Wiskundige Analyse II

Maat: px
Weergave met pagina beginnen:

Download "Wiskundige Analyse II"

Transcriptie

1 Hoofdstuk 1 Wiskundige Analyse II Vraag 1.1 Het volume van een omwentelingslichaam beschreven door een homogeen, projecteerbaar gebied D dat de omwentelingsas niet snijdt, is gelijk aan het product van de baan van het massamiddelpunt van D met de oppervlakte van D. Vraag 1.2 De functie f(x, y, z) = yxz 3 x 4 + y 2 + z 2 is uitbreidbaar tot een differentieerbare functie in heel R 3. Vraag 1.3 De functie f(x, y) = x3 y x 4 + y 2 aangevuld met de waarde 0 in (0, 0), bezit een lineaire benadering in de omgeving van (0, 0). 1

2 Vraag 1.4 Zij f : R 3 R differentieerbaar in (x 0, y 0, z 0 ) met f(x 0, y 0, z 0 ) 0, dan stelt deze gradiënt de normaalvector voor in (x 0, y 0, z 0 ) op het oppervlak f(x, y, z) = 0. Vraag 1. Zij f : R m R n een functie die differentieerbaar is in a R m, dan is f(x) f(a) x a begrensd in een omgeving van a. Vraag 1.6 Zij g : R p R n en f : R n R p functies, differentieerbaar in respectievelijk Ω R p en g(ω) R n, dan geldt er voor hun samengestelde h = f g dat h j (x) = f j (g(x))dg(x), x Ω, j = 1..., p. Vraag 1.7 Zij g, f : R m R m differentieerbare functies in respectievelijk Ω R m en g(ω) R m, die bovendien elkaars inverse zijn, dan geldt er dat Df(g(x))D k g(x) = e k, x Ω, k = 1..., m. waarbij e k de k-de basisvector van R m is, voorgesteld als kolommatrix. 2

3 Vraag 1.8 Zij f(r) afleidbaar in R en zij r = x 2 + y 2 + z 2. Dan is f(x, y, z) = f (r) in R 3 \{(0, 0, 0)}. Hierbij wordt voor de functie f(r) en voor de corresponderende functie f(x, y, z) dezelfde notatie gebruikt, zoals gebruikelijk is in toepassingen. Vraag 1.9 Zij u(x, y) en v(x, y) continu differentieerbare functies, die voldoen aan het stelsel van Cauchy-Riemann: u x = v y, u y = v x en zij e en e eenheidsvectoren volgens richtingen die onderling orthogonaal zijn, dan zijn de richtingsafgeleiden van u volgens e en van v volgens e gelijk. Vraag 1.10 Gegeven het oppervlak met vergelijking x 2 + y 2 + z 2 xy 1 = 0. Dan wordt de projectie ervan op het Y Z vlak begrensd door de kromme 3 4 y2 + z 2 1 = 0. 3

4 Hoofdstuk 2 Waarschijnlijkheidsrekening en Statistiek Vraag 2.1 De gemeenschappelijke densiteit van de toevallige verandelijken X en Y wordt gegeven door: { αe 2 3 x e y als x > 0 en y > 0, f X,Y (x, y) = 0 elders, waar α R >0 een normalisatieconstante is. De toevallige veranderlijken U en V worden gedefinieerd als U = X 3 en V = Y + X 3. Welke van de onderstaande uitspraken is de correcte? { 1 - f U,V (u, v) = 3 αe u e v als u > 0 en v > 0 0 elders. { αe u e v als u > 0 en v > 0 - f U,V (u, v) = 0 elders. - U en V zijn onafhankelijk. - Geen van de bovenstaande uitspraken is waar. Vraag 2.2 Beschouw twee reële toevallige veranderlijken X en Y. Voor elke functie g(y ) van Y geldt dat E(g(Y ) u) = g(u) voor elke mogelijke waarde u van X. Bovendien geldt voor de 4

5 marginale massafunctie f X van X dat: 1 3 als z = 1, f X (z) = 2 3 als z = 2, 0 anders. Waaraan is E(e 2Y ) dan gelijk? - 1 /4-1 3 e e 4 - e 2/3 + 2e 4/3 - Er zijn te weinig gegevens om dit probleem op te lossen Vraag 2.3 De waarschijnlijkheid dat een hogerendementslamp stukgaat binnen uur licht geven is gelijk aan 1. Hoe groot is de waarschijnlijkheid dat van 10 aselect gekozen hogerendementslampen, er precies 3 stuk gaan binnen uur licht geven? ( 1 3 ( 4 ) ( 1 7 ( 4 ) ( 1 3 ( 4 ) ( 1 7 ( 4 ) ) 7 ) 3 ) 7 ) 3 Vraag 2.4 De toevallige veranderlijke X is uniform verdeeld over het interval [0, 2]. E(X 3 X) is dan gelijk aan: - 1/ Vraag 2. Je hebt een communicatiesysteem waarin een zender een symbool X { 1, 0, 1} zendt, wat tot gevolg heeft dat de ontvanger X + N ontvangt. Hierin is N een toevallige

6 veranderlijke met massafunctie f N (n) := n, n Z. We veronderstellen bovendien dat de drie waarden voor X even waarschijnlijk zijn, en dat X en N onafhankelijk zijn. De waarschijnlijkheid dat X + N > 1 2 is dan: - 7/18-7/9-1/3-4/9 Vraag 2.6 Van de toevallige veranderlijke X is geweten dat P (0 X 2) = P (1 X 3) = 1 2 en P (4 X ) = 1 4. Wat kun je hieruit besluiten? - P (1 X 2) = 1/4 - P (X = 1) = 1/2 - De geschetste situatie is niet mogelijk. - Geen van de bovenstaande. Vraag 2.7 De twee toevallige veranderlijken X en Y hebben verwachtingswaarden E(X) = 1 en E(Y ) = 1, varianties var(x) = 2 en var(y ) = 2, en een correlatiecoëfficiënt ρ(x, Y ) = 1 /4. Voor de veranderlijken U = X + 2Y and V = 2X Y is de correlatie ρ(u, V ) dan gegeven door: - 3 /2-13 6/48-6/16-6/16 Vraag 2.8 Beschouw een reële toevallige veranderlijke X met een densiteit f X waarvoor voor alle x R geldt dat f X (x) = f X ( x). Welke van de volgende functies zou een geldige momentenfunctie M X (t) van X kunnen zijn? - 6

