Solid Mechanics (4MB00): Tussentoets 1 3

Maat: px
Weergave met pagina beginnen:

Download "Solid Mechanics (4MB00): Tussentoets 1 3"

Transcriptie

1 Solid Mechanics (4MB00): Tussentoets 1 3 Datum: 17 februari 2016 Tijd: 15:45 17:00 uur Locatie: Matrix Atelier Naam student: Ident. nr.: Deze toets bestaat uit 20 vragen. Elke vraag dient beantwoord te worden met een getal (tenzij anders is aangegeven) ingevuld in het daarvoor aangewezen vakje. Antwoorden als 40,1/7 of 1/ 5 zijn goed. Alleen het finale antwoord mag worden ingevuld, dus geen tussenbewerkingen! Tussenbewerkingen mogen enkel op het kladformulier gemaakt worden, maar daar worden geen punten voor gegeven. Alleen het finale antwoord in het vakje telt voor het resultaat. Na afloop van de toets moeten deze bladen ingeleverd worden, voorzien van jouw naam en identiteitsnummer. Een juist antwoord telt voor 0,5 punten; een fout antwoord krijgt 0 punten. Het gebruik van dictaat, oefeningenbundel, uitwerkingen, aantekeningen, rekenmachine en notebook is niet toegestaan. Iedere vorm van netwerkverkeer of andere communicatie is eveneens niet toegestaan. Succes! In de volgende vragen wordt gebruik gemaakt van een orthonormale Cartesische basis{ e 1, e 2, e 3 }, tenzij anders is aangegeven. 1. Gegeven vector a = 2 e e 2, bereken de eenheidsvector in de richting van vector a. Geef de component in de richting van e 2 van het resultaat als antwoord. 2. Gegeven twee vectoren a = 2 e 1 +7 e 2 en b = 8 e 1 +5 e e 3, bereken a+8 b. Geef de component in de richting van e 1 van het resultaat als antwoord. 3. Gegeven drie vectoren a = 2 e 1 +7 e 2, b = 8 e 1 +5 e e 3 en c = 10 e 1 + e 2 bereken het product ( a b) c. 4. Gegeven twee vectoren a = 2 e 1 +7 e 2 en b = 8 e 1 +5 e e 3, bereken a b. 5. Gegeven twee vectoren a = 2 e e 2 en b = 8 e e e 3, bereken het transpose van het dyadisch product ( a b) T. Geef de component e 2 e 1 van het resultaat als antwoord. 3.1

2 Naam student: Ident. nr.: 6. Wat is de geometrische betekenis van ( a b) c, met a, b en c willekeurige vectoren? Omcirkel het juiste antwoord. a. het volume opgespannen door vectoren a, b en c b. de lengte van vector c c. de oppervlakte van de parallelogram opgespannen door vectoren a en b d. de oppervlakte van de parallelogram opgespannen door vectoren b en c 7. Gegeven tweede-orde tensor A = e 1 e 1 + e 1 e 2 +2 e 1 e 3 + e 2 e 1 +4 e 2 e 2 +8 e 3 e 1, bereken de derde invariant van A, J 3 (A). 8. Gegeven tweede-orde tensora = e 1 e 1 + e 1 e 2 +2 e 1 e 3 + e 2 e 1 +4 e 2 e 2 +8 e 3 e 1, bereken het deviatorisch deel van A, A d. Geef de component e 1 e 1 van het resultaat als antwoord. 9. Gegeven tweede-orde tensor A = e 1 e 1 + e 1 e e 1 e 3 + e 2 e e 2 e e 3 e 1, bereken de trace van A in het kwadraat, tr(a 2 ). 10. Gegeven twee tweede-orde tensoren A = e 1 e 1 + e 1 e e 1 e 3 + e 2 e e 2 e e 3 e 1 en B = 3 e 3 e 1 +8 e 3 e 3, bereken A : B. 11. Gegeven tweede-orde tensor A = e 1 e 1 + e 1 e 2 +2 e 1 e 3 + e 2 e 1 +4 e 2 e e 3 e 1 en vector d = e 1, bereken A d. 12. Gegeven tweede-orde tensor A = e 1 e 1 + e 1 e 2 +2 e 1 e 3 + e 2 e 1 +4 e 2 e e 3 e 1 en vector d = e 1, bereken A d. Geef de component e 1 e 2 van het resultaat als antwoord. 13. Gegeven vierde-orde tensor 4 C = 9 e 3 e 1 e 1 e 1 +4 e 1 e 1 e 2 e 3 +7 e 3 e 1 e 1 e 3 +9 e 2 e 2 e 2 e 2 + e 2 e 2 e 1 e 2 en tweede-orde tensor A = e 1 e 1 + e 1 e e 1 e 3 + e 2 e e 2 e e 3 e 1, bereken 4 C : A. Geef de component e 1 e 1 van het resultaat als antwoord. 14. Tweede-orde tensor E is gegeven t.o.v. een orthonormale basis { ε 1, ε 2, ε 3 } als E = ε 1 ε 1 + ε 2 ε 1, met ε 1 = 3 5 e e 2, ε 2 = 4 5 e e 2, ε 3 = e 3. Schrijf de tensor E t.o.v. de Cartesische basis { e 1, e 2, e 3 }. Geef de component e 2 e 1 van het resultaat als antwoord. 3.2

3 Naam student: Ident. nr.: 15. Gegeven is de tweede-orde tensor D = 3 e 1 e 1 +4( e 1 e 3 + e 3 e 1 )+3 e 3 e 3. Bereken de eigenwaarden van D. Geef de kleinste eigenwaarde vandals antwoord. 16. Gegeven is de tweede-orde tensord = 3 e 1 e 1 +4( e 1 e 3 + e 3 e 1 )+3 e 3 e 3. Welke van de onderstaande vectoren is een eigenvector van tensor D? Omcirkel het juiste antwoord. a. 2 e e 3 b. 2 e e 3 c. 2 e 1 1 e Wat is het resultaat van het product ( a) 4C : ( u) voor willekeurige scalarveld a, vectorveld u en vierde-orde tensor 4 C? Omcirkel het juiste antwoord. a. een tweede-orde tensor b. een vierde-order tensor c. een scalar d. een vector 18. Een tensorveld is gegeven als σ = 100y x 2 +y 2( e x e z + e z e x )+ 100x x 2 +y 2( e y e z + e z e y ) [MPa] met (x,y,z) de coördinaten t.o.v. de Cartesische basis { e x, e y, e z }. Bereken de divergentie σ van dit tensorveld. Geef de component e x van het resultaat als antwoord. 19. Een vectorveld is gegeven t.o.v. een cilindrische basis { e r (θ), e θ (θ), e z } als u = r e r (θ). Bereken de gradiënt u van dit vectorveld. Geef de component e θ e θ van het resultaat als antwoord. 20. Welke van de onderstaande productregels geldt voor een willekeurig differentieerbaar tensorveld A en vectorveld a? Omcirkel het juiste antwoord. a. (A a) = A a+a T a b. (A a) = A a+a a c. (A a) = A a+ a A T d. (A a) = A a+ a A 3.3

