 V1 k V 2 = V 1 (p 2 /p 1 ) 1/k = 0.015(7) 1/1.4 = m 3 (adiabatisch) geeft dit W = (0.015) 1.4 /(1.4 1)[(0.015) ( ) ] = 2.79 kj c) p 2 = p 1 = 400 kpa, v 2 = 0.25 m 3 /k v f@p2 = m 3 /kg, v g@p2 = 0.31 m 3 /kg v f < v 2 < v g : vloeistof-damp mengsel: x 2 = (v 2 v f )/(v g v f ) = ( )/( ) = 0.8 d) Eerste hoofdwet voor isobaar proces: Q = H = m(h 2 h 1 ); via h 1 = kj/kg (oververhitte damp) en h 2 = h f@p2 + x 2 h fg@p2, met h f@p2 = kj/kg en h fg@p2 = kj/kg, geeft dit h 2 = kj/kg en dus Q = 0.01 ( ) = 3.1 kj (Opm.: volgens tabel A.2.1 Shavit & Gutfinger voor p 2 = kpa 400 kpa) e) Lucht: reversibel + adiabatisch = isentroop: S = 0; ammoniak: S = m(s 2 s 1 ); s 1 = 5.56 kj/kg K (oververhitte damp bij gegeven (p 1, T 1 )), s 2 = s f@p=p1 +x 2 s fg@p=p1 = = 4.42 kj/kg K S = 0.01 ( ) = 11.4 J/K Opgave 3 a) Eerste hoofdwet voor een open systeem (adiabatisch; geen arbeid; zwaartekracht/kinetische energie verwaarloosbaar): h A,B = h u ideal gas: c p T A,B = c p T u T A,B = T u : isotherm process. Dus T u = 20 C in stand A en T u = 30 C in stand B. b) De drukval binnen het bewegingsgebied van de zuiger is in zowel stand A als B verwaarloosbaar. Dus ten allen tijde geldt dat p A de constante druk onder en p B de constante druk boven de zuiger is. De zuiger begint omhoog te gaan op het moment dat p A de som van de zwaartekracht (mg/a) en de boven de zuiger heersende druk (p B ) overstijgt, oftewel als p A mg/a + p B. Hieruit volgt p min = mg/a + p B = kp a. 1

6 c) Quasi-statische beweging van de zuiger: W = pdv. Constante druk p = p min geeft dan W = p min V = p min AH = 0.11 J. d) Geval p A = 1.1p min komt overeen met stand A. Uit de relatie voor de drukval volgt p u = p A Cṁ = p A Cρ A AV A = p A C p A RT A AV A = kp a. Uit massabehoud volgt vervolgens V u = ρ AAV A ρ u A u = p A RT A AV A p u RT u A u T A =T u = p A AV A p u A u = 4.54 m/s. e) Geval p A = 0.9p min komt overeen met stand B. Dit geeft op vergelijkbare wijze als hierboven: Opgave 4 p u = p B Cṁ = p B Cρ B AV B = p B C p B AV B = kp a, RT B V u = ρ p B BAV B RT = B AV B T B =T u p B AV B ρ u A p u u = = 4.46 m/s. A u p u A u RT u a) 1. Carnot proces Zie figuur 8.9 in boek Shavit & Gutfinger (1995); toestand 1: rechterbenedenhoek; toestand 2: rechterbovenhoek; toestand 3: linkerbovenhoek; toestand 4: linkerbenedenhoek. Toestanden 2 en 3 liggen op de verzadigingslijn. 2. Carnot proces + smoorklep Smoorklep: adiabatisch maar in de praktijk niet reversibel: S 4 S 3 = S > δq/t = 0 S 4 > S 3 : toestand 4 (linkerbenedenhoek) verschuift naar rechts. 3. Carnot proces + smoorklep + droge compressie Droge verzadigde damp aan inlaat van compressor: toestand 1 (rechterbenedenhoek) verschuift naar rechts en ligt op de verzadigingslijn; isentrope compressie van verzadigde damp (droge compressie): S 2 = S 1 toestand 2 (rechterbovenhoek) valt nu buiten het twee-fasen gebied (overhitte damp aan uitlaat van compressor). b) COP = ( Q h /Q c 1) 1 = ( Q h / Q c 1) 1 = Carnot = (T h /T c 1) 1, T c = T 1 = T 4, T h = T 2 = T 3, T c = T sat@p=100kp a = 243 K T h = T c /COP + T c = 243/ = 303 K; condensor: eerste hoofdwet: Q h = ṁ(h 3 h 2 ); volledige faseovergang: h 3 h 2 = h fg@t =Th = kj/kg Q h = = 13.5 kw Q c = (T c /T h ) Q h = (243/303) 13.5 = 10.8 kw c) Tweede hoofdwet voor open systeem (p. 143 boek Shavit & Gutfinger) voor smoorklep (stationair: d/dt... = 0; adiabatisch: δ Q = 0): ṁ(s 3 s 4 )+Ṡpr. = 0 Ṡpr. = ṁ(s 4 s 3 ); s 3 = s f@t =Th = 0.24 kj/kg K. Bepaling van s 4 als volgt: h 4 = h 3 (eerste hoofdwet voor smoorklep (p. 100 boek Shavit & Gutfinger)), h 3 = h f@t =Th = 64.5 kj/kg x 4 = (h 3 h f@t =Tc )/h fg@t =Tc = ( )/165.2 = 0.34 s 4 = s f@t =Tc + x 4 s fg@t =Tc = = 0.37 kj/kg K. Dit geeft Ṡpr. = 0.1 ( ) = 13 W/K 2

7 d) COP = ( Q h /Q c 1) 1 : Q h als bij onderdeel b); eerste hoofdwet voor verdamper: Q c = ṁ(h 1 h 4 ) met h 4 = h 3 = h f@t =Th = 64.5 kj/kg (zie onderdeel c)). Bepaling van h 1 als volgt: s 1 = s 2 = s g@t =Th = 0.68 kj/kg K (isentrope compressie tot volledig verzadigde damp) x 1 = (s 1 s f@t =Tc )/s fg@t =Tc = ( )/0.68 = 0.95 h 1 = h f@t =Tc + x 1 h fg@t =Tc = = kj/kg. Dit geeft Q c = 0.1 ( ) = 10.2 W/K en dus COP = ( 13.5/10.2 1) 1 = 2.97 e) Isentrope compressie van volledig verzadigde damp (T 1 = T c ) tot oververhitte damp met gelijkblijvende druk in de condensor (p 2 = p sat@t =Th ); eerste hoofdwet compressor (p. 100 boek Shavit & Gutfinger)): Ẇx = ṁ(h 2 h 1 ) (aanname: reversibel process isentroop = adiabatisch Q = 0), h 1 = h g@t =Tc = kj/kg. Bepaling van h 2 als volgt: p 2 = p sat@t =Th = 745 kpa, s 2 = s 1 = s g@t =Tc = 0.72 kj/kg K oververhitte damp bij (p 2, s 2 ): h kj/kg. Dit geeft Ẇx 0.1( ) = 3.6 kw 3