7 - - - Vraag 2.9 In een distributiecentrum komen pakketjes toe tussen 8 en 17 uur, volgens een uniforme verdeling. De verwerkingstijd (in seconden) van een pakketje kan worden gemodelleerd als een toevallige veranderlijke S die uniform verdeeld is over het interval [1, T + 2], waarbij de toevallige veranderlijke T de sinds 8 uur verstreken tijd is tot het arriveren van het pakketje. T wordt hierbij uitgedrukt in uren. Een voorbeeld ter verduidelijking: als het pakketje aankomt om 11 uur, dan is S 7

8 uniform verdeeld over [1, ] seconden, wegens = De waarschijnlijkheid dat de verwerking minder lang duurt dan 2 seconden bedraagt dan: ln 10 ln 11-2/11-2/9-1/ Vraag 2.10 De toevallige veranderlijke Y is uniform verdeeld over het interval [0, 1]. Van de toevallige veranderlijke X kennen we de conditionele massafunctie: {( n ) x y x (1 y) n x als x {0, 1,..., n 1, n} f X Y (x y) = 0 elders, dus conditioneel op Y = y is X binomiaal verdeeld met kans op succes y en aantal experimenten n > 1. Welke van de volgende uitspraken is correct? - E(X 2 ) = n2 /3 + n /6 - E(X 2 ) = n /6 - X is binomiaal verdeeld - var(x) = n /6 8

Wiskundige Analyse II

Wiskundige Analyse II Hoofdstuk Wiskundige Analyse II Vraag. Het volume van een omwentelingslichaam beschreven door een homogeen, projecteerbaar gebied D dat de omwentelingsas niet snijdt, is gelijk aan het product van de baan

Nadere informatie

Relevante examenvragen , eerste examenperiode

Relevante examenvragen , eerste examenperiode Relevante examenvragen 2007 2008, eerste examenperiode WAAR/VALS Zijn de volgende uitspraken waar of vals? Geef een korte argumentatie (bewijs) of een tegenvoorbeeld, eventueel aangevuld met een figuur.

Nadere informatie

Relevante vragen , eerste examenperiode

Relevante vragen , eerste examenperiode Relevante vragen 2006 2007, eerste examenperiode OEFENING y = x 2 2, y = x, z = x 2 + y 2, z = x + 6 omvatten, indien we ons tot het gedeelte binnen de parabolische cilinder beperken, twee verschillende

Nadere informatie

Wiskundige Analyse II

Wiskundige Analyse II Hoofdstuk 1 Wiskundige Analyse II Vraag 1.1 Als de partiële afgeleiden van de functie f : R n R niet bestaan in het punt a, dan kan f in a geen lokaal extremum bereiken. Vraag 1.2 Als de functie f : R

Nadere informatie

OefenDeeltentamen 2 Kansrekening 2011/ Beschouw een continue stochast X met kansdichtheidsfunctie cx 4, 0 x 1 f X (x) = f(x) = 0, anders.

OefenDeeltentamen 2 Kansrekening 2011/ Beschouw een continue stochast X met kansdichtheidsfunctie cx 4, 0 x 1 f X (x) = f(x) = 0, anders. Universiteit Utrecht *=Universiteit-Utrecht Boedapestlaan 6 Mathematisch Instituut 3584 CD Utrecht OefenDeeltentamen Kansrekening 11/1 1. Beschouw een continue stochast X met kansdichtheidsfunctie c 4,

Nadere informatie

Definitie: Een functie f heeft een absoluut maximum f(x 0 ) in het punt. x 1 Domein(f) als voor alle x Domein(f) geldt:

Definitie: Een functie f heeft een absoluut maximum f(x 0 ) in het punt. x 1 Domein(f) als voor alle x Domein(f) geldt: Definitie: Een functie f heeft een absoluut maximum f(x 0 ) in het punt x 0 Domein(f) als voor alle x Domein(f) geldt: f(x) f(x 0 ). Een functie f heeft een absoluut minimum f(x 1 ) in het punt x 1 Domein(f)

Nadere informatie

Cursus Statistiek Hoofdstuk 4. Statistiek voor Informatica Hoofdstuk 4: Verwachtingen. Definitie (Verwachting van discrete stochast) Voorbeeld (1)

Cursus Statistiek Hoofdstuk 4. Statistiek voor Informatica Hoofdstuk 4: Verwachtingen. Definitie (Verwachting van discrete stochast) Voorbeeld (1) Cursus Statistiek Hoofdstuk 4 Statistiek voor Informatica Hoofdstuk 4: Verwachtingen Cursusjaar 29 Peter de Waal Departement Informatica Inhoud Verwachtingen Variantie Momenten en Momentengenererende functie

Nadere informatie

Wiskundige Analyse II

Wiskundige Analyse II Hoofdstuk 1 Wiskundige Analyse II Vraag 1.1 Als de partiële afgeleiden van de functie f : R n R niet bestaan in het punt a, dan kan f in a geen lokaal extremum bereiken. vals Vraag 1.2 Als de functie f

Nadere informatie

Tussentoets Analyse 1

Tussentoets Analyse 1 Tussentoets Analyse Maandag 0 oktober 008, 0.00 -.00u Schrijf op ieder vel je naam en studentnummer, de naam van de docent S. Hille, O. van Gaans en je studierichting. Geef niet alleen antwoorden, leg

Nadere informatie

1 WAAM - Differentiaalvergelijkingen

1 WAAM - Differentiaalvergelijkingen 1 WAAM - Differentiaalvergelijkingen 1.1 Algemene begrippen Een (gewone) differentiaalvergelijking heeft naast de onafhankelijke veranderlijke (bijvoorbeeld genoteerd als x), eveneens een onbekende functie