4

5 Kladpapier (afscheuren, wordt niet nagekeken)

6 Kladpapier (afscheuren, wordt niet nagekeken)

7 Uitwerkingen Solid Mechanics (4MB00): Tussentoets 1 3 Datum: 17 februari 2016 Tijd: 15:45 17:00 uur Locatie: Matrix Atelier Variant 3 1. e = a/ a = (2 e 1 +7 e 2 )/ 53 = (2/ 53 e 1 + 7/ 53 e 2 ) 2. a+8 b = 66 e e e 3 3. ( a b) c = (70 e 1 20 e 2 46 e 3 ) (10 e 1 + e 2 ) = a b = ( a b) T = 16 e 1 e e 1 e e 2 e e 2 e e 3 e e 3 e 2 6. a. het volume opgespannen door vectoren a, b en c 7. J 3 (A) = det(a) = A d = A 1 3 tr(a)i = 2 3 e 1 e 1 + e 1 e 2 +2 e 1 e 3 + e 2 e e 2 e 2 +8 e 3 e e 3 e 3 9. tr(a 2 ) = tr(18 e 1 e 1 +5 e 1 e 2 +2 e 1 e 3 +5 e 2 e e 2 e 2 +2 e 2 e 3 +8 e 3 e 1 +8 e 3 e e 3 e 3 ) = A : B = A d = e 1 + e 2 +8 e 3 = A d = e 1 e e 1 e 2 4 e 2 e C : A = 0 e 1 e e 3 e e 2 e E = 3 25 e 1 e e 1 e e 2 e e 2 e λ 1 = 5, λ 2 = 0,λ 3 = b. D n = ( 3 e 1 e 1 + 4( e 1 e 3 + e 3 e 1 ) + 3 e 3 e 3 ) ( ) e e 3 ( 2 5 e e 3 ) = 2 5 e 1 5 e 3 = 17. d. een vector 18. σ = 200xy (x 2 +y 2 ) 2 e z 200xy (x 2 +y 2 ) 2 e z = 0 = 0 e x +0 e y +0 e z 19. u = (r e r (θ)) = e r e r + 1 e θ e θ 20. c. (A a) = A a+ a A T 3.1

Solid Mechanics (4MB00): Tussentoets 1 1

Solid Mechanics (4MB00): Tussentoets 1 1 Solid Mechanics (4MB00): Tussentoets 1 1 Datum: 17 februari 2016 Tijd: 1:4 17:00 uur Locatie: Matrix Atelier Naam student: Ident. nr.: Deze toets bestaat uit 20 vragen. Elke vraag dient beantwoord te worden

Nadere informatie

Solid Mechanics (4MB00): Tussentoets 1 4

Solid Mechanics (4MB00): Tussentoets 1 4 Solid Mechanics (4MB00): Tussentoets 1 4 Datum: 17 februari 2016 Tijd: 15:45 17:00 uur Locatie: Matrix Atelier Naam student: Ident. nr.: Deze toets bestaat uit 20 vragen. Elke vraag dient beantwoord te

Nadere informatie

Solid Mechanics (4MB00): Tussentoets 1 2

Solid Mechanics (4MB00): Tussentoets 1 2 Solid Mechanics (4MB00): Tussentoets 1 2 Datum: 17 februari 2016 Tijd: 1:4 17:00 uur Locatie: Matrix Atelier Naam student: Ident. nr.: Deze toets bestaat uit 20 vragen. Elke vraag dient beantwoord te worden

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Dit tentamen bestaat uit 4 open vragen, en kort-antwoord vragen. De uitwerkingen van de open vragen dienen volledig, duidelijk geformuleerd

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Lineaire Algebra voor BMT (2DM20) op vrijdag 12 juni 2009, 9.00 Dit tentamen bestaat uit 5 open vragen, en 4 kort-antwoord vragen.

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Lineaire Algebra voor BMT en TIW (DM) op dinsdag 9 april 8, 9.. uur. Dit tentamen bestaat uit 6 open vragen, en 4 kort-antwoord

Nadere informatie

Tentamen Lineaire Algebra voor BMT en TIW (2DM20) op vrijdag 11 mei 2007, 9:00 12:00 uur.

Tentamen Lineaire Algebra voor BMT en TIW (2DM20) op vrijdag 11 mei 2007, 9:00 12:00 uur. TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Lineaire Algebra voor BMT en TIW (DM) op vrijdag mei 7, 9: : uur. U mag bij het tentamen geen computer (notebook, laptop), boeken

Nadere informatie

TENTAMEN LINEAIRE ALGEBRA 1 donderdag 23 december 2004,

TENTAMEN LINEAIRE ALGEBRA 1 donderdag 23 december 2004, TENTAMEN LINEAIRE ALGEBRA donderdag december 004, 0.00-.00 Bij elke vraag dient een berekening of motivering worden opgeschreven. Het tentamen bestaat uit twee gedeelten: de eerste drie opgaven betreffen

Nadere informatie

Voorblad bij tentamen

Voorblad bij tentamen Studentnaam: Studentnummer: Voorblad bij tentamen (in te vullen door de examinator) Vaknaam: Solid Mechanics Vakcode: 4MB00 Datum: 14 april 016 Begintijd: 9:00 Eindtijd: 1:00 Aantal pagina s: 8 (excl.

Nadere informatie

Voorblad bij tentamen

Voorblad bij tentamen Studentnaam: Studentnummer: Voorblad bij tentamen (in te vullen door de examinator) Vaknaam: Solid Mechanics Vakcode: 4MB00 Datum: 5 juni 015 Begintijd: 18:00 Eindtijd: 1:00 Aantal pagina s: 7 (excl. dit

Nadere informatie

Voorblad bij tentamen

Voorblad bij tentamen Studentnaam: Studentnummer: Voorblad bij tentamen (in te vullen door de examinator) Vaknaam: Solid Mechanics Vakcode: 4MB00 Datum: 16 april 015 Begintijd: 9:00 Eindtijd: 1:00 Aantal pagina s: 6 (excl.