Tentamen Thermodynamica

Tentamen Thermodynamica Tentamen Thermodynamica 4B420 25 januari 2011, 14.00 17.00 uur Dit tentamen bestaat uit 4 opeenvolgend genummerde opgaven, die alle even zwaar worden beoordeeld. De opgaven dienen duidelijk leesbaar beantwoord

Nadere informatie

Tentamen Thermodynamica

Tentamen Thermodynamica Tentamen Thermodynamica 4B420 3 november 2011, 9.00 12.00 uur Dit tentamen bestaat uit 4 opeenvolgend genummerde opgaven, die alle even zwaar worden beoordeeld. Advies: besteed daarom tenminste een half

Nadere informatie

TENTAMEN THERMODYNAMICA 1 Wb april :00-12:00

TENTAMEN THERMODYNAMICA 1 Wb april :00-12:00 TENTAMEN THERMODYNAMICA 1 Wb 4100 13 april 2011 9:00-12:00 Linksboven op elk blad vermelden: naam, studienummer en studierichting. Puntentelling: het tentamen bestaat uit 14 meerkeuzevragen en twee open

Nadere informatie

TENTAMEN THERMODYNAMICA 1 Wb juni :00-12:00

TENTAMEN THERMODYNAMICA 1 Wb juni :00-12:00 TENTAMEN THERMODYNAMICA 1 Wb 4100 24 juni 2011 9:00-12:00 Linksboven op elk blad vermelden: naam, studienummer en studierichting. Puntentelling: het tentamen bestaat uit 14 meerkeuzevragen en twee open

Nadere informatie

TENTAMEN THERMODYNAMICA 1 Wb juni :00-12:00

TENTAMEN THERMODYNAMICA 1 Wb juni :00-12:00 TENTAMEN THERMODYNAMICA 1 Wb 4100 25 juni 2010 9:00-12:00 Linksboven op elk blad vermelden: naam, studienummer en studierichting. Puntentelling: het tentamen bestaat uit 14 meerkeuzevragen en twee open

Nadere informatie

THERMODYNAMICA 2 (WB1224)

THERMODYNAMICA 2 (WB1224) THERMODYNAMICA 2 (WB1224) donderdag 27 januari 2005 14.00-17.00 u. AANWIJZINGEN Het tentamen bestaat uit twee of drie open vragen en 15 meerkeuzevragen. Voor de beantwoording van de meerkeuzevragen is

Nadere informatie

TENTAMEN THERMODYNAMICA 1 Wb juni :00-12:00

TENTAMEN THERMODYNAMICA 1 Wb juni :00-12:00 TENTAMEN THERMODYNAMICA 1 Wb 4100 19 juni 2009 9:00-12:00 Rechts boven op elk blad vermelden: naam, studienummer en studierichting. Puntentelling: het tentamen bestaat uit 14 meerkeuzevragen en twee open

Nadere informatie

THERMODYNAMICA 2 (WB1224)

THERMODYNAMICA 2 (WB1224) THERMODYNAMICA 2 (WB1224) dinsdag 21 januari 2003 14.00-17.00 u. AANWIJZINGEN Het tentamen bestaat uit twee open vragen en 15 meerkeuzevragen. Voor de beantwoording van de meerkeuzevragen is een formulier

Nadere informatie

TENTAMEN THERMODYNAMICA 1 Wb april :00-12:00

TENTAMEN THERMODYNAMICA 1 Wb april :00-12:00 TENTAMEN THERMODYNAMICA 1 Wb 4100 16 april 2010 9:00-12:00 Linksboven op elk blad vermelden: naam, studienummer en studierichting. Puntentelling: het tentamen bestaat uit 14 meerkeuzevragen en twee open

Nadere informatie

Opgave 2. Voor vloeibaar water bij 298.15K en 1 atm zijn de volgende gegevens beschikbaar:

Opgave 2. Voor vloeibaar water bij 298.15K en 1 atm zijn de volgende gegevens beschikbaar: Oefenopgaven Thermodynamica 2 (29-9-2010) Opgave 1. Een stuk ijs van -20 C en 1 atm wordt langzaam opgewarmd tot 110 C. De druk blijft hierbij constant. Schets hiervoor in een grafiek het verloop van de

Nadere informatie

en tot hetzelfde resultaat komen, na sommatie: (9.29)

en tot hetzelfde resultaat komen, na sommatie: (9.29) 9.11 KRINGPROCESSEN In deze paragraaf wordt nagegaan wat de invloed is van wrijving op een kringproces, i.h.b. wat is de invloed van wrijving op het thermisch rendement en koelfactor. Beschouw een kringproces

Nadere informatie

THERMODYNAMICA 2 (WB1224)

THERMODYNAMICA 2 (WB1224) THERMODYNAMICA 2 (WB1224) donderdag 2 februari 2006 14.00-17.00 u. AANWIJZINGEN Het tentamen bestaat uit twee of drie open vragen en 15 meerkeuzevragen. Voor de beantwoording van de meerkeuzevragen is

Nadere informatie

Thermodynamica. Daniël Slenders Faculteit Ingenieurswetenschappen Katholieke Universiteit Leuven

Thermodynamica. Daniël Slenders Faculteit Ingenieurswetenschappen Katholieke Universiteit Leuven Thermodynamica Daniël Slenders Faculteit Ingenieurswetenschappen Katholieke Universiteit Leuven Academiejaar 2009-2010 Inhoudsopgave Eerste hoofdwet - deel 1 3 Oefening 1.1......................................

Nadere informatie

THERMODYNAMICA 2 (WB1224)

THERMODYNAMICA 2 (WB1224) THERMODYNAMICA 2 (WB1224) donderdag 15 januari 2004 14.00-17.00 u. AANWIJZINGEN Het tentamen bestaat uit twee open vragen en 15 meerkeuzevragen. Voor de beantwoording van de meerkeuzevragen is een formulier

Nadere informatie

Tentamen Thermodynamica

Tentamen Thermodynamica Tentamen Thermodynamica 4B420 4B421 10 november 2008, 14.00 17.00 uur Dit tentamen bestaat uit 4 opeenvolgend genummerde opgaven. Indien er voor de beantwoording van een bepaalde opgave een tabel nodig

Nadere informatie

Figuur 8.39: Negatief kringproces. Figuur 8.40: Afgegeven en opgenomen warmte

Figuur 8.39: Negatief kringproces. Figuur 8.40: Afgegeven en opgenomen warmte 8.7 NEGATIEVE KRINGPROCESSEN 8.7.1 ALGEMEEN Beschouw in figuur 8.39 een negatieve kringloop 1 2 3 4. Gedurende de toestandsverandering 1 2 3 daalt de entropie, dus ds < 0, zodat: 123 3 q = T ds < 0 1 Anderzijds,

Nadere informatie

HERHALINGS TENTAMEN CHEMISCHE THERMODYNAMICA voor S2/F2/MNW2 Woensdag 14 januari, 2009, 18.30 20.30