Nadere informatie

WI1708TH Analyse 3. College 5 23 februari Challenge the future

WI1708TH Analyse 3. College 5 23 februari Challenge the future WI1708TH Analyse 3 College 5 23 februari 2015 1 Programma Vandaag Richtingsafgeleide (14.6) Gradiënt (14.6) Maximalisatie richtingsafgeleide (14.6) Raakvlak voor niveauoppervlakken (14.6) 2 Richtingsafgeleide

Nadere informatie

Meetkunde en Lineaire Algebra

Meetkunde en Lineaire Algebra Hoofdstuk 1 Meetkunde en Lineaire Algebra Vraag 1.1 Zij p en q twee veeltermfuncties met reële coëfficiënten en A een reële vierkante matrix. Dan is p(a) diagonaliseerbaar over R als en slechts dan als

Nadere informatie

FACULTEIT ECONOMIE EN BEDRIJFSKUNDE Afdeling Kwantitatieve Economie

FACULTEIT ECONOMIE EN BEDRIJFSKUNDE Afdeling Kwantitatieve Economie FACULTEIT ECONOMIE EN BEDRIJFSKUNDE Afdeling Kwantitatieve Economie Analyse A, deeltentamen Uitwerkingen maandag 1 november 2010, 9 11 uur Gebruik van een formuleblad of rekenmachine is niet toegestaan

Nadere informatie

Opgaven Functies en Reeksen. E.P. van den Ban

Opgaven Functies en Reeksen. E.P. van den Ban Opgaven Functies en Reeksen E.P. van den Ban c Mathematisch Instituut Universiteit Utrecht Augustus 2014 1 Opgaven bij Hoofdstuk 1 Opgave 1.1 Zij f : R n R partieel differentieerbaar naar iedere variabele

Nadere informatie

Hoofdstuk 5. Toevalsveranderlijken en waarschijnlijkheidsdistributies. Marnix Van Daele. Vakgroep Toegepaste Wiskunde en Informatica Universiteit Gent

Hoofdstuk 5. Toevalsveranderlijken en waarschijnlijkheidsdistributies. Marnix Van Daele. Vakgroep Toegepaste Wiskunde en Informatica Universiteit Gent Hoofdstuk 5 Toevalsveranderlijken en waarschijnlijkheidsdistributies Marnix Van Daele MarnixVanDaele@UGentbe Vakgroep Toegepaste Wiskunde en Informatica Universiteit Gent Toevalsveranderlijken en waarschijnlijkheidsdistributies

Nadere informatie

Bedrijfskunde. Hoofdstuk 1. Vraag 1.1 Welke naam hoort bij het concept Elementaire bewegingen voor arbeidsanalyse

Bedrijfskunde. Hoofdstuk 1. Vraag 1.1 Welke naam hoort bij het concept Elementaire bewegingen voor arbeidsanalyse Hoofdstuk 1 Bedrijfskunde Vraag 1.1 Welke naam hoort bij het concept Elementaire bewegingen voor arbeidsanalyse - McGregor - Elton Mayo - Frank Lilian Gilbreth - Alfred Sloan - Henri Fayol Vraag 1.2 Je

Nadere informatie

34 HOOFDSTUK 1. EERSTE ORDE DIFFERENTIAALVERGELIJKINGEN

34 HOOFDSTUK 1. EERSTE ORDE DIFFERENTIAALVERGELIJKINGEN 34 HOOFDSTUK 1. EERSTE ORDE DIFFERENTIAALVERGELIJKINGEN 1.11 Vraagstukken Vraagstuk 1.11.1 Beschouw het beginwaardeprobleem = 2x (y 1), y(0) = y 0. Los dit beginwaardeprobleem op voor y 0 R en maak een

Nadere informatie

Analyse I. 2. Formuleer en bewijs de formule van Taylor voor een functie f : R R. Stel de formules op voor de resttermen van Lagrange en Liouville.

Analyse I. 2. Formuleer en bewijs de formule van Taylor voor een functie f : R R. Stel de formules op voor de resttermen van Lagrange en Liouville. Academiejaar 006-007 1ste semester februari 007 Analyse I 1. Toon aan dat elke begrensde rij een convergente deelrij heeft. Geef de definitie van een Cauchy rij, en toon aan dat elke Cauchy rij begrensd

Nadere informatie

V.2 Limieten van functies

V.2 Limieten van functies V.2 Limieten van functies Beschouw een deelverzameling D R, een functie f: D R en zij c R. We willen het gedrag van f in de buurt van c bestuderen. De functiewaarde in c is daarvoor niet belangrijk, de

Nadere informatie

Examenvragen Hogere Wiskunde I

Examenvragen Hogere Wiskunde I 1 Examenvragen Hogere Wiskunde I Vraag 1. Zij a R willekeurig. Gegeven is dat voor alle r, s Q geldt dat a r+s = a r a s. Bewijs dat voor alle x, y R geldt dat a x+y = a x a y. Vraag 2. Gegeven 2 functies

Nadere informatie

Eerste orde partiële differentiaalvergelijkingen

Eerste orde partiële differentiaalvergelijkingen Eerste orde partiële differentiaalvergelijkingen Vakgroep Differentiaalvergelijkingen 1995, 2001, 2002 1 Eerste orde golf-vergelijking De vergelijking au x + u t = 0, u = u(x, t), a ɛ IR (1.1) beschrijft

Nadere informatie

Tentamen Kansrekening en statistiek wi2105in 25 juni 2007, uur

Tentamen Kansrekening en statistiek wi2105in 25 juni 2007, uur Tentamen Kansrekening en statistiek wi205in 25 juni 2007, 4.00 7.00 uur Bij dit examen is het gebruik van een (evt. grafische rekenmachine toegestaan. Tevens krijgt u een formuleblad uitgereikt na afloop

Nadere informatie

Meetkunde en Lineaire Algebra

Meetkunde en Lineaire Algebra Hoofdstuk 1 Meetkunde en Lineaire Algebra Vraag 1.1 Zij p en q twee veeltermfuncties met reële coëfficiënten en A een reële vierkante matrix. Dan is p(a) diagonaliseerbaar over R als en slechts dan als

Nadere informatie

ONBETWIST ONderwijs verbeteren met WISkunde Toetsen Voorbeeldtoetsen Lineaire Algebra Deliverable 3.10 Henk van der Kooij ONBETWIST Deliverable 3.