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamen Lineaire Algebra voor ST (2DS06) op , uur.

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamen Lineaire Algebra voor ST (2DS06) op , uur. TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Lineaire Algebra voor ST (DS) op --9,.-7. uur. Aan dit tentamen gaat een MATLAB-toets van een half uur vooraf. Pas als de laptops

Nadere informatie

Tentamen Toegepaste elasticiteitsleer (4A450)

Tentamen Toegepaste elasticiteitsleer (4A450) Tentamen Toegepaste elasticiteitsleer (4A450) Datum: 3 juni 003 Tijd: 4:00 7:00 uur Locatie: Hal Matrixgebouw Dit tentamen bestaat uit drie opgaven. Het gebruik van het dictaat, oefeningenbundel en notebook

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Lineaire Algebra voor BMT en TIW (DM) op maandag juni Dit tentamen bestaat uit 6 open vragen, en 4 kort-antwoord vragen. De

Nadere informatie

ONBETWIST ONderwijs verbeteren met WISkunde Toetsen Voorbeeldtoetsen Lineaire Algebra Deliverable 3.10 Henk van der Kooij ONBETWIST Deliverable 3.

ONBETWIST ONderwijs verbeteren met WISkunde Toetsen Voorbeeldtoetsen Lineaire Algebra Deliverable 3.10 Henk van der Kooij ONBETWIST Deliverable 3. ONBETWIST ONderwijs verbeteren met WISkunde Toetsen Voorbeeldtoetsen Lineaire Algebra Deliverable 3.10 Henk van der Kooij ONBETWIST Deliverable 3.8 ONBETWIST ONderwijs verbeteren met WISkunde Toetsen Inleiding

Nadere informatie

Voor de drie opgaven kunt u maximaal 100 punten scoren. De te behalen punten zijn bij elke deelvraag vermeld.

Voor de drie opgaven kunt u maximaal 100 punten scoren. De te behalen punten zijn bij elke deelvraag vermeld. Solid Mechanics (4MB00) Faculteit : Werktuigbouwkunde Datum : 17 april 2014 Tijd : 9.00-12.00 uur Dit tentamen bestaat uit 3 opgaven. De antwoorden moeten worden gegeven in de omlijnde kaders op de opgavebladen.

Nadere informatie

UITWERKINGEN 1 2 C : 2 =

UITWERKINGEN 1 2 C : 2 = UITWERKINGEN. De punten A, B, C, D in R zijn gegeven door: A : 0, B : Zij V het vlak door de punten A, B, C. C : D : (a) ( pt) Bepaal het oppervlak van de driehoek met hoekpunten A, B, C. Oplossing: De

Nadere informatie

Vectorruimten met inproduct

Vectorruimten met inproduct Hoofdstuk 3 Vectorruimten met inproduct 3. Inleiding In R 2 en R 3 hebben we behalve de optelling en scalairvermenigvuldiging nog meer structuur ; bij een vector kun je spreken over zijn lengte en bij

Nadere informatie

Algemene relativiteitstheorie

Algemene relativiteitstheorie Algemene relativiteitstheorie HOVO cursus Jo van den Brand Les 2: 12 november 2015 Copyright (C) Vrije Universiteit 2015 Ruimte: verzameling met structuur 3D varieteit kan lokaal Euclidisch zijn 4D ruimtetijd

Nadere informatie

De n-dimensionale ruimte Arjen Stolk

De n-dimensionale ruimte Arjen Stolk De n-dimensionale ruimte Arjen Stolk In het vorige college hebben jullie gezien wat R 2 (het vlak) is. Een vector v R 2 is een paar v = (x,y) van reële getallen. Voor vectoren v = (a,b) en w = (c,d) in

Nadere informatie

Examen G0O17E Wiskunde II (3sp) maandag 10 juni 2013, 8:30-11:30 uur. Bachelor Geografie en Bachelor Informatica

Examen G0O17E Wiskunde II (3sp) maandag 10 juni 2013, 8:30-11:30 uur. Bachelor Geografie en Bachelor Informatica Examen GO7E Wiskunde II (3sp maandag juni 3, 8:3-:3 uur Bachelor Geografie en Bachelor Informatica Auditorium De Molen: A D Auditorium MTM3: E-Se Auditorium MTM39: Sh-Z Naam: Studierichting: Naam assistent:

Nadere informatie

Tussentijdse Toets Wiskunde 2 1ste bachelor Biochemie & Biotechnologie, Chemie, Geografie, Geologie en Informatica april 2011

Tussentijdse Toets Wiskunde 2 1ste bachelor Biochemie & Biotechnologie, Chemie, Geografie, Geologie en Informatica april 2011 Tussentijdse Toets Wiskunde ste bachelor Biochemie & Biotechnologie, Chemie, Geografie, Geologie en Informatica april Deze toets is bedoeld om u vertrouwd te maken met de wijze van ondervraging op het

Nadere informatie

compact weer te geven (ken ook een waarde toe aan n).

compact weer te geven (ken ook een waarde toe aan n). 1 HOVO: Gravitatie en kosmologie OPGAVEN WEEK 2 - Oplossingen Opgave 1: Er geldt n 3 en we hebben de compacte uitdrukking y i a r i x r, waarbij we gebruik maken van de Einsteinsommatieconventie. a Schrijf

Nadere informatie

Examen G0O17D Wiskunde II (6sp) maandag 10 juni 2013, 8:30-12:30 uur

Examen G0O17D Wiskunde II (6sp) maandag 10 juni 2013, 8:30-12:30 uur Examen GO7D Wiskunde II (6sp maandag juni 3, 8:3-:3 uur Bachelor Biochemie & Biotechnologie Bachelor hemie, Bachelor Geologie Schakelprogramma Master Biochemie & Biotechnologie en Schakelprogramma Master

Nadere informatie

Tentamen Fundamentals of Deformation and Linear Elasticity (4A450)