HERHALINGS TENTAMEN CHEMISCHE THERMODYNAMICA voor S2/F2/MNW2 Woensdag 14 januari, 2009, 18.30 20.30 HERHALINGS TENTAMEN CHEMISCHE THERMODYNAMICA voor S2/F2/MNW2 Woensdag 14 januari, 2009, 18.30 20.30 Bij het tentamen mag gebruik worden gemaakt van een GR en BINAS. NB: Geef bij je antwoorden altijd eenheden,

Nadere informatie

Warmte- en stromingsleer Examennummer: 93071 Datum: 14 december 2013 Tijd: 13:00 uur - 14:30 uur

Warmte- en stromingsleer Examennummer: 93071 Datum: 14 december 2013 Tijd: 13:00 uur - 14:30 uur Warmte- en stromingsleer Examennummer: 93071 Datum: 14 december 2013 Tijd: 13:00 uur - 14:30 uur Dit examen bestaat uit 10 pagina s. De opbouw van het examen is als volgt: 20 meerkeuzevragen (maximaal

Nadere informatie

Technische Thermodynamica 1, Deeltoets 2 Module 2, Energie en Materialen ( )

Technische Thermodynamica 1, Deeltoets 2 Module 2, Energie en Materialen ( ) Technische Thermodynamica 1, Deeltoets 2 Module 2, Energie en Materialen (201300156) Werktuigbouwkunde, B1 Faculteit der Construerende Technische Wetenschappen Universiteit Twente Datum: Oefentoets (TTD

Nadere informatie

Inhoud. Inleiding 13. Noordhoff Uitgevers bv

Inhoud. Inleiding 13. Noordhoff Uitgevers bv Inhoud Inleiding 13 1 Algemene begrippen 15 1.1 Eenhedenstelsel 16 1.1.1 Druk en vermogen 18 1.1.2 Volume en dichtheid 19 1.2 Soortelijke warmte 19 1.2.1 Gemiddelde soortelijke warmte 20 1.3 Verbrandingswaarde

Nadere informatie

oefenopgaven wb oktober 2003

oefenopgaven wb oktober 2003 oefenopgaven wb1224 2 oktober 2003 Opgave 1 Stoom met een druk van 38 bar en een temperatuur van 470 C wordt geëxpandeerd in een stoom-turbine tot een druk van 0,05 bar. De warmteuitwisseling van de turbine

Nadere informatie

De stoominstallatie met: ketel, turbine, condensor en voedingspomp. Eigenlijk wordt maar weinig energie nuttig gebruikt in een installatie:

De stoominstallatie met: ketel, turbine, condensor en voedingspomp. Eigenlijk wordt maar weinig energie nuttig gebruikt in een installatie: Si Klas 3 Pagina 1 Inleiding 3F maandag 29 januari 2018 11:03 De stoominstallatie met: ketel, turbine, condensor en voedingspomp. Eigenlijk wordt maar weinig energie nuttig gebruikt in een installatie:

Nadere informatie

Introductie 1) 2) 3) 4) 5) J79 - Turbine Engines_ A Closer Look op youtube: toets form 1 okt 2013

Introductie 1) 2) 3) 4) 5) J79 - Turbine Engines_ A Closer Look op youtube:   toets form 1 okt 2013 Introductie zondag 4 september 2016 22:09 1) 2) 3) 4) 5) Inleiding: Wat gaan we doen? introductiefilm over onderdelen J79 herhaling hoofdonderdelen en toestands-diagrammen. Natuurkunde wetten toegepast

Nadere informatie

TENTAMEN CHEMISCHE THERMODYNAMICA. Dinsdag 25 oktober 2011 13.15 15.15

TENTAMEN CHEMISCHE THERMODYNAMICA. Dinsdag 25 oktober 2011 13.15 15.15 TENTAMEN CHEMISCHE THERMODYNAMICA Dinsdag 25 oktober 2011 13.15 15.15 Bij het tentamen mag gebruik worden gemaakt van BINAS en een (grafische) rekenmachine. Let op eenheden en significante cijfers. 1.

Nadere informatie

Fysische Chemie Oefeningenles 1 Energie en Thermochemie. Eén mol He bevindt zich bij 298 K en standaarddruk (1 bar). Achtereenvolgens wordt:

Fysische Chemie Oefeningenles 1 Energie en Thermochemie. Eén mol He bevindt zich bij 298 K en standaarddruk (1 bar). Achtereenvolgens wordt: Fysische Chemie Oefeningenles 1 Energie en Thermochemie 1 Vraag 1 Eén mol He bevindt zich bij 298 K en standaarddruk (1 bar). Achtereenvolgens wordt: Bij constante T het volume reversibel verdubbeld. Het

Nadere informatie

Het Ts diagram van water en stoom

Het Ts diagram van water en stoom PvB-7 Si Pagina 1 Het Ts diagram van water en stoom woensdag 1 februari 2017 12:51 Rendement uit verhouding van oppervlakten Het oppervlak binnen de kringloop (1-2-3-4)= nuttig gebruikte warmte Oppervlak

Nadere informatie

Eerste Hoofdwet: Deel 1

Eerste Hoofdwet: Deel 1 Eerste Hoofdwet: Deel 1 Jeroen Heulens & Bart Klaasen Oefenzitting 1 Academiejaar 2009-2010 Oefenzitting 1 - Thermodynamica - (2) Praktische afspraken Oefenzittingen 6 zittingen van 2 uren, 2 reeksen en

Nadere informatie

THERMODYNAMICA 2 (WB1224) 14 april u.

THERMODYNAMICA 2 (WB1224) 14 april u. wb1224, 14 april 2010 1 THERMODYNAMICA 2 (WB1224) 14 april 2010 14.00-17.00 u. AANWIJZINGEN Het tentamen bestaat uit drie open vragen en 14 meerkeuzevragen. Voor de beantwoording van de meerkeuzevragen

Nadere informatie

Thermodynamics 1. Lecture 9: Bendiks Jan Boersma Wiebren de Jong Thijs Vlugt Theo Woudstra. March 8, Energy Technology

Thermodynamics 1. Lecture 9: Bendiks Jan Boersma Wiebren de Jong Thijs Vlugt Theo Woudstra. March 8, Energy Technology Thermodynamics 1 Lecture 9: Bendiks Jan Boersma Wiebren de Jong Thijs Vlugt Theo Woudstra March 8, 010 1 College 8 Bernoulli's law nd law of thermodynamics: Clausius Kelvin Planck Carnot cycle Lecture

Nadere informatie

THERMODYNAMICA 2 (WB1224) Opgave 3 moet op een afzonderlijk blad worden ingeleverd.

THERMODYNAMICA 2 (WB1224) Opgave 3 moet op een afzonderlijk blad worden ingeleverd. wb1224, 21 januari 2010 1 THERMODYNAMICA 2 (WB1224) 21 januari 2009 14.00-17.00 u. AANWIJZINGEN Het tentamen bestaat uit drie open vragen en 14 meerkeuzevragen. Voor de beantwoording van de meerkeuzevragen

Nadere informatie

Elke opgave moet op een afzonderlijk blad worden ingeleverd.