ONBETWIST ONderwijs verbeteren met WISkunde Toetsen Voorbeeldtoetsen Lineaire Algebra Deliverable 3.10 Henk van der Kooij ONBETWIST Deliverable 3. ONBETWIST ONderwijs verbeteren met WISkunde Toetsen Voorbeeldtoetsen Lineaire Algebra Deliverable 3.10 Henk van der Kooij ONBETWIST Deliverable 3.8 ONBETWIST ONderwijs verbeteren met WISkunde Toetsen Inleiding

Nadere informatie

Reflecties bij de invoering van TI-Nspire CAS op de Europese Scholen L.A.A. Blomme

Reflecties bij de invoering van TI-Nspire CAS op de Europese Scholen L.A.A. Blomme Reflecties bij de invoering van TI-Nspire CAS op de Europese Scholen L.A.A. Blomme In 2010 is op de Europese Scholen het nieuwe wiskunde programma gestart. Een van de grote innovaties betreft het invoeren

Nadere informatie

IJkingstoets Wiskunde-Informatica-Fysica juli 2017: algemene feedback

IJkingstoets Wiskunde-Informatica-Fysica juli 2017: algemene feedback IJkingstoets wiskunde-informatica-fysica 5 juli 2017 - reeks 1 - p. 1/9 IJkingstoets Wiskunde-Informatica-Fysica juli 2017: algemene feedback Positionering ten opzichte van andere deelnemers In totaal

Nadere informatie

Kansrekening en stochastische processen 2DE18

Kansrekening en stochastische processen 2DE18 Kansrekening en stochastische processen 2DE18 Docent : Jacques Resing E-mail: resing@win.tue.nl 1/28 The delta functie Zij De eenheids impulsfunctie is: d ε (x) = { 1ε als ε 2 x ε 2 0 anders δ(x) = lim

Nadere informatie

Statistiek voor A.I.

Statistiek voor A.I. Statistiek voor A.I. College 13 Donderdag 25 Oktober 1 / 28 2 Deductieve statistiek Orthodoxe statistiek 2 / 28 3 / 28 Jullie - onderzoek Tobias, Lody, Swen en Sander Links: Aantal broers/zussen van het

Nadere informatie

Examen Complexe Analyse (September 2008)

Examen Complexe Analyse (September 2008) Examen Complexe Analyse (September 2008) De examenvragen vind je op het einde van dit documentje. Omdat het hier over weinig studenten gaat, heb ik geen puntenverdeling meegegeven. Vraag. Je had eerst

Nadere informatie

Wiskunde met (bedrijfs)economische toepassingen

Wiskunde met (bedrijfs)economische toepassingen FACULTEIT TEW Wiskunde met (bedrijfs)economische toepassingen Oefenexamens 1ste Bachelor TEW Eerste deel (januari) Academiejaar 2013-2014 Het examen vindt voor iedereen plaats in twee delen : het eerste

Nadere informatie

Dit is in feite de ongelijkheid van Cauchy Schwarz voor het standaardinproduct in R s van de vectoren

Dit is in feite de ongelijkheid van Cauchy Schwarz voor het standaardinproduct in R s van de vectoren Dit is in feite de ongelijkheid van Cauchy Schwarz voor het standaardinproduct in R s van de vectoren a = (a 1,..., a s ) en b = (b 1,..., b s ). Toepassing van deze Cauchy Schwarz-ongelijkheid levert

Nadere informatie

IJkingstoets september 2015: statistisch rapport

IJkingstoets september 2015: statistisch rapport IJkingstoets burgerlijk ingenieur 4 september 05 - reeks - p. IJkingstoets september 05: statistisch rapport In totaal namen 33 studenten deel aan deze toets. Hiervan waren er 06 geslaagd. Verdeling van

Nadere informatie

IJkingstoets september 2015: statistisch rapport

IJkingstoets september 2015: statistisch rapport IJkingstoets burgerlijk ingenieur 4 september 05 - reeks 4 - p. IJkingstoets september 05: statistisch rapport In totaal namen 33 studenten deel aan deze toets. Hiervan waren er 06 geslaagd. Verdeling

Nadere informatie

Tentamen Kansrekening en Statistiek (2WS04), dinsdag 17 juni 2008, van uur.

Tentamen Kansrekening en Statistiek (2WS04), dinsdag 17 juni 2008, van uur. Technische Universiteit Eindhoven Faculteit Wiskunde en Informatica Tentamen Kansrekening en Statistiek (2WS4, dinsdag 17 juni 28, van 9. 12. uur. Dit is een tentamen met gesloten boek. De uitwerkingen

Nadere informatie

Vergelijkingen van cirkels en lijnen

Vergelijkingen van cirkels en lijnen Vergelijkingen van cirkels en lijnen Rechthoekig coördinatenstelsel! Cartesisch coördinatenstelsel! René Descartes (1596-1650) Van hem is de uitspraak: Ik denk, dus ik besta! September 12, 2009 1 Vergelijkingen

Nadere informatie

WenS oude examenvragen tot en met

WenS oude examenvragen tot en met WenS oude examenvragen 2008 2009 tot en met 204 205 Een toevallige steekproef (X,X 2,...,X n ) van lengte n wordt getrokken uit een normale verdeling met verwachtingswaarde µ = 0 en variantie σ 2. Welke

Nadere informatie

UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica

UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica Uitwerking tentamen Functies van één veranderlijke (5260) op donderdag 25 oktober 2007, 9.00 2.00 uur. De uitwerkingen van de opgaven

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN. Faculteit Wiskunde en Informatica

TECHNISCHE UNIVERSITEIT EINDHOVEN. Faculteit Wiskunde en Informatica TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Kansrekening en Statistiek (2S27), dinsdag 14 juni 25, 9. - 12. uur. Dit is een tentamen met gesloten boek. De uitwerkingen

Nadere informatie

Set 3 Inleveropgaven Kansrekening (2WS20) Opgaven met sterretjes zijn lastiger dan opgaven zonder sterretje.