Tentamen Fundamentals of Deformation and Linear Elasticity (4A450) Tentamen Fundamentals of Deformation and Linear Elasticity (4A450) Datum: 6 maart 00 Tijd: 14:00 17:00 uur Locatie: Matrixgebouw, zaal 1.60 Dit tentamen bestaat uit drie opgaven. Het gebruik van het dictaat,

Nadere informatie

Tentamen Lineaire Algebra B

Tentamen Lineaire Algebra B Tentamen Lineaire Algebra B 29 juni 2012, 9-12 uur OPGAVEN Uitwerkingen volgen na de opgaven 1. Gegeven is de vectorruimte V = R[x] 2 van polynomen met reële coefficienten en graad 2. Op V hebben we een

Nadere informatie

11.0 Voorkennis V

11.0 Voorkennis V 11.0 Voorkennis V 8 6 4 3 6 3 0 5 W 8 1 1 12 2 1 16 4 3 20 5 4 V is een 2 x 4 matrix. W is een 4 x 3 matrix. Deze twee matrices kunnen met elkaar vermenigvuldigd worden. Want het aantal kolommen van matrix

Nadere informatie

Statica (WB/MT) college 2 Krachtvectoren. Guido Janssen

Statica (WB/MT) college 2 Krachtvectoren. Guido Janssen Statica (WB/MT) college 2 Krachtvectoren Guido Janssen G.c.a.m.janssen@tudelft.nl Scalairen en vectoren De wiskunde die wij nodig hebbben voor Statica maakt gebruik van twee soorten grootheden: Scalairen:

Nadere informatie

Lineaire algebra I (wiskundigen)

Lineaire algebra I (wiskundigen) Lineaire algebra I (wiskundigen) Toets, donderdag 22 oktober, 2009 Oplossingen (1) Zij V het vlak in R 3 door de punten P 1 = (1, 2, 1), P 2 = (0, 1, 1) en P 3 = ( 1, 1, 3). (a) Geef een parametrisatie

Nadere informatie

Tentamen Lineaire Algebra

Tentamen Lineaire Algebra Tentamen Lineaire Algebra 3 januari 214, 8:3-11:3 uur - Bij dit tentamen mogen dictaten en boeken niet gebruikt worden - Een eenvoudige rekenmachine, hoewel niet nodig, is toegestaan, maar geen grafische

Nadere informatie

Hertentamen WISN102 Wiskundige Technieken 2 Di 17 april 13:30 16:30

Hertentamen WISN102 Wiskundige Technieken 2 Di 17 april 13:30 16:30 Hertentamen WIN12 Wiskundige Technieken 2 Di 17 april 13:3 16:3 Normering voor 4 pt vragen (andere vragen naar rato): 4pt Goed begrepen en goed uitgevoerd met voldoende toelichting, eventueel enkele onbelangrijke

Nadere informatie

Algemene relativiteitstheorie

Algemene relativiteitstheorie Algemene relativiteitstheorie HOVO cursus Jo van den Brand Les 2: 12 november 2015 Copyright (C) Vrije Universiteit 2015 Ruimte: verzameling met structuur 3D varieteit kan lokaal Euclidisch zijn 4D ruimtetijd

Nadere informatie

Vectormeetkunde in R 3

Vectormeetkunde in R 3 Vectormeetkunde in R Definitie. Een punt in R wordt gegeven door middel van drie coördinaten : P = (x, y, z). Een lijnstuk tussen twee punten P en Q voorzien van een richting noemen we een pijltje. Notatie

Nadere informatie

Samenvatting Lineaire Algebra, periode 4

Samenvatting Lineaire Algebra, periode 4 Samenvatting Lineaire Algebra, periode 4 Hoofdstuk 5, Eigenwaarden en eigenvectoren 5.1; Eigenvectoren en eigenwaarden Definitie: Een eigenvector van een n x n matrix A is een niet nulvector x zodat Ax

Nadere informatie

A = b c. (b) Bereken de oppervlakte van het parallellogram dat opgespannen wordt door b en c. Voor welke p is deze oppervlakte minimaal?

A = b c. (b) Bereken de oppervlakte van het parallellogram dat opgespannen wordt door b en c. Voor welke p is deze oppervlakte minimaal? Oplossing Tussentijdse toets Wiskunde II Vraag Zij A de matrix met kolomvectoren met p een vast reëel getal A = a b c a =, b =, c = p a Voor welke p R zijn de vectoren lineair afhankelijk? b Bereken de

Nadere informatie

V Kegelsneden en Kwadratische Vormen in R. IV.0 Inleiding

V Kegelsneden en Kwadratische Vormen in R. IV.0 Inleiding V Kegelsneden en Kwadratische Vormen in R IV.0 Inleiding V. Homogene kwadratische vormen Een vorm als H (, ) = 5 4 + 8 heet een homogene kwadratische vorm naar de twee variabelen en. Een vorm als K (,

Nadere informatie

Tentamen Fundamentals of Deformation and Linear Elasticity (4A450)

Tentamen Fundamentals of Deformation and Linear Elasticity (4A450) Tentamen Fundamentals of Deformation and Linear Elasticity (4A450) Datum: 22 november 2001 Tijd: 14:00 17:00 uur Locatie: Auditorium, zaal 9, 10, 15 en 16 Dit tentamen bestaat uit drie opgaven. Het gebruik

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamen Lineaire Algebra voor ST (2DS06) op 16-4-2012, 14.30-17.00 uur.

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamen Lineaire Algebra voor ST (2DS06) op 16-4-2012, 14.30-17.00 uur. TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Lineaire Algebra voor ST (DS6) op 6--,.-7. uur. Aan dit tentamen gaat een MATLAB-toets van een half uur vooraf. Pas als de laptops

Nadere informatie

Oefensommen tentamen Lineaire algebra 2 - december A =

Oefensommen tentamen Lineaire algebra 2 - december A = Oefensommen tentamen Lineaire algebra 2 - december 2012 Opg 1 De schaakbordmatrix A is de 8 bij 8 matrix 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 A = 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 0 1 0 1 0 1

Nadere informatie

Tentamen WISN102 Wiskundige Technieken 2 Do 1 feb :00 12:00

Tentamen WISN102 Wiskundige Technieken 2 Do 1 feb :00 12:00 Normering Tentamen WISN02 Wiskundige Technieken 2 Do feb 207 9:00 2:00 voor 4 pt vragen (andere vragen naar rato): 4pt Goed begrepen en goed uitgevoerd met voldoende toelichting, eventueel enkele onbelangrijke

Nadere informatie

Formule afleiding opgaven bij de cursus Algemene relativiteitstheorie Docent: Dr. H. (Harm) van der Lek

Formule afleiding opgaven bij de cursus Algemene relativiteitstheorie Docent: Dr. H. (Harm) van der Lek Formule afleiding opgaven bij de cursus Algemene relativiteitstheorie Docent: Dr. H. (Harm) van der Lek Dit document bevat aanwijzingen/aanmoedigingen voor het zelf doen van de afleidingen uit het curusmateriaal.