Elke opgave moet op een afzonderlijk blad worden ingeleverd. HERMODYNAMICA (WB14) 4 augustus 011 18.30-1.30 u. AANWIJZINGEN Het tentamen bestaat uit twee open vragen op 7 bladzijden. Het tentamen is een GESLOEN BOEK tentamen. Dit betekent dat tijdens het tentamen

Nadere informatie

TENTAMEN CHEMISCHE THERMODYNAMICA voor F2/MNW2. Vrijdag 23 december 2005

TENTAMEN CHEMISCHE THERMODYNAMICA voor F2/MNW2. Vrijdag 23 december 2005 TENTAMEN CHEMISCHE THERMODYNAMICA voor F/MNW Vrijdag 3 december 005 Bij het tentamen mag gebruik worden gemaakt van een GR. Mogelijk nodige constantes: Gasconstante R = 8.31447 Jmol 1 K 1 = 8.0574 10 L

Nadere informatie

TOETS CTD voor 1 ste jaars MST (4051CHTHEY) 1 maart uur Docenten: L. de Smet, B. Dam

TOETS CTD voor 1 ste jaars MST (4051CHTHEY) 1 maart uur Docenten: L. de Smet, B. Dam TOETS CTD voor 1 ste jaars MST (4051CHTHEY) 1 maart 2016 13.30-15.00 uur Docenten: L. de Smet, B. Dam Dit tentamen bestaat uit 30 multiple-choice vragen Hiermee zijn in totaal 20 punten te verdienen Voor

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN FACULTEIT DER TECHNISCHE NATUURKUNDE GROEP TRANSPORTFYSICA

TECHNISCHE UNIVERSITEIT EINDHOVEN FACULTEIT DER TECHNISCHE NATUURKUNDE GROEP TRANSPORTFYSICA TECHNISCHE UNIERSITEIT EINDHOEN FACULTEIT DER TECHNISCHE NATUURKUNDE GROEP TRANSPORTFYSICA Tentamen Thermische Fysica 1 (3NB60, op vrijdag 20 april 2012, 09.00-12.00. Het tentamen levert maximaal 100 punten

Nadere informatie

Examen Statistische Thermodynamica

Examen Statistische Thermodynamica Examen Statistische Thermodynamica Alexander Mertens 8 juni 014 Dit zijn de vragen van het examen statistische thermodynamica op donderdag 6 juni 014. De vragen zijn overgeschreven door Sander Belmans

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN FACULTEIT DER TECHNISCHE NATUURKUNDE GROEP TRANSPORTFYSICA

TECHNISCHE UNIVERSITEIT EINDHOVEN FACULTEIT DER TECHNISCHE NATUURKUNDE GROEP TRANSPORTFYSICA TECHNISCHE UNIVERSITEIT EINDHOVEN FACULTEIT DER TECHNISCHE NATUURKUNDE GROEP TRANSPORTFYSICA Tentamen Thermische Fysica 1 (3NB60), op woensdag 13 april 2011, 900-1200 uur Het tentamen levert maximaal 100

Nadere informatie

Doel is: Verdieping m.b.v. 2 REWIC Readers en koppeling aan de natuurkunde-les. periode 3 Rendementsverbetering door aftapvoorwarming en herverhitting

Doel is: Verdieping m.b.v. 2 REWIC Readers en koppeling aan de natuurkunde-les. periode 3 Rendementsverbetering door aftapvoorwarming en herverhitting 3 C=meng, E, en B=maint Pagina 1 programma 3e jaar woensdag 27 januari 2016 12:31 Doel is: Verdieping m.b.v. 2 REWIC Readers en koppeling aan de natuurkundeles periode 3 Rendementsverbetering door aftapvoorwarming

Nadere informatie

THERMODYNAMICA 2 (WB1224)

THERMODYNAMICA 2 (WB1224) wb1224, 22 januari 2009 1 THERMODYNAMICA 2 (WB1224) 22 januari 2009 14.00-17.00 u. AANWIJZINGEN Het tentamen bestaat uit twee of drie open vragen en 14 meerkeuzevragen. Voor de beantwoording van de meerkeuzevragen

Nadere informatie

TOETS CTD voor 1 ste jaars MST (4051CHTHEY) 7 maart uur Docenten: T. Savenije, B. Dam

TOETS CTD voor 1 ste jaars MST (4051CHTHEY) 7 maart uur Docenten: T. Savenije, B. Dam TOETS CTD voor 1 ste jaars MST (4051CHTHEY) 7 maart 2017 13.30-15.00 uur Docenten: T. Savenije, B. Dam Dit tentamen bestaat uit 30 multiple-choice vragen Hiermee zijn in totaal 20 punten te verdienen Voor

Nadere informatie

TOETS CTD voor 1 ste jaars MST (4051CHTHEY, MST1211TA1, LB1541) 10 maart 2015 14.00-15.30 uur Docenten: L. de Smet, B. Dam

TOETS CTD voor 1 ste jaars MST (4051CHTHEY, MST1211TA1, LB1541) 10 maart 2015 14.00-15.30 uur Docenten: L. de Smet, B. Dam TOETS CTD voor 1 ste jaars MST (4051CHTHEY, MST1211TA1, LB1541) 10 maart 2015 14.00-15.30 uur Docenten: L. de Smet, B. Dam Naam:. Studentnummer Leiden:... En/of Studentnummer Delft:... Dit tentamen bestaat

Nadere informatie

EXAMEN STOOMTURBINES EPT (nr 120)

EXAMEN STOOMTURBINES EPT (nr 120) EXMEN STOOMTURINES EPT (nr 120) ----------------------------------------------------------------------------------------------------------------- atum : Tijdsduur : 2 uur Tijd : 13.30 15.30 uur antal vragen

Nadere informatie

Welke van de drie onderstaande. figuren stellen een isobare toestandsverandering van een ideaal gas voor?

Welke van de drie onderstaande. figuren stellen een isobare toestandsverandering van een ideaal gas voor? jaar: 1989 nummer: 01 Welke van de drie onderstaande. figuren stellen een isobare toestandsverandering van een ideaal gas voor? o a. 1 o b. 1 en 2 o c. 1 en 3 o d. 1, 2 en 3 jaar: 1989 nummer: 02 De volumeuitzetting

Nadere informatie

REWIC-A: Thermodynamica A : : : Opleiding Module Examenset. REWIC-A Thermodynamica A 03. Uw naam :... Begintijd :... Eindtijd :...