Set 3 Inleveropgaven Kansrekening (2WS20) Opgaven met sterretjes zijn lastiger dan opgaven zonder sterretje. Technische Universiteit Eindhoven Faculteit Wiskunde en Informatica Set 3 Inleveropgaven Kansrekening (2WS2) 23-24 Opgaven met sterretjes zijn lastiger dan opgaven zonder sterretje.. Voetbalplaatjes. Bij

Nadere informatie

Lineaire Algebra voor ST

Lineaire Algebra voor ST Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9. email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/ds6 Technische Universiteit Eindhoven college 9 J.Keijsper (TUE)

Nadere informatie

Aanvullingen van de Wiskunde

Aanvullingen van de Wiskunde 1ste semester 23 januari 2007 Aanvullingen van de Wiskunde 1. Gegeven zijn twee normen 1 en 2 op een vectorruimte V. Wanneer zegt men dat de 1 fijner is dan 2? Wat is dan het verband tussen convergentie

Nadere informatie

WenS tweede kans Permutatiecode 0

WenS tweede kans Permutatiecode 0 Aantekeningen op de vragenbladen zijn NIET TOEGELATEN. Je mag gebruik maken van schrijfgerief en een eenvoudige rekenmachine; alle andere materiaal blijft achterin. Geen GSM s toegelaten: voor wie tijdens

Nadere informatie

Tentamen Voortgezette Kansrekening (WB006C)

Tentamen Voortgezette Kansrekening (WB006C) WB6C: Voortgezette Kansrekening Donderdag 26 januari 212 Tentamen Voortgezette Kansrekening (WB6C) Het is een open boek tentamen. Gebruik van een rekenmachine of andere hulpmiddelen is niet toegestaan.

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Uitwerking tentamen Kansrekening en Stochastische Processen (2S61) op woensdag 27 april 25, 14. 17. uur. 1. Gegeven zijn twee onafhankelijke

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN. Faculteit Wiskunde en Informatica

TECHNISCHE UNIVERSITEIT EINDHOVEN. Faculteit Wiskunde en Informatica TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Kansrekening (2WS2, Vrijdag 23 januari 25, om 9:-2:. Dit is een tentamen met gesloten boek. De uitwerkingen van de opgaven dienen

Nadere informatie

Faculteit Wiskunde en Informatica VECTORANALYSE

Faculteit Wiskunde en Informatica VECTORANALYSE 12 Faculteit Wiskunde en Informatica Aanvulling 4 VECTOANALYE 2WA15 2006/2007 Hoofdstuk 4 De stelling van Gauss (divergentie-stelling) 4.1 Inleiding Dit hoofdstuk is gewijd aan slechts één stelling. De

Nadere informatie

Vandaag. Onderzoeksmethoden: Statistiek 2. Basisbegrippen. Theoretische kansverdelingen

Vandaag. Onderzoeksmethoden: Statistiek 2. Basisbegrippen. Theoretische kansverdelingen Vandaag Onderzoeksmethoden: Statistiek 2 Peter de Waal (gebaseerd op slides Peter de Waal, Marjan van den Akker) Departement Informatica Beta-faculteit, Universiteit Utrecht Theoretische kansverdelingen

Nadere informatie

HERTENTAMEN WISKUNDIGE BEELDVERWERKINGSTECHNIEKEN

HERTENTAMEN WISKUNDIGE BEELDVERWERKINGSTECHNIEKEN HERTENTAMEN WISKUNDIGE BEELDVERWERKINGSTECHNIEKEN Vakcode: 8D. Datum: Vrijdag juli 3. Tijd: 9.. uur. Plaats: AUD 5. Lees dit vóórdat je begint! Maak iedere opgave op een apart vel. Schrijf je naam en studentnummer

Nadere informatie

Primitieve functie Als f : R --> R continu is op een interval, dan noemt men F : R --> R een primiteive functie of

Primitieve functie Als f : R --> R continu is op een interval, dan noemt men F : R --> R een primiteive functie of Enkelvoudige integralen Kernbegrippen Onbepaalde integralen Van onbepaalde naar bepaalde integraal Bepaalde integralen Integratiemethoden Standaardintegralen Integratie door splitsing Integratie door substitutie

Nadere informatie

IJkingstoets september 2015: statistisch rapport

IJkingstoets september 2015: statistisch rapport IJkingstoets burgerlijk ingenieur 4 september 05 - reeks - p. IJkingstoets september 05: statistisch rapport In totaal namen studenten deel aan deze toets. Hiervan waren er 06 geslaagd. Verdeling van de

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamenopgaven Statistiek 2DD71: UITWERKINGEN 1. Stroopwafels a De som S van de 12 gewichten is X 1 + X 2 + + X 12. Deze is normaal

Nadere informatie

Complexe functies 2019

Complexe functies 2019 Complexe functies 019 Extra opgaves Opgave A Laat zien dat R voorzien van de bewerkingen a + b := (a 1 +b 1,a +b ) a b := (a 1 b 1 a b,a 1 b +a b 1 ) isomorf is met C. Wat is i in deze representatie? Opgave

Nadere informatie

Toegepaste Wiskunde 2: Het Kalman-filter

Toegepaste Wiskunde 2: Het Kalman-filter Toegepaste Wiskunde 2: Het Kalman-filter 25 februari, 2008 Hans Maassen 1. Inleiding Het Kalman filter schat de toestand van een systeem op basis van een reeks, door ruis verstoorde waarnemingen. Een meer

Nadere informatie

Opgaves Hoofdstuk 3: Toevalsveranderlijken en Distributiefuncties

Opgaves Hoofdstuk 3: Toevalsveranderlijken en Distributiefuncties Opgaves Hoofdstuk 3: Toevalsveranderlijken en Distributiefuncties Discrete Distributiefuncties 3. Er zijn 3 studenten aan het begin van de dag aanwezig bij een symposium. De kans dat een student volhoudt

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN. Faculteit Wiskunde en Informatica

TECHNISCHE UNIVERSITEIT EINDHOVEN. Faculteit Wiskunde en Informatica TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Kansrekening (2WS2), Vrijdag 24 januari 24, om 9:-2:. Dit is een tentamen met gesloten boek. De uitwerkingen van de opgaven