Nadere informatie

Voorblad bij tentamen

Voorblad bij tentamen Voorblad bij tentamen (in te vullen door de examinator) Vaknaam: MECHANICA Vakcode: 8MB09 Datum: 16 April 2015 Begintijd: 18.00 Eindtijd: 21.00 Aantal pagina s: 9 Aantal vragen: 10 Aantal te behalen punten/normering

Nadere informatie

WISKUNDE 5 PERIODEN. DATUM : 8 juni 2009

WISKUNDE 5 PERIODEN. DATUM : 8 juni 2009 EUROPEES BACCALAUREAAT 2009 WISKUNDE 5 PERIODEN DATUM : 8 juni 2009 DUUR VAN HET EXAMEN : 4 huur (240 minuten) TOEGESTANE HULPMIDDELEN : Formuleboekje voor de Europese scholen Niet-programmeerbare, niet-grafische

Nadere informatie

Geef niet alleen antwoorden, maar bewijs al je beweringen.

Geef niet alleen antwoorden, maar bewijs al je beweringen. Tentamen Lineaire Algebra donderdag 29 januari 205, 9.00-2.00 uur Het is niet toegestaan telefoons, computers, grafische rekenmachines (wel een gewone), dictaten, boeken of aantekeningen te gebruiken.

Nadere informatie

Examenvragen Meetkunde en lineaire algebra Tweede examenperiode

Examenvragen Meetkunde en lineaire algebra Tweede examenperiode Examenvragen Meetkunde en lineaire algebra Tweede examenperiode 2008-2009 Een rechte conoïde met als richtrechte de X-as, en als richtoppervlak de sfeer met middelpunt in (0, 16, 0) en straal 9. (1) Stel

Nadere informatie

Lineaire Algebra. Bovendriehoeks- en onderdriehoeks vorm: onder (boven) elke leidende term staan enkel nullen

Lineaire Algebra. Bovendriehoeks- en onderdriehoeks vorm: onder (boven) elke leidende term staan enkel nullen Lineaire Algebra Hoofdstuk 1: Stelsels Gelijkwaardige stelsels: stelsels met gelijke oplv Elementaire rijbewerkingen: 1. van plaats wisselen 2. externe vermenigvuldiging 3. interne optelling (2. en 3.:

Nadere informatie

Solid Mechanics (4MB00) Toets 2 versie 4

Solid Mechanics (4MB00) Toets 2 versie 4 Solid Mechanics (4MB00) Toets 2 versie 4 Faculteit : Werktuigbouwkunde Datum : 1 april 2016 Tijd : 10.45-12.30 uur Locatie : Matrix Deze toets bestaat uit 3 opgaven. De opgaven moeten worden gemaakt met

Nadere informatie

Relevante examenvragen , eerste examenperiode

Relevante examenvragen , eerste examenperiode Relevante examenvragen 2007 2008, eerste examenperiode WAAR/VALS Zijn de volgende uitspraken waar of vals? Geef een korte argumentatie (bewijs) of een tegenvoorbeeld, eventueel aangevuld met een figuur.

Nadere informatie

Aanvullingen van de Wiskunde

Aanvullingen van de Wiskunde 3de Bachelor EIT - de Bachelor Fysica Academiejaar 014-015 1ste semester 7 januari 015 Aanvullingen van de Wiskunde 1. Gegeven is een lineaire partiële differentiaalvergelijking van orde 1: a 1 (x 1,,

Nadere informatie

Eerste deeltentamen Lineaire Algebra A. De opgaven

Eerste deeltentamen Lineaire Algebra A. De opgaven Eerste deeltentamen Lineaire Algebra A 3 november 9, 3-6 uur Bij dit tentamen mogen dictaat en/of rekenmachine niet gebruikt worden. Schrijf op elk vel je naam, collegekaartnummer en naam van de practicumleider

Nadere informatie

WI1708TH Analyse 3. College 5 23 februari Challenge the future

WI1708TH Analyse 3. College 5 23 februari Challenge the future WI1708TH Analyse 3 College 5 23 februari 2015 1 Programma Vandaag Richtingsafgeleide (14.6) Gradiënt (14.6) Maximalisatie richtingsafgeleide (14.6) Raakvlak voor niveauoppervlakken (14.6) 2 Richtingsafgeleide

Nadere informatie

PROEFEXAMEN LINEAIRE ALGEBRA donderdag 17 november 2011

PROEFEXAMEN LINEAIRE ALGEBRA donderdag 17 november 2011 PROEFEXAMEN LINEAIRE ALGEBRA donderdag 17 november 2011 Familienaam:....................................................................... Voornaam:.........................................................................

Nadere informatie

Uitwerkingen tentamen lineaire algebra 2 13 januari 2017, 10:00 13:00

Uitwerkingen tentamen lineaire algebra 2 13 januari 2017, 10:00 13:00 Uitwerkingen tentamen lineaire algebra 3 januari 07, 0:00 3:00 Hint: Alle karakteristiek polynomen die je nodig zou kunnen hebben, hebben gehele nulpunten. Als dat niet het geval lijkt, dan heb je dus

Nadere informatie

Inwendig product, lengte en orthogonaliteit

Inwendig product, lengte en orthogonaliteit Inwendig product, lengte en orthogonaliteit We beginnen met een definitie : u u Definitie. Als u =. en v = u n v v. v n twee vectoren in Rn zijn, dan heet u v := u T v = u v + u v +... + u n v n het inwendig

Nadere informatie

De wiskunde van computerberekeningen. Jan Brandts Korteweg-de Vries Instituut voor Wiskunde Universiteit van Amsterdam.