REWIC-A: Thermodynamica A : : : Opleiding Module Examenset. REWIC-A Thermodynamica A 03. Uw naam :... Begintijd :... Eindtijd :... Opleiding Module Examenset : : : REWIC-A Thermodynamica A 03 Uw naam :... Begintijd :... Eindtijd :... Lees onderstaande instructies zorgvuldig door: 1. Beschikbare tijd : 100 minuten 2. Aantal vragen

Nadere informatie

p V T Een ruimte van 24 ºC heeft een dauwpuntstemperatuur van 19 ºC. Bereken de absolute vochtigheid.

p V T Een ruimte van 24 ºC heeft een dauwpuntstemperatuur van 19 ºC. Bereken de absolute vochtigheid. 8. Luchtvochtigheid relatieve vochtigheid p e 100 % p absolute vochtigheid = dichtheid van waterdamp dauwpuntstemperatuur T d = de temperatuur waarbij de heersende waterdampdruk de maximale dampdruk is.

Nadere informatie

Hoofdstuk 12: Exergie & Anergie

Hoofdstuk 12: Exergie & Anergie Hoofdstuk : Exergie & Anergie. ENERGIEOMZEINGEN De eerste hoofdwet spreekt zich uit over het behoud van energie. Hierbij maakt zij geen onderscheid tussen de verschillende vormen van energie: inwendige

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN FACULTEIT DER TECHNISCHE NATUURKUNDE GROEP TRANSPORTFYSICA

TECHNISCHE UNIVERSITEIT EINDHOVEN FACULTEIT DER TECHNISCHE NATUURKUNDE GROEP TRANSPORTFYSICA ECHNISCHE UNIVERSIEI EINDHOVEN FACULEI DER ECHNISCHE NAUURKUNDE GROEP RANSPORFYSICA entamen hermische Fysica 1 (3NB60), op vrijdag 21 januari 2011, 14.00-17.00 uur. Het tentamen levert maximaal 100 punten

Nadere informatie

Bereken de luchtdruk in bar op 3000 m hoogte in de Franse Alpen. De soortelijke massa van lucht is 1,2 kg/m³. De druk op zeeniveau bedraagt 1 bar.

Bereken de luchtdruk in bar op 3000 m hoogte in de Franse Alpen. De soortelijke massa van lucht is 1,2 kg/m³. De druk op zeeniveau bedraagt 1 bar. 7. Gaswetten Opgave 1 Opgave 2 Opgave 3 Opgave 4 Opgave 5 Opgave 6 Opgave 7 Bereken de luchtdruk in bar op 3000 m hoogte in de Franse Alpen. De soortelijke massa van lucht is 1,2 kg/m³. De druk op zeeniveau

Nadere informatie

TOETS CTD voor 1 ste jaars MST (4051CHTHEY) 7 maart uur Docenten: T. Savenije, B. Dam

TOETS CTD voor 1 ste jaars MST (4051CHTHEY) 7 maart uur Docenten: T. Savenije, B. Dam TOETS CTD voor 1 ste jaars MST (4051CHTHEY) 7 maart 2017 13.30-15.00 uur Docenten: T. Savenije, B. Dam Dit tentamen bestaat uit 30 multiple-choice vragen Hiermee zijn in totaal 20 punten te verdienen Voor

Nadere informatie

2 Van 1 liter vloeistof wordt door koken 1000 liter damp gemaakt.

2 Van 1 liter vloeistof wordt door koken 1000 liter damp gemaakt. Domein D: Warmteleer Subdomein: Gas en vloeistof 1 niet expliciet genoemd in eindtermen, moet er een groep vragen gemaakt worden waarin die algemene zaken zijn vervat? zie ook mededelingen voor eindexamendocenten.

Nadere informatie

De stoominstallatie met: ketel, turbine, condensor en voedingspomp. Eigenlijk wordt maar weinig energie nuttig gebruikt in een installatie:

De stoominstallatie met: ketel, turbine, condensor en voedingspomp. Eigenlijk wordt maar weinig energie nuttig gebruikt in een installatie: dinsdag 29 januari 2019 14:43 De stoominstallatie met: ketel, turbine, condensor en voedingspomp. Eigenlijk wordt maar weinig energie nuttig gebruikt in een installatie: Een simpele installatie heeft een

Nadere informatie

Figuur 8.50: Toestandsdiagram van propaan naar ASHRAE Hoofdstuk 8: Kringprocessen 46

Figuur 8.50: Toestandsdiagram van propaan naar ASHRAE Hoofdstuk 8: Kringprocessen 46 Onderstaande figuur toont het ph-diagram van propaan, naar ASHRAE (boeken). Hierop moeten we aflezen, geen gemakkelijke karwei, tenzij men de zaken uitvergroot, of computerprogramma s zoals COOLPACK gebruikt.

Nadere informatie

Notaties 13. Voorwoord 17

Notaties 13. Voorwoord 17 INHOUD Notaties 13 Voorwoord 17 Hoofdstuk : Ideale Gassen. Definitie 19. Ideale gaswet 19. Temperatuur 20. Soortelijke warmte 20. Mengsels van ideale gassen 21 1.5.1 De wet van Dalton 21 1.5.2 De equivalente

Nadere informatie

Het aantal kmol is evenredig met het volume dat dat gas inneemt, bij een bepaalde druk en temperatuur

Het aantal kmol is evenredig met het volume dat dat gas inneemt, bij een bepaalde druk en temperatuur Hoofdstuk 1: OPDRACHTEN blz 32/33 OPDRACHT 1 En Het aantal kmol is evenredig met het volume dat dat gas inneemt, bij een bepaalde druk en temperatuur OPDRACHT 2 1,867 m 3 CO 3,512 m 3 N 2 28 kg/kmol 28

Nadere informatie

TENTAMEN. Thermodynamica en Statistische Fysica (TN )

TENTAMEN. Thermodynamica en Statistische Fysica (TN ) TENTAMEN Thermodynamica en Statistische Fysica (TN - 141002) 25 januari 2007 13:30-17:00 Het gebruik van het diktaat is NIET toegestaan Zet op elk papier dat u inlevert uw naam Begin iedere opgave bovenaan

Nadere informatie

Vraagstukken Thermodynamica W. Buijze H.C. Meijer E. Stammers W.H. Wisman

Vraagstukken Thermodynamica W. Buijze H.C. Meijer E. Stammers W.H. Wisman Vraagstukken Thermodynamica W. Buijze H.C. Meijer E. Stammers W.H. Wisman VSSD VSSD Eerste druk 1989 Vierde druk 1998, verbeterd 2006-2010 Uitgegeven door de VSSD Leeghwaterstraat 42, 2628 CA Delft, The

Nadere informatie

Extra oefenopgaven bij hoofdstuk 5 en 6

Extra oefenopgaven bij hoofdstuk 5 en 6 Extra oefenopgaven bij hoofdstuk 5 en 6 1 Een splitunit werkt bij een verdampingsdruk van 10 bar en een condensatietemperatuur van 40 C. Zie het principeschema hieronder. Aan het eind van de verdamper

Nadere informatie

THERMODYNAMICA 2 (WB1224)

THERMODYNAMICA 2 (WB1224) THERMODYNAMICA 2 (WB1224) 24 januari 2012 14.00-17.00 u. AANWIJZINGEN Het tentamen bestaat uit drie open vragen op 10 bladzijden. Het tentamen is een GESLOTEN BOEK tentamen. Dit betekent dat tijdens het