Nadere informatie

Inleiding Analyse 2009

Inleiding Analyse 2009 Inleiding Analyse 2009 Inleveropgaven A). Stel f(, y) = In (0, 0) is f niet gedefinieerd. We bestuderen y2 2 + y 4. lim f(, y). (,y) (0,0) 1. Bepaal de waarde van f(, y) op een willekeurige rechte lijn

Nadere informatie

Materiaaltechnologie. Hoofdstuk 1

Materiaaltechnologie. Hoofdstuk 1 Hoofdstuk 1 Materiaaltechnologie Vraag 1.1 In verband met de eventuele isotropie of anisotropie in een polykristallijn materiaal, is slechts één van de onderstaande beweringen juist: - een materiaal in

Nadere informatie

WenS eerste kans Permutatiecode 0

WenS eerste kans Permutatiecode 0 WenS eerste kans 2012 2013 Aantekeningen op de vragenbladen zijn NIET TOEGELATEN. Je mag gebruik maken van schrijfgerief en een eenvoudige rekenmachine; alle andere materiaal blijft achterin. Leg je studentenkaart

Nadere informatie

Examen Wiskundige Analyse I 1ste bach ir wet. dinsdag 5 januari Vraag 1.1. Waar of vals (1pt) Het beginvoorwaardenprobleem

Examen Wiskundige Analyse I 1ste bach ir wet. dinsdag 5 januari Vraag 1.1. Waar of vals (1pt) Het beginvoorwaardenprobleem Examen Wiskundige Analyse I ste bach ir wet dinsdag 5 januari 206 Vraag.. Waar of vals (pt) Het beginvoorwaardenprobleem 32x 3 y = (y ) 3, y() = 2, y () = 4 bezit een unieke oplossing, die geldig is in

Nadere informatie

QuizAnalyseHoofdstuk3 - wv -Brackx

QuizAnalyseHoofdstuk3 - wv -Brackx QuizAnalyseHoofdstuk3 - wv -Brackx Als: dan is: Als f discontinu is in x 0 en dan zijn de linker- en rechterlimieten van f(x) in x 0 aan elkaar gelijk maar verschillend van L. Als voor alle x in ]a,b [

Nadere informatie

Kansrekening en Statistiek

Kansrekening en Statistiek Kansrekening en Statistiek College 15 Dinsdag 2 November 1 / 16 2 Statistiek Indeling: Filosofie Schatten Centraal Bureau voor Statistiek 2 / 16 Schatten Vb. Het aantal tenen plus vingers in jullie huishoudens:

Nadere informatie

Kansrekening en Statistiek

Kansrekening en Statistiek Kansrekening en Statistiek College 9 Dinsdag 18 Oktober 1 / 1 2 Statistiek Vandaag: Centrale Limietstelling Correlatie Regressie 2 / 1 Centrale Limietstelling 3 / 1 Centrale Limietstelling St. (Centrale

Nadere informatie

(b) Formuleer het verband tussen f en U(P, f), en tussen f en L(P, f). Bewijs de eerste. (c) Geef de definitie van Riemann integreerbaarheid van f.

(b) Formuleer het verband tussen f en U(P, f), en tussen f en L(P, f). Bewijs de eerste. (c) Geef de definitie van Riemann integreerbaarheid van f. Radboud Universiteit Nijmegen Tentamen Analyse 1 WP001B 2 juli 2015, 08:30 11:30 (12:30) Het gebruik van een rekenmachine, telefoon of tablet is niet toegestaan. U mag geen gebruik maken van het boek Analysis

Nadere informatie

Ijkingstoets industrieel ingenieur UGent/VUB, september 2015

Ijkingstoets industrieel ingenieur UGent/VUB, september 2015 IJkingstoets 4 september 05 - reeks - p. /0 Ijkingstoets industrieel ingenieur UGent/VUB, september 05 Oefening De evolutie van een bepaalde radioactieve stof in de tijd volgt het wiskundig model N (t)

Nadere informatie

IJkingstoets Wiskunde-Informatica-Fysica 29 juni Nummer vragenreeks: 1

IJkingstoets Wiskunde-Informatica-Fysica 29 juni Nummer vragenreeks: 1 IJkingstoets Wiskunde-Informatica-Fysica 29 juni 206 Nummer vragenreeks: IJkingstoets wiskunde-informatica-fysica 29 juni 206 - reeks - p. /0 Oefening Welke studierichting wil je graag volgen? (vraag

Nadere informatie

Vectoranalyse voor TG

Vectoranalyse voor TG college 4 en raakvlakken collegejaar : 16-17 college : 4 build : 19 september 2016 slides : 30 Vandaag Snowdon Mountain Railway (Wales) 1 De richtingsafgeleide 2 aan een grafiek 3 Differentieerbaarheid

Nadere informatie

Aanvullingen van de Wiskunde / Partiële Differentiaalvergelijkingen

Aanvullingen van de Wiskunde / Partiële Differentiaalvergelijkingen de Bachelor EIT 2de en de Bachelor Wiskunde Academiejaar 215-216 1ste semester 26 januari 216 Aanvullingen van de Wiskunde / Partiële Differentiaalvergelijkingen 1. Gegeven een homogene lineaire partiële

Nadere informatie

3 Opgaven bij Hoofdstuk 3

3 Opgaven bij Hoofdstuk 3 3 Opgaven bij Hoofdstuk 3 Opgave 3. Voor k beschouwen we de functie f k : x sin(x/k). Toon aan dat f k 0 uniform op [ R, R] voor iedere R > 0. Opgave 3.2 Zij V een verzameling. Een functie f : V C heet

Nadere informatie

Analyse I. 1ste Bachelor Ingenieurswetenschappen Academiejaar ste semester 10 januari 2008

Analyse I. 1ste Bachelor Ingenieurswetenschappen Academiejaar ste semester 10 januari 2008 ste Bachelor Ingenieurswetenschappen Academiejaar 007-008 ste semester 0 januari 008 Analyse I. Bewijs de stelling van Bolzano-Weierstrass: elke oneindige begrensde deelverzameling van R heeft minstens