De wiskunde van computerberekeningen. Jan Brandts Korteweg-de Vries Instituut voor Wiskunde Universiteit van Amsterdam. De wiskunde van computerberekeningen Jan Brandts Korteweg-de Vries Instituut voor Wiskunde Universiteit van Amsterdam 04 november 2015 Pluto en Charon New Horizons, launch date 19 January, 2006, speed

Nadere informatie

Voorblad bij tentamen

Voorblad bij tentamen Voorblad bij tentamen (in te vullen door de examinator) Vaknaam: MECHANICA Vakcode: 8MB09 Datum: 14 APRIL 2016 Begintijd: 18.00 Eindtijd: 21.00 Aantal pagina s: 10 Aantal vragen: 10 Aantal te behalen punten/normering

Nadere informatie

Tentamen lineaire algebra 2 18 januari 2019, 10:00 13:00 Uitwerkingen (schets)

Tentamen lineaire algebra 2 18 januari 2019, 10:00 13:00 Uitwerkingen (schets) Tentamen lineaire algebra 8 januari 9, : : Uitwerkingen (schets) Opgave. ( + punten) Gegeven is de matrix ( ) A =. (a) Bepaal een diagonaliseerbare matrix D en een nilpotente matrix N zodanig dat A = N

Nadere informatie

Hoofdstuk 3 : Determinanten

Hoofdstuk 3 : Determinanten (A5D) Hoofdstuk 3 : Determinanten Les : Determinanten Definitie 3. De determinant van de [2 x 2]-matrix A = ( a c det(a) = ad bc. b ) is een getal met waarde d a b Notatie : det(a) = = ad bc c d Voorbeeld

Nadere informatie

Vectoranalyse voor TG

Vectoranalyse voor TG college 6 collegejaar : 8-9 college : 6 build : 2 oktober 28 slides : 38 Vandaag Minecraft globe van remi993 2 erhaalde 3 4 intro VA Drievoudige integralen Section 5.5 Definitie Een rechthoekig blok is

Nadere informatie

Gravitatie en kosmologie

Gravitatie en kosmologie Gravitatie en kosmologie FEW cursus Jo van den Brand & Mark Beker Einsteinvergelijkingen: 7 oktober 009 Traagheid van gasdruk SRT: hoe hoger de gasdruk, des te moeilijker is het om het gas te versnellen

Nadere informatie

Tentamen Lineaire Algebra UITWERKINGEN

Tentamen Lineaire Algebra UITWERKINGEN Tentamen Lineaire Algebra 29 januari 29, 3:3-6:3 uur UITWERKINGEN Gegeven een drietal lijnen in R 3 in parametervoorstelling, l : 2, m : n : ν (a (/2 pt Laat zien dat l en m elkaar kruisen (dat wil zeggen

Nadere informatie

Uitwerkingen tentamen Lineaire Algebra 2 16 januari, en B =

Uitwerkingen tentamen Lineaire Algebra 2 16 januari, en B = Uitwerkingen tentamen Lineaire Algebra 2 16 januari, 2015 Deze uitwerkingen zijn niet volledig, maar geven het idee van elke opgave aan Voor een volledige oplossing moet alles ook nog duidelijk uitgewerkt

Nadere informatie

Voorblad bij tentamen

Voorblad bij tentamen Voorblad bij tentamen (in te vullen door de examinator) Vaknaam: MECHANICA Vakcode: 8MB09 Datum: 22 Januari 2015 Begintijd: 9.00 Eindtijd: 12.00 Aantal pagina s: 11 Aantal vragen: 10 Aantal te behalen

Nadere informatie

Eigenwaarden en Diagonaliseerbaarheid

Eigenwaarden en Diagonaliseerbaarheid Hoofdstuk 3 Eigenwaarden en Diagonaliseerbaarheid 31 Diagonaliseerbaarheid Zoals we zagen hangt de matrix die behoort bij een lineaire transformatie af van de keuze van een basis voor de ruimte In dit

Nadere informatie

1.1 Oefen opgaven. Opgave Van de lineaire afbeelding A : R 3 R 3 is gegeven dat 6 2, 5 4, A 1 1 = A = Bepaal de matrix van A.

1.1 Oefen opgaven. Opgave Van de lineaire afbeelding A : R 3 R 3 is gegeven dat 6 2, 5 4, A 1 1 = A = Bepaal de matrix van A. . Oefen opgaven Opgave... Van de lineaire afbeelding A : R 3 R 3 is gegeven dat A = Bepaal de matrix van A. 4, 4 A =, A = 3 4. In de volgende opgave wordt het begrip injectiviteit en surjectiviteit van

Nadere informatie

Antwoorden op de theoretische vragen in de examen voorbereiding

Antwoorden op de theoretische vragen in de examen voorbereiding Antwoorden op de theoretische vragen in de examen voorbereiding Theorie vraag Zij A een m n-matrix. Geef het verband tussen de formule voor de dimensie d van een niet-strijdig stelsel, d = n rang (A) (zie

Nadere informatie

2015-2016 Laatste nieuws 2DN60 Lineaire algebra en vectorcalculus

2015-2016 Laatste nieuws 2DN60 Lineaire algebra en vectorcalculus 2015-2016 Laatste nieuws 2DN60 Lineaire algebra en vectorcalculus Kwartiel 2, week 7.b Op het college op donderdagochtend 7 januari is behandeld: - hoek tussen vectoren en cosinus regel - driehoeksongelijkheid

Nadere informatie

ONDERWERPEN. LES 1 Spanningen en rekken in 3D en lineair elastisch gedrag. LES 2 Grensspanningshypothesen voor materialen

ONDERWERPEN. LES 1 Spanningen en rekken in 3D en lineair elastisch gedrag. LES 2 Grensspanningshypothesen voor materialen ONDERWERPEN LES 1 Spanningen en rekken in 3D en lineair LES 2 Grensspanningshypothesen voor materialen LES 3 Wapening bepalen voor beton 2D en 3D Geschreven door ir. J.W. Welleman Aangepast door dr. ir.