Nadere informatie

Energieconversiemachines en -systemen: Thermodynamische analyse van het gebruik van een warmtepomp voor residentiële verwarming

Energieconversiemachines en -systemen: Thermodynamische analyse van het gebruik van een warmtepomp voor residentiële verwarming Energieconversiemachines en -systemen: Thermodynamische analyse van het gebruik van een warmtepomp voor residentiële verwarming Wim Gorrens Jan-Pieter Jacobs Matthias Logghe Christophe Mestdag David Van

Nadere informatie

NIVEAU 3 STOOMTECHNIEK AFVALVERBRANDING BE

NIVEAU 3 STOOMTECHNIEK AFVALVERBRANDING BE NIVEAU 3 STOOMTECHNIEK AFVALVERBRANDING BE TIJD 2 UUR TOEGESTANE HULPMIDDELEN, REKENMACHINE, STOOMTABEL EN H-S DIAGRAM 1. Noem de drie fasen waarin water kan verkeren. 2. Wat wordt verstaan onder verzadigde

Nadere informatie

NIVEAU 5. STOOMTECHNIEK EPT: Proefexamen

NIVEAU 5. STOOMTECHNIEK EPT: Proefexamen NIVEAU 5. STOOMTECHNIEK EPT: Proefexamen TIJD 2 UUR:TOEGESTANE HULPMIDDELEN, REKENMACHINE, STOOMTABEL EN h-s en T-s DIAGRAM. Wat wordt verstaan onder het triple punt? 2. Bereken de entropie van natte stoom

Nadere informatie

ONDERKOELING-OVERVERHITTING. Rudy Beulens

ONDERKOELING-OVERVERHITTING. Rudy Beulens ONDERKOELING-OVERVERHITTING Rudy Beulens UNIE DER BELGISCHE FRIGORISTEN AIR CONDITIONING ASSOCIATION Water bij 1 bar absoluut of 0 bar relatief IJsblok van -20 C smelten tot 0 C : latente warmte Opwarmen

Nadere informatie

VAK: Thermodynamica - A Set Proeftoets 01

VAK: Thermodynamica - A Set Proeftoets 01 VAK: Thermodynamica - A Set Proeftoets 01 Thermodynamica - A - PROEFTOETS- set 01 - E_2016 1/8 DIT EERST LEZEN EN VOORZIEN VAN NAAM EN LEERLINGNUMMER! Beschikbare tijd: 100 minuten Uw naam:... Klas:...

Nadere informatie

Thermodynamica - A - PROEFTOETS- AT01 - OPGAVEN.doc 1/7

Thermodynamica - A - PROEFTOETS- AT01 - OPGAVEN.doc 1/7 VAK: Thermodynamica A Set Proeftoets AT01 Thermodynamica - A - PROEFTOETS- AT01 - OPGAVEN.doc 1/7 DIT EERST LEZEN EN VOORZIEN VAN NAAM EN LEERLINGNUMMER! Beschikbare tijd: 100 minuten Uw naam:... Klas:...

Nadere informatie

3 niet expliciet genoemd in eindtermen Verklaar het verschijnsel diffusie met de moleculaire theorie.

3 niet expliciet genoemd in eindtermen Verklaar het verschijnsel diffusie met de moleculaire theorie. Domein D: Warmteleer Subdomein: Gas en vloeistof 1 niet expliciet genoemd in eindtermen, moet er een groep vragen gemaakt worden waarin die algemene zaken zijn vervat? zie ook mededelingen voor eindexamendocenten.

Nadere informatie

KOELINSTALLATIES VOCHTIGE LUCHT EN LUCHTBEHANDELING

KOELINSTALLATIES VOCHTIGE LUCHT EN LUCHTBEHANDELING KOELINSTALLATIES VOCHTIGE LUCHT EN LUCHTBEHANDELING Adviesbureau de Koster v.o.f. Pagina 1 Voorwoord Het boek koel en vriestechniek behandelt de koel en vries techniek en theorie, tevens is een aantal

Nadere informatie

Hoofdstuk 8: Kringprocessen

Hoofdstuk 8: Kringprocessen Hoofdstuk 8: Kringprocessen 8.1 DEFINITIE Kringprocessen spelen een zeer belangrijke rol in de energietechniek. Met kringprocessen heeft men de mogelijkheden: continu thermische energie in technische arbeid

Nadere informatie

Hoofdstuk 1: Ideale Gassen. Hoofdstuk 2: Warmte en arbeid. Hoofdstuk 3: Toestandsveranderingen bij ideale gassen

Hoofdstuk 1: Ideale Gassen. Hoofdstuk 2: Warmte en arbeid. Hoofdstuk 3: Toestandsveranderingen bij ideale gassen Hoofdstuk 1: Ideale Gassen 1.1 Definitie 1 1.2 Ideale gaswet 1 1.3 Temperatuur 1 1.4 Soortelijke warmte 2 1.5 Mengsels van ideale gassen 1.5.1 Wet van Dalton 3 1.5.2 Equivalente molaire massa 4 1.5.3 Soortelijke

Nadere informatie

is een dergelijk systeem één van starre lichaam Pagina 21 3 de zin

is een dergelijk systeem één van starre lichaam Pagina 21 3 de zin Errata Thermodynamica voor ingenieurs (op datum van 01-09-2011). Een aantal prullige maar irritante dingen (zeker voor de auteur) die bij het zetten zijn opgedoken. Oorspronkelijk goed Pagina 20 is een

Nadere informatie

Thermodynamische analyse van het gebruik van een warmtepomp voor residentiële verwarming

Thermodynamische analyse van het gebruik van een warmtepomp voor residentiële verwarming H01N2a: Energieconversiemachines- en systemen Academiejaar 2010-2011 Thermodynamische analyse van het gebruik van een warmtepomp voor residentiële verwarming Professor: Martine Baelmans Assistent: Clara

Nadere informatie

Bereken het thermische rendement van een Rankine cyclus met keteldruk 180 bar en een condensatiedruk 0,05 bar.