Nadere informatie

Ter Leering ende Vermaeck

Ter Leering ende Vermaeck Ter Leering ende Vermaeck 15 december 2011 1 Caleidoscoop 1. Geef een relatie op Z die niet reflexief of symmetrisch is, maar wel transitief. 2. Geef een relatie op Z die niet symmetrisch is, maar wel

Nadere informatie

Voorbereiding toelatingsexamen arts/tandarts

Voorbereiding toelatingsexamen arts/tandarts Voorbereiding toelatingsexamen arts/tandarts Wiskunde: functies 16 september 2017 dr. Brenda Casteleyn Met dank aan: Atheneum van Veurne Leen Goyens (http://users.telenet.be/toelating) 1. Inleiding Dit

Nadere informatie

Lineaire algebra I (wiskundigen)

Lineaire algebra I (wiskundigen) Lineaire algebra I (wiskundigen) Toets, donderdag 22 oktober, 2009 Oplossingen (1) Zij V het vlak in R 3 door de punten P 1 = (1, 2, 1), P 2 = (0, 1, 1) en P 3 = ( 1, 1, 3). (a) Geef een parametrisatie

Nadere informatie

Eindexamen wiskunde B 1-2 vwo 2002-II

Eindexamen wiskunde B 1-2 vwo 2002-II Eindexamen wiskunde B 1-2 vwo 2002-II ppervlakte Gegeven is de functie f ( x) = x 1. De lijn k raakt aan de grafiek van f in het punt (10, 3). Zie figuur 1. figuur 1 y k 1 1 f x 5p 1 Stel met behulp van

Nadere informatie

Tentamen Functies en Reeksen

Tentamen Functies en Reeksen Tentamen Functies en Reeksen 6 november 204, 3:30 6:30 uur Schrijf op ieder vel je naam en bovendien op het eerste vel je studentnummer, de naam van je practicumleider (Arjen Baarsma, KaYin Leung, Roy

Nadere informatie

Integratie voor meerdere variabelen

Integratie voor meerdere variabelen Wiskunde 2 voor kunstmatige intelligentie, 27/28 Les 4 Integratie voor meerdere variabelen In deze les bekijken we het omgekeerde van de afgeleide, de integratie, en gaan na hoe we een integraal voor functies

Nadere informatie

UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica

UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica Uitwerking tentamen Functies van één veranderlijke (5260) op donderdag 2 oktober 200, 3.45 6.45 uur. De uitwerkingen van de opgaven

Nadere informatie

Technische Universiteit Delft Tentamen Calculus TI1106M - Uitwerkingen. 2. Geef berekeningen en beargumenteer je antwoorden.

Technische Universiteit Delft Tentamen Calculus TI1106M - Uitwerkingen. 2. Geef berekeningen en beargumenteer je antwoorden. Technische Universiteit elft Tentamen Calculus TI06M - Uitwerkingen Opmerkingen:. Het gebruik van de rekenmachine is NIET toegestaan.. Geef berekeningen en beargumenteer je antwoorden. 3. Bij iedere vraag

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Uitwerking tentamen Kansrekening en Stochastische Processen S60) op vrijdag 4 januari 0, 4.00 7.00 uur.. Gegeven zijn twee stochastische

Nadere informatie

Topologie in R n 10.1

Topologie in R n 10.1 Topologie in R n 10.1 Lengte x = (x 1,..., x n ) = x 2 1 + x2 2 + + x2 n Bol B(x 0, r) = {x : x x 0 < r} x 0 r p 1 p 3 p 1 p 2 S p 1 heet uitwendig punt p 2 heet inwendig punt p 3 heet randpunt p 1 p 3

Nadere informatie

Inhoud van een omwentelingslichaam

Inhoud van een omwentelingslichaam Inhoud van een omwentelingslichaam Wat is een omwentelingslichaam? Omwentelingslichamen ontstaan door het wentelen van een vlakdeel rond een rechte: de omwentelingsas Voorbeeld: volume van een (omwentelings)cilinder

Nadere informatie

Functies van één veranderlijke

Functies van één veranderlijke Functies van één veranderlijke 952600 Docent : Anton Stoorvogel E-mail: A.A.Stoorvogel@utwente.nl /37 Elektrotechniek, Wiskunde en Informatica EWI Newton s method Hoe vinden we een nulpunt: f.x/ D 0 Stel

Nadere informatie

Ijkingstoets industrieel ingenieur aangeboden door UGent en VUB op 15 september 2014: algemene feedback

Ijkingstoets industrieel ingenieur aangeboden door UGent en VUB op 15 september 2014: algemene feedback IJkingstoets 5 september 04 - reeks - p. /0 Ijkingstoets industrieel ingenieur aangeboden door UGent en VUB op 5 september 04: algemene feedback In totaal namen 5 studenten deel aan deze ijkingstoets industrieel

Nadere informatie

Vectormeetkunde in R 3

Vectormeetkunde in R 3 Vectormeetkunde in R Definitie. Een punt in R wordt gegeven door middel van drie coördinaten : P = (x, y, z). Een lijnstuk tussen twee punten P en Q voorzien van een richting noemen we een pijltje. Notatie

Nadere informatie

Kansrekening en statistiek WI2105IN deel I 4 november 2011, uur

Kansrekening en statistiek WI2105IN deel I 4 november 2011, uur Kansrekening en statistiek WI05IN deel I 4 november 0, 4.00 7.00 uur Bij dit examen is het gebruik van een (evt. grafische) rekenmachine toegestaan. Een formuleblad wordt uitgereikt. Meerkeuzevragen Toelichting:

Nadere informatie

Functies van één veranderlijke

Functies van één veranderlijke Functies van één veranderlijke 191512600 Docent : Anton Stoorvogel E-mail: A.A.Stoorvogel@utwente.nl 1/43 Elektrotechniek, Wiskunde en Informatica EWI Maxima en minima Gegeven een functie f met domein

Nadere informatie

Opgaven Inleiding Analyse

Opgaven Inleiding Analyse Opgaven Inleiding Analyse E.P. van den Ban Limieten en continuïteit Opgave. (a) Bewijs direct uit de definitie van iet dat y 0 y = 0. (b) Bewijs y 0 y 3 = 0 uit de definitie van iet. (c) Bewijs y 0 y 3