Nadere informatie

1e bachelor ingenieurswetenschappen Modeloplossing examen oefeningen analyse I, januari y = u sin(vt) dt. wordt voorgesteld door de matrix

1e bachelor ingenieurswetenschappen Modeloplossing examen oefeningen analyse I, januari y = u sin(vt) dt. wordt voorgesteld door de matrix e bachelor ingenieurswetenschappen Modeloplossing examen oefeningen analyse I, januari 9. Opgave: Bereken dt ( q) als p = (, ), q = (, ) en p u+v x = e t dt T : (u, v) (x, y) : u y = u sin(vt) dt Oplossing:

Nadere informatie

wordt de stelling van Pythagoras toegepast, in dit geval twee keer: eerst in de x y-vlakte en vervolgens in de vlakte loodrecht op de vector y.

wordt de stelling van Pythagoras toegepast, in dit geval twee keer: eerst in de x y-vlakte en vervolgens in de vlakte loodrecht op de vector y. Wiskunde voor kunstmatige intelligentie, 2 Les 5 Inproduct Als we het in de meetkunde (of elders) over afstanden en hoeken hebben, dan hebben we daar intuïtief wel een idee van. Maar wat is eigenlijk de

Nadere informatie

Uitwerking Proeftentamen Lineaire Algebra 1, najaar y y = 2x. P x. L(P ) y = x. 2/3 1/3 en L wordt t.o.v de standaardbasis gegeven door

Uitwerking Proeftentamen Lineaire Algebra 1, najaar y y = 2x. P x. L(P ) y = x. 2/3 1/3 en L wordt t.o.v de standaardbasis gegeven door Uitwerking Proeftentamen Lineaire Algebra, najaar 007. Gegeven is de lineaire afbeelding L : R R, die een punt P = (x, y) langs de lijn y = x projecteert op de lijn y = x: y y = x P x L(P ) y = x Bepaal

Nadere informatie

Inwendig product, lengte en orthogonaliteit in R n

Inwendig product, lengte en orthogonaliteit in R n Inwendig product, lengte en orthogonaliteit in R n Het inwendig product kan eenvoudig worden gegeneraliseerd tot : u v u v Definitie Als u = u n en v = v n twee vectoren in Rn zijn, dan heet u v := u T

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Lineaire Algebra en Lineaire Analyse (Y550/Y530), op donderdag 5 november 00, 9:00 :00 uur. De uitwerkingen van de opgaven dienen

Nadere informatie

Antwoordmodel - Kwadraten en wortels

Antwoordmodel - Kwadraten en wortels Antwoordmodel - Kwadraten en wortels Schrijf je antwoorden zo volledig mogelijk op. Tenzij anders aangegeven mag je je rekenmachine niet gebruiken. Sommige vragen zijn alleen voor het vwo, dit staat aangegeven.

Nadere informatie

Meetkunde en lineaire algebra

Meetkunde en lineaire algebra Meetkunde en lineaire algebra Daan Pape Universiteit Gent 7 juni 2012 1 1 Möbius transformaties De mobiustransformatie wordt gegeven door: z az + b cz + d (1) Als we weten dat het drietal (x 1, x 2, x

Nadere informatie

Voorblad bij tentamen

Voorblad bij tentamen Voorblad bij tentamen (in te vullen door de examinator) Vaknaam: numeriek analyse van continua Vakcode: 8MC09 Datum: 6 october 05 Begintijd: 9.00 Eindtijd:.00 Aantal pagina s: 6 Aantal vragen: 0 Aantal

Nadere informatie

Solid Mechanics (4MB00) Toets 2 versie 1

Solid Mechanics (4MB00) Toets 2 versie 1 Solid Mechanics (4MB00) Toets 2 versie 1 Faculteit : Werktuigbouwkunde Datum : 1 april 2015 Tijd : 13.45-15.30 uur Locatie : Matrix Atelier Deze toets bestaat uit 3 opgaven. De opgaven moeten worden gemaakt

Nadere informatie

Tentamen lineaire algebra voor BWI dinsdag 17 februari 2009, uur.

Tentamen lineaire algebra voor BWI dinsdag 17 februari 2009, uur. Vrije Universiteit Amsterdam Faculteit der Exacte Wetenschappen Afdeling Wiskunde Tentamen lineaire algebra voor BWI dinsdag 7 februari 9, 8.-.5 uur. ELK ANTWOORD DIENT TE WORDEN BEARGUMENTEERD. Er mogen

Nadere informatie

Uitwerkingen tentamen Lineaire Algebra 2 16 januari, en B =

Uitwerkingen tentamen Lineaire Algebra 2 16 januari, en B = Uitwerkingen tentamen Lineaire Algebra 2 16 januari, 215 Deze uitwerkingen zijn niet volledig, maar geven het idee van elke opgave aan. Voor een volledige oplossing moet alles ook nog duidelijk uitgewerkt

Nadere informatie

Tentamen Quantum Mechanica 2

Tentamen Quantum Mechanica 2 Tentamen Quantum Mechanica 9 juni 5 Het tentamen bestaat uit 4 opgaven, waarmee in totaal 9 punten zijn te verdienen. Schrijf op elk vel dat je inlevert je naam, voorletters en studentnummer.. (a) (5 punten)

Nadere informatie

Gravitatie en kosmologie

Gravitatie en kosmologie Gravitatie en kosmologie FEW cursus Jo van den Brand & Laura van der Schaaf Differentiaaltopologie: 15 september 2014 Inhoud Inleiding Overzicht Klassieke mechanica Galileo, Newton Lagrange formalisme

Nadere informatie

Geadjungeerde en normaliteit

Geadjungeerde en normaliteit Hoofdstuk 12 Geadjungeerde en normaliteit In het vorige hoofdstuk werd bewezen dat het voor het bestaan van een orthonormale basis bestaande uit eigenvectoren voldoende is dat T Hermites is (11.17) of

Nadere informatie

Examenvragen eerste zittijd academiejaar Vraag 1 (op 6 punten) Gegeven:

Examenvragen eerste zittijd academiejaar Vraag 1 (op 6 punten) Gegeven: Examenvragen eerste zittijd academiejaar 2010-2011 Vraag 1 (op 6 punten) de vectorruimte V = {A R 3 3 tr(a) = 0 en a 12 = a 21, a 13 = a 32, a 23 = a 31 }; de afbeelding T : V V, A A T A. (1) Toon aan

Nadere informatie

Ruitjes vertellen de waarheid

Ruitjes vertellen de waarheid Ruitjes vertellen de waarheid Opdracht 1 Van fouten kun je leren Van fouten kun je leren, jazeker. Vooral als je héél goed weet wat er fout ging. Vandaag leer je handige formules begrijpen door kijken

Nadere informatie

Speciale relativiteitstheorie

Speciale relativiteitstheorie Speciale relativiteitstheorie en hoe u die zelf had kunnen bedenken. HOVO Utrecht Les 5 en 6: Tensor Formulering Elektromagnetisme Dr. Harm van der Lek vdlek@vdlek.nl Natuurkunde hobbyist Programma 1 1.