Bereken het thermische rendement van een Rankine cyclus met keteldruk 180 bar en een condensatiedruk 0,05 bar. OPDRACHTEN* OPDRACHT 1 Bereken het thermische rendement van een Rankine cyclus met keteldruk 180 bar en een condensatiedruk 0,05 bar. OPDRACHT 2 Bereken het thermische rendement van een stoomturbinecyclus

Nadere informatie

14/12/2015. Wegwijs in de koeltechniek voor de niet koeltechnieker. Auteur: Rudy Beulens

14/12/2015. Wegwijs in de koeltechniek voor de niet koeltechnieker. Auteur: Rudy Beulens Wegwijs in de koeltechniek voor de niet koeltechnieker Auteur: Rudy Beulens E-mail: rudy.beulens@sbmopleidingen.be 1 Wat is koeltechniek Is een verzameling van technische oplossingen Bedoeld om ruimten,

Nadere informatie

kringloop TS diagram berekeningen. omgevingsdruk / aanzuigdruk na compressor na de verbrandingskamers na de turbine berekend:

kringloop TS diagram berekeningen. omgevingsdruk / aanzuigdruk na compressor na de verbrandingskamers na de turbine berekend: kringloop vrijdag 12 september 2014 10:33 TS diagram berekeningen. p1 p2 p3 p4 omgevingsdruk / aanzuigdruk na compressor na de verbrandingskamers na de turbine berekend: q toe. q af, w en rendement theoretisch

Nadere informatie

Het Ts diagram van water en stoom

Het Ts diagram van water en stoom PvB-7 Si Pagina 1 Het Ts diagram van water en stoom woensdag 1 februari 2017 12:51 Rendement uit verhouding van oppervlakten Het oppervlak binnen de kringloop (1-2-3-4)= nuttig gebruikte warmte Oppervlak

Nadere informatie

TWEEDE RONDE NATUURKUNDE OLYMPIADE 2013 TOETS APRIL :00 12:45 uur

TWEEDE RONDE NATUURKUNDE OLYMPIADE 2013 TOETS APRIL :00 12:45 uur TWEEDE RONDE NATUURKUNDE OLYMPIADE 2013 TOETS 1 24 APRIL 2013 11:00 12:45 uur MECHANICA 1 Blok en veer. (5 punten) Een blok van 3,0 kg glijdt over een wrijvingsloos tafelblad met een snelheid van 8,0 m/s

Nadere informatie

Vraagstukken Thermische Fysica Set 1

Vraagstukken Thermische Fysica Set 1 Vraagstukken Thermische Fysica Set 1 Opgave 0 De Eifeltoren werd geconstrueerd in 1889 naar het ontwerp van Alexandre Gustave Eiffel. De toren is gemaakt uit staal en is bij 22 C 301 m hoog. Wat is de

Nadere informatie

Technische ThermoDynamica Samenvatter: Maarten Haagsma /6 Temperatuur: T = ( /U / /S ) V,N

Technische ThermoDynamica Samenvatter: Maarten Haagsma /6 Temperatuur: T = ( /U / /S ) V,N 2001-1/6 Temperatuur: T = ( /U / /S ) dw = -PdV Druk: P = - ( /U / /V ) S,N dq = TdS Chemisch potentiaal: = ( /U / /N ) S,V Energie representatie: du = TdS + -PdV + dn Entropie representatie: ds = du/t

Nadere informatie

Tentamen Statistische Thermodynamica MS&T 27/6/08

Tentamen Statistische Thermodynamica MS&T 27/6/08 Tentamen Statistische Thermodynamica MS&T 27/6/08 Vraag 1. Toestandssom De toestandssom van een systeem is in het algemeen gegeven door de volgende uitdrukking: Z(T, V, N) = e E i/k B T. i a. Hoe is de

Nadere informatie

Hoofdstuk 5: Enthalpie

Hoofdstuk 5: Enthalpie Hoofdstuk 5: Enthalie 5.1 DEFINITIE De secifieke enthalie h, eenheid J/kg, wordt gedefinieerd als: h = u + v (5.1) Aangezien u, en v toestandsfuncties zijn is h dat ook. Het is dus mogelijk van de enthalie

Nadere informatie

Tentamen Fysische Systemen, , 9-12 uur

Tentamen Fysische Systemen, , 9-12 uur Tentamen Fysische Systemen voor TBK 3-8-010, bladzijde 1 van 4 Tentamen Fysische Systemen, 3-8-010, 9-1 uur Vermeld (duidelijk!) naam, geboortedatum, studie en studienummer op het 1 e vel papier; op ieder

Nadere informatie

Naam: examennummer:.

Naam: examennummer:. Naam: examennummer:. Geef de uitwerking van de opgaven steeds op de lege zijde rechts naast de opgave. Geef duidelijk de onderdelen aan. De vragen moeten op de stencils beantwoord worden. Lever geen andere

Nadere informatie

Wat gaan we doen? Koken van water: wat gebeurt er ( temperatuur, energie, druk) Leren opzoeken in stoomtabellen. Diagrammen van water en stoom

Wat gaan we doen? Koken van water: wat gebeurt er ( temperatuur, energie, druk) Leren opzoeken in stoomtabellen. Diagrammen van water en stoom Si klas 1 Pagina 1 Wat gaan we doen? dinsdag 30 januari 2018 12:43 Koken van water: wat gebeurt er ( temperatuur, energie, druk) Leren opzoeken in stoomtabellen Diagrammen van water en stoom Een stoominstallatie

Nadere informatie

Droogijs. IJskappen Antarctica smelten ongelooflijk snel Bron: www. metrotime.be

Droogijs. IJskappen Antarctica smelten ongelooflijk snel Bron: www. metrotime.be IJskappen Antarctica smelten ongelooflijk snel Bron: www. metrotime.be De 3D pen laat kinderen veilig 3D objecten tekenen Door middel van LED dioden aan het uiteinde van de pen zal de inkt direct stollen,

Nadere informatie

BIOFYSICA: WERKZITTING 10 (Oplossingen) THERMOFYSICA

BIOFYSICA: WERKZITTING 10 (Oplossingen) THERMOFYSICA 1ste Kandidatuur ARTS of TANDARTS Academiejaar 2002-2003 Oefening 2 (p49) BIOFYSICA: WERKZITTING 10 (Oplossingen) THERMOFYSICA Met een stalen rolmeter meten we bij 10 C de lengte van een koperen staaf.

Nadere informatie

Fysische Chemie Oefeningenles 2 Entropie. Warmtecapaciteit van het zeewater (gelijk aan zuiver water): C p,m = 75.29 J K 1 mol 1.

Fysische Chemie Oefeningenles 2 Entropie. Warmtecapaciteit van het zeewater (gelijk aan zuiver water): C p,m = 75.29 J K 1 mol 1. Fysische Chemie Oefeningenles 2 Entropie Vraag 1 Een matroos staat op een schip en pinkt een traan weg. De traan valt in zee. Wat is de entropieverandering van het universum? Maak logische schattingen

Nadere informatie

STUDIEHANDLEIDING THERMODYNAMICA REWIC HWTK

STUDIEHANDLEIDING THERMODYNAMICA REWIC HWTK SUDIEHANDLEIDING HERMODYNAMICA REWIC HWK Aan de hand van het werk van A.J.M. van Kimmenaede 2 Studiehandleiding hermodynamica REWIC HWK Introductie In de industrie speelt de kennis van de (toegepaste)

Nadere informatie

TWEEDE RONDE NATUURKUNDE OLYMPIADE 2019 TOETS APRIL 2019 Tijdsduur: 1h45

TWEEDE RONDE NATUURKUNDE OLYMPIADE 2019 TOETS APRIL 2019 Tijdsduur: 1h45 TWEEDE RONDE NATUURKUNDE OLYMPIADE 2019 TOETS 1 17 APRIL 2019 Tijdsduur: 1h45 Enige constanten en dergelijke MECHANICA 1 Twee prisma`s. (4 punten) Twee gelijkvormige prisma s met een hoek α van 30 hebben