Nadere informatie

Analyse I. 1ste Bachelor Ingenieurswetenschappen Academiejaar ste semester 12 januari 2010

Analyse I. 1ste Bachelor Ingenieurswetenschappen Academiejaar ste semester 12 januari 2010 ste Bachelor Ingenieurswetenschappen Academiejaar 9- ste semester januari Analyse I. Formuleer en bewijs de formule van Leibniz voor de n-de afgeleide van het product van twee functies f en g.. Onderstel

Nadere informatie

Voortgezette Analyse. H.A.W.M. Kneppers. april 2017

Voortgezette Analyse. H.A.W.M. Kneppers. april 2017 Voortgezette Analyse H.A.W.M. Kneppers april 07 iteratuur [A] Robert A. Adams, Calculus, 8th edition, Addison-Wesley 00. [B] William E. Boyce & Richard C. DiPrima, Elementary Differential Equations and

Nadere informatie

Radboud Universiteit Nijmegen Tentamen Calculus 1 NWI-NP003B 4 januari 2013,

Radboud Universiteit Nijmegen Tentamen Calculus 1 NWI-NP003B 4 januari 2013, Radboud Universiteit Nijmegen Tentamen Calculus 1 NWI-NP003B 4 januari 013, 8.30 11.30 Het gebruik van een rekenmachine, telefoon en boek(en) is niet toegestaan. Geef precieze argumenten en antwoorden.

Nadere informatie

De dynamica van een hertenpopulatie. Verslag 1 Modellen en Simulatie

De dynamica van een hertenpopulatie. Verslag 1 Modellen en Simulatie De dynamica van een hertenpopulatie Verslag Modellen en Simulatie 8 februari 04 Inleiding Om de groei van een populatie te beschrijven, kunnen vele verschillende modellen worden gebruikt, en welke meer

Nadere informatie

Centrale Commissie Voortentamen Wiskunde Uitwerkingen Voortentamen Wiskunde B 11 juni 2012

Centrale Commissie Voortentamen Wiskunde Uitwerkingen Voortentamen Wiskunde B 11 juni 2012 Centrale Commissie Voortentamen Wiskunde Uitwerkingen Voortentamen Wiskunde B juni 22 Voorlopige versie 6 juni 22 Opgave a f (x) = x2 x 5, dus f (x) = 2 2 x 5x. Dit geeft f (x) = 2 2 2x3. f (x) = 2 2 2x3

Nadere informatie

1. (a) Formuleer het Cauchy criterium voor de convergentie van een reeks

1. (a) Formuleer het Cauchy criterium voor de convergentie van een reeks Radboud Universiteit Nijmegen Tentamen Analyse 1 WP001B 7 augustus 2015, 16:30 19:30 (20:30) Het gebruik van een rekenmachine, telefoon of tablet is niet toegestaan. U mag geen gebruik maken van het boek

Nadere informatie

Voorbehouden voor de correctoren Vraag 1 Vraag 2 Vraag 3 Vraag 4 Vraag 5 Totaal. Toets Kansrekenen I. 28 maart 2014

Voorbehouden voor de correctoren Vraag 1 Vraag 2 Vraag 3 Vraag 4 Vraag 5 Totaal. Toets Kansrekenen I. 28 maart 2014 Voorbehouden voor de correctoren Vraag 1 Vraag 2 Vraag 3 Vraag 4 Vraag 5 Totaal Toets Kansrekenen I 28 maart 2014 Naam : Richting : Lees volgende aanwijzingen alvorens aan het examen te beginnen Wie de

Nadere informatie

Faculteit Wiskunde en Informatica VECTORANALYSE

Faculteit Wiskunde en Informatica VECTORANALYSE 2 Faculteit Wiskunde en Informatica Aanvulling 5 VECTORANALYE 2WA5 2006/2007 Hoofdstuk 5 De stellingen van tokes en Green 5. Inleiding In dit hoofdstuk worden de stellingen van tokes en van Green 2 behandeld.

Nadere informatie

Overzicht Fourier-theorie

Overzicht Fourier-theorie B Overzicht Fourier-theorie In dit hoofdstuk geven we een overzicht van de belangrijkste resultaten van de Fourier-theorie. Dit kan als steun dienen ter voorbereiding op het tentamen. Fourier-reeksen van

Nadere informatie

V.4 Eigenschappen van continue functies

V.4 Eigenschappen van continue functies V.4 Eigenschappen van continue functies We bestuderen een paar belangrijke stellingen over continue functies. Maxima en minima De stelling over continue functies die we in deze paragraaf bewijzen zegt

Nadere informatie

UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica

UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica Uitwerking Proeftentamen 3 Functies van één veranderlijke (15126 De uitwerkingen van de opgaven dienen duidelijk geformuleerd en overzichtelijk

Nadere informatie

Inverse functies en limieten

Inverse functies en limieten Inverse functies en limieten Inverse functies We nemen aan dat A en B deelverzamelingen zijn van R. Een functie f : A B heet één-één duidig of injectief als f (x 1 ) f (x 2 ) voor alle x 1 x 2, x 1, x

Nadere informatie

Uitwerkingen Tentamen Gewone Differentiaalvergelijkingen

Uitwerkingen Tentamen Gewone Differentiaalvergelijkingen Uitwerkingen Tentamen Gewone Differentiaalvergelijkingen Maandag 4 januari 216, 1: - 13: uur 1. Beschouw voor t > de inhomogene singuliere tweede orde vergelijking, t 2 ẍ + 4tẋ + 2x = f(t, (1 waarin f

Nadere informatie

10.0 Voorkennis. Herhaling van rekenregels voor machten: a als a a 1 0[5] [6] Voorbeeld 1: Schrijf als macht van a:

10.0 Voorkennis. Herhaling van rekenregels voor machten: a als a a 1 0[5] [6] Voorbeeld 1: Schrijf als macht van a: 10.0 Voorkennis Herhaling van rekenregels voor machten: p p q pq a pq a a a [1] a [2] q a q p pq p p p a a [3] ( ab) a b [4] Voorbeeld 1: Schrijf als macht van a: 1 8 : a a : a a a a 3 8 3 83 5 Voorbeeld

Nadere informatie