Nadere informatie

Lineaire Algebra voor W 2Y650

Lineaire Algebra voor W 2Y650 Lineaire Algebra voor W 2Y650 Docent: L. Habets HG 8.09, Tel: 040-2474230, Email: l.c.g.j.m.habets@tue.nl http://www.win.tue.nl/wsk/onderwijs/2y650 1 Eigenwaarden en eigenvectoren Zij A een n n matrix.

Nadere informatie

Overzicht. Eigenwaarden. Beurzen en afhankelijkheid. Eigenwaarden: Intro

Overzicht. Eigenwaarden. Beurzen en afhankelijkheid. Eigenwaarden: Intro Overzicht Eigenwaarden VU Numeriek Programmeren. Charles Bos Vrije Universiteit Amsterdam c.s.bos@vu.nl, A april Waarom? Voorbeelden Eigenwaarden/eigenvectoren Hoe vind ik ze? Polynoom Powermethode Andere

Nadere informatie

WI1808TH1/CiTG - Lineaire algebra deel 1

WI1808TH1/CiTG - Lineaire algebra deel 1 WI1808TH1/CiTG - Lineaire algebra deel 1 College 10 13 oktober 2016 1 Samenvatting Hoofdstuk 4.1 Een constante λ is een eigenwaarde van een n n matrix A als er een niet-nul vector x bestaat, zodat Ax =

Nadere informatie

2 Vectorrekening - D. Aerts, P. Bueken, D. Luyckx, C. Reynaerts

2 Vectorrekening - D. Aerts, P. Bueken, D. Luyckx, C. Reynaerts ÀÓ Ö Ú ÖØ ÓÓÐ ÒØÛ ÖÔ Ò ÙÐØ Ø Ï Ø Ò ÔÔ Ò Î ÖÓ Ô ÌÓ Ô Ø Ò Ü Ø Ï Ø Ò ÔÔ Ò Î ØÓÖÖ Ò Ò º ÖØ Èº Ù Ò º ÄÙÝ Ü º Ê ÝÒ ÖØ HZS-OE5-NW142 (suppl.) - Reeks 2 Eerste jaar Bachelor Nautische Wetenschappen Versie 14.4

Nadere informatie

Toets 3 Calculus 1 voor MST, 4051CALC1Y dinsdag 31 oktober 2017, 13:30 16:30 uur

Toets 3 Calculus 1 voor MST, 4051CALC1Y dinsdag 31 oktober 2017, 13:30 16:30 uur Toets 3 Calculus 1 voor MST, 4051CALC1Y dinsdag 31 oktober 2017, 13:30 16:30 uur Technische Universiteit Delft, Delft Institute of Applied Mathematics Naam: Groep (omcirkel): (Leids) studentnummer: A (Keijzer)

Nadere informatie

UITWERKINGEN d. Eliminatie van a geeft d. Eliminatie van b,

UITWERKINGEN d. Eliminatie van a geeft d. Eliminatie van b, UITWERKINGEN 1. Gegeven in R 3 zijn de punten P = (1, 1, ) t en Q = ( 2,, 1) t en het vlak V gegeven door de vergelijking 2x 1 x 2 + x 3 = 1. Zij l de lijn door P loodrecht op V en m de lijn door Q loodrecht

Nadere informatie

Hoofdstuk 3 : Determinanten

Hoofdstuk 3 : Determinanten Hoofdstuk 3 : Determinanten Paragraaf 3.2 : Determinanten (Les ) Definitie determinant aa bb De determinant van de [2 x 2]-matrix AA = is een getal met waarde cc dd det(a) = ad bc. aa bb Notatie : dddddd(aa)

Nadere informatie

College WisCKI. Albert Visser. 16 januari, Department of Philosophy, Faculty Humanities, Utrecht University. Loodrechte Projectie

College WisCKI. Albert Visser. 16 januari, Department of Philosophy, Faculty Humanities, Utrecht University. Loodrechte Projectie College WisCKI Albert Visser Department of Philosophy, Faculty Humanities, Utrecht University 16 januari, 2012 1 Overview 2 Overview 2 Overview 2 Overview 3 Zij V een deelruimte met basis v 1,..., v k.

Nadere informatie

CTB1002-D2 Lineaire Algebra 2

CTB1002-D2 Lineaire Algebra 2 CTB00-D Lineaire Algebra Juli 03 Augustus 03 Juli 0 Augustus 0 Juli 0 Augustus 0 Juli 00 Augustus 00 Tentamenbundel Civiele Techniek Het Gezelschap "Practische Studie" Technische Universiteit Delft Faculteit

Nadere informatie

Examen Lineaire Algebra en Meetkunde Tweede zit (13:30-17:30)

Examen Lineaire Algebra en Meetkunde Tweede zit (13:30-17:30) Examen Lineaire Algebra en Meetkunde Tweede zit 2016-2017 (13:30-17:30) 1 Deel gesloten boek (theorie) (5.5pt) - indienen voor 14u30 (0.5pt) Geef de kleinste kwadratenoplossing van het stelsel AX = d,

Nadere informatie

Examenvragen Meetkunde en lineaire algebra Eerste examenperiode

Examenvragen Meetkunde en lineaire algebra Eerste examenperiode Examenvragen Meetkunde en lineaire algebra Eerste examenperiode 2008-2009 Door rotatie van de rechte r die bepaald wordt door de punten P(3, 1, 2) en Q(1, 1, 2) omheen de rechte s die gaat door het punt

Nadere informatie

Algemene relativiteitstheorie

Algemene relativiteitstheorie Algemene relativiteitstheorie en hoe u die zelf had kunnen bedenken. HOVO Utrecht les 3 en 4: Covariant differentiëren en kromming Dr. Harm van der Lek vdlek@vdlek.nl Natuurkunde hobbyist Programma 1 1.

Nadere informatie

Lineaire Algebra voor ST

Lineaire Algebra voor ST Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9. email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/ds6 Technische Universiteit Eindhoven college 9 J.Keijsper (TUE)

Nadere informatie

Tentamen Lineaire Algebra 2

Tentamen Lineaire Algebra 2 Lineaire algebra (NP010B) januari 013 Tentamen Lineaire Algebra Vermeld op ieder blad je naam en studentnummer. Lees eerst de opgaven voordat je aan de slag gaat. Schrijf leesbaar en geef uitleg over je

Nadere informatie