Nadere informatie

Hoofdstuk 11: Irreversibiliteit

Hoofdstuk 11: Irreversibiliteit Hoofdstuk 11: Irreversibiliteit 11.1 EVENWICHTIGE PROCESSEN 11.1.1 DEFINITIE Wanneer men van een begintoestand naar een eindtoestand gaat spreekt men over een toestandsverandering of een PROCES. Een evenwichtig

Nadere informatie

Opgave 1 Afdaling. Opgave 2 Fietser

Opgave 1 Afdaling. Opgave 2 Fietser Opgave 1 Afdaling Een skiër daalt een 1500 m lange helling af, het hoogteverschil is 300 m. De massa van de skiër, inclusief de uitrusting, is 86 kg. De wrijvingskracht met de sneeuw is gemiddeld 4,5%

Nadere informatie

MINISTERIE VAN ONDERWIJS, WETENSCHAP EN CULTUUR UNIFORM EXAMEN HAVO 2015

MINISTERIE VAN ONDERWIJS, WETENSCHAP EN CULTUUR UNIFORM EXAMEN HAVO 2015 MINISTERIE VAN ONDERWIJS, WETENSCHAP EN CULTUUR UNIFORM EXAMEN HAVO 2015 VAK : NATUURKUNDE DATUM : DINSDAG 23 JUNI 2015 TIJD : 07.45 10.45 Aantal opgaven: 5 Aantal pagina s: 6 Controleer zorgvuldig of

Nadere informatie

Q l = 23ste Vlaamse Fysica Olympiade. R s. ρ water = 1, kg/m 3 ( ϑ = 4 C ) Eerste ronde - 23ste Vlaamse Fysica Olympiade 1

Q l = 23ste Vlaamse Fysica Olympiade. R s. ρ water = 1, kg/m 3 ( ϑ = 4 C ) Eerste ronde - 23ste Vlaamse Fysica Olympiade 1 Eerste ronde - 3ste Vlaamse Fysica Olympiade 3ste Vlaamse Fysica Olympiade Eerste ronde. De eerste ronde van deze Vlaamse Fysica Olympiade bestaat uit 5 vragen met vier mogelijke antwoorden. Er is telkens

Nadere informatie

Δh c = 2000 +c. u = c cosα [m/s] 2 α 1 = intreehoek [ ] u = schoepsnelheid [m/s] c 1 = intreesnelheid [m/s] c 2 = uittrede snelheid [m/s] 2.

Δh c = 2000 +c. u = c cosα [m/s] 2 α 1 = intreehoek [ ] u = schoepsnelheid [m/s] c 1 = intreesnelheid [m/s] c 2 = uittrede snelheid [m/s] 2. Formule van Zeuner: 0 0 a c = 000 Δh +c Hierin is: c 0 = de theoretische uitstroomsnelheid van de in m/s. h 0 = de theoretische of isentropische warmteval in kj/kg. c a = de aanstroomsnelheid van de van

Nadere informatie

-- zie vervolg volgende pagina --

-- zie vervolg volgende pagina -- PT-1 hertentamen, 13-08-2013, 9:00-12:00 Cursus: 4051PRTE1Y Procestechnologie 1 Docenten: F. Kapteijn & V. van Steijn Lees elke vraag goed door voordat je begint Schrijf op elk blad in ieder geval je naam

Nadere informatie

0.II.1 Thermodynamica: oefeningen - oplossingen

0.II.1 Thermodynamica: oefeningen - oplossingen 0.II.1 Thermodynamica: oefeningen - oplossingen Olivier Rosseel 15 november 2004 Samenvatting Hier vind je de opgeloste oefeningen thermodynamica van hoofdstuk II. Breng mij op de hoogte van eventuele

Nadere informatie

Richard Mollier (1863-1935)

Richard Mollier (1863-1935) Gaswet & Mollier College 2: h-x diagram voor vochtige lucht Richard Mollier (1863-1935) Hoogleraar TU-Dresden Thermodynamica, onderzoek naar eigenschappen van water stoom Diagrammen: H-S diagram Stoomtabellen

Nadere informatie

Klimaatbeheersing (3)

Klimaatbeheersing (3) Klimaatbeheersing (3) E. Gernaat (ISBN 978-90-808907-6-3) 1 Het airco-koelproces als kringloopproces 1.1 Het ph-diagram Het koelproces zoals in de auto-airco plaatsvindt maakt gebruik van de toestandsverandering

Nadere informatie

Eindtoets 3BTX1: Thermische Fysica. Datum: 12 augustus 2014 Tijd: uur Locatie: Matrix Atelier 3

Eindtoets 3BTX1: Thermische Fysica. Datum: 12 augustus 2014 Tijd: uur Locatie: Matrix Atelier 3 Eindtoets 3BTX: Thermische Fysica Datum: augustus 04 Tijd: 4.00-7.00 uur Locatie: Matrix Atelier 3 Deze toets bestaat uit 3 opgaven. Begin de beantwoording van elke opgave op een nieuw antwoordvel. Een

Nadere informatie

Hoofdstuk 4: Dampen 4.1 AGGREGATIETOESTANDEN SMELTEN EN STOLLEN SMELTPUNT. Figuur 4.1: Smelten zuivere stof

Hoofdstuk 4: Dampen 4.1 AGGREGATIETOESTANDEN SMELTEN EN STOLLEN SMELTPUNT. Figuur 4.1: Smelten zuivere stof Hoofdstuk 4: Dampen 4.1 AGGREGATIETOESTANDEN 4.1.1 SMELTEN EN STOLLEN SMELTPUNT Wanneer we een zuivere vaste stof (figuur 4.1) verwarmen zal de temperatuur ervan stijgen. Na enige tijd wordt de vaste stof

Nadere informatie

6-TSO-IW-c Warmtepompen 1. Warmtepompen

6-TSO-IW-c Warmtepompen 1. Warmtepompen 6-TSO-IW-c Warmtepompen 1 Inleiding Warmtepompen Een warmtepomp is een systeem dat warmte opneemt bij lage temperaturen en deze vrijstelt bij hogere temperaturen. Het is dus een zeer energie-efficiënt

Nadere informatie

PT-1 tentamen, , 9:00-12:00. Cursus: 4051PRTE1Y Procestechnologie 1 Docenten: F. Kapteijn & V. van Steijn

PT-1 tentamen, , 9:00-12:00. Cursus: 4051PRTE1Y Procestechnologie 1 Docenten: F. Kapteijn & V. van Steijn PT-1 tentamen, 26-06-2013, 9:00-12:00 Cursus: 4051PRTE1Y Procestechnologie 1 Docenten: F. Kapteijn & V. van Steijn Lees elke vraag goed door voordat je begint Schrijf op elk blad in ieder geval je naam

Nadere informatie